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Abstract

Purpose: Response to a complex trastuzumab-based regi-

men is affected by multiple features of the tumor and its

microenvironment. Developing a predictive algorithm is key

to optimizing HER2-targeting therapy.

Experimental Design: We analyzed 137 pretreatment

tumors with mRNA-seq and DNA exome sequencing

from CALGB 40601, a neoadjuvant phase III trial of pacli-

taxel plus trastuzumab with or without lapatinib in stage

II to III HER2-positive breast cancer. We adopted an

Elastic Net regularized regression approach that controls

for covarying features within high-dimensional data. First,

we applied 517 known gene expression signatures to

develop an Elastic Net model to predict pCR, which we

validated on 143 samples from four independent trials.

Next, we performed integrative analyses incorporating

clinicopathologic information with somatic mutation

status, DNA copy number alterations (CNA), and gene

signatures.

Results: The Elastic Net model using only gene signatures

predicted pCR in the validation sets (AUC¼ 0.76). Integrative

analyses showed that models containing gene signatures,

clinical features, and DNA information were better pCR pre-

dictors than models containing a single data type. Frequently

selected variables from the multiplatform models included

amplifications of chromosome 6p, TP53 mutation, HER2-

enriched subtype, and immune signatures. Variables predict-

ing resistance included Luminal/ERþ features.

Conclusions:Models using RNA only, as well as integrated

RNA and DNA models, can predict pCR with improved

accuracy over clinical variables. Somatic DNA alterations

(mutation, CNAs), tumor molecular subtype (HER2E, Lumi-

nal), and the microenvironment (immune cells) were inde-

pendent predictors of response to trastuzumab and paclitaxel-

based regimens. This highlights the complexity of predicting

response in HER2-positive breast cancer. Clin Cancer Res;

24(21); 5292–304. �2018 AACR.

Introduction

HER2 is overexpressed in approximately 25%of breast cancers.

The anti-HER2 antibody trastuzumab reduces mortality in stage I

to III disease by 37% when combined with adjuvant chemother-

apy. However, approximately one-fourth of these patients expe-

rience recurrence within 10 years and ultimately succumb to their

disease (1). Additional HER2-targeting drugs including lapatinib

(2), pertuzumab (3), and neratinib (4) have been tested in

combination with or following trastuzumab in patients with

stage I to III HER2-positive breast cancer, with variable impacts

on disease-free survival in terms of statistical significance but all

with modest (less than 3%) absolute effects. These results clearly

highlight our need to identify those in whom additional therapy

is warranted. The MINDACT and similar trials suggest that geno-

mic classifiers may help identify patients with HER2-negative

disease who may be treated with less aggressive regimens (5).

The identification of a biologic classifier for tailoring therapy in

HER2-positive disease would also be very valuable.
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It is equally true that HER2-positive breast cancer is highly

molecularly heterogeneous. CALGB 40601 (6), and the similar

trial NeoALTTO (7), have revealed that gene expression signa-

tures of ESR1 and HER2, molecular intrinsic subtype, and

immune cell activation are associated with pathologic complete

response (pCR). Several molecular alterations are thought to

contribute to trastuzumab resistance, including PIK3CA muta-

tion (6, 8, 9), PTEN loss (10, 11), and TP53 mutation (12, 13),

but these possible biomarkers have been inconsistent. In

NeoALLTO, mutations in the RhoA pathway were associated

with response, which has not yet been further examined (14).

In addition to tumor influences, immune cell gene expression

has been independently associated with pCR (6, 7), and in

retrospective/prospective trials, tumor-infiltrating lymphocytes

(TIL) have been predictive of trastuzumab benefit (15, 16).

Currently, HER2 overexpression and/or amplification remains

the only clinically validated marker to select patients for anti-

HER2 therapies.

A number of studies including The Cancer Genome Atlas

(17, 18) have produced a wealth of genomic data and described

disease mechanisms. However, there are still two major chal-

lenges when using clinical trial samples: First, most research

studies characterize a genomic feature type, such as gene expres-

sion, mutation, or copy number, and there are few capable of

integrating disparate data types that reflect the continuum of

cancer biology and are simultaneously able to address clinical

outcomes. Second, because these studies did not utilize samples

from prospective clinical trials with prespecified endpoints,

they are poorly suited to identify or validate novel predictive

biomarkers.

In contrast, in this study we utilized two computational appro-

aches of integrative data analysis, namely Elastic Net and Dawn-

Rank, using the samples obtained from Cancer and Leukemia

Group B (CALGB) 40601 (6), a prospective phase III trial of

neoadjuvant chemotherapy with trastuzumab, lapatinib or both.

In this analysis, we first developed an Elastic Netmodel from gene

expression data and applied the model onto four different vali-

dation datasets. In addition, after combining mutation, DNA

CNAs, and gene expression data with known clinical features,

we developed objective computational models to identify impor-

tant determinants of response to trastuzumab-based therapy. Our

goal was to develop an accurate predictor of response, and at the

same time, to learn more about the biology of therapeutic

response in HER2-positive breast tumors.

