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Background:Magnetic resonance imaging (MRI) is able to provide detailed insights into the structural organiza-

tion of the brain, e.g., by means of mapping brain anatomy and white matter microstructure. Understanding in-

terrelations between MRI modalities, rather than mapping modalities in isolation, will contribute to unraveling

the complex neural mechanisms associated with neuropsychiatric disorders as deficits detected across modali-

ties suggest common underlying mechanisms. Here, we conduct a multimodal analysis of structural MRI modal-

ities in the context of attention-deficit/hyperactivity disorder (ADHD).

Methods: Gray matter volume, cortical thickness, surface areal expansion estimates, and white matter diffusion

indices of 129 participants with ADHD and 204 participants without ADHD were entered into a linked indepen-

dent component analysis. This data-driven analysis decomposes the data into multimodal independent compo-

nents reflecting common inter-subject variation across imaging modalities.

Results: ADHD severity was related to two multimodal components. The first component revealed smaller pre-

frontal volumes in participants with more symptoms, co-occurring with abnormal white matter indices in pre-

frontal cortex. The second component demonstrated decreased orbitofrontal volume as well as abnormalities

in insula, occipital, and somato-sensory areas in participants with more ADHD symptoms.

Conclusions: Our results replicate and extend previous unimodal structural MRI findings by demonstrating that

prefrontal, parietal, and occipital areas, as well as fronto-striatal and fronto-limbic systems are implicated in

ADHD. By including multiple modalities, sensitivity for between-participant effects is increased, as shared vari-

ance acrossmodalities ismodeled. The convergence of modality-specific findings in our results suggests that dif-

ferent aspects of brain structure share underlying pathophysiology and brings us closer to a biological

characterization of ADHD.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is a

neurodevelopmental disorder that consistently has been related to ab-

normalities in brain structure. Magnetic resonance imaging (MRI) pro-

vides insights into brain morphology and white matter mesostructure

by means of high-resolution anatomical imaging and diffusion-

weighted imaging. To date, analyses have focused on each datamodality

separately, thus limiting conclusions to the modality analyzed. Recent
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advances in analytic techniques support integration of different data

modalities, allowing for a simultaneous multimodal characterization

of the biological markers associated with neuropsychiatric disorders

(Groves et al., 2011).

Focusing on single data modalities, ADHD has been associated with

decreased cortical thickness of regions implicated in attentional pro-

cessing and cognitive control, including the frontal lobe and anterior

cingulate cortex (ACC) (Castellanos et al., 2002; Narr et al., 2009). In ad-

dition, maturation of cortical thickness is delayed in ADHD compared to

controls, with amaturational lag of up tofive years in the prefrontal cor-

tex (Shaw et al., 2007). Cortical surface area (relative amount of areal

expansion or compression) exhibits a similar developmental delay

(Shaw et al., 2012). Yet, although anomalies in prefrontal cortical thick-

ness in ADHD are consistent, divergent findings outside the prefrontal

cortex have been reported. These include thinner bilateral medial tem-

poral cortices and increased cortical thickness in left superior parietal

cortex (Narr et al., 2009).

Brain volumetric analyses have associated ADHDwith a 3–5% smaller

total brain and gray matter volume compared to controls (Castellanos

et al., 2002; Greven et al., 2015). Further, voxel-based morphometry

(VBM) analyses in ADHD support results of smaller prefrontal volumes,

more specifically of ACC (Frodl & Skokauskas, 2012), and reveal smaller

volumes across several specific brain regions, most consistently in basal

ganglia, thalamus, cerebellum, and amygdala (Frodl & Skokauskas,

2012; Plessen et al., 2006; Mackie et al., 2007; Nakao et al., 2011).

Alterations in the brain's white matter have frequently been reported

in ADHD.While diffusion indices describe different aspects of whitemat-

termicrostructure (e.g., fractional anisotropy [FA];mean diffusivity [MD];

tensormode [MO]), studies concerningADHDhavemainly focused on FA.

Yet, the reported findings have been heterogeneous and widespread

throughout the brain, possibly because of region of interest approaches,

variation in analysis techniques, and small sample sizes. A recent meta-

analysis reported altered FA associated with ADHD in the tracts of the

fronto-striatal-cerebellar circuit (van Ewijk et al., 2012).

The heterogeneity of imaging-based findings in ADHD, as described

above, negatively impacts on our ability to interpret modality-specific

results in the biological context of underlying pathophysiology. This is

largely due to the isolated picture of brain abnormalities that is provided

by unimodal univariate analyses. Recently developed analysis tech-

niques allow integrative analyses across imaging modalities (Groves

et al., 2011). Analyzing data in a multimodal way allows identification

of co-occurring changes across brain measures, potentially reflecting

shared pathophysiology and etiological processes. Importantly, this in-

tegrative approach does still allow for unimodalfindings to be identified

(Groves et al., 2012). Analyses integrating modalities add up to more

than the sum of the modalities, as the integration of metrics increases

sensitivity for between-participant effects by providing improved

modeling of shared variance across modalities (Groves et al., 2012).

While moving from uni- to multi-modal analysis permits the simulta-

neous characterization across different aspects of biological change

measured by different MR modalities, the uni- to multi-variate change

permits the simultaneous characterization across different brain areas,

i.e., within distributed networks. Here, we conducted a multivariate

multimodal analysis in a large and well-characterized ADHD sample

through combining gray matter probability, cortical thickness, surface

area volume estimates, and white matter diffusion indices.

2. Materials and methods

2.1. Sample

We included 333 participants from the NeuroIMAGE study (www.

neuroimage.nl) (von Rhein et al., 2014), the Dutch follow-up of the Inter-

nationalMulticenter ADHDGenetics (IMAGE) study (Muller et al., 2011a;

Muller et al., 2011b). Participants with ADHD combined type and their

siblings (regardless of ADHD diagnosis) were recruited from outpatient

psychiatric or pediatric clinics. Control families were recruited from

schools and did not meet criteria for ADHD, neither did their first-

degree relatives. Further inclusion criteria in IMAGE were an IQ ≥ 70,

European Caucasian descent, and no diagnosis of autism, epilepsy, gen-

eral learning difficulties, brain disorders, or known genetic disorders

(such as Fragile X or Down syndrome). Diagnostic, neurocognitive, MRI,

and genetic data for NeuroIMAGE were collected at the VU University

Amsterdam and Radboudumc Nijmegen. All participants and their par-

ents (in case of participants below18years of age) gave informed consent

and the study was approved by local ethical committees. For the current

analyses we selected all participants that had both diffusion tensor imag-

ing (DTI) and structural T1 scans of good quality as assessed by visual in-

spection (n= 333). Participants were divided into two groups based on

the presence of an ADHD diagnosis (129 ADHD and 204 non-ADHD;

Table 1). There were no differences between the participants included

in the current analysis and the complete NeuroIMAGE sample on mea-

sures of ADHD severity, age, and gender (p N 0.05).

2.2. Diagnostics

To determine ADHD diagnoses, all participants were assessed using

a combination of a semi-structured diagnostic interview and Conners'

ADHD questionnaires. Participants were administered the ADHD sec-

tion of the Schedule for Affective Disorders and Schizophrenia for

School-Age Children - Present and Lifetime Version (Kaufman et al.,

1997), carried out by trained professionals. Both the parents and the

child, if ≥12 years old, were interviewed separately and were initially

only administered the ADHD screening interview. Participants with ele-

vated scores on any of the screen items were administered the full

ADHD section. Further each child was assessed with a teacher-rating

(Conners' Teacher Rating Scale - Revised: Long version (CTRS-R:L);

(Conners et al., 1998); applied for children b18 years) or a self-report

(Conners' Adult ADHD Rating Scales - Self-Report:Long Version

(CAARS-S:L); (Conners et al., 1999); applied for children ≥18 years). A

diagnostic algorithm was applied to combine symptom counts on the

K-SADS and CTRS-R:L (for participants b18 years) or CAARS-S:L (for

participants ≥18), providing operational definitions of each of the 18be-

havioral symptoms of ADHD defined by the DSM-IV (American Psychi-

atric Association, 2000). Symptoms of the CTRS-R:L or CAARS-S:L were

only used in the algorithm if at least 2 symptoms were reported on

this questionnaire. Participants with a combined symptom count of ≥6

symptoms of hyperactive/impulsive behaviour and/or inattentive be-

haviour were diagnosed with ADHD, provided they: a) met the DSM-

IV criteria for pervasiveness and impact of the disorder (measures de-

rived from the K-SADS), b) showed an age of onset before 7, derived

from the K-SADS, and c) received a T ≥ 63 on at least one of the DSM

ADHD scales on either one of Conners' ADHD questionnaires. Criteria

were slightly adapted for young adults (≥18 years), such that a com-

bined symptom count of 5 symptoms was sufficient for a diagnosis

(Kooij et al., 2005), also in accordance with the ADHD algorithm in

DSM-5. Participants not meeting the criteria for an ADHD diagnosis

were assigned to the non-ADHD group. For participants using stimulant

medication, participants were asked to fill out the questionnaires keep-

ing a period of time when they were off medication in mind. For the

testing day, participants were asked towithhold the use of psychoactive

medication for 48 h before visit.

