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Pancreatic cancer (PaCa) is the seventh most fatal malignancy, with more than 90%

mortality rate within the first year of diagnosis. Its treatment can be improved the

identification of specific therapeutic targets and their relevant pathways. Therefore,

the objective of this study is to identify cancer specific biomarkers, therapeutic

targets, and their associated pathways involved in the PaCa progression. RNA-seq

and microarray datasets were obtained from public repositories such as the European

Bioinformatics Institute (EBI) andGene Expression Omnibus (GEO) databases. Differential

gene expression (DE) analysis of data was performed to identify significant differentially

expressed genes (DEGs) in PaCa cells in comparison to the normal cells. Gene

co-expression network analysis was performed to identify the modules co-expressed

genes, which are strongly associated with PaCa and as well as the identification of

hub genes in the modules. The key underlaying pathways were obtained from the

enrichment analysis of hub genes and studied in the context of PaCa progression. The

significant pathways, hub genes, and their expression profile were validated against

The Cancer Genome Atlas (TCGA) data, and key biomarkers and therapeutic targets

with hub genes were determined. Important hub genes identified included ITGA1,

ITGA2, ITGB1, ITGB3, MET, LAMB1, VEGFA, PTK2, and TGFβ1. Enrichment analysis

characterizes the involvement of hub genes in multiple pathways. Important ones that are

determined are ECM–receptor interaction and focal adhesion pathways. The interaction

of overexpressed surface proteins of these pathways with extracellular molecules initiates

multiple signaling cascades including stress fiber and lamellipodia formation, PI3K-Akt,

MAPK, JAK/STAT, and Wnt signaling pathways. Identified biomarkers may have a strong

influence on the PaCa early stage development and progression. Further, analysis of

these pathways and hub genes can help in the identification of putative therapeutic

targets and development of effective therapies for PaCa.

Keywords: pancreatic cancer, co-expression network, biomarker, therapeutic target, differential expression,

TCGA, enrichment analysis, focal adhesion pathway

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.663787
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.663787&domain=pdf&date_stamp=2021-06-23
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rehan@rcms.nust.edu.pk
https://doi.org/10.3389/fgene.2021.663787
https://www.frontiersin.org/articles/10.3389/fgene.2021.663787/full


Nisar et al. Pancreatic Cancer Integrated Network Analysis

1. INTRODUCTION

Pancreatic cancer (PaCa) is the 11th most common and the
seventh most fatal malignancy worldwide with 459,000 new
cases and 432,000 deaths in the year 2018 (Bray et al., 2018).
This is because usually patients exhibit symptoms in advanced
stages. Symptoms of PaCa are nonspecific including jaundice,
abdominal pain, nausea, weight loss, dark colored urine, pale
stool, and depression, making its diagnosis difficult (Rawla
et al., 2019). In majority of the patients, PaCa leads to the
metastasis and pancreatic exocrine insufficiency (PEI), which
eventually results in the development of metabolic abnormalities
(Li et al., 2004).

Pancreatic neuroendocrine tumor and Pancreatic
adenocarcinoma are two types of PaCa. The pancreatic
neuroendocrine tumor develops in the cells of endocrine gland
(islets of Langerhans) responsible for releasing multiple
hormones such as insulin, glucagon, somatostatin, and
polypeptide. Pancreatic adenocarcinoma also known as
pancreatic ductal adenocarcinoma (PDAC) develops in the
ductal tissues of the pancreas exocrine gland (De La Cruz et al.,
2014; Hidalgo et al., 2015). It is the most prevalent type of PaCa
with more than 95% cases, very poor early diagnosis, and high
mortality rate. About 95% of the patients died in the first year of
diagnosis, and only 5% of patients survive up to 5 years (Hidalgo
et al., 2015). The developmental phases of cancer are classified
in various clinical stages. The stages 0, IA, and IB are localized,
non-invasive, and resectable lesions, whereas stages IIA and
IIB are localized, invasive, and resectable tumor. Stage III is
localized, advanced, and unresectable phase of PaCa, while stage
IV is metastatic phase (De La Cruz et al., 2014).

Risk factors of PaCa include demographic (age, sex,

and region), hereditary, and environmental factors. PaCa is
commonly diagnosed at the age of 50. Males are more susceptible

to develop PaCa than females. The European population is more
prone to establish PaCa than other populations (Li et al., 2004;
Bray et al., 2018). Smoking, alcohol consumption, and sedentary
lifestyle increase the chances of its development (De La Cruz
et al., 2014; Rawla et al., 2019). Prolonged chronic pancreatitis
is also a major risk factor for the development and progression of
PaCa (Rawla et al., 2019).

PaCa cells exhibit mutations and deregulation of different
genes resulting inmetastasis and causes chemotherapy resistance.
Mutations in codon number 12 or increased expression of
oncogene KRAS are common in PaCa patients (Smit et al., 1988;
Yu et al., 2010). Overexpressed KRAS triggers the hedgehog
signaling pathway, along with activation of MAP2K4 and
RASGRP3 (Ji et al., 2007). In advanced stages of disease,
underexpression of SMAD4, INK4a/ARF, and TP53 genes is also
well-reported (Zhang et al., 2019). Overexpression of various
other genes are also reported in PaCa such as MYB, which is
a key factor for tumor progression and metastases (Srivastava
et al., 2015). The SOX9 (Grimont et al., 2015) and HIF-1α
cause hypoxia and reduce anti-cancer drug delivery in the tumor
region (Spivak-Kroizman et al., 2013). Other core signaling
pathways activated in PaCa includes apoptosis, Wnt/Notch,
transforming growth factor-β (TGF-β) (Hidalgo et al., 2015),
and phosphatidylinositol 3-kinase PI3K/Akt pathway (Hill et al.,

2010). GPR87 overexpressed in PaCa activates NF-κB signaling
pathway, which alternatively enhances the cancer progression.
Its overexpression is also reported in multiple other cancer types
(Wang et al., 2017). Vascular endothelial growth factor receptor
VEGFR-2 of VEGF-A family has been also identified in PaCa
patients (Costache et al., 2015). GPR87, FN14, and VEGF genes
are key contributors in cell proliferation, angiogenesis, migration,
and initiate metastases (Han et al., 2005; Costache et al., 2015;
Wang et al., 2017).

