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Abstract
The key to reliable annotation of a mammalian genome is broad characterisation of the

transcriptional output, the transcriptome. FANTOM, the functional annotation of mouse

cDNA, is a large-scale analysis of both the genome and the transcriptome of the mouse. In the

early days of this work, the transcripts were characterised using our sophisticated methods.

After the timely release of the first draft of mouse genome sequences, interesting information

was obtained by its integration with these one-by-one annotations. Moreover, each transcript

included its expression profile. Here, the two integrated annotation methods used by

FANTOM are reviewed: one-by-one and categorised. One-by-one annotation refers to naming

carried out based on well-known transcripts or its fragments using the top-down-style pipeline

developed mostly by the FANTOM project. Categorised annotation, which refers to transcript

grouping, not only helps naming of unknown transcripts, but will be the most utilised method

for integration of the genome and the transcriptome from now on.

INTRODUCTION
The FANTOM (the functional

annotation of mouse cDNA) Consortium

is a group of molecular biologists from the

RIKEN Genomic Sciences Center in

Yokohama and from elsewhere in Japan

and the world. The first FANTOM

meeting (FANTOM1) in 2001 was

organised to annotate the initial output of

the RIKEN pipeline, which consisted of

21,076 cDNA sequences.1 Originally,

annotation, that is, the naming of a gene

on the basis of its function, was one of the

fundamental tasks of biology and involved

repeated experiments. However, because

of the comprehensive and high-

throughput studies,2 there were a large

number of transcripts to deal with and

various annotation methods available.

FANTOM1 was one attempt to develop

a sophisticated annotation pipeline.

At the time of FANTOM1, the mouse

genome project was in progress. In 1990,

the Human Genome Project had

suggested that the mouse was one of the

model organisms that should have its

genome sequenced. In 1999, the Mouse

Genome Sequencing Consortium

(MGSC), which at that time consisted of

three major sequencing centres, launched

a concerted effort to sequence the mouse

genome. Although it is possible, through

using various programs, to predict the

approximate region of a gene from the

genomic sequence, it is not yet easy to

predict accurately the true transcriptional

region.3 Therefore, it is necessary to

identify many gene transcripts and to

analyse gene functions comprehensively.

For that reason, at the second

FANTOM meeting (FANTOM2) in

2002,4 the annotation pipeline was further

developed on the basis of the various

successes and problems encountered

during FANTOM1 and demands that had

arisen during the genome analysis. The

number of target transcripts had increased

to 60,770 sequences, and the number of

well-known mouse genes had also

increased. However, the most important

advance was the release of the mouse draft

genome5 simultaneously with the

FANTOM2 results. The participants of

the FANTOM2 were able to use both the
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genome and the transcripts. Moreover,

large-scale expression analysis techniques,

for example, microarray6,7 technology,

had become widely available. Thus, the

field of biology was undergoing major

changes. Fortunately, FANTOM2 was

able to take advantage of those changes,

and it became the first large-scale

annotation project that integrated the

genome with the transcripts and their

expression profiles.

Ordinarily, all of the experiments and

analyses were just for annotation. Here,

the two annotation methods used by the

FANTOM project are considered: one-

by-one and categorised. One-by-one

annotation refers to naming carried out

based on well-known transcripts or its

fragments using the top-down-style

pipeline developed mostly by the

FANTOM project. Categorised

annotation, which refers to transcript

grouping, not only helps naming of

unknown transcripts, but will be the

method most utilised to integrate the

genome and the transcriptome from now

on. Finally, some possible future

developments in gene annotation are

reviewed.

ONE-BY-ONE
ANNOTATION
This classic, known-base method relies on

some key technologies, including coding

region prediction and homology searches.

However, for the annotation of a large

cDNA set, a well-controlled pipeline is

very important as well. Figure 1 shows

the task flow of FANTOM2 one-by-one

annotation. First, the coding regions are

predicted, being annotated automatically

on the basis of homologies with well-

known genes, and clustered complete

transcripts. Then, the original annotation

is modified or added to, using annotations

found by the web-based annotation

system of the FANTOM Consortium.

Finally, categorised annotations are

prepared. Each step is now described.

General importance: Coding
region prediction
Annotations of well-known genes are

very easy because we can use homology

searches. However, when we encounter

unknown genes, we must first analyse

them by identifying the functional region

before we can annotate them. In the case

of genes that code for proteins, the

functional regions are those coding

regions (CDS) that code for the protein

domains. Therefore, if we cannot define

the coding region first, annotation is

difficult. Unfortunately, the problem is

made more difficult because some cDNAs

may be immature or truncated or may

include a sequencing error. Fifteen per

cent of all sequencing errors result in a

frameshift. Since the genome had not yet

been released to the public, whether the

CDS included a nucleotide insertion or

deletion had to be determined from only

the sequence. Therefore, several different

computational programs were used for

CDS prediction: rsCDS, the NCBI CDS

predictor, ProCrest, DECODER,8

Longest-ORF and Truncated-ORF.