Comorbidity with oppositional defiant disorder (ODD) and conduct

disorder (CD) was assessed using the K-SADS. Initially only the screen-

ing interview was administered, thereafter participants with elevated

scores on any of the screen items were also administered the full

section.

2.3. MRI acquisition

MRI scans were acquired at two different locations (Donders Centre

for Cognitive Neuroimaging in Nijmegen, The Netherlands and VU
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University Medical Centre in Amsterdam, The Netherlands), using two

comparable 1.5 Tesla MRI scanners (Siemens Sonata/Avanto, Erlangen,

Germany), identical 8-channel head-coils, and matched scan protocols.

For each participant we obtained a high-resolution T1-weighted

MPRAGE anatomical scan (176 sagittal slices, TR = 2730 ms, TE =

2.95 ms, TI = 1000 ms, flip angle = 7 deg, GRAPPA 2 acceleration,

voxel size = 1.0 × 1.0 × 1.0 mm, field of view= 256 mm). In addition,

whole brain diffusion-weighted imageswere collected (twice refocused

PGSE EPI; 60 diffusion-weighted images; b-factor 1000 s/mm2; 5 non-

diffusion-weighted images; 60 slices interleaved; TE/TR = 97/

8500 ms; GRAPPA-acceleration 2; voxel size 2.0 × 2.0 × 2.2 mm).

2.4. MRI processing

2.4.1. Measures of gray matter structure

2.4.1.1. Cortical thickness and areal expansion. We extracted cortical

thickness and areal expansion estimates using Freesurfer v5.3 software

(http://surfer.nmr.mgh.harvard.edu/; (Dale et al., 1999; Fischl et al.,

1999)). FreeSurfer is a fully automated technique to create a 3D recon-

struction of the cortical sheet that uses both intensity and continuity in-

formation. Cortical thicknesswas calculated as the closest distance from

the gray/white boundary to the gray/CSF boundary at each vertex on the

surface (Fischl & Dale, 2000). Surface area was defined as the relative

amount of expansion or compression at each vertex and was estimated

by registering each subject's surface to a common atlas space surface.

Surfacemapswere resampled,mapped to a common coordinate system

using a non-rigid high-dimensional spherical averagingmethod to align

cortical folding patterns (Fischl et al., 2008). After bringing the

Freesurfer data onto the high-resolution average subject surface

(fsaverage), data were projected onto the low-resolution template

(fsaverage5: 4 mm voxels) for computational reasons. A 10 mm

FWHM surface-based smoothing kernel was applied.

2.4.1.2. VBM. Each participant's T1-weigthed scan was normalized to

Montreal Neurological Institute (MNI) 152 standard space, bias-field

corrected and segmented into gray matter, white matter, and cerebro-

spinal fluid using the unified procedure of the VBM 8.1 toolbox

(http://dbm.neuro.uni-jena.de/vbm/) in SPM8 (http://www.fil.ion.ucl.

ac.uk/spm, London, UK) using default settings. This method uses an op-

timized VBM protocol (Ashburner & Friston, 2000; Good et al., 2001) as

well as a model based on Hidden Markov Random Fields developed to

optimize the detection of effects (Cuadra et al., 2005). Correction for

total brain volume was incorporated in the analysis (modulated analy-

sis). Regional volumes of gray matter, white matter, and CSF were esti-

mated. Morphometric analysis of white-matter, however, is known to

be sensitive to misalignments during spatial normalization (Bookstein,

2001; Jones et al., 2005; Smith et al., 2006). Therefore, the VBM analysis

focused on the graymatter segmentation only andwe used Tract-based

Spatial Statistics (TBSS) to assesswhitemattermicrostructure (see next

paragraph). Gray matter segmented images were modulated to correct

for local expansion or contraction. Generally, Jacobian modulated gray

matter values are referred to as gray matter volume, while unmodu-

lated images are referred to as gray matter density maps (Eckert et al.,

2006). The latter density maps are sensitive to poor registration as

they reflect the proportion of gray matter relative to other tissue types

within a region. Thus, here, we focus on gray matter volume estimates

to investigate gray matter values. Images were smoothed with a

9.4 mm FWHM Gaussian smoothing kernel (sigma = 4 mm). Data

were down-sampled from 2 mm to 4 mm isotropic for computational

reasons.

2.4.2. Measures of white matter microstructure

DTI images were denoised, realigned, and corrected for residual

eddy-current (SPM8) and for artifacts from head and/or cardiac motion

using robust tensormodeling (PATCH (Zwiers, 2010)) and formagnetic

susceptibility induced distortions (Visser & Zwiers, 2010). Diffusion ten-

sors and derived FA, MD, and MO values were calculated for each voxel

(FSL 4.1.7; (Behrens et al., 2003)). FA quantifies anisotropy of diffusion,

with higher FA values indicative of larger directed diffusion (Basser

et al., 1994). MD measures the overall magnitude of diffusion with

higher values indicating stronger diffusion. MO has been less often re-

ported in the DTI literature; nevertheless, it is a valuable addition to

FA and MD as it reflects the shape of the diffusion tensor. MO is mathe-

matically orthogonal to FA and ranges from planar (e.g., in regions with

crossing fibers) to linear (when one fiber direction dominates).

Using Tract-Based Spatial Statistics (FSL-TBSS), FA volumes were

skeletonized (Smith et al., 2006) and nonlinearly registered to the

FMRIB-58_FA template (MNI152-space). Subsequently, a group mean

FA-image was created to produce a mean skeleton. Finally, each diffu-

sion parameter (FA, MD, MO) of each participant was projected onto

the group skeleton, thresholded at FA ≥ 0.2 to exclude peripheral tracts

(Smith et al., 2006). To reduce computational complexity, the resolution

of the skeletonwas reduced from1mmto 2mmisotropic voxel size and

renormalized.

2.5. Linked independent component analysis

Linked independent component analysis (linked ICA, (Groves et al.,

2011) is a data-driven approach aimed at relating common components

across multiple imaging modalities. Linked ICA is based on the general

ICAmodel (Jutten & Herault, 1991; Hyvarinen & Oja, 2000), a technique

that given amultivariate set ofmixed signals, searches for non-Gaussian

sources that provide a new set of statistically independent signals.

Table 1

Demographic and clinical characteristics.

ADHD (n = 129) Non-ADHD (n = 204) Test statistic

Demographic

Age, mean, SD 17.8 3.2 17.3 3.5 t(331) = −1.378

Gender, number, % male 90 69.8% 84 41.2% X2(1) = 25.893⁎⁎

Scan site, number, % in Nijmegen 68 52.7% 97 47.5% X2(1) = 0.843

Estimated IQb, mean, SD 96.9 15.6 103.0 13.1 t(328) = 3.794⁎⁎

History of medication use (yes/no), number, % yesa 94 84.7% 15 8.6% X2(1) = 166.011⁎⁎

Clinical

Hyperactive/impulsive symptomsc 5.6 2.4 0.7 1.3 t(331) = −24.348⁎⁎

Inattentive symptomsc 7.3 1.6 0.9 1.7 t(331) = −34.624⁎⁎

Comorbid ODD, number, % 35 27.1% 5 2.5% X2(1) = 45.547⁎⁎

Comorbid CD, number, % 6 4.7% 0 0% X(1) = 8.163⁎

ODD = oppositional defiant disorder, CD= conduct disorder.
a History of stimulant medication use (based on pharmacy reports) is missing for 48 participants.
b Estimated IQ based onWechsler Intelligence Scale for Children orWechsler Adult Intelligence Scale–III Vocabulary and Block Design. IQ ismissing for 2 ADHD cases and 1 non-ADHD.
c Symptom count according to the DSM-IV criteria (range from 0 to 9).
⁎ p b 0.01.
⁎⁎ p b 0.001.
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While the traditional ICA algorithms perform a matrix factorization,

there exist extensions such as tensor ICA (Beckmann & Smith, 2005)

which allow for three dimensional factorizations and, thus, are able to

deal with input data composed of different modalities. Tensor-ICA,

however, cannot directly deal with data modalities that have different

dimensionalities, i.e. where the number of observations between mo-

dalities change due to differences in, e.g., resampling. By applying sepa-

rate ICA decompositions on individual data modalities with different

dimensions, linked ICA allows to jointly model these complex input

data. Importantly, linked ICA constrains all decompositions to be linked

through the same shared subject-courses. The data aremodeled asmul-

timodal independent components characterizing sources of inter-

subject variability. Each component has an associated spatial pattern

for every modality, and all modalities are linked through a subject load-

ing vector reflecting the typicality of this component for each partici-

pant. Further, linked ICA models the component-specific relevance of

each modality in each component through a vector of weights that re-

flects towhich extent eachmodality contributes to a given independent

component (Groves et al., 2011). Thereby linked ICA ensures the

balancing of information across modalities by taking into account the

spatial correlation of each modality (Groves et al., 2012).