There are multiple therapies employed for the treatment
of PaCa including resection, chemotherapy, adjuvant
chemotherapy, targeted therapies, and target specific
immunotherapies (Seicean et al., 2015). The adjuvant
chemotherapy is the combination of resection, radiation,
or targeted therapy with chemotherapy (Neoptolemos et al.,
2001). FOLFIRINOX is Food and Drug Administration
(FDA)-approved therapy for locally advanced and metastasized
PaCa. It is the combination of drugs including leucovorin
calcium (folinic acid), fluorouracil, irinotecan, and oxaliplatin.
FOLFIRINOX is used prior to resection for reducing the size of
the tumor in the patients with locally advanced stages. Its overall
response rates (ORRs) are <28% with 11 months without cancer
progression (Faris et al., 2013). In targeted therapy, various
kinases, cancer specific proteins, and receptors are targeted.
Passive immunotherapy is also a type of targeted therapy,
in which monoclonal antibodies are infused in the patients.
Drugs against EGFR, HER2, VEGF, MAPK, IGF-1R, c-Met, and
PI3K/Akt/mTOR are under consideration in different clinical
trials (Borja-Cacho et al., 2008).

Despite of all these therapies, patients have a very low survival
rate. This happens because of the late diagnosis of PaCa due to
non-specific symptoms and very low efficacy of drugs (Seicean
et al., 2015). So, the major concern is early diagnosis, which can
be done by identifying PaCa-specific biomarkers and effective
prognosis techniques. There is a strong need for the development
of effective anti-PaCa drug, with low side effect and high
cancer specific targeting. In this study, extensive transcriptome
profiling of PaCa has been performed. Microarray and high-
throughput sequencing data are significantly contributing in
understanding the molecular changes occurring in cells during
disease development and progression.The main focus of this
study is a holistic gene expression profiling and co-expression
analysis of genes in PaCa. Another objective of this study is to
identify therapeutic targets for targeted cancer therapy out of
these disease-related significant genes.

Important pathways identified for the significant genes
determined by DE analysis are ECM–receptor interaction, HIF-
1 signaling pathway, pathways in cancer, focal adhesion (FA),
PI3K-Akt signaling pathway, and amoebiasis. Along with DE
analysis, genes co-expression network analysis of data was
performed to identify patterns or modules of genes associated
with cancer phenotype. Hub genes identified out of modules
show significant association with PaCa. These hub genes
show involved in PaCa, progression pathways ECM–receptor
interaction, and FA, and also involved as key entities in pathways
identified through DE analysis. To further validate these findings,
we performed The Cancer Genome Atlas (TCGA) RNA-seq data
analysis, and TCGA results exhibit strong concordance with
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FIGURE 1 | Methodology workflow. In the first step, differential expression analysis was performed to identify significant differentially expressed genes (DEGs).

Afterward, for further analysis of genomic data, co-expression network analysis of DEGs with −0.5 > log2FC > 0.5 was preformed. Significant modules for each

dataset were selected. Enrichment analysis of genes of selected modules was preformed. Additionally, the common pathways in all datasets were further studied

regarding pancreatic cancer (PaCa) development. Results were validated with The Cancer Genome Atlas (TCGA) cohort analysis, GTEx Portal, and literature. In the

last step, gene network interaction analysis and hub genes identification were performed.

results of above two methodologies. Additionally, the expression
of identified biomarkers in normal pancreas tissue is studied to
validate their causality in PaCa.

2. METHODOLOGY

The overall workflow of this study includes identification of
DEGs in PaCa using multiple microarray and RNA-seq datasets.
Important pathways are then determined on the basis of
enrichment analysis of these DEGs. Moreover, WGCNA analysis
was performed to determine hub genes, which could be putative
therapeutic targets. TCGA analysis was performed to validate the
results. The overall workflow of the study is given in Figure 1.

2.1. Datasets Inclusion Criteria
The microarray and RNA-seq datasets were collected from
EMBL-EBI (https://www.ebi.ac.uk/) and GEO (https://www.
ncbi.nlm.nih.gov/geo/) against query words such as PaCa and

pancreatic ductal adenocarcinoma (PDAC), visited on March
2020. Selection criteria were based on the fact that datasets
must be from the origin of Homo Sapiens. Moreover, the
datasets consist of samples collected from patient tissue region
of PaCa tumor and adjacent healthy pancreatic region, excluding
cell lines-based experimentation. Besides this, selected datasets
were free from any therapy or drug, mutations, induced gene
expression, or gene knockdown. All datasets were selected with
enough number of samples of PaCa and control to obtain
statistically significant results.

For microArray analysis, five datasets were selected on
the basis of above selection criteria. Details of all datasets
including accession number, samples information, and
platform are provided in Table 1. The Dataset E-GEOD-
18670 comprised of 24 samples including six circulating
tumor cells (metastases), six haematological, six PDAC
tumor tissues, and six adjacent normal tissue. Out of these
samples, six PDAC tumor and 6 adjacent normal samples were
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TABLE 1 | Microarray datasets.

Sr.No Accession

number

Total samples Selected

samples

Platform Country References

1 E-GEOD-15471 78 samples

Sample types:

• 39 Normal

• 39 Tumor

78 samples

Sample types:

• 39 Normal

• 39 Tumor

Affymetrix GeneChip

Human Genome U133

Plus

2.0 [HG− U133_Plus_2]

Romania Badea et al.

(2008)

2 E-GEOD-28735 90 samples

Sample Type:

• 45 Normal

• 45 Tumor

90 samples

Sample Type:

• 45 Normal

• 45 Tumor

Affymetrix GeneChip

Human Gene 1.0 ST

Array

[HuGene−1_0−st−v1]

USA Zhang et al.

(2012)

3 E-GEOD-62452 130 samples

Sample type:

• 61 Normal

• 69 Tumor

130 samples

Sample type:

• 61 Normal

• 69 Tumor

Affymetrix GeneChip

Human Gene 1.0 ST

Array

[HuGene−1_0−st−v1]

USA Yang et al.

(2016)

4 E-GEOD-41368 12 samples

Sample Type:

• 6 Normal

• 6 Tumor

12 samples

Sample Type:

• 6 Normal

• 6 Tumor

Affymetrix GeneChip

Human Gene 1.0 ST

Array

[HuGene−1_0−st−v1]

Italy Frampton et al.