Materials and Methods

CALGB 40601 study design and patients

The study design and clinical results have been previously

published (6); CALGB 40601 is now part of the Alliance for

Clinical Trials in Oncology. A total of 305 women with stage II

to III HER2-positive disease were randomized to receive pacli-

taxel (T) at 80 mg/m2 weekly for 16 weeks, with trastuzumab

(H, 4 mg/kg loading dose followed by two mg/kg), lapatinib

(L, 1,500 mg/day), or both (L at 1,000 mg/day plus the same

dose of H) for 16 weeks. The TL arm was closed early based on

reports of inferiority and greater toxicity; given that single

agent lapatinib is not a clinically relevant treatment and the

mechanism of action differs systematically from conventional

H or HþL-based therapy, the TL arm was excluded from this

analysis. The primary endpoint was pCR, defined as no invasive

tumor in the breast, which is a surrogate endpoint of survival in

HER2-positive breast cancer (19).

Tumor genomic methods

Participants underwent four pretreatment 16-gauge core biop-

sies: two cores were placed into RNA stabilization product (RNA-

Later; Qiagen), and two were placed into 10% neutral buffered

formalin. CALGB 40601 enrolled 305 patients. Fig. 1A shows the

CONSORT diagram for the subset studied here on the genomic

level. We eliminated from analysis those patients in whom the

RNA or DNA quality was inadequate, those treated on the non-

trastuzumab arm (TL), and those with Normal-like intrinsic

subtype, which consists mostly of normal tissues. The final

training set consisted of 137 patient samples from TH (n ¼ 68)

and THL (n ¼ 69) arms; all received trastuzumab–paclitaxel

regimens. All 137 patients signed an IRB-approved, protocol-

specific informed consent document in accordance with federal

and institutional guidelines. This document included consent for

the use of RNA and DNA; the consent also covered future

biomarker research. DNA exome sequencing was performed at

McDonnell Genome Institute (Washington University) and

RNA-seq was performed at the UNC High Throughput Sequenc-

ing Facility (University ofNorth Carolina). The patient and tumor

characteristics of the included samples did not differ significantly

from the total dataset (N ¼ 285) including stage, hormonal

receptor status, and pCR rates (data not shown).

Gene expression and signatures

Gene expression profiles were generated by mRNA-

sequencing using an Illumina HiSeq 2000 as described in

Ciriello and colleagues (17). Briefly, mRNAseq libraries were

made from total RNA using the Illumina TruSeq mRNA

sample preparation kit and sequenced on an Illumina HiSeq

2000 using a 2 � 50bp configuration with an average of

136 million reads per sample. Quality-control-passed reads

Translational Relevance

Response to the increasingly complex trastuzumab-based

regimens used in women with HER2-positive breast cancer is

affected by multiple clinical and genomic features including

IHC ER positivity, immune cell signatures, and molecular

intrinsic subtype. Developing an integrated prediction model

of pathologic complete response (pCR) using multidimen-

sional genomic data could be key to optimizing HER2-

targeting therapy. Here, we applied 517 known gene expres-

sion signatures to develop an Elastic Net model with high

predictive capability for pCR, which we validated in four

independent clinical trials. The model included HER2-

enriched subtype, immune cell, and Luminal/ER features.

We further performed integrated analyses incorporating

clinicopathologic information with somatic mutation status,

DNA copy number alterations (CNA), and found similar

expression features and DNA amplifications of chromosome

6p as strong predictors of pCR. This highlights the complexity

of predicting response and suggests that optimal models to

predict response may require multiple data types in addition

to the standard clinical features.

Integrated Response Models in HER2-Positive Breast Cancer
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were aligned to the human reference genome (hg19) using

MapSplice (20). The alignment profile was determined by

Picard Tools v1.64 (http://broadinstitute.github.io/picard/).

Aligned reads were sorted and indexed using SAMtools and

translated to transcriptome coordinates then filtered for

indels, large inserts, and zero mapping quality using UBU

v1.0 (https://github.com/mozack/ubu). Transcript abun-

dance estimates for each sample were performed using RSEM,

an expectation-maximization algorithm (21) using the UCSC

knownGene transcript and gene definitions. Raw RSEM read

counts for all mRNAseq samples were normalized to a fixed

upper quartile.

Next, PAM50 subtyping was applied to the gene expression

data using a two-step normalization process based on the

TCGA (17) cohort as previously described (6). We next applied

a collection of 517 gene expression signatures, representing

Figure 1.

CONSORT diagram of patient selection and characteristics.

A, Sample flow chart to show how samples were selected.

Starting with 305 patients, specimens were removed for

multiple reasons including incomplete clinical data, low RNA

yields, a normal-like nontumor expression profile, being part

of the TL ¼ lapatinib and paclitaxel arm, thus leaving 203

patients. Of these, 137 had DNA exomes results, with this final

137 sample set also being split into a training and test set.

B, Clinical and intrinsic expression subtype characteristics

with pCR rates using the 137 patient data set. P values were

calculated by Chi-square test. TH, trastuzumab and paclitaxel

arm; THL, trastuzumab, lapatinib, and paclitaxel arm; ER,

estrogen receptor; PgR, progesterone receptor.

Tanioka et al.
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multiple biological pathways and cell types, to all 137 samples.

These 517 signatures (all published) were obtained from 73

publications or Gene Set Enrichment Analysis (GSEA; ref. 22)

and partially summarized by Fan and colleagues (ref. 23; see

Supplementary Table S1 for the complete list of signatures and

their associated references). Using the combined normalized

data set with the TCGA data, we applied each signature to the

data set in a manner consistent with their derivation. For 478

signatures with homogenous expression across genes within a

given set, these represent coordinately regulated sets of either

"up" genes, or sets of "down" genes. All the genes were moving

in the same direction, therefore we took the median expression

value for all genes in a signature. For 39 signatures where gene

expression patterns were not homogenous, we calculated cor-

relations to predetermined centroids using previously pub-

lished training datasets/centroids, or used predetermined spe-

cial algorithms following their original methods.