Here, we used linked ICA including the six datamodalities described

above: cortical thickness, areal expansion estimates, VBM gray matter

volume, FA, MD, and MO. Given our sample size and based on previous

analyses (Groves et al., 2012), we ran the linked ICA model to estimate

50 independent components.

2.6. Statistics

Spatial patterns of the components were converted to z-statistics

and were thresholded at z = 3. Subsequent analyses aimed at relating

subject loadings of a component to differences in clinical variables of in-

terest (i.e., ADHD diagnosis). Scanner site, gender, age (linear and qua-

dratic fit) were regressed out of the subject loading vectors as they

were of no primary interest (effects of the regression on the subject

loadings are shown in eFig. 1). First, we correlated the component-

specific subject loading vectorswith inattentive and hyperactive/impul-

sive symptoms. Using Bonferroni correction for the total of 50 compo-

nents a threshold of p b 0.001 was set. Secondly, for the components

with a significant association, we compared the subject loading

vectors between the ADHD and non-ADHD groups using a categorical

group comparison. To assess statistical significance, independent sam-

ple t-tests (two-tailed) were used. A threshold of p b 0.05/n, with

n = the amount of components with a significant association with

ADHD symptoms.

3. Results

3.1. General outcome of the linked ICA analysis

Fig. 1 illustrates the normalizedweight vectors reflecting the relative

contribution of each modality in each independent component. Of the

50 components, we identified 29 as multimodal, i.e., a single modality

does not account for more than 50% of the component weight vector

(further described in supplementary material). Further inspection of

the subject loadings revealed 4 components significantly related to

scanner site, 9 related to age, and 12 associated with gender (eTable 1).

3.2. ADHD-related effects

After regressing out scanner site, gender, age, and age2, two multi-

modal components (component 18 and 24) were significantly related

to ADHD symptoms. The subjects' loadings of component 18 showed a

significant relation with hyperactive/impulsive symptoms t

(332) =−3.370, p b 0.001 (Fig. 2), but not with inattentive symptoms

when applying Bonferroni correction, t(332) = −2.819, p = 0.005.

Furthermore, ADHD and non-ADHD groups differed significantly from

each other in a categorical group comparison t(331) = 3.068, p =

0.002, with participants with ADHD exhibiting higher scores (M =

0.21, SD = 0.94) compared to non-ADHD participants (M = −0.13,

SD = 1.00).

Component 18 had its largest contributions from gray matter vol-

ume and cortical thickness data (FA = 9%, MD = 12%, MO = 7%,

VBM= 18%, CT = 42%, Area = 9%). Participants with ADHD showed a

pattern of lower gray matter volume in the orbitofrontal and anterior

cingulate cortex and increased gray matter volume around sensorimo-

tor, occipital, and thalamic regions (Fig. 3). This graymatter volume pat-

tern coincided with decreased cortical thickness in the insula, medial

temporal cortices, and precentral gyrus. Although white matter micro-

structure was contributing less to this component (component 18),

the spatial pattern was consistent with the VBM and cortical thickness

maps. The DTI maps showed in ADHD, higher FA in the forceps major

connecting the occipital lobes, lower FA in the internal capsule contain-

ing motor and sensory projection fibers, corpus callosum and around

the postcentral cortex, all in conjunction with higher MD in the

postcentral cortex and lower MD in the thalamus extending to sur-

rounding structures. Finally, increased MO in the bilateral superior co-

rona radiata was found in ADHD compared to non-ADHD.

Subject loadings on a second multimodal component (component

24) were significantly related to hyperactive/impulsive symptom

count t(332) =−3.516, p b 0.001 (Fig. 4). The association between in-

attentive symptom count and the subjects' loadings on component 24

did not survive Bonferroni correction, t(332)=−2.137, p=0.033. Fur-

thermore, when comparing ADHD and non-ADHD groups directly, par-

ticipants with ADHD exhibited significantly lower scores (M= −0.18,

Fig. 1. Relative weight of each modality within each component. Components are sorted

first based on the modality that yielded the largest contribution, and second on their

level of multimodality, i.e., how evenly distributed several modalities contributed. To

quantifymultimodalitywe calculated amultimodal index assigning a value of 1 to compo-

nents to which eachmodality contributed equally and 0 to components towhich onemo-

dality primarily contributed. The multimodal index is plotted in the bar on the left, going

from 1 = white, to 0 = black. Components that yielded significant ADHD-related effects

are indicated. FA = Fractional Anisotropy, MD = Mean Diffusivity, MO = Diffusion

Mode, VBM = Voxel-Based Morphometry, CT = Cortical Thickness Estimate, Area =

Areal Expansion Estimate.
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SD=0.99) compared to non-ADHDparticipants (M=0.11, SD=0.98),

t(331) = 2.660, p = 0.008.

Gray matter volume and areal expansion estimates both

encompassed the medial frontal cortex, with larger volumes in non-

ADHD participants compared to participants with ADHD (Fig. 5).

While the VBM spatial map covered the complete prefrontal lobe, thal-

amus, and part of cerebellum, the areal expansion estimates map was

localized to anterior prefrontal cortex. The contribution of the DTI mo-

dalities was smaller (FA = 9%, MD = 5%, MO = 9%, VBM = 23%,

CT = 5%, Area = 46%), but consistently showed abnormalities of the

prefrontal white matter to be associated with ADHD. Specifically, in

ADHD, lower FA was found in the forceps minor combined with lower

MO, and lower FA was combined with higher MO in more posterior re-

gions of the forceps minor and superior corona radiata, as well as tha-

lamic and cerebellar regions. Finally, higher MD in the corpus

callosum was present in ADHD.

Finally, differences between ADHD and non-ADHD groups on three

unimodal components (component 1, 6, and 33) did not survive correc-

tion for multiple comparisons. These unimodal components are speci-

fied in the supplementary material.

Post-hoc control and sensitivity analyses showed that neither com-

ponent 18 nor 24were associated withmedication history or IQ. As his-

tory of medication use was only relevant for the ADHD group and IQ

might reflect variation that is a feature of ADHD pathology itself (Nigg,

2001; Dennis et al., 2009), these variables were not entered in the

model, but post-hoc analyzed. Furthermore, adding oppositional defiant

disorder/conduct disorder comorbidity to our analyses did not influence

the results, and results were similar in a subsample without comorbid-

ities. No interactions between diagnosis and gender were found.

Figures illustrating the post-hoc sensitivity analyses are presented in

the supplementary material.

3.3. Multimodal versus unimodal findings

To investigate the added value of our multimodal analysis over a

unimodal analysis,we compared currentmultimodal resultswith previ-

ously published unimodal results obtained from the same cohort. Re-

sults of three modalities were reported recently, namely: VBM gray

matter volume estimates (Bralten et al., under review), cortical thick-

ness (Schweren et al., 2015), and DTI (van Ewijk et al., 2014).

In a VBM study, we reported smaller gray matter volumes in five

clusters in the precentral gyrus, medial and orbital frontal cortex, frontal

pole and (para)cingulate cortex (Bralten et al., under review). Indeed,

prefrontal regions were also revealed by the present multimodal analy-

sis (see eFig. 6 for spatial overlap). When comparing the contribution of

VBM data to components 18 and 24, we see that component 24 had the

largest contribution of VBM data (23% compared to 18%). In addition,

the spatial pattern of component 24 also showed the largest overlap

with the unimodal results. This indicates that the modality with the

largest contribution also replicates the unimodal results the most con-

sistently. Furthermore, clusters revealed by the multimodal analysis

were larger and more symmetrical, indicating increased sensitivity to

ADHD related effects by the joint analysis of all modalities. Note that

patterns appearing to be symmetric are not a trivial finding since the al-

gorithm used imposes no spatial structure. In addition, the multimodal

analysis revealed that these ADHD-related alterations in gray matter

volume co-occurred with changes in areal expansion and white matter

indices. Importantly, by using a multimodal analysis method where in-

dividual decompositions are linked together by means of a subject-

loading vector, one can be confident that the same subjects are driving

the patterns present in different modalities. This is fundamentally dif-

ferent from unimodal analyses where the actual association between

subject specific values across modalities needs to be established post-

hoc. Thus, themultimodal analysis does not only replicate the unimodal

VBM findings; in addition, it reveals a consistent pattern of prefrontal

abnormalities in areal expansion estimates, FA and MO (see Fig. 5) in

the same subjects.

For the unimodal cortical thickness data analysis, we reported thin-

ner bilateralmedial temporal cortices inADHD, including in the entorhi-

nal, parahippocampal, fusiform and isthmus cingulate cortices

(Schweren et al., 2015). Parts of the temporal cortex also showed de-

creased cortical thickness in multimodal component 18 (see eFig. 7 for

spatial overlap). Cortical thickness estimates had the largest contribu-

tion to this component. Nevertheless, by including other modalities

the involvement of frontal gray matter volumewas revealed, indicating

the role of themore extended fronto-limbic system in ADHD pathology.