(2014)

5 E-GEOD-18670 24 samples

Sample Type:

• 6 Metastasis

• 6 Haematological

• 6 Normal

• 6 Tumor

12 samples

Sample Type:

• 6 Normal

• 6 Tumor

Affymetrix GeneChip

Human Genome U133

Plus

2.0 [HG− U133_Plus_2]

Belgium Sergeant et al.

(2012)

TABLE 2 | RNA-seq datasets.

Sr. No Accession number Total samples Selected

samples

Platform Country References

1 E-MTAB-3494 11 samples

Sample type:

• 5 Normal

• 6 Tumor

11 samples

Sample type:

• 5 Normal

• 6 Tumor

Illumina HiSeq

2000

(Homo sapiens)

Germany Müller et al.

(2015)

2 GSE119794 40 samples

Sample type:

• 10 Normal (mRNA)

• 10 Tumor (mRNA)

• 10 Normal

(miRNA)

• 10 Tumor (miRNA)

20 samples

Sample type:

• 10 Normal

(mRNA)

• 10 Tumor

(mRNA)

Illumina HiSeq

2000

(Homo sapiens)

China Lin et al. (2019)

analyzed in this study according to our sample inclusion
criteria. The main objective of our study is to identify
biomarkers or targets present on the surface of tumor
cells. For RNA-seq analysis, two datasets were selected
according to the above-mentioned selection criteria. All
details of datasets are provided in Table 2. The dataset E-
MTAB-3494 consists of 11 samples of total RNA-sequencing
data, including five normal and six PDAC samples. The
dataset GSE119794 comprises 20 mRNA samples, including
10 PDAC, 10 normal, and 20 miRNA (10 PDAC and 10
normal) samples. In this study, only mRNA samples were used
for analysis.

2.2. Differential Gene Expression Analysis
2.2.1. Microarray Data Analysis
Quality control of data was performed using multiple data
visualization and filtering techniques like Box plot, Relative Log
Expression (RLE) plot, principal component analysis (PCA) plot,
and heatmap. RLE plots were generated using the Bioconductor
R package to visualize unwanted variation from gene median in
high-dimensional microarray data (Gandolfo and Speed, 2018).
The PCA plot and Heatmap were generated using Bioconductor
R packages (Gu et al., 2016; Klaus and Reisenauer, 2018).
These plots were used to analyze the clusters of samples with
respect to the phenotypes. Then probes with low-intensity values
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were filtered to avoid noise in the data due to non-specific
hybridization of probes and also duplicates were removed.
Quantile normalization method was used for gene expression
intensity normalization (Hicks and Irizarry, 2014; Hicks et al.,
2017).

For the statistical analysis, linear regression model along with
eBayes were used. The limma R package was used to fit a
linear model for obtaining DEGs in PaCa samples relative to
normal (Ritchie et al., 2015). Then “Empirical Bayes” model
was fitted using an eBayes function in R to compute t-statistics
that generates the statistical significance value (p-value) for each
DE gene (Klaus and Reisenauer, 2018). Significant DEGs were
obtained by applying p-value threshold of 0.05 and Log2FC
(Log2 fold change) threshold (Log2FC < −1 and Log2FC >

1). To visualize DEGs, enhanced volcano plots of DEGs with
Log2FC on x-axis and −Log10 (p-value) on y-axis were plotted
(Blighe and Lewis, 2020).

2.2.2. RNA-Seq Data Analysis
Quality assessment and preprocessing of sequencing data is
a crucial step to perform high-level analysis. Fastp tool was
utilized for data quality assessment, base correction, and removal
of duplicates from the raw data of RNA-seq. It integrates the
functionality of multiple tools including FASTQC, Cutadapt,
Trimmomatic, and AfterQC, and faster than these stand alone
tools (Chen et al., 2018). The next step was mapping and
alignment of reads with reference genome. HISAT2 (hierarchical
indexing for spliced alignment of transcripts 2) tool was used
to align reads with human reference genome (hg38). It rapidly
searches genome using graph Ferragina–Manzini (FM) index and
can align both DNA and RNA sequence reads. It can perform
splice alignment of whole-genome, transcript, and exon much
faster than TopHat2, Bowtie, and BWA (Liu et al., 2018). After
the alignment, count data of expressed genes were generated
using hg38 annotation gtf file in htseq-count tool (Anders et al.,
2015). The read count data generated by htseq-count tool was
then subjected to DEGs analysis using DESeq (Love et al., 2014).
Reads with low expression values were filtered by discarding row
entries with row sum <10. The DESeq uses median-of-ratios
method for normalizing expression data. The filtering criteria
used for obtaining set/list of statistically significant DEGs was
p-value <0.05, and−1> Log2FC > 1.

2.3. Co-expression Network Analysis
Co-expressed genes are considered to be involved in related
signaling pathways and have similar biological function.
Therefore, for the identification of co-expressed genes in PaCa,
co-expression network analysis of microarray and RNA-seq
datasets was performed using WGCNA Bioconductor R package
(Langfelder and Horvath, 2008). For this analysis, list of DEGs
with p-value < 0.05 and −0.5 > Log2FC > 0.5 was
retrieved. Then quantile normalized expression values of these
DEGs for microarray data and expression count table (RNA-
seq platform) for RNA-seq data were used for further analysis.
The goodSamplesGenes function was used for quality control of
data by determining and removing deletions and outliers. The

Soft threshold value (β) important for construction of scale-
free network was determined by generating gene expression
similarity matrix. The scale-free network means that data do not
have any batch effects. The gene expression similarity matrix
was generated by calculating Pearson correlation coefficient of
each gene with all other genes in the data. Then adjacency and
topology matrix, genetree (Denogram) with modules, and gene
module membership along with gene phenotype correlation were
calculated. Modules of significantly co-expressed and correlated
genes were selected on the basis of high module trait correlation
(0.6) and statistical significance (p-values < 0.05). Then genes
with trait correlation >0.6 and gene module correlation >0.6
were selected for further analysis.

2.4. Gene List Enrichment Analysis
After the generation of gene list in above step, the next step was
to compute gene enrichment for determination of functionally
associated genes involved in different pathways and regulating
the expression of other genes. For this purpose, first the lists of
common underexpressed and overexpressed genes in all datasets
were determined. Then both this DEGs list was annotated using
Enrichr web server (https://maayanlab.cloud/Enrichr/). Enrichr
is an open source web-based gene enrichment analysis tool; it
integrates results from multiple libraries (Chen E. Y. et al., 2013).
We utilized KEGG pathways option in Enrichr to identify a list of
pathways against each gene list. Statistically significant pathways
with Fisher exact test p-value < 0.05 and high combined score
were selected. These important pathways were further explored
with respect to therapeutic targets for PaCa.