Mutation data

We performed hybrid capture exome sequencing on 137 of

the tumors (Nimblegen v3.0 SeqCap reagent) and matched

peripheral blood mononuclear cells (PBMC) sequenced to

average 100� depth coverage using paired-end 2 � 100bp.

Raw sequences were aligned using the BWA-mem algorithm,

and refined using our Assembly Based Re-Alignment (ABRA;

ref. 24) process to allow for accurate alignment of complex

sequence variation. Somatic mutation detection was performed

by integrated whole DNA exome and mRNAseq using the

UNCeqR analytic tool as previously described (25, 26).

Copy number variants

Copy number variation across the genome was determined

as follows: The sequence reads were aligned to the genome (hg

19) using the bwa-mem algorithm (https://github.com/lh3/

bwa; v0.7.4) with the default parameters. Duplicates were

removed using Picard (http://broadinstitute.github.io/picard/).

Quality statistics were also generated with Picard including

measures of fragment length, sequence content, alignment,

capture bias and efficiency, coverage, and variant call metrics.

Copy number assessments were performed using SynthEx (27).

In brief, counts data for fixed 100kb bins were generated using

BEDTools (28). The read ratios were calculated using the

"synthetic normal" strategy described in SynthEx. A trending

filter procedure was applied to segment the genome. The

segment-level copy number values, which are the log2 ratios

of normalized signal intensities between tumor and controls,

were finally corrected by purity and ploidy estimates from

SynthEx, taking whole genome doubling into account for these

values. These segment-level values were changed into gene-level

values using Switchplus (29), and then we re-calculated the

values for 536 predetermined cancer-specific segments (Sup-

plementary Table S2) that are frequently altered in multiple

types of cancer including breast cancers (30, 31); we also

calculated chromosome arm based values and included these

as features (48 segments). DNA Copy number values derived

from exome sequencing were compared with those from

SNP6.0 among the TCGA samples (17) with ploidy 1.75 to

2.5, then the thresholds for gain or loss from exome-derived

SynthEx values were determined as 0.25 or �0.32, respectively

(27); we applied these thresholds to copy number values on the

CALGB 40601 samples to call gained and lost segments.

The complete list of DNA mutation somatic variants, DNA

copy number segment, and gene expression values from CALGB

40601 samples are provided in Supplementary Data Files S1

to S3. The accession number for the RNAseq data for CALGB

40601 is GSE116335. Exome data for CALGB 40601 cohort

is available via the NCBI dbGAP repository under accession

number phs001570.v1.

Statistical analyses

All statistical analyses were performed using R version 3.1.2.

All analyses were based on the study database frozen on

January 29, 2016.

Elastic Net analysis

For feature selection using a multivariate modeling approach,

we used Elastic Net (R package glmnet; ref. 32), which is a

regularized regression method that linearly combines the L1 and

L2 penalties of the Ridge Regression and Least Absolute Shrinkage

and Selection Operator (LASSO; ref. 33). Monte-Carlo cross-

validation (R package caret; ref. 34) was conducted using 200

different training sets randomly selected from the 137 sample

training set. Models were built to predict pCR in the training set,

selecting lambda values over a grid of a values from 0.1 to 1 by

0.1 increments via 10-fold cross-validation (R package glmnet;

ref. 35). Then we calculated accuracy, which equals (sensitivity þ

specificity)/2, for each parameter combination. We identified

the optimal parameter combination with the highest accuracy

during cross-validation, and applied this to the final model

using the best parameter combination onto the test set, and then

constructed ROC curves and evaluated area under ROC (AUC).

The variables with a high or low (negative) coefficient value

would be associated with response or resistance to trastuzu-

mab-containing therapy, respectively.

There were two purposes for the Elastic Net analyses, namely

model-building and biological discovery through feature selec-

tion. First, we wished to evaluate the robustness of the Elastic

Net model and use of this approach for pCR prediction. We

developed the predictive model using 137 tumors from the

CALGB 40601 training set and validated it using gene expres-

sion datasets from an independent group of 143 patients who

participated in four clinical trials of neoadjuvant chemotherapy

plus trastuzumab for patients with HER2-positive breast cancer

on whom high-quality gene expression data were available.

These included 43 patients in CHERLOB (8) who received

anthracycline, taxane, and trastuzumab, with or without lapa-

tinib; 24 patients in XENA (36) who received capecitabine,

taxane, and trastuzumab; 10 patients in I-SPY1 (37) who

received anthracycline, taxane, and trastuzumab; and 66

patients from the CALGB 40601 independent validation set

who received taxane and trastuzumab with or without without

lapatinib, but who were not included in the training set

(because the training set was limited to those with RNA and

DNA genomics). All the patients received at least trastuzumab

and taxane. Supplementary Fig. S1A diagrams the overall pro-

cess of the Elastic Net model development and evaluation. In

more detail, the gene signature data of all 137 samples from the

CALGB 40601 training set were used as the training dataset to

construct a model for an expression-only pCR prediction. This

model was applied to CHERLOB, XENA, I-SPY, the CALGB

40601 independent validation set and all four test sets com-

bined to construct ROC curves and evaluate AUC.