Finally, in a previous DTI study, we reported widespread differences

inwhitematter indices (FA andMD) between ADHDand control groups

(van Ewijk et al., 2014). When visually inspecting themultimodal com-

ponents that were related to ADHD (component 18 and 24), overlap

with unimodal findings was limited (eFig. 8). This is not surprising as

the contribution of the diffusion indices to these components was lim-

ited (see Fig. 1). Furthermore, when inspecting the components that

were related to ADHD but did not show a significant multimodal

Fig. 2. Correlations between subjects' loadings on component 18 and hyperactive/impulsive and inattentive symptoms counts.
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character (component 1, 6, and 33), MD of component 6 showed high

overlap with previously published unimodal MD results (van Ewijk

et al., 2014) (eFig. 9). The spatial maps encompass the corpus callosum,

internal capsule, posterior thalamic radiation, corona radiata, fornix,

cerebellar peduncle, and cingulum. Further, spatial maps of unimodal

FA analysis (van Ewijk et al., 2014) were partly reflected in component

39 (eFigs. 10 and 11). Although this component was not significantly

different between ADHD and non-ADHD groups, [t(331) = 1.929,

p = 0.055], it was significantly related to the subjects' K-GAS score [t

(332) = 3.166, p = 0.002]. This K-GAS score reflects the general func-

tioning of participants and was highly correlated with the inattentive

(r = −0.75) and hyperactive/impulsive symptom count (r = −0.67).

Finally, DTI findings of the multimodal components (component 18

and 24) were explaining variance that was also reflected in other mo-

dalities and spatially consistent across modalities. While prefrontal

white matter was not revealed by the unimodal analysis, our multi-

modal analysis picked up on variation in prefrontal white matter

whichwas also observable in prefrontal graymatter volume (see Fig. 5).

4. Discussion

Imaging studies in neuropsychiatry typically focus on single imaging

modalities such as brain volume or white matter microstructure. Here,

we aimed to uncover shared pathophysiological processes in gray and

white matter using a multivariate analysis technique that allows inves-

tigating concurrent patterns of variation in the brain across modalities

(Groves et al., 2011). Including data on various aspects of brain mor-

phology and white matter microstructure, we identified modality

transcending differences between participants with and without

Fig. 3.Multimodal component 18 related to ADHD. Spatial representation of eachmodality's contribution to component 18. Spatial maps were thresholded at z = 3. Blue colors indicate

lower values on thisMRImeasure for ADHD than for control. VBM=Voxel-BasedMorphometry graymatter volume, FA=Fractional Anisotropy,MD=MeanDiffusivity,MO=Diffusion

Mode.
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ADHD in fronto-striatal and fronto-limbic circuits, as well as in parietal

and occipital lobes, insula, and cerebellum.

We observed reduced prefrontal gray matter volume and surface

area in participants with ADHD compared to those without ADHD,

thereby confirming previous studies (Narr et al., 2009; Shaw et al.,

2012; Overmeyer et al., 2001; Seidman et al., 2005; Almeida et al.,

2010; Batty et al., 2010; Durston et al., 2005). In addition, and again in

line with previous studies, we observed abnormal microstructure of

prefrontal white matter (van Ewijk et al., 2012; Pavuluri et al., 2009;

Konrad & Eickhoff, 2010). The prefrontal cortex is of clear interest in

ADHD research, as it underlies performance on executive functioning

tasks that are impaired in ADHD (Barkley, 1997; Willcutt et al., 2005).

Next to prefrontal gray matter, prefrontal white matter microstructure

has been associated with poor executive functioning in ADHD

(Lawrence et al., 2013). As the prefrontal cortex is part of fronto-

striatal and fronto-cerebellar loops (Alexander et al., 1986), striatal

and cerebellar regionsmaybe expected to show concurrent changes. In-

deed, we observed abnormal volumes of thalamus and cerebellum in

ADHD. Our results indicate that the entire fronto-striatal loops

(i.e., both white and gray matter) are affected in ADHD, supporting

the idea that the pathophysiology of ADHD is reflected across large-

scale networks, rather than confined to specific areas within the brain

(Menon, 2011).

We also observed decreased graymatter volume in the orbitofrontal

cortex, ACC, and insula in ADHD. These fronto-limbic regions have been

reported as altered in previous unimodal studies in ADHD and have

been related to abnormal reinforcement responses, error monitoring,

and emotional processing (Frodl & Skokauskas, 2012; Amico et al.,

2011; Hesslinger et al., 2002; Proal et al., 2011; Hoekzema et al.,

2012). Related to the same underlying between-participant variance

as the fronto-limbic regions, more basal sensory areas, i.e., occipital

and sensori-motor cortex were included in this ADHD-related compo-

nent. These areas are implicated in, respectively, attention and motor

performance. In line with previous reports, we observed increased vol-

ume of the regions in ADHD compared to non-ADHD participants (van

Wingen et al., 2013; Wang et al., 2007). When comparing our results

with the literature, it has to be noted that our non-ADHDgroup contains

awider spectrumof ADHD characteristics than is commonly included in

a control group. In light of the dimensional analyses this allows the

modeling of the entire ADHD spectrum.

Using a multimodal approach, we replicated our previously pub-

lished unimodal findings in the same cohort. Specifically, gray matter

volume and cortical thickness results showed high overlap between

unimodal and multimodal analyses. An integrated multimodal method

often reveals findings in one modality that could also have been re-

vealed using a unimodalmethod. However, a unimodal analysis per def-

inition overlooks part of the picture as it is focusing only on this one

modality. Here, we show that the addition of more modalities reveals

that unimodal findings can be reflected across modalities, e.g., co-

occurring abnormalities in prefrontal gray matter volume, prefrontal

FA, and prefrontal areal expansion estimates. Furthermore, when

conducting multiple unimodal analyses no conclusions can be drawn

about the individual subjects that drive the effects in different modali-

ties, therefore the modalities then need to be reconsolidated post-hoc.

In addition, themultimodal maps showedmore extended and symmet-

ric spatialmaps than the unimodal results, indicating increased sensitiv-

ity by addingmodalities to the analysis. Power in a unimodal analysis is

dependent on the signal-to-noise (SNR) properties of that specific mo-

dality. Importantly, in a multimodal analysis SNRs of each modality

are linked. As a consequence, power inmodalities with lower SNR is en-

hanced by exploiting statistical regularities existing at the population

level. In the case of linked ICA, these regularities resemble subject load-

ings across subjects (Groves et al., 2012). Moreover, using the multi-

modal approach we observe that unimodal findings were replicated in

the modality that had the largest contribution to this component and

thus, that unimodal findings were reflected in spatial maps of different

multimodal components, e.g., gray matter volume data in component

24 and cortical thickness results in component 18. Concerning the DTI

findings, unimodal MD findings were reflected in a component that

was related to ADHD, but was not multimodal (component 6). While

the variance in MD captured by this component was not related to var-

iance in other modalities, the multimodal approach was still able to ex-

tract it. Unimodal FA results were partly replicated in component 39, a

component that was related to the general functioning in daily life of

the participants.

Although the linked ICA approach employed here does not reveal

new pathophysiology related to ADHD, it advances on classic unimodal

analyses in several ways. Firstly, by modeling the multimodal data

within one model linked by the single subject-loading vector, one can

be sure that the patterns reflected in different modalities are driven by

the same participants. Importantly, this conclusion cannot be reached

when conducting parallel unimodal analyses. The knowledge that the

same participants show a similar pattern across brain measures, does

not only add to the complete image of ADHD, but also openspossibilities

Fig. 4. Correlations between subjects' loadings on component 24 and hyperactive/impulsive and inattentive symptoms counts.
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for more elaborate ways of stratification or subtyping of participants

with ADHD based on different brain patterns across MRI modalities.

Secondly, as linked ICA allows the inclusion of multiple modalities,

shared variance across modalities is modeled, thereby increasing sensi-

tivity to between-participant effects: large unimodal effects will be de-

tected both by unimodal and multimodal analyses. Small effects that

are present in several modalities, however, might only be revealed

when variance present across modalities is adequately modeled, in-

creasing the sensitivity to effects that have small individual unimodal

effect sizes but consistent across the population and across modalities.

Finally, structural variationwithin the data related to nuisance variables

is captured within separate components. As an example, we observed

components that were dominated by scan site or gender, thereby cap-

turing main sources of variance of no-interest within our dataset. As

such, linked ICA has the potential to address common imbalances in

gender and/or age present in many clinical samples. Of note, in order

to remove any residual variance not capturedwithin these independent

components, we additionally regressed scan site, gender, and age out of

the data.

Under themultimodal model, the cause of convergence of between-

participant variability across modalities may be a common pathophysi-

ologic process that is reflected in all modalities. Such processes could be

related to common etiologic factors, either genetic or environmental, or

both. Such etiologic factors might already exert their influence during

prenatal development (Sidman& Rakic, 1973), influencing proliferation

and migration of cells. As such, genetic factors that are associated with

the development of brain structure have suggested to be implicated in

ADHD. One example are polymorphisms within genes related to

neurodevelopmental processes such as cell adhesion, neuronmigration,

and neurite outgrowth (Poelmans et al., 2011; Yang et al., 2013).