2.5. Network Analysis of Identified
Pathways and Hub Gene Determination
The string database STRING (https://string-db.org/) was used
to retrieve the protein–protein interaction pattern and network
(Szklarczyk et al., 2019). In STRING, the highest confidence
score of (0.900) was used to generate interaction network.
The interaction pattern generated was then downloaded and
further analyzed in Cytoscape software (Otasek et al., 2019).
In Cytoscape, Network Analyze module was used to evaluate
the statistics and interaction profiles of all genes, which helps
in hub gene determination. The MCODE app was utilized
to identify dense interacting clusters out of whole network
(Bader and Hogue, 2003). Then eight different topological
analysis methods of CytoHubba were used to identify hub genes
(biomarkers) (Chin et al., 2014; Ma et al., 2021). The used
methods include Maximal Clique Centrality (MCC), Density
of Maximum Neighborhood Component (DMNC), Maximum
Neighborhood Component (MNC), Degree, Edge Percolated
Component (EPC), Bottleneck, EcCentricity, and Closeness.

2.6. TCGA Analysis
To validate and improve reliability of our results, we analyzed
PaCa gene expression data (RNA-seq) from TCGA database. The
data searching, downloading, and preparation were performed
using TCGAbiolinks Bioconductor R package (Colaprico et al.,
2016). The total of 178 PaCa patients’ data fulfilling the
inclusion criteria of gene expression quantification and primary
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TABLE 3 | Total number of DEGs retrieved from all microarray and RNA-seq

datasets are presented against the number of over and underexpressed genes are

shown against each dataset.

Sr. No Accession

number

Total

DEGs

Overexpressed

DEGs

Underexpressed

DEGs

Microarray Datasets

1 E-GEOD-15471 1,665 1,466 199

2 E-GEOD-28735 364 227 137

3 E-GEOD-62452 274 174 100

4 E-GEOD-41368 1,688 1,222 466

5 E-GEOD-18670 1,164 798 366

RNA-seq Datasets

1 GSE119794 2,174 1,194 980

2 E-MTAB-3494 3,804 2,193 1611

TCGA Data

1 TCGA-PAAD 1,514 674 840

tumor samples were obtained from TCGA database. The level
1 raw count data were downloaded from the TCGA Data
Portal belonging to the Illumina HiSeq sequencing platform.
The quantile normalization was performed before analysis
using TCGAanalyze_Normalization R function of TCGAbiolinks
package. Then for the identification of differentially expressed
genes in the PaCa patients, edgeR package from Bioconductor
was utilized (Robinson et al., 2010). Genes were filtered using
−1 > Log2FC > 1 and P < 0.05 values and were considered
to indicate statistically significant differences.

2.7. GTEx Normal Pancreas Data
Comparison
Along with the validation of cancer related genes from TCGA,
expression of these genes was also compared with normal
pancreas. The GTEx Protal (https://gtexportal.org/home/) was
used to retrieve the gene expression profile of human pancreas
tissues (GTEx Consortium, 2020).

3. RESULTS

Differential expression analysis of microarray and RNA-
seq datasets generate the lists of significant DEGs for
every data, fulfilling the selection criteria of Log2FC and
p-value. The number of total DEGs and overexpressed and
underexpressed DEGs are given in Table 3. These DEGs for all
datasets are graphically represented using the volcano plot in
Supplementary Figures 1–7. The lists of DEGs along with their
Log2FC values, average Log2FCs, and standard deviation are
provided in Supplementary Table 1. General trend of differential
expression result represents more overexpressed genes than the
underexpressed. The list of common underexpressed genes in
all datasets was generated and out of which seven genes were
identified. The enrichment analysis of these genes was performed

using Enrichr, which determined the involvement of these
genes in 14 different pathways. The AOX1 is involved in the
metabolism of Vitamin B6, nicotinate, nicotinamide, tyrosine,
tryptophan, and retinol, along with valine, leucine, and isoleucine
degradation. Underexpression of AOX1 gene represents the
disruption of above important pathways in PaCa cells. The C5
and IAPP genes are predicted to be involved in neuroactive
ligand-receptor interaction, Staphylococcus aureus infection,
Pertussis, complement, and coagulation cascades. Cumulatively,
69 common overexpressed genes were detected. Enrichment
analysis of these genes determined their activity in 26 significant
pathways. About 13 genes such asMET, ITGA3, ITGA2, LAMA3,
and SLC2A1 are predicted to be involved in multiple cancer-
related pathways such as ECM–receptor interaction, small cell
lung cancer, FA, central carbon metabolism in cancer, pathways
in cancer, PI3K-Akt signaling pathway, renal cell carcinoma,
and HIF-1 signaling pathway. Out of these overexpressed genes,
multiple receptor proteins, transmembrane, transporter, and
surface proteins were also predicted.

The gene co-expression network analysis was performed to
obtain clusters of co-expressed genes in PaCa cells. The reason
of performing differential expression analysis along with gene
co-expression network analysis was to obtain significant DEGs
from all datasets and to also determine the co-expression of
these DEGs. In this study, the main focus was to analyze
the differential expression of receptors, which actually initiate
cancer related pathways. The TCGA cohort analysis was also
performed to validate the results. To enhance the reliability
of co-expression network analysis results, 5 microarray and 2
RNA-seq datasets were analyzed. First, we extracted the list of
differentially expressed genes with −0.5 ≤ Log2FC ≥ 0.5 values,
so the number of genes for each dataset was different for this
analysis. Then WGCNA analysis was performed separately for
each dataset. First the soft threshold value for each dataset was
determined. The soft threshold value or power value (β) was
required for construction of scale free networks, in which few
nodes/hub genes connected to more number of nodes than the
peripheral ones. The β value from 2 to 20 is evaluated to obtain
scale-free network on R2 ≥ 0.8. Plots for β value selection is
provided for all datasets in Supplementary Figures 8–14, Part
a. Then the adjacency matrix was generated using identified
β value, afterward Topology Overlap Matrix (TOM) and gene
cluster dendrogram along with their modules were generated.
The module trait relationship was determined by calculating
Pearson’s correlation of module with PaCa. Figure 2 represents
modules color and their respective correlation with PaCa for all
datasets. Then modules with correlation≥ 0.6 were selected, and
according to set criteria three modules (gray, brown, and yellow)
were selected for dataset E-GEOD-15471. Likewise, different
number of modules were selected for remaining datasets, and
names of selected modules are given in Table 4. The gene
cluster dendrogram, trait-module relationship plots, and gene
scatter plot of selected modules for all datasets are provided in
Supplementary Figures 8–14, Part (b, c, d, etc.). Then the genes
with correlation >0.6 with PaCa and module membership (MM)
correlation >0.6 were filtered. Selected genes for all modules
are provided in the first data sheet of Supplementary Table 2.
Furthermore, modules for each dataset were merged into one.

