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We describe the use of model-driven analysis of multiple data types relevant to transcriptional regulation of
metabolism to discover novel regulatory mechanisms in Saccharomyces cerevisiae. We have reconstructed the
nutrient-controlled transcriptional regulatory network controlling metabolism in S. cerevisiae consisting of 55
transcription factors regulating 750 metabolic genes, based on information in the primary literature. This
reconstructed regulatory network coupled with an existing genome-scale metabolic network model allows in silico
prediction of growth phenotypes of regulatory gene deletions as well as gene expression profiles. We compared
model predictions of gene expression changes in response to genetic and environmental perturbations to
experimental data to identify potential novel targets for transcription factors. We then identified regulatory cascades
connecting transcription factors to the potential targets through a systematic model expansion strategy using
published genome-wide chromatin immunoprecipitation and binding-site-motif data sets. Finally, we show the ability
of an integrated metabolic and regulatory network model to predict growth phenotypes of transcription factor
knockout strains. These studies illustrate the potential of model-driven data integration to systematically discover
novel components and interactions in regulatory and metabolic networks in eukaryotic cells.

[Supplemental material is available online at www.genome.org.]

Current biological research produces increasing volumes of data
describing cellular components, their interactions, and states of
biological networks for model organisms including the budding
yeast, Saccharomyces cerevisiae. Component and interaction data
including genome sequences (Bussey et al. 1997), protein com-
plexes (Gavin et al. 2006), and protein–DNA interactions (Harbi-
son et al. 2004) can be used to establish the connectivity of the
biochemical networks inside the cell. System-state data types in-
cluding gene expression (DeRisi et al. 1997), metabolite level (Vil-
las-Boas et al. 2005), metabolic flux (Sauer 2004), and high-
throughput deletion strain phenotyping (Giaever et al. 2002)
data represent the states and outputs of these networks. Connect-
ing large-scale component and interaction information to data
on system states in order to facilitate the interpretation of both
data types is a major challenge in systems biology. The data in-
tegration and interpretation task is made challenging by the in-
completeness and noisiness of large-scale data sets (Grunenfelder
and Winzeler 2002).

Given these issues with large-scale data sets, systematic in-
clusion of literature-derived information on network structures
into the analysis represents an appealing alternative to purely
data-driven approaches. The widespread availability of compo-
nent and biochemical interaction information in the primary
literature has enabled the reconstruction of chemically and bio-
logically consistent mathematical descriptions of biochemical
networks in well-studied model organisms (Herrgård et al. 2004;
Price et al. 2004). These network models can then be used to

predict changes in system states in response to genetic and en-
vironmental perturbations. Furthermore, model predictions can
be directly compared with experimental data obtained, for ex-
ample, by metabolic flux or gene expression profiling (Covert et
al. 2004; Price et al. 2004). As a result of these comparisons,
modifications to the biochemical network model that would im-
prove its ability to predict system states can be identified to it-
eratively improve the model.

In the case of metabolic networks, the network reconstruc-
tion step can now be routinely done and has been accomplished
for a number of key model organisms including Escherichia coli
(Reed et al. 2003) and Saccharomyces cerevisiae (Famili et al. 2003;
Duarte et al. 2004). Using a reconstructed genome-scale stoichio-
metric matrix as a starting point, the constraint-based modeling
framework (Price et al. 2004) can then be used to make pheno-
typic predictions that can be compared to experimental data.
Frequently used constraint-based approaches include flux-
balance analysis (FBA) that allows the prediction of flux distri-
butions and growth rates based on known metabolic network
stoichiometry, growth media composition, and biomass compo-
sition (Kauffman et al. 2003). The constraint-based framework
has been extended to account for transcriptional regulation of
metabolism in the form of the regulated flux-balance analysis
(rFBA) approach (Covert et al. 2001). This approach requires first
reconstructing the transcriptional regulatory network structure
in the form of Boolean rules based on the various available data
sources and then integrating this network with the metabolic
network model. So far the rFBA approach has been applied to
make predictions of growth phenotypes and qualitative gene ex-
pression changes in E. coli (Covert and Palsson 2002; Covert et al.
2004).