Fig. 5.Multimodal component 24 related to ADHD. Spatial representation of eachmodality's contribution to component 24. Spatial maps were thresholded at z = 3. Blue colors indicate

lower values on this MRI measure for ADHD than control. VBM= Voxel-Based Morphometry gray matter volume, FA = Fractional Anisotropy, MD=Mean Diffusivity, MO= Diffusion

Mode.
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Likewise, environmental factors have been shown to exert influence on

brain development, e.g., the influence of maternal smoking on brain de-

velopment (Roza et al., 2007).

Instead of a common etiologic factor simultaneously affecting mo-

dalities, it is also possible that a cascade of sequential events results in

effects across modalities. In this case, the pathophysiologic process pri-

marily affects one modality, in turn leading to alterations in other mo-

dalities. This has been hypothesized in Alzheimer's disease research,

where gray matter atrophy is thought to lead to disruptions in white

matter tracts (Villain et al., 2010). The identification of the starting

event could then significantly advance possibilities for preventive or

therapeutic interventions. Yet, outlining such cascadingmodel in devel-

opmental psychiatric disorders is obscured by the early onset of the dis-

order and a manifold of potentially interacting neurobiological and

social-environmental processes. Prospective brain imaging studies in

high-risk young children may provide helpful insights in this context

through improved longitudinal modeling of developmental brain

processes.

Interpretation of multimodal analyses will greatly benefit from im-

proved knowledge concerning the underlying developmental trajecto-

ries of different modalities, which is currently limited to rather general

descriptions. As an example, developmental changes in white matter

follow a linear pattern, while development of the cortex follows an

inverted U-shape pattern across development (Gogtay et al., 2004;

Paus et al., 1999). Furthermore, developmental processes of different

modalities might interact. For instance, increased myelination of intra-

cortical fibers and synaptic pruning might induce an apparent loss of

cortex and account for the cortical thinning observed during puberty

(Gogtay et al., 2004; Paus, 2005). In the absence of longitudinal multi-

modal investigations, little is known about potentially common under-

lying processes and developmental trajectories.

In conclusion, our results advance prior studies by providing evi-

dence that distinct structural properties of multiple brain areas are si-

multaneously affected in ADHD. In line with previous literature, we

observed ADHD-related changes in prefrontal cortex, aswell as parietal,

insular, and occipital areas. We showed that these structural changes

were reflected by multimodal components that capture commonalities

across participants. Such reflection of ADHD-pathology across structural

brain modalities offers a biologically meaningful characterization of

ADHD by suggesting common pathophysiological processes without

the need for post-hoc cross-modal meta-analysis. This paves the way

for further research into the functional significance of these multimodal

components for neurocognitive performance, neural activation to cog-

nitive tasks, and treatment response patterns and into brain-based

stratification of participants with ADHD.

Potential conflicts of interest

Jan K Buitelaar has been in the past 3 years a consultant to/member

of advisory board of/and/or speaker for Janssen Cilag BV, Eli Lilly, Shire,

Lundbeck, Roche and Servier. He is not an employee of any of these

companies, and not a stock shareholder of any of these companies. He

has no other financial or material support, including expert testimony,

patents, and royalties.

Jaap Oosterlaan has been on the advisory board of Shire and UCB

Pharmaceuticals. He has received an unrestricted grant from Shire.

Pieter Hoekstra has received honoraria for advice from Eli Lilly and

Shire.

In the past year, Dr. Faraone received income, travel expenses, po-

tential income and/or research support from Pfizer, Ironshore, Shire,

Akili Interactive Labs, CogCubed, Alcobra, VAYA Pharma, Neurovance,

Impax, NeuroLifeSciences. With his institution, he has US patent

US20130217707 A1 for the use of sodium-hydrogen exchange inhibi-

tors in the treatment of ADHD. He receives royalties from books pub-

lished by Guilford Press: Straight Talk about Your Child's Mental

Health, Oxford University Press: Schizophrenia: The Facts and Elsevier,

ADHD: Non-Pharmacologic Interventions.

Christian F. Beckmann receives consulting income from and is share-

holder of SBGneuro Ltd.

Barbara Franke received a speaker fee from Merck.

The other authors have no potentially competing interests.

Acknowledgements

TheNeuroIMAGE projectwas supported by NIHGrant R01MH62873

(to Dr. Faraone), NWO Large Investment Grant 1750102007010,

ZonMWGrant 60-60600-97-193, NWOBrain & Cognition an Integrative

Approach grant (433-09-242), National Initiative Brain & Cognition

grant (056-13-015) (to Dr. Buitelaar), and matching grants from

Radboud University Nijmegen Medical Center, University Medical Cen-

ter Groningen and Accare, and VU University Amsterdam. The research

leading to these results also received support from the European

Community's Seventh Framework Programme (FP7/2007-2013) under

grant agreement numbers 278948 (TACTICS) and 602450

(IMAGEMEND).

Dr. Beckmann is supported by the Netherlands Organisation for Sci-

entific Research (NWO-Vidi 864-12-003) and gratefully acknowledges

funding from theWellcome Trust UK Strategic Award [098369/Z/12/Z].

Dr. Faraone is supported by the K.G. Jebsen Centre for Research on

Neuropsychiatric Disorders, University of Bergen, Bergen, Norway, the

European Community's Seventh Framework Programme (FP7/2007-

2013) under grant agreement n°602805 (Aggressotype) and NIMH

grants R13MH059126 and R01MH094469.

Dr. Franke is supported by a Vici grant from the Netherlands Organi-

zation for Scientific Research (NWO-Vici 016-130-669). Dr. Franke and

Dr. Buitelaar also received funding from theNational Institutes of Health

(NIH) Consortium grant U54 EB020403, supported by a cross-NIH alli-

ance that funds Big Data to Knowledge Centers of Excellence.

Dr. Mennes is supported by funding from the European Research

Council under the European Union's Seventh Framework Programme

(FP7/2007-2013) / ERC grant agreement n° 327340.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.nicl.2016.03.005.

References

Groves, A.R., Beckmann, C.F., Smith, S.M.,Woolrich, M.W., 2011. Linked independent com-

ponent analysis for multimodal data fusion. NeuroImage 54 (3), 2198–2217. http://
dx.doi.org/10.1016/j.neuroimage.2010.09.073 (PubMed PMID: 20932919).

Castellanos, F.X., Lee, P.P., Sharp,W., Jeffries, N.O., Greenstein, D.K., Clasen, L.S., et al., 2002.

Developmental trajectories of brain volume abnormalities in children and adoles-
cents with attention-deficit/hyperactivity disorder. J. Am. Med. Assoc. 288 (14),

1740–1748 (PubMed PMID: 12365958).
Narr, K.L., Woods, R.P., Lin, J., Kim, J., Phillips, O.R., Del'Homme, M., et al., 2009. Wide-

spread cortical thinning is a robust anatomical marker for attention-deficit/
hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 48 (10), 1014–1022.

http://dx.doi.org/10.1097/CHI.0b013e3181b395c0 (PubMed PMID: 19730275;

PubMed Central PMCID: PMC2891193).
Shaw, P., Eckstrand, K., Sharp, W., Blumenthal, J., Lerch, J.P., Greenstein, D., et al., 2007.

Attention-deficit/hyperactivity disorder is characterized by a delay in cortical matu-
ration. Proc. Natl. Acad. Sci. U. S. A. 104 (49), 19649–19654. http://dx.doi.org/10.

1073/pnas.0707741104 (PubMed PMID: 18024590; PubMed Central PMCID:

PMC2148343).
Shaw, P., Malek, M., Watson, B., Sharp, W., Evans, A., Greenstein, D., 2012. Development of

cortical surface area and gyrification in attention-deficit/hyperactivity disorder. Biol.
Psychiatry 72 (3), 191–197. http://dx.doi.org/10.1016/j.biopsych.2012.01.031

(PubMed PMID: 22418014).
Greven, C.U., Bralten, J., Mennes, M., O'Dwyer, L., van Hulzen, K.J., Rommelse, N., et al.,

2015. Developmentally stable whole-brain volume reductions and developmentally

sensitive caudate and putamen volume alterations in those with attention-deficit/hy-
peractivity disorder and their unaffected siblings. JAMA Psychiatry. http://dx.doi.org/

10.1001/jamapsychiatry.2014.3162 (PubMed PMID: 25785435).
Frodl, T., Skokauskas, N., 2012. Meta-analysis of structural MRI studies in children and

adults with attention deficit hyperactivity disorder indicates treatment effects. Acta

365W. Francx et al. / NeuroImage: Clinical 11 (2016) 357–367

doi:10.1016/j.nicl.2016.03.005
doi:10.1016/j.nicl.2016.03.005
http://dx.doi.org/10.1016/j.neuroimage.2010.09.073
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0010
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0010
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0010
http://dx.doi.org/10.1097/CHI.0b013e3181b395c0
http://dx.doi.org/10.1073/pnas.0707741104
http://dx.doi.org/10.1073/pnas.0707741104
http://dx.doi.org/10.1016/j.biopsych.2012.01.031
http://dx.doi.org/10.1001/jamapsychiatry.2014.3162


Psychiatr. Scand. 125 (2), 114–126. http://dx.doi.org/10.1111/j.1600-0447.2011.