Frontiers in Genetics | www.frontiersin.org 6 June 2021 | Volume 12 | Article 663787

https://gtexportal.org/home/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Nisar et al. Pancreatic Cancer Integrated Network Analysis

FIGURE 2 | Correlation of modules with pancreatic cancer (PaCa). Figure represents module colors for all datasets and correlation of modules with PaCa phenotype.

Colors of modules are given in upper row, whereas green and red colors in lower row represent negative and positive correlation, respectively.

The enrichment of genes was performed using Enrichr, and the
involvement of genes in cancer-related pathways was predicted.
The significant pathways with p-value < 0.05 are given in
Supplementary Table 3, and number of significant pathways are
provided in Table 4. To further study the important hub genes
involved in the significant pathways, common pathways in all
datasets were selected.

The ECM–receptor interaction and FA pathways were
observed in all datasets, and were studied linking to the
initiation and progression of PaCa. The detailed PaCa pathway
integrating ECM–receptor interaction with FA pathways is
given in Figures 3, 4. The GTEx normal pancreas expression
data comparison of integrated pathway was also performed.
To determine the difference in the expression of genes
involve in PaCa tissue and normal pancreas cell. Figure 5

represents the gene expression values of normal pancreas
in graphical representation, and values are provided in
Supplementary Table 5. ECM molecules play important role in
regulating the adhesion, motility, growth, and differentiation
of cells. The integrin complexes are cell surface receptors,
which are activated by ECM molecules and initiate multiple
signaling cascades. The α and β subunits of integrin combine
to form integrin complex. Different combination of α and β

subunits co-expressing in PaCa samples are identified including
ITGA1/ITGB1, ITGA3/ITGB1 ITGAV/ITGB3, ITGA2/ITGB1,
and ITGA6/ITGB4. These co-expressed subunits also show
overexpression in DE analysis. The mean Log2FC values of the
α subunit ITGA1, ITGA2, ITGA3, ITGAV, and ITGA6 are 1.57,
2.60, 1.78, 1.30, and 1.56. The mean Log2FC values of β subunits
ITGB1 and ITGB4 are 1.62 and 1.76, respectively. The expression
value Log2FC of all subunits of integrin was less than 0.5 in
GTEx data. According to this, the expression of integrins is
high in PaCa than in normal pancreas. The ECM molecules
include multiple proteins such as collagen, laminin subunit,
secreted phosphoprotein 1 (SPP1), fibronectin1 (FN1), tenascin
C (TNC), and thrombospondin (THBS). Collagen deposition
is reported in PaCa extracellular environment, which results
in the increase in rigidity of tumor. Multiple co-expressed
collagen proteins are identified through WGCNA analysis,
which are COL1A1, COL1A2, COL4A1, COL4A2, COL4A5,
COL6A1, COL6A2, COL6A3, COL10A1, and COL12A1. All
these co-expressed collagen proteins are also identified to be
overexpressed in PaCa patients with Log2FC value >1.1. Most
important types of collagen protein detected in all datasets with
high fold change are COL10A1 and COL12A1. Mean Log2FC
values of both are 2.97 and 2.56 correspondingly. The highly
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TABLE 4 | The table contains information related to WGCNA results, and second column contains name to datasets analyzed.

Sr. No Dataset name β-value Modules with

correlation >=

0.6

(Pos-Mod)

Number of

significant

genes

(Pos-Mod)

Number of

significant

pathways

(Pos-Mod)

Modules with

Correlation

<= −0.6

(Neg-Mod)

Number of

significant

genes

(Neg-Mod)

Number of

significant

pathways

(Neg-Mod)

Microarray Data

1 E-GEOD-15471 20 Gray, brown,

yellow

895 51 Turquoise 602 19

2 E-GEOD-18670 16 Turquoise,

brown, yellow,

Green

1,514 78 Gray, red,

black, blue

659 42

3 E-GEOD-28735 9 Turquoise,

gray, brown

166 33 0 Nill Nill

4 E-GEOD-41368 16 Turquoise,

gray, brown

2,457 151 Yellow, green,

red, blue

741 40

5 E-GEOD-62452 10 Gray, brown 18 13 0 Nill Nill

RNA-seq Data

1 GSE119794 12 Blue 67 5 0 Nill Nill

2 E-MTAB-3494 12 Yellow,

turquoise, blue

1,985 133 Brown 343 28

The third column consist of soft threshold value used for calculating adjacency matrix, and forth and seventh column show the names of modules choosed for further analysis. Remaining column contain information of genes selected

and significant pathways retrieved for all datasets.
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FIGURE 3 | Pathway representing pancreatic cancer (PaCa) progression from normal pancreas cell to invasive stage of cancer. ECM molecules initiate multiple

signaling pathways by interacting with integrin complexes. The growth factor receptors MET and EGFR/HER2 activation in initial stages of PaCa, activates signaling

cascades, which lead to expression of anti-apoptotic, proliferative, and cell survival genes. Figure represent the information related to gene identified in number of

datasets in WGCNA and differential gene expression (DE) analysis. Color filled in entities show the dataset number for WGCNA. Color of stars represent number of DE

datasets.

expressed ITGA2/ITGB1 integrin in PaCa is reported in multiple
studies and collagen type I interaction with ITGA2/ITGB1
activates cellular pathways leading to the cell proliferation and
migration (Grzesiak and Bouvet, 2006; Hamada and Masamune,
2018). The ITGA6/ITGB1 complex activated by ECM molecules
also increases proliferation and migration by inducing ERK
expression (Hamada and Masamune, 2018).