Here we present the first large-scale integrated model of me-
tabolism and its transcriptional regulation in a eukaryotic organ-
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ism, S. cerevisiae iMH805/775.3 The cur-
rent model includes the majority of
known nutrient-controlled transcrip-
tional regulation (55 transcription fac-
tors) of metabolic pathways (750
genes in total) represented in a Boolean
rule-based formalism (Covert et al.
2001). The regulatory network model is
combined with an existing genome-
scale metabolic model, iND750 (Duarte
et al. 2004). We demonstrate three ma-
jor applications of the iMH805/775
model using the rFBA approach to
predict gene expression changes and
growth phenotypes of knockout (KO)
strains. First, we analyze previously pub-
lished genome-scale gene expression
and protein–DNA interaction data sets
in a model-driven fashion. Second, we
demonstrate the ability to iteratively ex-
pand an existing model based on com-
parisons of model predictions with ex-
perimental data. This iterative model
building strategy allows identification of
new interactions supported by multiple
experimental data types and inclusion of
these interactions into the regulatory
network model. Third, we show how an
integrated metabolic/regulatory net-
work model can be used to analyze di-
verse data types such as phenotyping
and gene expression data simulta-
neously within the same modeling
framework. The overall approach used for model-based integra-
tion of diverse data sets is schematically represented in Figure 1.

Results

Reconstructed transcriptional regulatory network

Using the previously described genome-scale compartmentalized
metabolic model of S. cerevisiae, iND750 (Duarte et al. 2004), as a
starting point, we reconstructed the transcriptional regulatory
network regulating all of the metabolic subsystems included in
iND750. The resulting integrated metabolic/regulatory network,
iMH805/775, accounts for 805 genes and 775 regulatory interac-
tions. The network consists of the 750 metabolic genes in
iND750 and 55 specific nutrient-regulated transcription factors
(TFs). The model allows 82 distinct intra- and extracellular me-
tabolites to act as input signals to the regulatory network. The
direct and indirect regulatory interactions for each gene were
collected from primary literature, and they are based on detailed
studies of transcriptional regulation of individual genes. In addi-
tion to representing these regulatory interactions, iMH805/775
also includes rules describing the mode of combinatorial control
by different TFs at each promoter. This logic-based representa-
tion allows in silico prediction of gene expression changes in

response to environmental and genetic perturbations and inte-
gration of the regulatory network to the metabolic network
model as described previously (Covert and Palsson 2002; Covert
et al. 2004). The Supplemental material contains all the interac-
tions included in the model, the Boolean rules describing the
expression of each target gene, and literature references.

Prediction of gene expression changes

In order to assess the completeness of the iMH805/775 network
described above, we compared in silico gene expression change
predictions to experimentally measured expression profiles as
well as experimentally determined protein–DNA interactions
(chromatin immunoprecipitation followed by microarray analy-
sis, or ChIP-chip) and predicted TF-binding motifs (Harbison et
al. 2004). We used gene expression data for eight transcription
factor knockout strains (rgt1, rox1, gat1, hap1, adr1, gal4, gln3,
cat8) and two overexpression (HAP4, GCN4) strains from previ-
ously published reports (Ideker et al. 2001; Natarajan et al. 2001;
Ter Linde and Steensma 2002; Lascaris et al. 2003; Young et al.
2003; Kaniak et al. 2004). Each of the 750 metabolic genes in
iMH805/775 was classified as significantly up-regulated, signifi-
cantly down-regulated, or unchanged in each of the 10 experi-
mental data sets. The in silico simulations for the gene expression
predictions were done using in silico environments that matched
the experimental conditions for each individual expression data
set. The ChIP-chip and motif data were merged to obtain a set of
potential direct target genes for each of the 10 transcription fac-
tors listed above.

3See Reed et al. (2003) for conventions used for naming in silico strains. MH
refers to the principal person responsible for reconstructing the model, 805 is
the number of genes accounted for by the model, and 775 is the number of
regulatory interactions in the model.