01786.x (PubMed PMID: 22118249).
Plessen, K.J., Bansal, R., Zhu, H., Whiteman, R., Amat, J., Quackenbush, G.A., et al., 2006.

Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder.
Arch. Gen. Psychiatry 63 (7), 795–807. http://dx.doi.org/10.1001/archpsyc.63.7.795

(PubMed PMID: 16818869; PubMed Central PMCID: PMC2367150).
Mackie, S., Shaw, P., Lenroot, R., Pierson, R., Greenstein, D.K., Nugent 3rd, T.F., et al., 2007.

Cerebellar development and clinical outcome in attention deficit hyperactivity disor-

der. Am. J. Psychiatry 164 (4), 647–655. http://dx.doi.org/10.1176/appi.ajp.164.4.647
(PubMed PMID: 17403979).

Nakao, T., Radua, J., Rubia, K., Mataix-Cols, D., 2011. Gray matter volume abnormalities in
ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medica-

tion. Am. J. Psychiatry 168 (11), 1154–1163. http://dx.doi.org/10.1176/appi.ajp.2011.

11020281 (PubMed PMID: 21865529).
van Ewijk H, Heslenfeld DJ, Zwiers MP, Buitelaar JK, Oosterlaan J. Diffusion tensor imaging

in attention deficit/hyperactivity disorder: a systematic review and meta-analysis.
Neurosci. Biobehav. Rev. 2012;36(4):1093–106. Epub 2012/02/07. http://dx.doi.org/

10.1016/j.neubiorev.2012.01.003S0149-7634(12)00010-3 [pii]. (PubMed PMID:

22305957).
Groves, A.R., Smith, S.M., Fjell, A.M., Tamnes, C.K., Walhovd, K.B., Douaud, G., et al., 2012.

Benefits of multi-modal fusion analysis on a large-scale dataset: life-span patterns of
inter-subject variability in cortical morphometry and white matter microstructure.

NeuroImage 63 (1), 365–380. http://dx.doi.org/10.1016/j.neuroimage.2012.06.038
(PubMed PMID: 22750721).

von Rhein, D., Mennes, M., van Ewijk, H., Groenman, A.P., Zwiers, M.P., Oosterlaan, J., et al.,

2014. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI
study in children with attention-deficit/hyperactivity disorder. Design and descrip-

tives. Eur. Child Adolesc. Psychiatry. http://dx.doi.org/10.1007/s00787-014-0573-4
Epub 2014/07/12. (PubMed PMID: 25012461).

Muller UC, Asherson P, Banaschewski T, Buitelaar JK, Ebstein RP, Eisenberg J, et al. The im-

pact of study design and diagnostic approach in a large multi-centre ADHD study.
Part 1: ADHD symptom patterns. BMC Psychiatry. 2011a;11:54. http://dx.doi.org/

10.1186/1471-244X-11-541471-244X-11-54 [pii]. (Epub 2011/04/09. PubMed
PMID: 21473745; PubMed Central PMCID: PMC3082291).

Muller UC, Asherson P, Banaschewski T, Buitelaar JK, Ebstein RP, Eisenberg J, et al. The im-
pact of study design and diagnostic approach in a large multi-centre ADHD study:

part 2: dimensional measures of psychopathology and intelligence. BMC Psychiatry.

2011b;11:55. http://dx.doi.org/10.1186/1471-244X-11-551471-244X-11-55 [pii].
(Epub 2011/04/09. PubMed PMID: 21473746; PubMed Central PMCID:

PMC3090338).
Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., et al., 1997. Schedule for

affective disorders and schizophrenia for school-age children-present and lifetime

version (K-SADS-PL): initial reliability and validity data. J. Am. Acad. Child Adolesc.
Psychiatry 36 (7), 980–988. http://dx.doi.org/10.1097/00004583-199707000-00021

(S0890-8567(09)62555-7 [pii]; Epub 1997/07/01. PubMed PMID: 9204677).
Conners, C.K., Sitarenios, G., Parker, J.D.A., Epstein, J.N., 1998. Revision and

restandardization of the conners teacher rating scale (CTRS-R): factor structure, reli-
ability, and criterion validity. J. Abnorm. Child Psychol. 26 (4), 279–291.

Conners, C.K., Erhardt, D., Sparrow, E.P., 1999. Conner's Adult ADHD Rating Scales: CAARS:

Multi-Health Systems. North Tonawanda, NY.
American Psychiatric Association, 2000. Diagnostic and Statistical Manual of Mental Dis-

orders: DSM-IV-TR. American Psychiatric Publishing, Inc.
Kooij, S.J.J., Buitelaar, J.K., van den Oord, E.J., Furer, J.W., Th Rijnders, C.A., Hodiamont,

P.P.G., 2005. Internal and external validity of attention-deficit hyperactivity disorder

in a population-based sample of adults. Psychol. Med. 35 (06), 817–827.
Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis. I. Segmentation

and surface reconstruction. NeuroImage 9 (2), 179–194. http://dx.doi.org/10.1006/
nimg.1998.0395 (PubMed PMID: 9931268).

Fischl, B., Sereno, M.I., Dale, A.M., 1999. Cortical surface-based analysis. II: inflation, flat-

tening, and a surface-based coordinate system. NeuroImage 9 (2), 195–207. http://
dx.doi.org/10.1006/nimg.1998.0396 (PubMed PMID: 9931269).

Fischl, B., Dale, A.M., 2000. Measuring the thickness of the human cerebral cortex from
magnetic resonance images. Proc. Natl. Acad. Sci. U. S. A. 97 (20), 11050–11055.

http://dx.doi.org/10.1073/pnas.200033797 (PubMed PMID: 10984517; PubMed Cen-
tral PMCID: PMC27146).

Fischl, B., Rajendran, N., Busa, E., Augustinack, J., Hinds, O., Yeo, B.T., et al., 2008. Cortical

folding patterns and predicting cytoarchitecture. Cereb. Cortex 18 (8), 1973–1980.
http://dx.doi.org/10.1093/cercor/bhm225 (PubMed PMID: 18079129; PubMed Cen-

tral PMCID: PMC2474454).
Ashburner J, Friston KJ. Voxel-based morphometry— the methods. NeuroImage. 2000;11

(6):805–21. http://dx.doi.org/10.1006/nimg.2000.0582. (PubMed PMID: ISI:

000087963600018).
Good CD, Johnsrude IS, Ashburner J, Henson RNA, Friston KJ, Frackowiak RSJ. A voxel-

basedmorphometric study of ageing in 465 normal adult human brains. NeuroImage.
2001;14(1):21–36. http://dx.doi.org/10.1006/nimg.2001.0786. (PubMed PMID: ISI:

000169498000003).
CuadraMB, Cammoun L, Butz T, Cuisenaire O, Thiran JP. Comparison and validation of tis-

sue modelization and statistical classification methods in T1-weighted MR brain im-

ages. IEEE Trans. Med. Imaging. 2005;24(12):1548–65. http://dx.doi.org/10.1109/
Tmi.2005.857652. (PubMed PMID: ISI:000233779000003).

Bookstein, F.L., 2001. “Voxel-based morphometry” should not be used with imperfectly
registered images. NeuroImage 14 (6), 1454–1462. http://dx.doi.org/10.1006/nimg.

2001.0770 (PubMed PMID: 11707101).

Jones, D.K., Symms, M.R., Cercignani, M., Howard, R.J., 2005. The effect of filter size on
VBM analyses of DT-MRI data. NeuroImage 26 (2), 546–554. http://dx.doi.org/10.

1016/j.neuroimage.2005.02.013 (PubMed PMID: 15907311).

Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., et al.,

2006. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data.
NeuroImage 31 (4), 1487–1505. http://dx.doi.org/10.1016/j.neuroimage.2006.02.024

(PubMed PMID: 16624579).
Eckert, M.A., Tenforde, A., Galaburda, A.M., Bellugi, U., Korenberg, J.R., Mills, D., et al., 2006.

To modulate or not to modulate: differing results in uniquely shaped Williams syn-
drome brains. NeuroImage 32 (3), 1001–1007. http://dx.doi.org/10.1016/j.

neuroimage.2006.05.014 (PubMed PMID: 16806978).