The laminins are extracellular matrix glycoproteins, which
have 5 α, 4 β , and 3 γ chains. Elevated levels of LAMB3
and LAMC2 are associated with aggressiveness and motility of
PaCa, and these can be used for prognosis (Yang et al., 2019).
The co-expression of laminin subunit proteins such as LAMA2,
LAMA3, LAMA4, LAMA5, LAMB1, LAMB2, LAMB3, LAMC1,
and LAMC2 was also identified along with collagen proteins. All
reported co-expressed laminins are also overexpressed, with the
Log2FC value >1.1 (Supplementary Table 1). Most importantly
LAMA3, LAMB3, and LAMC2 are identified in all datasets
with means Log2FC values 2.38, 2.78, and 3.67, respectively. In

normal pancreas (GTEx data), underexpression of LAMA3 and
LAMB3 was determined with the Log2FC values −1.249 and
−0.53, respectively. The fibronectin (FN) is a high-molecular
weight ( 440 kDa) glycoprotein and have 20 variants. The high
overexpression of FN1 was identified in 6 datasets (4 microarray,
2 RNA-seq) with mean Log2FC value of 3.41. The overexpressed
SPP1 and TNC were also identified with mean Log2FC values
of 1.67 and 2.29. The co-expression of THBS proteins such as
THBS1, THBS2, and THBS3 was identified along with other
ECM proteins. THBS1 and THBS2 are also identified as DEGs,
overexpressed with mean Log2FC values 2.257068 and 2.910749,
respectively (Supplementary Table 1).

All these ECM molecules interact with integrin complexes
and activate multiple pathways. One of these is lamellipodia
formation. The overexpressed genes of actin cytoskeleton
regulation pathway lead to stress fiber (contractile actin bundles)
and lamellipodia formation. The lamellipodia is a thin sheet like
an actin protrusion form on the guiding side of amoving cell. The
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FIGURE 4 | Figure represents expression of genes, and each entity contains name of gene mean Log2FC value and standard deviation of Log2FC values in all

datasets. Pathway image is similar to Figure 3 depicting pancreatic cancer (PaCa) progression signaling in cell. Entities in the highlighted path show high

overexpression, and lead to lamellipodia formation and initiation of proliferative gene expression.

actin stress fiber is present in non-muscle cells and lead to cell
motility. The actin regulators such as Rho-GTPases RhoA, cdc42,
and Rac induce the formation of lamellipodia under the influence
of extracellular stimuli (Anne, 2011). The important entities of
the actin regulation pathway were reported to be co-expressed,
and also show high overexpression in DE analysis, which is also
shown in Figures 3, 4. The mean Log2FC values of Rac1 and
Rac2 were 2.04 and 1.04, respectively. Rac1 notably expresses in
very low quantity having Log2FC value 0.101 in normal pancreas.
The RhoA downregulation results in decrease in lamellipodia
formation (Anne, 2011).

Other pathways activated by different receptors are Akt/PKB,
PI3k, andMAPK signaling pathways, which causes an increase in
cell proliferation and cell survival (anti-apoptotic pathways). The
integrin complex, MET and EGFR/HER2 receptors, activate the
PI3K pathway, which leads to the expression of proliferative and
anti-apoptotic genes, and also resulted in FA turnover. The focal
adhesion kinase (FAK) also known as protein tyrosine kinase
2 (PTK2) activated by integrins and growth factor receptors is

involved in multiple pathways. The overexpressed PTK2 was
reported in two PaCa datasets, with mean Log2FC value of 1.06,
while in normal pancreas expression was distinctly low Log2FC
value 0.2. The growth factor receptors play very important
role in initiating multiple oncogenic pathways. The MET and
EGFR/HER2 were two receptors found highly overexpressed in
our results along with their co-expression in PaCa samples. The
MET receptor was reported in all datasets with mean Log2FC
value of 1.76 and TCGA cohort expression value of 1.45. The
overexpressed TGFβ1 and TGFBR1 were also identified, which
induce the expression of genes causing loss of growth inhibitory
effects of TGFβ . The TGFβ1 showed high expression level in six
datasets with the mean Log2FC value of 1.79, while TGFBR1 is
reported in three datasets with a value of 1.42.

The protein–protein interaction network analysis of this
integrated pathway was performed using STRING and Cytoscape
to identify degree of interaction between all genes and
determination of hub genes. The Network Analyze module of
Cytoscape determine the statistics of network such as degree,
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FIGURE 5 | GTEx multigene expression graph. The expression profile of

pancreatic cancer (PaCa)-related genes in normal pancreas. The names 6 Hub

genes are highlighted with yellow color and of remaining hub genes are

highlighted with red box. The graph represents that expression of hub genes

are relatively low in normal pancreas tissues.

betweenness, and closeness provided in Supplementary Table 6.
The genes with higher number of interactions, like those with
total degree ≥30, were considered as hub genes. A total of 20
hub genes were identified in this analysis. The red color coded
entities in the network are hub genes, as given in Figure 6.
The MCODE app of Cytoscape generated clusters containing
genes with a high number of interactions. Three clusters were
selected with cluster density score >8. The network diagram
and most dense interacting cluster out of the whole network are
provided in Figure 6. Afterward, six hub genes were identified by
using the CytoHubba app. These genes are Cdc42, Rac1, ITGA1,
ITGB1, SRC, and PTK2, and are shown by yellow color entities
in Figure 6.

Apart from analyzing modules with high positive correlation,
modules with high negative correlation (≤−0.6) were also
analyzed in context of PaCa development. Selected modules for
all datasets are provided in Table 4. Significant hub genes with
PaCa correlation <−0.6 and module membership (MM) value
>0.6 were selected for all modules, provided in second data sheet
(Supplementary Table 2). Then modules for each dataset were
merged into one, and the enrichment of genes was performed
using Enrichr. The Significant pathways with p-value< 0.05 were
given in Supplementary Table 4, and the number of significant
pathways (Table 4). To identify the most significant pathways
retrieved in all datasets, common pathways were determined.
The propanoate metabolism and calcium signaling pathway were
identified as most significant, as all the predicted genes in these
two pathways show underexpression. The calcium signaling
pathway is crucial for the normal functioning of cells. Disruption
of this pathway is reported in the early stages of multiple
malignancies, along with PaCa (Gregório et al., 2020).

4. DISCUSSION

PaCa is the most fatal malignancy due to its late prognosis.
About 90% of the patients die in the first year of diagnosis,
and almost all patients undergo metastases. For understanding
the molecular nature and getting a deeper insight of regulatory
pathways disrupted in PaCa cell, transcriptome analysis assists
a lot. In this study, transcriptome analysis of PaCa cells in
comparison to normal pancreatic cells is conducted. For this
purpose, variousmicroarray and RNA-seq datasets from different
studies were collectively analyzed.