Integrated Response Models in HER2-Positive Breast Cancer
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Second, in order to identify important and novel features

contributing to sensitivity and resistance using a multidimen-

sional approach, we investigated combining mutation, DNA

copy number, and gene expression data with known clinical

features, and then used all of these features for Elastic Net

model building. Mutation and CNAs were used as dichoto-

mous and continuous variables, respectively. By balancing for

clinicopathological features, the samples were divided into a

training and a test set (R package sampling), then Monte-Carlo

cross-validation was conducted using 200 different training sets

randomly selected from the larger training set. We developed a

set of integrated Elatic Net regression models to predict pCR,

varying the features used as input. Because this component of

the study was limited to available samples with both RNA and

DNA data, which limited sample size, the Elastic Net was

performed using 10 rounds of training and testing. The most

frequently selected features in the models were identified in

order to find reproducible predictive features (Supplementary

Fig. S1B).

Survival analysis on METABRIC samples

To address the behavior of these models in HER2-positive

tumors that did not receive trastuzumab or other HER2-tar-

geted agents, thereby eliminating variables unrelated to HER2-

directed therapy, the Elastic Net gene expression-only models

from CALGB 40601 were applied onto 216 HER2-positive

tumors from the METABRIC (38) dataset from the pre-trastu-

zumab era. Among the 216 patients studied, 124 did not

receive either chemotherapy or HER2-targeting, and 92 received

chemotherapy without trastuzumab. The median follow-up

period was 7.24 (0.15–26.90) years. The patients were classified

into three groups according to the scores derived from the

expression only Elastic Net model, and overall survival was

assessed by the Kaplan–Meier method.

DawnRank analysis

We used DawnRank (39), a novel computational method that

useswithin-tumor integrated analyses based uponpredetermined

protein–protein interactions networks, then populated by patient

specific tumor gene expression values, and DNA aberrations, in

order to identify those genes with DNA aberrations that have the

greatest expression impact on the predefined networks; these

Dawnrank scores are calculated on individual patients, then

aggregated based upon groups of patients, to find individual

genes involved in response to trastuzumab-containing therapies.

Using the DawnRank predefined protein–protein interaction net-

works, we populated this network with mRNA gene expression

data for each patient and calculated a score for each gene based

upon the expression of the genes directly connected to it in the

network. TheDawnRank score(s) dependon the three parameters:

predetermined protein–protein interaction networks, gene

expression values for each patient, and a "damping factor" that

represents the extent to which the ranking depends on the struc-

ture of the network. These three parameters along with DNA

alteration status (i.e., mutation, amplification, or deletion) form

the key components to determine "drivers" in individual samples.

Log2 transformed normalized mRNAseq gene expression data

were median-centered for each gene among 137 CALGB 40601

samples, and further transformed to absolute value scores. Dawn-

rank was then run for each tumor with a mu ¼ 3, which is the

suggested default setting. The geneswere then ranked according to

the Dawnrank scores.

We then generated a binarymatrix of 0 indicating no alteration

and 1 indicating any DNA alteration for each gene, and examined

somatically altered genes (DNA mutations and/or DNA altera-

tions as described above) by applying DawnRank to the samples

with pCR versus those without pCR according to the "percen-

trank" analysis mode, which aggregates the DawnRank results

across a predefined set of samples/patients in order to find drivers

based upon groups of patients (i.e., those with a pCR). Briefly,

DawnRank applies a modified version of the Condorcet meth-

od (40), which is a voting scheme selecting a winning candidate

gene by comparing every possible pair of candidate genes.

Therefore, a pair of candidate genes A and B are compared by

the number of alterations in gene A that had higher Dawnrank

scores than gene B.

Additional Genomic Analyses

The association between pCR status and the clinicopatho-

logic variables, or mutated genes, were investigated using

Fisher's Exact test with Bonferroni correction. Using a two-class

unpaired significance analysis of microarrays (SAM; ref. 41), we

also conducted a permutation-based, supervised analysis to

find features with significant correlation to pCR by comparing

pCR samples versus non-pCR samples using gene-level DNA

copy number data.

Hierarchical clustering was performed using centroid linkage

implemented in software Gene Cluster 3.0 (42), and the clus-

tering result was viewed with Java Treeview v1.1.5r2 (43) to

identify patterns among the features selected in the Elastic

Net models. We investigated the significance of gene signa-

tures with unknown roles using the "Investigate Gene Sets"

method of GSEA (http://software.broadinstitute.org/gsea/

msigdb/annotate.jsp; ref. 22), and also investigated gene sig-

nature scores according to PAM50 subtype among 1,100 breast

cancer patients from TCGA (17). ROC/AUC curves were com-

pared using R package pROC (44). DNA copy number fre-

quency landscapes were generated using Swicthplus (29),

which can identify segments with CNAs specific for a user-

determined set of tumors, in this case, samples with pCR versus

non-pCR. Thus Switchplus provides a supervised method for

analysing and visualizing copy number data. Switchplus is

provided as a source script in R and available for download

at: https://genome.unc.edu/SWITCHplus/.