Zwiers MP. Patching cardiac and head motion artefacts in diffusion-weighted images.
NeuroImage 2010;53(2):565–75. Epub 2010/07/06. http://dx.doi.org/10.1016/j.

neuroimage.2010.06.014S1053-8119(10)00858-X [pii]. (PubMed PMID: 20600997).
Visser, E.Q.S., Zwiers, A., 2010. EPI Distortion Correction by Constrained Nonlinear

Coregistration Improves Group fMRI. Joint Annual Meeting ISMRM-ESMRMB,

Stockholm, Sweden.
Behrens, T.E.,Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., et al.,

2003. Characterization and propagation of uncertainty in diffusion-weighted MR im-
aging. Magn. Reson. Med. 50 (5), 1077–1088. http://dx.doi.org/10.1002/mrm.10609

(Epub 2003/10/31. PubMed PMID: 14587019).

Basser, P.J., Mattiello, J., LeBihan, D., 1994. MR diffusion tensor spectroscopy and imaging.
Biophys. J. 66 (1), 259–267. http://dx.doi.org/10.1016/S0006-3495(94)80775-1

(S0006-3495(94)80775-1 [pii]; Epub 1994/01/01. PubMed PMID: 8130344; PubMed
Central PMCID: PMC1275686).

Jutten C, Herault J. Blind separation of sources. 1. An adaptive algorithm based on
neuromimetic architecture. Signal Process. 1991;24(1):1–10. doi: Doi 10.1016/

0165-1684(91)90079-X. (PubMed PMID: WOS:A1991FZ33700001).

Hyvarinen, A., Oja, E., 2000. Independent component analysis: algorithms and applica-
tions. Neural Networks: The Official Journal of the International Neural Network So-

ciety 13 (4–5), 411–430 (PubMed PMID: 10946390).
Beckmann, C.F., Smith, S.M., 2005. Tensorial extensions of independent component anal-

ysis for multisubject FMRI analysis. NeuroImage 25 (1), 294–311. http://dx.doi.org/

10.1016/j.neuroimage.2004.10.043 (PubMed PMID: 15734364).
Nigg, J.T., 2001. Is ADHD a disinhibitory disorder? Psychol. Bull. 127 (5), 571–598 (Epub

2001/09/11. PubMed PMID: 11548968).
Dennis, M., Francis, D.J., Cirino, P.T., Schachar, R., Barnes, M.A., Fletcher, J.M., 2009. Why IQ

is not a covariate in cognitive studies of neurodevelopmental disorders. J. Int.
Neuropsychol. Soc. 15 (3), 331–343. http://dx.doi.org/10.1017/S1355617709090481

(PubMed PMID: 19402919; PubMed Central PMCID: PMC3075072).

Schweren, L.J., Hartman, C.A., Heslenfeld, D.J., van der Meer, D., Franke, B., Oosterlaan, J., et
al., 2015. Thinner medial temporal cortex in adolescents with attention-deficit/hy-

peractivity disorder and the effects of stimulants. J. Am. Acad. Child Adolesc. Psychi-
atry 54 (8), 660–667. http://dx.doi.org/10.1016/j.jaac.2015.05.014 (PubMed PMID:

26210335).

van Ewijk, H., Heslenfeld, D.J., Zwiers, M.P., Faraone, S.V., Luman, M., Hartman, C.A., et al.,
2014. Different mechanisms of white matter abnormalities in attention-deficit/

hyperactivity disorder: a diffusion tensor imaging study. J. Am. Acad. Child Adolesc.
Psychiatry 53 (7), 790–799. http://dx.doi.org/10.1016/j.jaac.2014.05.001 (e3;

PubMed PMID: 24954828).
Overmeyer, S., Bullmore, E.T., Suckling, J., Simmons, A., Williams, S.C., Santosh, P.J., et al.,

2001. Distributed grey and white matter deficits in hyperkinetic disorder: MRI evi-

dence for anatomical abnormality in an attentional network. Psychol. Med. 31 (8),
1425–1435 (PubMed PMID: 11722157).

Seidman, L.J., Valera, E.M., Makris, N., 2005. Structural brain imaging of attention-deficit/
hyperactivity disorder. Biol. Psychiatry 57 (11), 1263–1272. http://dx.doi.org/10.

1016/j.biopsych.2004.11.019 (PubMed PMID: 15949998).

Almeida, L.G., Ricardo-Garcell, J., Prado, H., Barajas, L., Fernandez-Bouzas, A., Avila, D., et
al., 2010. Reduced right frontal cortical thickness in children, adolescents and adults

with ADHD and its correlation to clinical variables: a cross-sectional study.
J. Psychiatr. Res. 44 (16), 1214–1223. http://dx.doi.org/10.1016/j.jpsychires.2010.04.

026 (PubMed PMID: 20510424).

Batty, M.J., Liddle, E.B., Pitiot, A., Toro, R., Groom, M.J., Scerif, G., et al., 2010. Cortical gray
matter in attention-deficit/hyperactivity disorder: a structural magnetic resonance

imaging study. J. Am. Acad. Child Adolesc. Psychiatry 49 (3), 229–238 (PubMed
PMID: 20410712; PubMed Central PMCID: PMC2829134).

Durston, S., Fossella, J.A., Casey, B.J., Hulshoff Pol, H.E., Galvan, A., Schnack, H.G., et al.,
2005. Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter

volumes in a sample of subjects with attention deficit hyperactivity disorder, their

unaffected siblings, and controls. Mol. Psychiatry 10 (7), 678–685. http://dx.doi.org/
10.1038/sj.mp.4001649 (PubMed PMID: 15724142).

Pavuluri, M.N., Yang, S., Kamineni, K., Passarotti, A.M., Srinivasan, G., Harral, E.M., et al.,
2009. Diffusion tensor imaging study of white matter fiber tracts in pediatric bipolar

disorder and attention-deficit/hyperactivity disorder. Biol. Psychiatry 65 (7),

586–593. http://dx.doi.org/10.1016/j.biopsych.2008.10.015 (PubMed PMID:
19027102; PubMed Central PMCID: PMC2677389).

Konrad, K., Eickhoff, S.B., 2010. Is the ADHD brain wired differently? A review on struc-
tural and functional connectivity in attention deficit hyperactivity disorder. Hum.

Brain Mapp. 31 (6), 904–916. http://dx.doi.org/10.1002/hbm.21058 (Epub 2010/05/
25. PubMed PMID: 20496381).

Barkley, R.A., 1997. Behavioral inhibition, sustained attention, and executive functions:

constructing a unifying theory of ADHD. Psychol. Bull. 121 (1), 65–94 (PubMed
PMID: 9000892).

Willcutt, E.G., Doyle, A.E., Nigg, J.T., Faraone, S.V., Pennington, B.F., 2005. Validity of the ex-
ecutive function theory of attention-deficit/hyperactivity disorder: a meta-analytic

review. Biol. Psychiatry 57 (11), 1336–1346. http://dx.doi.org/10.1016/j.biopsych.

2005.02.006 (PubMed PMID: 15950006).
Lawrence, K.E., Levitt, J.G., Loo, S.K., Ly, R., Yee, V., O'Neill, J., et al., 2013. White matter mi-

crostructure in subjects with attention-deficit/hyperactivity disorder and their

366 W. Francx et al. / NeuroImage: Clinical 11 (2016) 357–367

http://dx.doi.org/10.1111/j.1600-0447.2011.01786.x
http://dx.doi.org/10.1111/j.1600-0447.2011.01786.x
http://dx.doi.org/10.1001/archpsyc.63.7.795
http://dx.doi.org/10.1176/appi.ajp.164.4.647
http://dx.doi.org/10.1176/appi.ajp.2011.11020281
http://dx.doi.org/10.1176/appi.ajp.2011.11020281
http://dx.doi.org/10.1016/j.neuroimage.2012.06.038
http://dx.doi.org/10.1007/s00787-014-0573-4
http://dx.doi.org/10.1097/00004583-199707000-00021
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0070
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0070
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0070
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0075
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0075
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0080
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0080
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0085
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0085
http://dx.doi.org/10.1006/nimg.1998.0395
http://dx.doi.org/10.1006/nimg.1998.0395
http://dx.doi.org/10.1006/nimg.1998.0396
http://dx.doi.org/10.1073/pnas.200033797
http://dx.doi.org/10.1093/cercor/bhm225
http://dx.doi.org/10.1006/nimg.2001.0770
http://dx.doi.org/10.1006/nimg.2001.0770
http://dx.doi.org/10.1016/j.neuroimage.2005.02.013
http://dx.doi.org/10.1016/j.neuroimage.2005.02.013
http://dx.doi.org/10.1016/j.neuroimage.2006.02.024
http://dx.doi.org/10.1016/j.neuroimage.2006.05.014
http://dx.doi.org/10.1016/j.neuroimage.2006.05.014
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0130
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0130
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0130
http://dx.doi.org/10.1002/mrm.10609
http://dx.doi.org/10.1016/S0006-3495(94)80775-1
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0145
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0145
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0145
http://dx.doi.org/10.1016/j.neuroimage.2004.10.043
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0155
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0155
http://dx.doi.org/10.1017/S1355617709090481
http://dx.doi.org/10.1016/j.jaac.2015.05.014
http://dx.doi.org/10.1016/j.jaac.2014.05.001
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0175
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0175
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0175
http://dx.doi.org/10.1016/j.biopsych.2004.11.019
http://dx.doi.org/10.1016/j.biopsych.2004.11.019
http://dx.doi.org/10.1016/j.jpsychires.2010.04.026
http://dx.doi.org/10.1016/j.jpsychires.2010.04.026
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0190
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0190
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0190
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0190
http://dx.doi.org/10.1038/sj.mp.4001649
http://dx.doi.org/10.1016/j.biopsych.2008.10.015
http://dx.doi.org/10.1002/hbm.21058
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0210
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0210
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0210
http://dx.doi.org/10.1016/j.biopsych.2005.02.006
http://dx.doi.org/10.1016/j.biopsych.2005.02.006


siblings. J. Am. Acad. Child Adolesc. Psychiatry 52 (4), 431–440. http://dx.doi.org/10.