The first microarray data is E-GEOD-15471, in which study
they had combined their results with previous studies. The
t-test statistic was used for differential expression analysis,
and determined that there is a strong correlation of keratin
7, laminin subunit γ 2 (LAMC2), stratifin (SFN), platelet
phosphofructokinase (PFKP), annexin A2, MAP4K4, and
MBOAT2 overexpression with patients death (Badea et al., 2008).
All the genes reported in the above-mentioned study are also
identified in our results, and show relatively high overexpression
with the Log2FC value >1.

In the second microarray study (E-GEOD-28735),
downregulation of DPEP1 (dipeptidase 1) was investigated.
DPEP1 gene is involved in suppression of cell proliferation
and cancer invasiveness. EGF signaling pathway regulates the
expression of DPEP1 (Zhang et al., 2012). In our analysis,
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FIGURE 6 | Hub genes of pancreatic cancer (PaCa) and protein–protein interaction network of entities given in Figures 3, 4. (A) The network indicates significant

interactions in PaCa pathways. Fourteen hub genes highlighted with having highest interaction degree. Six Hub genes identified by CytoHubba app of Cytoscape are

highlighted with yellow color. (B) PPI network of PaCa specifying 10 hub genes with a cluster of highly interactive genes in the network. (C) PPI network of PaCa

specifying 5 hub genes with a cluster of second highly interactive genes in the network. (D) The cluster of third highly interactive genes with 1 hub genes in the network.

downregulated DPEP1, along with TXP2 upregulation, is
detected. The TXP2 gene shows oncogenic properties, and its
overexpression results in the poor patient survival.

In the third microarray study, miRNAs target against different
mRNAs were analyzed, and explored the macrophage migration
inhibitory factor (MIF) pathway. The study determined
that upregulated MIF trigger miR-301b overexpression. The
overexpressed miR-301b suppresses the expression of orphan
nuclear receptor NR3C2. The NR3C2 normal expression
is important for cell survival (Yang et al., 2016). In our
analysis, we only included mRNA samples submitted with
accession number (E-GEOD-62452). Our results showed
concordance with the output of the above-mentioned
study. We predicted downregulated NR3C2 with the mean

Log2FC value of −1.50. The overexpression of various
cellular adhesion (collagen proteins and FN1) and interaction
receptors (integrins and MET) are detected in differential gene
expression analysis.

The fourth microarray study comprises identifying
mRNA regulation by miRNAs (E-GEOD-41368). They
determined that three miRNAs including MIR21, MIR23A,
and MIR27A suppress the expression of 3 tumor suppressor
genes including programmed cell death 4 (PDCD4), BTG
anti-proliferation factor 2 (BTG2), and neural precursor
cell expressed/developmentally down-regulated 4-like
(NEDD4L), respectively (Frampton et al., 2014). In our
results, downregulation of these three tumor suppressor genes
was determined with the mean Log2FC values <−1.5.
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In the fifth microarray study (E-GEOD-18670), the
differentially expressed genes in cancer cell responsible for
metastases development in PDAC patients were inquired.
For this purpose, the expression level of tumor cells was
compared with non-tumoral pancreatic cells, circulating tumor
cells, and haematological cells. They proposed that six highly
overexpressed genes C19orf33, ECT2, IL1RN, S100P, SFN, and
TUBA4A in PDAC cells are responsible of cell motility and
invasiveness (Sergeant et al., 2012). All these genes are detected
as highly overexpressed in our analysis, along with other 798
overexpressed genes. Most of the predicted genes involved in
the pathways of cancer. The genes C19orf33, S100P, and SFN
show high expression with the Log2FC values of 2.87, 3.04, and
2.72, respectively.

Two RNA-seq datasets were also analyzed for this study. The
first RNA-seq study comprises integrated network determination
of miRNAs and mRNAs in PaCa. They used TopHat2 tool for
sequence alignment, and DESeq2 for differential gene expression
analysis. For determining miRNA and mRNA relationship,
Human miRNA Disease Database (HMDD) and miR2Disease
database were used (Lin et al., 2019). In our analysis, only mRNA
sample files are processed for DEGs identification, sequence
files are aligned using HISAT2 tool, and DESeq2 is used for
differential gene expression analysis. Our results are similar to
the above study for significant genes identification. The second
RNA-seq study comprises total RNA content included coding
(mRNAs) and non-coding (miRNAs, snoRNAs, snRNAs, and
pseudogenes) (Müller et al., 2015). In our study, we only analyzed
these data for identification of mRNAs expression.

From the comparative analysis of DEGs, 76 significant genes
are identified, which are further interrogated for involvement in
PaCa-related pathways. Seven genes were downregulated, out of
these seven genes, AOX1, C5, and IAPP are involved in crucial
pathways for normal functioning of cells. The most important
of all underexpessed genes is aldehyde oxidase 1 (AOX1)
gene, detected with mean Log2FC value of −2.44. It belongs
to molybdenum hydroxylase family, it oxidizes aldehydes, a
toxic metabolic product of ethanol and heterocyclic rings, and
produces reactive oxygen species. It requires metal molybdenum
and the flavin cofactor for this catalytic reaction. AOX1 helps
as well in the production of retinoic acid, which triggers the
signaling pathway important for pancreas development and
normal functioning. High expression levels of AXO1 were
predicted in normal pancreatic cells, whereas low expression to
zero expression is identified with respect to PaCa stages in an
immunohistochemical study (Crnogorac-Jurcevic et al., 2005).