Results

Cohort characteristics and genomic datasets

On CALGB 40601 specimens, we performed mRNAseq and

DNA exomes (N ¼ 137, Fig. 1A). We compared nonsilent

mutation frequencies between HER2-positive breast cancer in

TCGA (N ¼ 145) and tumors in CALGB 40601 (N ¼ 137).

Although PIK3CA and CDH1 mutation were more frequent in

TCGA HER2þ, there were no differences in the list of somat-

ically mutated genes between these two studies after Bonfer-

roni correction (Supplementary Fig. S2A). We also confirmed

the similarity between TCGA HER2þ and CALGB 40601 by

comparing their DNA copy number frequency landscapes

(Supplementary Fig. S2B), and again the results showed very

high similarity. Among 10,816 non-silent mutations found

through exome sequencing of 137 CALGB 40601 tumors,

Tanioka et al.
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5,106 mutations (47.2%) were detected in the mRNAseq of the

corresponding tumors by UNCeqR (26). This frequency

is comparable to the 51% frequency seen when performing

the same analysis using 871 TCGA lung and breast cancer

samples (26).

Among the 137 samples studied on the genomic level in

CALGB 40601, clinical estrogen receptor (ER) or progesterone

receptor (PgR) status and intrinsic subtype by PAM50 were

associated with pCR (Fig. 1B). Supplementary Table S3 shows

the list of somatically mutated genes with a frequency of >4%,

and where only eight genes occurred in �10 patients (�7%),

and only TP53 mutation status was associated with pCR after

Bonferroni correction (Supplementary Table S3). Interestingly,

there were four patients with HER2 somatic mutations, includ-

ing two with a variant allele frequency of greater than 10%;

these two included a V777L variant, and a L755S variant. The

V777L variant is predicted to be activating and sensitive to

lapatinib (45); this patient was in the THL arm and achieved a

pCR. The L755S variant is predicted to be transforming, but

insensitive to lapatinib; this patient was in the TL arm and had

residual disease after therapy. As a resource, multiple individ-

ual data type supervised analyses were performed on the

40601 training data set and present as Supplementary Table

S4; these include results of the supervised analyses using

individual gene expression values, gene signatures, DNA seg-

ment-level copy number, or gene-level copy number data.

Likewise, The supervised results on CALGB 40601 validation

set using gene-expression and gene signatures are listed on

Supplementary Table S5.

Gene expression based prediction of pCR using Elastic Net

We first developed genomic predictors of response to tras-

tuzumab containing regimens using gene expression alone

because several validation sets existed that would allow us to

develop, then validate, a predictive model based on RNA data.

Therefore, we used the Elastic Net method to develop a model

for predicting pCR and starting with 517 published expression

signatures applied to the 137 patient CALGB 40601 training

cohort (Supplementary Fig. S1; Table 1). Included within the

positive predictive features were several well-described signa-

tures including "correlation to HER2-Enriched," two breast

cancer recurrence predictors (46, 47), and immune signatures.

However, the tumor's ER status based on clinical assay (cER),

the signature of "correlation to luminal A" and a PgR-activity

gene signature were negative predictors of pCR. For gene

signatures of interest with unknown functions, we used GSEA

(22) to gain insight into their function. "HS_Green18" (false

discovery rate [FDR] ¼ 3.3e�60) and "HS_Red19" (FDR ¼

2.6e�52) were correlated with the Luminal B signature and

highly expressed in Luminal TCGA tumors (17). "HS_Red12"

correlated with the HER2 signature in GSEA (FDR ¼ 3.7e�115)

and was highly expressed in TCGA HER2-Enriched tumors

(Supplementary Fig. S3A�C). The optimized predictive model

using gene expression signatures alone was applied to the

CHERLOB (8), XENA (36), I-SPY1 (37), and additional CALGB

40601 validation data sets, and all four sets combined (test

sets). The AUC values were 0.80 (training), 0.73, 0.71, 0.83,

0.78, and 0.76 (combined); pCR rates in the test sets ranged

from 13% in the lowest tertile scores, to 65% in the highest

Table 1. Elastic Net features selected using the gene signatures only model from CALGB 40601

Feature References Coefficient

GS_HS_Green18 PMID.21214954 �0.07153

GS_HS_Red19 PMID.21214954 �0.04255

GS_Duke_Module17_PgR PMID.20335537 �0.03614

GS_JANES_Oscillation_JUND_KRT5 PMID.24658685 �0.03246

GS_MITO1 PMID.21214954 �0.02511

GS_Scorr_LumA_Correlation PMID.19204204 �0.01563

GS_MM_Green12 PMID.21214954 �0.01218

GS_MUnknown_16 PMID.21214954 �0.0108

GS_HS_Green1 PMID.21214954 �0.00953

GS_Duke_Module14_p53 PMID.20335537 �0.00605

GS_Scorr_P53_Wt_Correlation PMID.17150101 �0.00386

GS_Pcorr_NKI70_Good_Correlation PMID.11823860 �0.00307

GS_Lim2009_MatureLuminal PMID.25575446 �0.0014

GS_Chromogramin PMID.21214954 �0.00022

GS_Unknown_12 PMID.21214954 5.94E�05

GS_Duke_Module07_glucosedepletion PMID.20335537 0.002937

GS_GSEA_RB_PATHWAY_BIOCARTA http.//www.broadinstitute.org/gsea/msigdb/cards 0.00382