Figure 1. A schematic drawing of the approach used in this work for model-based analysis of growth
phenotyping and gene expression data to identify new network components and interactions. The
approach combines in silico modeling of genome-scale metabolic and regulatory networks with analy-
sis of in vivo data obtained by gene expression and growth phenotyping experiments. Specific mispre-
dictions of either gene expression changes or growth phenotypes are identified and used as inputs for
systematic model expansion. The primary data types used for model expansion are ChIP-chip data on
protein–DNA interactions and the presence of known TF-binding motifs on promoters. The result of
the expansion is a model that includes new regulatory interactions that allow improved prediction of
expression changes and growth phenotypes of knockout and overexpression strains.
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The results for the comparison between iMH805/775 predic-
tions, experimentally observed gene expression changes, and ex-
perimentally determined protein–DNA interactions are summa-
rized in Figure 2. For the majority of genes (between 523 and 689
genes) in each of the 10 strains, there was no significant expres-
sion change in vivo, no change predicted by the model, and no
experimentally determined protein–DNA interaction between
the transcription factor and the gene. Overall, 45 out of the 114
predicted gene expression changes (P < 1 � 10�14; Fisher’s exact
test) were supported by both gene expression and ChIP-chip/
motif data, and 86 changes (P < 1 � 10�57) were supported by
either of the data types. Figure 2C provides a summary of the
actual data that were used to derive Figure 2A in the form of
scatterplots of the promoter occupancy scores derived from
ChIP-chip data plotted against gene expression changes in the
corresponding TF knockout or overexpression strains. This figure
shows how the correlation between promoter occupancy and
expression change ranges from a high level of agreement for
certain TFs (Gcn4, Gal4, and Rgt1) to almost complete lack of
agreement for other TFs (e.g., Gln3 and Gat1).

As Figure 2A shows, the majority of the comparisons in
which the model did not predict an expression change fell into
three categories. The first category—evidence of binding in the
ChIP-chip data, but no gene expression change (191 cases over-
all)—includes cases in which there are likely to be additional
regulators acting on the same promoter in a combinatorial fash-
ion. For this reason, expression changes are not observed in a
single TF knockout or overexpression experiment. In the second
category, both the gene expression and ChIP-chip data sets agree

(80 cases overall), providing strong support for including these
genes as novel direct targets for the corresponding TFs. In the
third and largest category (418 cases overall), a gene expression
change was observed, but there was no evidence of direct pro-
tein–DNA binding in the ChIP-chip data. These cases correspond
to suggested indirect targets of TFs that may be regulated by
transcriptional cascades that involve two or more TFs.

Systematic expansion of the regulatory network

Based on the results presented above, it is clear that while the
model makes relatively few gene expression change predictions
that were not supported by either gene expression or ChIP-chip
data (28 cases overall), for many metabolic genes, iMH805/775
predicts no expression change even in cases in which such
changes are observed in vivo (a total of 498 cases across all 10
strains). We next sought to improve the predictive ability of the
in silico model by using ChIP-chip and TF-binding motif data
(Harbison et al. 2004) to systematically expand the regulatory
network part of the model. First, the gene expression comparison
presented above was used to identify potential novel candidate
target genes for each of the 10 transcription factors (498 TF-target
pairs total). Next, we traced paths through an expanded regula-
tory network that consisted of the iMH805/775 network and a
provisional regulatory network that can be established based on
combining ChIP-chip data and TF-binding motif data (Harbison
et al. 2004). We used a systematic search algorithm (see Methods
for details) to find the shortest possible path from a particular TF
to a particular target gene through this combined network.

Figure 2. Comparison between expression changes in TF knockout and overexpression strains predicted by iMH805/775, in vivo observed expression
changes, and promoter occupancy for the corresponding TFs derived from ChIP-chip and motif data. (A) Overlaps between the three data sets shown
in the form of Venn diagrams. The numbers refer to the number of genes in each category out of the total of 750 metabolic genes. (B) Interpretation
of each of the segments in the Venn diagrams shown in A. (C) Scatterplots of the gene expression changes in TF knockout/overexpression strains (log2
ratios between knockout strain and wild type) and the corresponding promoter occupancy scores derived from ChIP-chip data (�log10 of the P-value
reported in Harbison et al. [2004]). The genes that were predicted to change in expression by the iMH805/775 model are indicated by blue circles.
Genes with significant gene expression change or promoter occupancy are colored using a color scheme similar to the one used in the Venn diagrams
in A.
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We investigated three different network expansion sce-
narios using the search algorithm. In the first scenario, we only
used ChIP-chip and motif data for the 55 TFs already included
in the model. We also required that the direction of the expres-
sion change for each target gene would be correctly explained
as a combination of the regulatory interactions along the path
when each TF was considered to be either a repressor or activa-
tor depending on its known activity. In the second scenario, we
used the same set of ChIP-chip and motif data sets, but we re-
laxed the assumption that specific transcription factors can only
act as activators or repressors. In the third scenario, we included
ChIP-chip and motif data for all 203 TFs studied in Harbison et al.
(2004), again allowing each TF to act either as a repressor or acti-
vator.