Remaining 69 genes are upregulated and are involved in
different pathological pathways. Some of the upregulated genes
are tumorigenic, which facilitates hypoxia, cell proliferation,
invasion, and metastasis. Overexpressed cell surface molecules
identified are CEACAM1, CEACAM6, FXYD3, MET, ADGRF1,
and transmembrane protease serine 4 (TMPRSS4). The
carcinoembryonic antigen-related cell adhesion molecule 6
(CEACAM6) induces epithelial-mesenchymal transition (EMT),
which causes tumor cell invasion in PaCa patients (Chen J.
et al., 2013). CEACAM1 and CEACAM6 increase neutrophil
degranulation, and their elevated expression level is a useful

indicator of PaCa development in body (Simeone et al., 2007;
Chen J. et al., 2013). The FXYD domain containing ion transport
regulator 3 (FXYD3) is the member of the small membrane
proteins family. FXYD3 function as Na/K-ATPase regulator and
induces a hyperpolarization-activated current in membrane by
changing K+ and Na+ affinity of Na/K-ATPase (Bibert et al.,
2006; Peron et al., 2019). FXYD3 is also known as mammary
tumor marker 8 (Mat-8), and cell proliferation is considered as a
plausible role of FXYD3 in cancer. In a previous study, 3.4-fold
increase in FXYD3 was identified in 50% of PDAC samples with
strong levels of significance (Kayed et al., 2006). High mean
Log2FC of 2.14 is determined in our study with its overexpression
in all datasets, along with TCGA cohort result (3.07).

Adhesion G protein-coupled receptor F1 (ADGRF1) is also
known as G protein-coupled receptor 110 (GPR110) encoded
by GPR110 gene. It belongs to the largest family of cell
membrane proteins G protein-coupled receptors (GPCRs).
Cellular pathways activated by GPR110 and its physiological
function are still unknown. However, its expression is correlated
with the cellular malignancy, cancer invasion, and metastases
(Lum et al., 2010; Sahay et al., 2016; Sadras et al., 2017). Strong
correlation of GPR110 gene with PaCa was identified in a study
where its overexpression is observed in all PaCa patients (Lin
et al., 2019). The solute carrier family 2 member 1 (SLC2A1)
gene code for glucose transporter 1 (or GLUT1) protein facilitates
the transport of glucose across plasma membranes. SLC2A1 is
predicted to be involved in central carbon metabolism in cancer,
HIF-1 signaling pathway, and adipocytokine signaling pathway.
All these pathways collectively are involved in the development
and progression of cancer by increasing cell proliferation and
evading apoptosis.

Along with the individual results of DE analysis, co-expression
network analysis results were combined with DE results in
this study and TCGA cohort was used for validating gene
expression. The ECM–receptor interaction and FA pathways
predicted through co-expression analysis were reported to
be involved in PaCa development and progression. All the
predicted pathways were studied conjointly, regarding the
gradual progression of PaCa from stage IA to the metastatic
phase (Figures 3, 4). Moreover, the protein–protein interaction
network analysis of pathways was performed to determine
the putative PaCa biomarkers/ hub genes. The integrins
interacting with extracellular matrix and growth factor receptors
initiate multiple pathways, which causes the development and
aggressiveness of PaCa. The overexpressed integrin α (ITGA)
subfamily genes ITGA2 and ITGA3 are predicted to be involved
in cancer-related pathways such as PI3K-Akt signaling pathway
and FA interacting with ECM genes such as laminin (LAMB3,
LAMA3, and LAMC2) and collagen (COL10A1, COL12A1)
(Grzesiak and Bouvet, 2006; Hamada andMasamune, 2018; Yang
et al., 2019).

The ITGA1 and ITGB1 are considered as early-stage
biomarkers of PaCa, which increase the invasiveness. Both
ITGA1 and ITGB1 are identified as hub genes in network analysis
(Figure 6). ITGA1 in combination with collagen also promotes
gemcitabine therapy resistance by inducing overexpression of
TGFβ (Gharibi et al., 2017). The overexpression of ITGA2
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plays an essential role in tumor progression, metastasis, and
motility. ITG2 activates upregulate STAT3 signaling pathway,
which resulted in tumor progression (Ren et al., 2019).

The other identified biomarkers/hub genes on the basis
of network analysis are MET, PTK2, Rac1, SRC, and LAMB1
(Figure 6). The MET proto-oncogene is receptor tyrosine
kinase (MET), also known as hepatocyte growth factor
receptor (HGFR). It is a multi-domain receptor consisted
of an extracellular semi domain, cysteine-rich Met-related
sequence (MRS), glycine–proline-rich (G-P) repeats, and four
immunoglobuline-like structures, attached to intracellular
regions including tyrosine kinase domain (Gentile et al., 2008).
MET is expressed as single-chain precursor, which then cleaved
into α and β subunits. Growth factor HGF/SF binds and activates
MET, normal activation induces embryogenesis, while abnormal
activation of MET in cancer leads rapid progression by activating
multiple signaling pathways including Ras, PI3K, STAT, Wnt,
and Notch signaling pathway. Ras signaling activates MAPK
and causes cell proliferation, while other pathways induce cell
invasion, metastatic growth, and angiogenesis (Abounader et al.,
2004; Gentile et al., 2008). MET is considered as biomarker for
the identification of PaCa and a promising therapeutic target (Li
et al., 2011). The MET protein overexpression in cell is associated
with the activation of multiple cancer-related pathways such as
PI3K-Akt signaling pathway, FA, and central carbon metabolism
in cancer pathways. The FAK/PTK2 is kinase protein play crucial
role in multiple cancer-related pathways activated by various
surface proteins integrin and growth factor receptor. It also
promotes p53 degradation through ubiquitination in nucleus
(Zhou et al., 2019). The RAC is downstream protein involving in
pathways for the formation of lamellipodia under the influence
of extracellular stimuli and activation of the proliferative genes.
In normal pancreas, RAC expression is precisely low, as the main
function of RAC is to activate the formation of actin fiber in
normal cells. In PaCa cells, its overexpression leads to abundant
deposition of actin and lamellipodia formation (Anne, 2011).

5. CONCLUSIONS

PaCa is a fatal malignancy with 5-year survival rate<7 and>98%
metastasis development rate. There is a dire need for developing
new therapies for reducing mortality rates. For attaining this,

it is essential to thoroughly study pathways and genes involved
in initiation, progression, and invasiveness of PaCa. The whole
transciptome analysis along with co-expression network analysis
of PaCa provides the prime way to explore entities that are
differentially co-expressed in the system. Most important hub
genes and pathways determined in this study are integrins
(ITGA1, ITGB1), LAMA1, MET, FAK, and Rac1-mediated actin
bundle deposition, PI3k/Akt, andMAPk signaling pathways. The
STAT3 activation is induced by integrin, VEGFA, and EGFR,
which leads to angiogenesis and loss of growth inhibitory effects
of TGFβ induced by TGFB1 and TGFβR1/TGFβR2. The hub
genes and overexpressed surface receptors initiating all these
pathways can be used for designing advance therapy against
these receptors.
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