GS_Scorr_P53_Mut_Correlation PMID.17150101 0.004311

GS_HER2_Amplicon PMID.21214954 0.007577

GS_ROR_S_Model PMID.19204204 0.012094

GS_IGG_Cluster PMID.21214954 0.014302

GS_HS_Red12 PMID.21214954 0.018906

GS_GHI_RS_Model PMID.15591335 0.021864

GS_Duke_Module08_her2 PMID.20335537 0.028529

GS_Bcells_Plasmablast PMID.25800755 0.034936

GS_S100A9_A8 PMID.21214954 0.039593

GS_XRTinducedgenes PMID.24527691 0.043993

GS_Scorr_Her2_Correlation PMID.19204204 0.044143

NOTE: Using Elastic Net feature selection, features that made the logistic regression model are shown in this table. All the selected features are weighted and show

nonzero coefficient values where positive coefficients predict pCR and negative coefficients predict non-pCR. Abbreviation: GS, gene signature; HS, homo sapiens;

MM, mammary model; PgR, progesterone receptor; Wt, wild type; Mut, mutation.
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tertile (Fig. 2, details in Supplementary Fig. S4; Supplementary

Table S6).

Elastic Net analysis using multidimensional data

We hypothesized the comprehensive integration of DNA

copy number aberrations and mutations, added to gene expres-

sion and clinical data, would further improve predictive ability

for response to trastuzumab-based therapy. The integrated

Elastic Net multidimensional modeling assessed 528 DNA

copy number segment values using 536 predefined chromo-

somal segments, eight genes with somatic mutations in �10

patients, and the 517 gene expression signatures. Clinical ER

and PgR status were included given consistent associations with

pCR in HER2-positive breast cancer trials (6, 7). Fig. 3A shows

the average AUC values for each unique set of input variables

in 10 rounds of repeated Elastic Net analysis (details in Sup-

plementary Table S7). The model derived from the combina-

tion of gene signatures and CNAs yielded an AUC of 0.76,

which was significantly higher than those from each individual

data type alone (P < 0.05). Gene signatures and CNAs were

further combined with either mutation and/or clinical ER/PgR

status, but the AUC values did not change significantly. The

integrated Elastic Net models largely overlapped the signatures

identified in the gene signatures-only model (Table 1). We

finally selected the combination of gene signatures, CNAs,

mutation, and clinical ER/PgR status with the average AUC

of 0.75 as the model to most fully explore, because of its

objective integration of multiple data types, including TP53

Figure 2.

Performance of the Elastic Net model for pCR prediction using gene signatures on CALGB 40601. A, AUC from the ROC curve analysis were estimated

for Elastic Net models using gene signatures alone in CALGB 40601. Left, CALGB 40601 as the training set (N ¼ 137), AUC ¼ 0.80. Right, All test sets

combined (CHERLOB þ XENA þ I-SPY þ CALGB 40601 validation set, N ¼ 143, AUC ¼ 0.76). Sensitivity and specificity values were selected using

Youden's cutpoint where the sum of sensitivity and specificity is maximal. Mann–Whitney–Wilcoxon test was conducted to calculate P values. B, Barplots

showing results of the Elastic Net model score split into three rank order groups and then comparing pCR rates for patients in CALGB 40601, or all test

sets combined. ANOVA T test was conducted to calculate P values by comparing signature scores across all three groups.
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Figure 3.

Elastic Net analysis using multidimensional data. A, Average AUC scores for various individual data type, or combined data type predictors, using test sets

through 10 repeated Elastic Net analyses. Each bar shows the average AUC scores with 95% confidence intervals. B, Frequently selected Elastic Net

features coming from a multidimensional predictor. Features contributing to at least 6 out of 10 Elastic Net models using gene signatures, CNAs,

mutations, and clinical ER/PgR status. GS, gene signature; CN, copy number; Mut, mutation; Gray and black bars indicate predictors which positively

(37) and negatively (53) predict pCR; thus, gray predictors are high in pCR samples and black predictors are high in non-pCR samples. Yellow arrows

indicate CNAs features at Chromosome 6p; green arrows indicate TP53 mutation status or signatures; pink arrows indicate HER2-enriched signatures; a

gray arrow indicates 21-gene recurrence score; black arrows indicate immune signatures; blue arrows indicate Clinical ER status, luminal signatures,

and PgR gene signature.
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mutation (25), and ER status (7), which have been previously

reported as pCR predictors in patients receiving trastuzumab-

based regimens. Using serial rounds of training and testing,

we identified 33 features that contributed to �6 out of the 10

rounds of Elastic Net models using this combination of many

distinct feature types (Fig. 3B, all features in Supplementary

Table S8). Included within the most frequently selected

positive predictors in the integrated analysis were CNAs at

chromosome (Chr.) 6p, TP53 mutation status, the signatures

of correlation to HER2-Enriched, 21-gene recurrence score (46),

and two immune signatures of B cells. However, clinical ER

status, the signature of correlation to luminal A and of PgR-

activity remained as negative predictors.

We further conducted supervised clustering of the 33 features

among the 137 samples (Fig. 4). The features were clustered

into two dendrogram nodes according to positive or negative

predictors of pCR. The positive features were further aggregated

by DNA copy number segments at 6p and 22q, and a grouping

of the recurrence predictors, TP53 mutation status, and HER2

signatures. Estrogen-related features as negative predictors

including clinical ER status, PgR signature and Correlation to

Luminal A, were also clustered together. The samples were

next ordered by their average scores derived from the 10 rounds

of Elastic Net modeling. The model scores were highly corre-

lated with pCR (logistic regression odds ratio, 1.6; P < 0.001).