1016/j.jaac.2013.01.010 (e4; PubMed PMID: 23582873; PubMed Central PMCID:
PMC3633105).

Alexander, G.E., DeLong, M.R., Strick, P.L., 1986. Parallel organization of functionally segre-
gated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381.

http://dx.doi.org/10.1146/annurev.ne.09.030186.002041 (Epub 1986/01/01. PubMed
PMID: 3085570).

Menon, V., 2011. Large-scale brain networks and psychopathology: a unifying triple net-

work model. Trends Cogn. Sci. 15 (10), 483–506. http://dx.doi.org/10.1016/j.tics.
2011.08.003 (PubMed PMID: 21908230).

Amico, F., Stauber, J., Koutsouleris, N., Frodl, T., 2011. Anterior cingulate cortex graymatter
abnormalities in adults with attention deficit hyperactivity disorder: a voxel-based

morphometry study. Psychiatry Res. 191 (1), 31–35. http://dx.doi.org/10.1016/j.

pscychresns.2010.08.011 (PubMed PMID: 21129938).
Hesslinger B, Tebartz van Elst L, Thiel T, Haegele K, Hennig J, Ebert D. Frontoorbital volume

reductions in adult patients with attention deficit hyperactivity disorder. Neurosci.
Lett. 2002;328(3):319–21. (PubMed PMID: 12147334).

Proal, E., Reiss, P.T., Klein, R.G., Mannuzza, S., Gotimer, K., Ramos-Olazagasti, M.A., et al.,

2011. Brain gray matter deficits at 33-year follow-up in adults with attention-
deficit/hyperactivity disorder established in childhood. Arch. Gen. Psychiatry 68

(11), 1122–1134. http://dx.doi.org/10.1001/archgenpsychiatry.2011.117 (PubMed
PMID: 22065528; PubMed Central PMCID: PMC3554238).

Hoekzema, E., Carmona, S., Ramos-Quiroga, J.A., Richarte Fernandez, V., Picado, M., Bosch,
R., et al., 2012. Laminar thickness alterations in the fronto-parietal cortical mantle of

patients with attention-deficit/hyperactivity disorder. PLoS ONE 7 (12), e48286.

http://dx.doi.org/10.1371/journal.pone.0048286 (PubMed PMID: 23239964;
PubMed Central PMCID: PMC3519773).

van Wingen, G.A., van den Brink, W., Veltman, D.J., Schmaal, L., Dom, G., Booij, J., et al.,
2013. Reduced striatal brain volumes in non-medicated adult ADHD patients with co-

morbid cocaine dependence. Drug Alcohol Depend. 131 (3), 198–203. http://dx.doi.

org/10.1016/j.drugalcdep.2013.05.007 (PubMed PMID: 23726981).
Wang, J., Jiang, T., Cao, Q., Wang, Y., 2007. Characterizing anatomic differences in boys

with attention-deficit/hyperactivity disorder with the use of deformation-basedmor-
phometry. AJNR Am J Neuroradiol. 28 (3), 543–547 (PubMed PMID: 17353333).

Sidman, R.L., Rakic, P., 1973. Neuronal migration, with special reference to developing

human brain: a review. Brain Res. 62 (1), 1–35 (PubMed PMID: 4203033).
Poelmans, G., Pauls, D.L., Buitelaar, J.K., Franke, B., 2011. Integrated genome-wide associ-

ation study findings: identification of a neurodevelopmental network for attention
deficit hyperactivity disorder. Am. J. Psychiatry 168 (4), 365–377. http://dx.doi.org/

10.1176/appi.ajp.2010.10070948 (PubMed PMID: 21324949).
Yang, L., Neale, B.M., Liu, L., Lee, S.H., Wray, N.R., Ji, N., et al., 2013. Polygenic transmission

and complex neuro developmental network for attention deficit hyperactivity disor-

der: genome-wide association study of both common and rare variants. Am J Med
Genet B Neuropsychiatr Genet. 162B (5), 419–430. http://dx.doi.org/10.1002/ajmg.

b.32169 (PubMed PMID: 23728934; PubMed Central PMCID: PMC4321789).
Roza, S.J., Verburg, B.O., Jaddoe, V.W., Hofman, A., Mackenbach, J.P., Steegers, E.A., et al.,

2007. Effects of maternal smoking in pregnancy on prenatal brain development. the

generation R study. Eur. J. Neurol. 25 (3), 611–617. http://dx.doi.org/10.1111/j.
1460-9568.2007.05393.x PubMed PMID: 17298594.

Villain, N., Fouquet, M., Baron, J.C., Mezenge, F., Landeau, B., de La Sayette, V., et al., 2010.
Sequential relationships between grey matter and white matter atrophy and brain

metabolic abnormalities in early Alzheimer's disease. Brain 133 (11), 3301–3314.

http://dx.doi.org/10.1093/brain/awq203 (PubMed PMID: 20688814; PubMed Central
PMCID: PMC3291528).

Gogtay, N., Giedd, J.N., Lusk, L., Hayashi, K.M., Greenstein, D., Vaituzis, A.C., et al., 2004. Dy-
namic mapping of human cortical development during childhood through early

adulthood. Proc. Natl. Acad. Sci. U. S. A. 101 (21), 8174–8179. http://dx.doi.org/10.
1073/pnas.0402680101 (PubMed PMID: 15148381; PubMed Central PMCID:

PMC419576).

Paus, T., Zijdenbos, A., Worsley, K., Collins, D.L., Blumenthal, J., Giedd, J.N., et al., 1999.
Structural maturation of neural pathways in children and adolescents: in vivo

study. Science 283 (5409), 1908–1911 (PubMed PMID: 10082463).
Paus, T., 2005. Mapping brainmaturation and cognitive development during adolescence.

Trends Cogn. Sci. 9 (2), 60–68. http://dx.doi.org/10.1016/j.tics.2004.12.008 (PubMed

PMID: 15668098).

367W. Francx et al. / NeuroImage: Clinical 11 (2016) 357–367

http://dx.doi.org/10.1016/j.jaac.2013.01.010
http://dx.doi.org/10.1016/j.jaac.2013.01.010
http://dx.doi.org/10.1146/annurev.ne.09.030186.002041
http://dx.doi.org/10.1016/j.tics.2011.08.003
http://dx.doi.org/10.1016/j.tics.2011.08.003
http://dx.doi.org/10.1016/j.pscychresns.2010.08.011
http://dx.doi.org/10.1016/j.pscychresns.2010.08.011
http://dx.doi.org/10.1001/archgenpsychiatry.2011.117
http://dx.doi.org/10.1371/journal.pone.0048286
http://dx.doi.org/10.1016/j.drugalcdep.2013.05.007
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0255
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0255
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0255
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0260
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0260
http://dx.doi.org/10.1176/appi.ajp.2010.10070948
http://dx.doi.org/10.1002/ajmg.b.32169
http://dx.doi.org/10.1002/ajmg.b.32169
http://dx.doi.org/10.1111/j.1460-9568.2007.05393.x
http://dx.doi.org/10.1111/j.1460-9568.2007.05393.x
http://dx.doi.org/10.1093/brain/awq203
http://dx.doi.org/10.1073/pnas.0402680101
http://dx.doi.org/10.1073/pnas.0402680101
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0290
http://refhub.elsevier.com/S2213-1582(16)30046-8/rf0290
http://dx.doi.org/10.1016/j.tics.2004.12.008

	Integrated analysis of gray and white matter alterations in attention-�deficit/hyperactivity disorder
	1. Introduction
	2. Materials and methods
	2.1. Sample
	2.2. Diagnostics
	2.3. MRI acquisition
	2.4. MRI processing
	2.4.1. Measures of gray matter structure
	2.4.1.1. Cortical thickness and areal expansion
	2.4.1.2. VBM

	2.4.2. Measures of white matter microstructure

	2.5. Linked independent component analysis
	2.6. Statistics

	3. Results
	3.1. General outcome of the linked ICA analysis
	3.2. ADHD-related effects
	3.3. Multimodal versus unimodal findings

	4. Discussion
	Potential conflicts of interest
	Acknowledgements
	Appendix A. Supplementary data
	References