The three panels in Figure 3 summarize the results of the
three different expansion scenarios for each TF separately as well
as for the whole set together. This figure shows the fractions of
potential target genes that could be reached after a certain num-
ber of steps in a regulatory cascade. In the first expansion sce-
nario (Fig. 3A), 38% of the potential target genes across all the
strains could be reached through transcriptional regulatory cas-
cades with at most five steps (P < 0.001 compared with the same
expansion approach applied to randomized target gene sets of
the same size). The second expansion scenario (Fig. 3B) did not
significantly increase the percentage of target genes that could be
reached in at most five steps (44%, P < 0.001). In contrast, the

third expansion scenario using the extended 203 TF data set (Fig.
3C) allowed reaching 67% of the target genes by cascades of
five or fewer steps (P < 0.01). The third expansion scenario
suggested several previously uncharacterized regulatory interac-
tions between transcription factors that would allow explaining
a large number of the unaccounted expression changes of
metabolic genes that were observed in vivo. The novel regula-
tory interactions that were most commonly used in the regula-
tory cascades derived from the expansion approach are listed in
Table 1.

The regulatory interactions that were identified by the first
expansion scenario described above were used as a basis for build-
ing an improved version of the regulatory network. We analyzed
manually each of the suggested regulatory interactions involving
the 55 TFs in the original iMH805/775 model and included the
interactions that did not cause conflicts with existing regulatory
rules to form an expanded model, iMH805/837. In addition, mi-
nor changes to existing rules in the model were made to remove
mispredictions of gene expression changes due to incorrectly rep-
resented combinatorial effects, especially for the rgt1 strain. In
order to provide an independent test set to assess the relative
performance of iMH805/775 and iMH805/837, we turned to
prediction of gene expression changes in wild-type yeast strains
in response to five different environmental perturbations (Gasch
et al. 2000; Kwast et al. 2002). As Table 2 shows, overall the
overlap between the observed and predicted expression changes for
genes that change in expression either in silico or in vivo was sig-
nificant in each of the five conditions (P < 0.01; Fisher’s exact
test). The iMH805/837 model showed improved predictive abil-
ity over the iMH805/775 model in four out of the five conditions
studied.

Figure 3. Results for the three regulatory network expansion scenarios
(A,B,C) using a combination of the iMH805/775 network and a provi-
sional regulatory network derived from ChIP-chip and TF-binding motif
data. Each pie chart indicates the fractions of potential target genes that
can be reached from the TF through regulatory cascades containing one
to five steps as well as the targets that cannot be reached in five or less
steps from the TF. For each strain, the numbers of potential novel targets
are indicated in parenthesis. (A) Expansion using ChIP-chip and motif
data for the 55 TFs in iMH805/775 assuming that each TF can only act as
a repressor or activator depending on its known type of activity. (B)
Expansion using the same ChIP-chip and motif data, but allowing each TF
to act either as repressor or activator. (C) Expansion using ChIP-chip and
motif data for all 203 TFs studied in Harbison et al. (2004) allowing each
TF to act either as repressor or activator. Table 1. Regulatory interactions not included in iMH805/775

that participate in 15 or more regulatory cascades identified by the
network expansion approach applied to the full ChIP-chip data set
with 203 transcription factors