When samples were trichotomized into top, middle, or lower

tertile groups of the model scores, pCR rates were 93.4%,

44.4%, and 6.5%, respectively.

Survival analysis

The Elastic Net models using gene signatures with/without

mutation (i.e., TP53) plus ER/PgR from CALGB 40601 (Table 1;

Supplementary Table S9) were applied onto 124 HER2-positive

tumors from the METABRIC (38) dataset who did not receive

any chemotherapy or trastuzumab, and onto 92 HER2-positive

tumors from METABRIC (38) who received chemotherapy

but no trastuzumab from the pretrastuzumab era. Neither of

these two models was prognostic (Supplementary Fig. S5A

and S5B) suggesting that these models largely reflect prediction

of response to HER2 targeting.

DawnRank analysis

We next ran DawnRank (39), a computational method that

uses RNA expression to populate known protein–protein net-

works, to identify those genetic alterations that alter these

networks the most. Using the protein–protein networks com-

prising 8,248 genes and aggregating the individual patient

results based upon those with a pCR and those without a pCR

(Supplementary Table S10), we sought to identify the genetic

drivers of response and resistance. HER2 and TP53, which are

regarded as major genetic drivers in breast cancer, were ranked

as No.1 or 2 in both pCR and non-pCR samples, supporting

the robustness of the analysis, and the importance of TP53

regardless of treatment and response. Next, we extracted the

top 1% of the genes from these rankings, then further ranked

these genes according to the extent of rank change between

pCR and non-pCR samples to identify those genes that qualify

as drivers differentially present in either responsive (pCR) or

resistant (non-pCR) tumors (Supplementary Table S11).

Among pCR samples, amplified Chr.6p genes were highly

ranked compared with non-pCR samples, while deleted

Chr.11q genes were highly ranked in non-pCR samples com-

pared with pCR samples.

Identification of gene-level CNAs as candidate biomarkers

of trastuzumab resistance/sensitivity

By comparing the DNA copy number landscape plots of

pCR versus non-pCR samples (Fig. 5A), we found that gain

Figure 4.

Hierarchical clustering of multidimensional features associated with pCR. Supervised clustering of the 33 selected features among 137 samples. The features

were grouped into two clusters with positive or negative predictors. The samples from left to right were ordered by their average scores derived from

the 10 Elastic Net models grouped into high, middle, and low scores.
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of Chr.6p12-21 were more frequent in pCR samples, whereas

loss of Chr.22q11-13 were more frequent in non-pCR

samples. We next performed computational analysis to find

common drivers between (i) copy number altered genes

in segments contributing to �6 of the 10 Elastic Net models,

(ii) the top 1% copy number-altered genes from the Dawn-

Rank, and (iii) copy number-altered genes with FDR � 1%

from SAM analysis (Supplementary Table S4). Only MAPK14

and CDKN1A at Chr.6p were identified in all three analyses

(Fig. 5B, overlapped genes are listed in Supplementary

Table S12). This small amount of overlap between the Dawn-

Rank results and other analyses may be because DawnRank is

limited to the 8,000 genes in the protein–protein interaction

network, or other unknown reasons. Further only MAPK14

had a Pearson correlation �0.3 between RNA gene expression

and DNA copy number values (MAPK14, 0.38 and CDKN1A,

�0.08). Therefore, amplification of wild-type MAKP14 (also

known as p38), may play a direct role in sensitivity to tras-

tuzumab/paclitaxel-based regimens, but experimental valida-

tion is needed.

Discussion

To our knowledge, this study represents one of the first

multidimensional genomic analyses to integrate DNA muta-

tions, DNA copy number aberrations, and RNA transcriptional

expression with clinical variables using prospectively collected

frozen tissue samples from a phase III trial to predict the

primary endpoint of the parent trial, pCR. The importance of

this approach was suggested at the time we published the

primary multivariable analysis of CALGB 40601, in which we

found that treatment arm was associated with pCR, but also

that gene signatures representing tumor and microenvironmen-

tal influences, such as intrinsic subtype and signatures repre-

senting activated B cells, each independently and significantly

contributed to pCR, regardless of treatment arm; similar results

were found in NeoALTTO, but integrated models were not

developed.6,7 We found that the most highly correlated nega-

tive predictive variables included signatures of the luminal

subtypes (7, 48), which have been consistently reported as

negative pCR predictors and were again in this multi-signature

Figure 5.

Identification of DNA copy number

alterations as biomarkers of trastuzumab–

paclitaxel resistance and sensitivity. A, DNA

copy number frequency landscape plots for

pCR versus non-pCR tumors. The frequency

of alterations in each group is indicated on

the y-axis from 0% to 100%. Segments of

group-specific copy number gains or loss are

plotted above or below the x-axis,

respectively. Significantly different regions

between pCR versus non-pCR (t testP <0.05

after Benjamini and Hochberg correction)

are highlighted in red (gain) or in green

(loss). B, A Venn diagram comparing three

types of gene-level copy number results.

Genes in copy number segments

contributing to �6 models out of the 10

Elastic Net testing, top 1% copy number

genes from theDawnRank analysis, and copy

number genes with false discovery rate

�1% from SAM analysis were plotted and

identify MAPK14 and CDKN1A as possible

driver genes for trastuzumab–paclitaxel

sensitivity.