Regulator Target
Number of
cascades

Promoter
occupancy

score Motif

Involving only metabolic TFs
Hap2/Hap4 GCN4 95 4.45 Y
Gcn4 LEU3 70 4.51 Y
Hap1 MOT3 46 7.21 Y
Gln3 GCN4 32 5.82 Y
Gcn4 GLN3 24 3.49 Y
Hap1 HAP4 19 2.17 Y
Gln3 HAP1 16 2.26 Y
Leu3 TYE7 16 2.52 Y
Rox1 HAP1 16 2.25 Y

Involving other TFs
Cup9 YAP6 53 4.29 N
Gcn4 ABF1 46 2.04 Y
Yap6 CIN5 31 3.6 Y
Leu3 TEC1 21 2.42 Y
Gat1 CUP9 19 2.21 Y
Leu3 MSN4 19 2.33 Y
Tye7 MSN2 18 6.03 Y
Hap4/Hap5 DIG1 17 2.95 Y
Yap6 GCN4 16 2.51 Y

The promoter occupancy score is �log10(P), where P is the P-value re-
ported in Harbison et al. (2004) for TF–promoter interaction based on
their error model to analyze the ChIP-chip data. The motif column indi-
cates whether a binding motif for the regulator was found on the pro-
moter of the target gene in Harbison et al. (2004) or not.
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Prediction of growth phenotypes

In order to provide data for an evaluation of the predictive power
of the integrated regulatory and metabolic network model
iMH805/837, we performed quantitative growth phenotyping
experiments on 12 different carbon sources with 10 TF deletion
strains. All these TFs were included in the model and were known
to be involved in carbon-source-dependent transcriptional regu-
lation or otherwise play a role as key regulators in carbon source
metabolism. The 12 carbon sources were chosen to represent
both fermentable and nonfermentable carbon sources. We used
an optimization-based approach (see Methods) to compare
growth phenotype predictions to experimental data. This ap-
proach allowed us to systematically identify which of the growth
phenotypes are unexpected considering the current understand-
ing of the regulatory and metabolic networks in S. cerevisiae as
represented by iMH805/837. The predicted growth rates are
shown in Figure 4A together with the experimental growth rate
data. For most carbon source/strain combinations, the model
predictions are quantitatively in good agreement with the experi-
mental data. However, we identified 13 cases where the growth
rates were significantly overpredicted in silico.

The 13 growth rate overpredictions were assumed to corre-
spond to missing regulatory effects in the model, and hence
we sought to identify potential novel regulatory mechanisms
that would improve model predictions. We identified metabolic
genes whose deletion in iMH805/837 would result in a reduced
in silico growth rate prediction compared to the wild-type
strain specifically on each carbon source. These genes were
then considered to be direct or indirect candidate target genes for
the transcription factors whose knockout growth phenotype on
the carbon source was incorrectly predicted. Next we used
gene expression data sets for TF deletion strains for which such
data were available (cat8 and rgt1 strains) to further narrow
down the set of potential targets by only including genes
that were down-regulated in the TF KO strain in vivo. Specific
new direct or indirect target genes that resulted in improved
growth rate predictions were identified in five of the 13 cases
using this approach. After including the suggested new regula-
tory effects in iMH805/837, only eight significant mispredic-
tions remained as is shown in Figure 4B, and overall the

model predicted TF KO strain growth rates more accurately than
before.

Discussion

We presented a literature-based reconstruction of the known nu-
trient-controlled transcriptional regulatory network regulating
metabolism in S. cerevisiae and the integration of this regulatory
network with the genome-scale metabolic network model. We
applied previously developed in silico methods for combined
simulation of regulatory and metabolic network models to pre-
dict expression profiles and growth phenotypes. Comparison of
these predictions with large-scale experimental data allowed
identifying regulatory mechanisms missing from the model and
expansion of the model by using existing ChIP-chip and pro-
moter motif data. A similar approach for integrated modeling
was first applied to genome-scale regulatory and metabolic net-
works in E. coli (Covert and Palsson 2002; Covert et al. 2004), but
in yeast, the availability of ChIP-chip data allows integrating this
key data type into the network expansion approach.

Similarly to the case of the initial E. coli regulatory network
reconstruction (Covert et al. 2004), the overall agreement be-
tween in silico gene expression predictions by iMH805/775 and
experimental data was found to be relatively low. In particular, a
large number of the experimentally observed expression changes
were not predicted by iMH805/775. However, the agreement be-
tween model predictions and the experimental data sets was sig-
nificantly better in cases in which the gene expression and ChIP-
chip data sets were in good agreement with each other (Fig. 2).
Conversely, when the agreement between gene expression and
ChIP-chip data was poor, as was the case for the Gln3 and Gat1
transcription factors, the model predictions were usually differ-
ent from either data set. These results indicate that in particular
regulatory subsystems, the expression response may be highly
condition dependent, and information in the literature derived
from experiments performed under diverse conditions may not
allow building a coherent overall picture of the regulatory net-
work. For example, the nitrogen regulation network in which
Gln3 and Gat1 act as key regulators is known to consist of mul-
tiple interlinked negative feedback loops that allow selective re-

Table 2. Comparison between gene expression changes predicted by either iMH805/775 or iMH805/837 and experimentally observed
gene expression changes in response to environmental perturbations

Data set

Correctly
predicted
change

Incorrectly
predicted
change

Change not
predicted

No change predicted
or observed P-value

iMH805/775
Ethanol/glucose 56 29 262 388 <0.01
Galactose/glucose 47 40 158 489 <1 � 10�4

Anaerobic/aerobic 20 20 51 648 <1 � 10�9

Nitrogen depletion 26 31 92 581 <1 � 10�5

Amino acid starvation 38 43 69 575 <1 � 10�10

Total 187 163 632 2681

iMH805/837
Ethanol/glucose 81 38 236 380 <0.01
Galactose/glucose 66 51 139 478 <1 � 10�6

Anaerobic/aerobic 29 28 42 640 <1 � 10�14

Nitrogen depletion 18 29 99 584 <0.01
Amino acid starvation 49 56 56 564 <1 � 10�14

Total 243 202 572 2646

The P-value reported is the probability of observing the number of correctly predicted expression changes by random chance given the total number
of changes predicted and total number of changes observed based on Fisher’s exact test.
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sponse to different nitrogen sources (Cooper 2002; Magasanik
and Kaiser 2002). Additional gene expression and ChIP-chip ex-
periments with TF overexpression and conditional TF mutants
performed under carefully controlled conditions would be
needed to map the targets of transcription factors in such com-
plex subnetworks.

Using ChIP-chip and motif data sets (Harbison et al. 2004)
to systematically expand the iMH805/775 model allowed ex-
plaining one-third of the gene expression prediction discrepan-
cies through hypothetical regulatory cascades involving the 55
TFs in the model (Fig. 3A). Interestingly, including ChIP-chip
and motif data for additional TFs that are not traditionally as-
sumed to be key regulators of metabolic processes almost
doubled the number of gene expression discrepancies that could
be explained through regulatory cascades derived from the data
(Fig. 3C). Such cascades commonly involved TFs known to play
a role in response to various cellular stresses such as Cin5, Msn2/
4, and Yap6 (Table 1), indicating that many of the in vivo

expression changes that were not pre-
dicted by the model may be stress in-
duced. Verifying the suggested regula-
tory interactions between metabolic
and stress response TFs listed in Table 1
through additional experimentation
would allow expanding the model to in-
clude key stress response pathways and
their connections to metabolic pro-
cesses. In addition to stress response
regulators, it is likely that multifunc-
tional transcriptional regulators such as
Rap1 or Abf1 (Lieb et al. 2001; Miyake
et al. 2004) and chromatin-modifying
enzymes (Narlikar et al. 2002) also play
a role in response to changes in the nu-
tritional environment of the cell. In
the future, as more information is accu-
mulated about the regulation of the ac-
tivity of these pleiotropic regulators, we
hope to be able to incorporate them into
transcriptionally regulated metabolic
models.

The set of new regulatory inter-
actions suggested by the network ex-
pansion approach was used to develop
an improved metabolic/regulatory net-
work model, iMH805/837. The pre-
dictions of growth rates of TF dele-
tion strains made by the iMH805/837
model were in good agreement with
experimentally measured growth rates
for most TF/carbon source combi-
nations. The discrepancies in growth
phenotype predictions were analyzed
using a model-based approach that al-
lowed the identification of potential
new regulatory mechanisms mediating
carbon source utilization that are dis-
cussed in detail in the Supplemental ma-
terial. The changes to the model identi-
fied through this process were modifica-
tions of regulatory mechanisms for
specific genes involved in utilization of

particular carbon sources such as PGM2 (galactose) and HXT1
(mannose).