Integrated Response Models in HER2-Positive Breast Cancer

www.aacrjournals.org Clin Cancer Res; 24(21) November 1, 2018 5301

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

4
/2

1
/5

2
9
2
/1

9
3
0
3
2
6
/5

2
9
2
.p

d
f b

y
 g

u
e

s
t o

n
 2

7
 A

u
g

u
s
t 2

0
2
2



model, whereas the HER2-enriched subtype (7, 48) and acti-

vated immune signatures (7) were positive predictors here and

in other neoadjuvant trials. These commonalities across studies

support the robustness of our results. The predictive model

based on gene signatures alone achieved good AUC values of

0.76 (0.71�0.83) in the four validation datasets. In actual

performance, the low model score tumors had a pCR rate of

13%, and given the association of residual disease with poor

outcome, these are tumors that may need additional therapies

to achieve higher pCR rates and better outcomes. Conversely,

the group with high model scores showed a high response rate

of 65%, suggesting that most of these tumors may be receiving

adequate treatment with trastuzumab and paclitaxel (Fig. 2).

Because all 137 patients used for this analysis received at least

paclitaxel plus trasuzumab, it is difficult to separate our pre-

dictive features for responsiveness to either paclitaxel or tras-

tuzumab. However, this combination is part of standard

neoadjuvant chemotherapy regimens for stage II to III HER2-

positive breast cancer and is an accepted and low toxicity

regimen known to provide distant-disease free survival in

excess of 98% for stage I HER2-positive breast cancer (49). It

is worth noting that in the one prognostic dataset available, the

Elastic Net models were not prognostic in either HER2-positive

patients who did not receive chemotherapy nor those who

received chemotherapy without trastuzumab. These results

suggest that our Elastic Net predictors are not prognostic but

truly predictive of drug response. An algorithm integrating

relevant genomic predictors, with clinical features, may there-

fore allow us to safely de-escalate therapy in appropriate

patients just as we do with hormone receptor-positive,

HER2-negative patients by using commercial genomic assays.

Much of precision medicine is founded upon linking somatic

mutations to targeted treatments, however, we found only 8

genes mutated in �10/137 patients; we did find two high VAF

HER2 mutants, where one achieved a pCR and the other did

not, thus foreshadowing the complexities of predicting

response in single target based "basket studies" (50). These

overall mutation results are comparable to those from a similar

neoadjuvant study (14) in which only PIK3CA mutation was

associated with lower pCR rates. In our study, only TP53 gene

mutation was associated with higher pCR rates with support

from two p53 mutation signatures also selected in the Elastic

Net approach. Additional encouraging data arose from copy

number evaluations; both the Elastic Net and DawnRank

analyses made use of the multidimensional genomic data and

found gain of Chr.6p as a key determinant of sensitivity to

trastuzumab-based regimens. Further analysis on the gene-level

copy number basis identified amplification of MAPK14 at

Chr.6p as being linked to a high likelihood of pCR (Fig. 5).

The p38 MAPK pathway is activated upon cellular stress and

engages pathways that can promote apoptosis (51). Activation

of p38 MAPK pathway impaired mammary carcinogenesis in a

HER2-positive mouse model (52). Therefore, we hypothesized

that trastuzumab–paclitaxel regimens cause stress and that

MAPK14 amplification may lead cancer cells to undergo apo-

ptosis and is a potential response biomarker for trastuzumab–

paclitaxel containing regimens. We also take note of human

leucocyte antigen (HLA) genes because Chr.6p contains all the

HLA genes and both the Elastic Net and SAM analysis contained

11 HLA genes (Supplementary Table S12). Thus, amplification

of HLA genes may be involved in the immune response.

The strengths of our analyses were that these studies were

performed on prospectively collected frozen tissue samples from

a randomized Phase III trial with pCR as the primary endpoint.

The Elastic Net gene signature-only model was tested on four

different independent validation datasets, and the model pre-

dicted pCRwith good accuracy on all four. Two types of integrated

genomic analyses, Elastic Net and DawnRank, were performed to

make use of the multidimensional genomic data, with similar

results obtained from each. The weaknesses of our approach were

that we lacked an independent validation set for the integrated

RNA and DNA Elastic Net predictor, although we did test our

methods using 10 rounds of Monte-Carlo training and testing

within CALGB 40601 data, and we report these values, that our

sample size was relatively small, and that we cannot address

the holy grail of anti-HER2 regimens without chemotherapy

(although the absence of correlation with outcome in chemo-

therapy-only treated independent datasets suggests that our find-

ings reflect the HER2-targeted element); we would need to test

these models in all-biologic HER2-based regimens.

Collectively, tumor genetics (mutations, CNAs), tumor

mRNA subtype (HER2-enriched, Luminal), and the microen-

vironment (B-cell features) were independently predictive of

response to trastuzumab–paclitaxel containing therapies for

HER2-overexpressing breast cancer. Elastic Net analysis repre-

sents a promising means of developing predictors of pCR for

clinical application in part due to its objective ability to select

from amongst multiple data types. Additional studies are

needed to fully evaluate these multiplatform predictors, but

it is clear that integrating all the relevant data types together

can improve our predictive abilities and may contribute to

rational tailoring approaches for the treatment of HER2-

positive breast cancers.
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