Conclusions

We have described the reconstruction of the nutrient-controlled
transcriptional regulatory network regulating metabolism in S.
cerevisiae and evaluation of the predictive power of an integrated
metabolic/regulatory network. We compared model predictions
to experimental gene expression data and identified a significant
number of expression changes that were not predicted by the
model. A combination of ChIP-chip and binding-site motif data
was used to expand the regulatory network model so that its
ability to predict expression changes was improved in indepen-
dent test cases. This network expansion also suggested several
novel connections between nutrient regulation of metabolism
and other regulatory subsystems that require further validation
through detailed experiments. It was found that the integrated
metabolic/regulatory network model could be used to predict

Figure 4. (A) Measured (upper corner) and predicted (lower corner) maximum specific growth rates
(1/h) for transcription factor deletion strains on different carbon sources. The in silico predictions were
made using the iMH805/837 model. The color scheme indicates the magnitude of the growth rate
from low (dark) to high (light). The squares with numbers in bold/italics indicate strain-condition
combinations with significant mispredictions discussed in the Supplemental material. (B) Comparison
of experimentally measured and predicted growth rates after the improvements to the model dis-
cussed in the Supplemental material were done.
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growth phenotypes, and the discrepancies in these predictions
could be used to direct the search for novel regulatory mecha-
nisms. The present work shows how a systematic approach can
be used to fill in missing regulatory mechanisms through the
combined use of an integrated model of regulation and metabo-
lism and existing large-scale experimental data sets. In the future,
the combination of more targeted expression profiling, ChIP-
chip, growth phenotyping, and metabolic flux profiling (Blank et
al. 2005) under many different environmental conditions will
allow systematic iterative model building. With increasing
knowledge of specific regulatory mechanisms in higher eukary-
otes (Picard et al. 2004; Wolfrum et al. 2004), the approaches
used in this work can be readily extended to studying the net-
work-level interplay between regulation and metabolism in these
organisms.

Methods

Model reconstruction
The relevant literature for each metabolic (Duarte et al. 2004) and
transcription factor gene was collected through information in
the SGD, YPD, and MIPS databases (Costanzo et al. 2001; Christie
et al. 2004; Mewes et al. 2004) and direct PubMed searches. The
regulatory network model part of iMH805/775 consists of three
layers describing the effect of extracellular and intracellular sig-
nals on the expression of metabolic genes and the maximum
allowed flux through particular reactions in the network. The
first layer describes the activities of 55 TFs in response to 67
extracellular and 15 intracellular metabolite concentrations. The
second layer consists of the rules describing the expression of 348
metabolic genes as a function of the transcription factor states
and metabolite concentrations in cases in which the direct regu-
latory mechanisms were unknown. For the remaining metabolic
genes, no information on regulation could be found in the lit-
erature, and they were assumed to be constitutively expressed in
all environmental conditions. The third layer contains the gene–
protein–reaction associations that encode the relationship be-
tween gene expression and presence/absence of a particular re-
action in the network (Duarte et al. 2004). All the three layers
were implemented as Boolean rules derived from primary litera-
ture, and these rules are listed in the Supplemental material.

Regulated flux balance analysis
The constraint-based modeling approach for genome-scale meta-
bolic networks has been extensively reviewed elsewhere (Price et
al. 2004) and will not be described in full detail here. The meta-
bolic network model consists of the stoichiometric matrix de-
scribing all the interconversions between metabolites in the net-
work, maximum flux capacity constraints on all reactions, and a
cellular objective function to be maximized (based on the esti-
mated biomass composition). The integration of the metabolic
network analysis and the transcriptional regulatory network
model described above is accomplished using the regulated flux
balance analysis approach (Covert et al. 2001). In this approach,
the three layers of rules detailed above are evaluated given an
initial condition (extracellular concentrations and intracellular
fluxes), and the state of each reaction in the metabolic model is
calculated. The maximum fluxes through the reactions that are
determined to be down-regulated are then set to a predetermined
fraction of the unregulated maximum flux. Given the stoichio-
metric matrix, an objective function, and the new maximum flux
capacities, a particular flux distribution can be calculated using
linear optimization. The resulting flux distribution is then, in

turn, used to calculate the changes in external concentrations,
and these concentrations as well as the internal fluxes are used to
evaluate the rules at the next time step to obtain the gene ex-
pression state (see Supplemental material for details).

Model parameter estimation
There are several parameters such as maximum substrate and
oxygen uptake rates that affect growth rate predictions by the
metabolic/regulatory network mode. For the growth phenotyp-
ing study, these parameters were not experimentally measured so
that they had to be estimated computationally. The particular
estimation strategy used in this work is based on genetic algo-
rithms that allow optimization of a nonlinear objective function
with nonlinear constraints (Goldberg 1989). In our application,
the objective was to minimize the summed absolute discrepan-
cies between predicted and experimentally measured growth
rates weighted by the experimental standard deviations of the
growth rates under the 12 growth conditions for the 11 strains.
The Supplemental material contains details of the parameter es-
timation approach and sensitivity analysis of the growth rate
predictions.

Gene expression data comparisons
The individual gene expression data sets for the transcription
factor knockout or overexpression strains and wild-type condi-
tion shifts were obtained directly from the Supplemental Web
sites for individual papers (Gasch et al. 2000; Ideker et al. 2001;
Natarajan et al. 2001; Kwast et al. 2002; Lin et al. 2002; Ter Linde
and Steensma 2002; Young et al. 2003; Kaniak et al. 2004). All the
data sets were first converted into log ratios between gene ex-
pression levels in the knockout or overexpression strain and in
the wild-type strain or between two conditions. The criteria that
were used to find significantly up/down-regulated genes in each
gene expression data set, and the conditions used for the in silico
simulations of the TF knockout effects on gene expression are
listed in the Supplemental material.

Network expansion
The network expansion approach used in this work is purely
graph-based, that is, the regulatory network was represented as a
directed graph with labeled edges indicating either repression or
activation of a target gene by a TF or a regulatory signal. The
provisional network derived from ChIP-chip and motif data (Har-
bison et al. 2004) as described in the Supplemental material was
combined with the regulatory network in iMH805/775, and each
of the edges was labeled as either repressing or activating depend-
ing on the known primary function of the TF involved in the
interaction. Next, a breadth first search was used to find all di-
rected noncyclic paths up to a certain number of steps in the
combined network that connect a transcription factor to a par-
ticular potential target gene. In the first expansion scenario dis-
cussed in the Results section, only paths that would result in the
correct sign for the expression change of the target gene in the TF
KO or overexpression strain were considered further. In the other
two expansion scenarios, this path coherence criterion was not
used. In order to establish the final expanded model, the inter-
actions in the shortest coherent path for each TF–target pair were
included in a provisional regulatory network model. The sug-
gested new interactions were then integrated with existing rules
by manual inspection. The predictions of expression changes in
all modified strains were then re-run with the new model, and
interactions that reduced the overall predictive power of the
model were removed from the model. All the computations pre-
sented in this paper were done using Matlab 6.5 (Mathworks
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Inc.), and the FBA problems were solved using the Lindo linear
programming solver (Lindo Systems Inc.).

Experimental protocols
The wild-type S. cerevisiae haploid strain used in this study,
BY4741 (MATa his3�1 leu2�0 met15�0 ura3�0), was obtained
from ATCC. All the single transcription factor knockout strains
were from the S. cerevisiae gene deletion collection (Winzeler et
al. 1999) and were generously provided by T. Ideker. Growth on
different carbon sources was evaluated by using the Bioscreen C
system (Thermo Labsystems). Minimal medium (Van Hoek et al.
1998) with the appropriate auxotrophic supplements added was
used to test growth on 12 different carbon sources (glucose, ga-
lactose, fructose, sucrose, mannose, ribose, lactate, pyruvate,
ethanol, raffinose, glycerol) for each of the knockout strains as
well as the wild-type strain. Maximum specific growth rates were
determined for each strain–carbon source combination based on
five independent measurements as described in the Supplemen-
tal material.
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