These methods have been compared by

Furuno et al.,9 and, here, ProCrest

(Protein Coding Region Estimator) is

mentioned in particular. ProCrest is an

ideal CDS predictor that provides useful

One-by-one annotation

Coding region
prediction

60,770 full-length cDNAs

Coding Region Prediction 1
( ProCrest )

Automated
Annotation

Clustering

Coding Region Prediction 2
( ProCrest and 6 other predictors )

Human Curation Human Curation

Integration

RTPSGenome Mapping GO Term Assignments

60,770 full-length cDNAs

Coding Region Prediction 1
( ProCrest )

Automated
Annotation

Clustering

Coding Region Prediction 2
( ProCrest and 6 other predictors )

Human Curation Human Curation

Integration

RTPSGenome Mapping

To categorised annotations

GO Term Assignments

Figure 1: The FANTOM2 one-by-one annotation pipeline. RTPS,
representative transcript and protein set; GO, gene ontology
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information about the following points

during cDNA annotation. First, it

distinguishes the CDS from non-coding

regions by using statistical techniques, so

that the probability that a region is a CDS

is quantified. Unlike DECODER,

ProCrest does not require each transcript

to have only one CDS. Second, ProCrest

distinguishes between a full-length and a

truncated CDS in the transcript. A

transcript contains a full-length CDS if a

high-potential region begins with an

initiation codon and ends with a stop

codon. We can be fairly certain that it is

59-truncated if the 59-end of the region is

without an initiation codon. Conversely,

it is 39-truncated if the 39-end does not

have a stop codon. Moreover, ProCrest

indicates the probability of a sequencing

error causing a frameshift. A frameshift is

considered likely when the reading frame

of a region with high coding potential is

switched, because ProCrest calculates the

coding potential of each possible reading

frame. Finally, ProCrest distinguishes

between a mature transcript, in which the

splicing is completed, and an immature

one, which contains one or more introns.

In a part of the sequence, a region

showing a rapid drop in CDS coding

potential may be an intron.

Three kinds of evidence are generally

used to evaluate coding potential. The

first kind of evidence is hexanucleotide

frequency among 4,096 possible

hexanucleotide sequences (equals

43 3 43; for example, CCT-GTA). This

classic method is used by Genscan,10

ESTScan,!1 DECODER and other

programs. The second kind of evidence is

neighbouring amino acid frequencies,

which vary according to the type of

protein, among 400 possibilities (equals

20 3 20; for example, P-V). Degenerate

codon frequencies, which depend on the

number and expression frequency of

tRNA anticodons, among 59 possibilities

(equals 6 3 3 + 4 3 5 + 3 + 2 3 9; for

example, CCn or GTn) is the last kind of

evidence used. This last kind of evidence

takes into account a bias toward

nucleotide frequencies favouring high GC

content. The learning data set comprised

the 8,419 NCBI RefSeqs available at that

time. The ProCrest coding viewer shows

the coding-potential score, suggests one

or more coding regions, and, if present,

shows noteworthy facts as mentioned

above in each transcript (Figure 2).

Because of the high information content

of its results, ProCrest was applied first to

all cDNA, and the automated annotation

was based on the ProCrest prediction.

Then, during the human curation step,

this prediction was compared with the

results of other coding region predictors.

The first step: Automated
annotation and clustering
During FANTOM1, it was apparent that

accurate and consistent annotation by

manual curation alone is very difficult.

Proper naming of transcripts is difficult

when only computational methods are

used. There is no doubt that a lucid rule

for accurate and consistent annotation is

needed. Defining ‘proper naming’ is

delicate, but it is reasonable to say that an

uninformative name, such as a name that

does not directly indicate function or one

that consists only of an ID number, is

unsuitable. For example,

‘HYPOTHETICAL 30-kDa PROTEIN’

and ‘RIKEN 0610005K03 gene’ are

uninformative names because they do not

directly indicate function. A set of

approximately 50 regular expressions was

developed that defined such

‘uninformative’ words and implemented

an uninformative rule filter. This list can

evolve over time as human curators

identify additional information-poor

terms. CAS12 (cDNA annotation system),

which is our automated annotation

pipeline for preliminary high-quality

annotation, was developed with these

considerations in mind.

A lucid rule for accurate and consistent

annotation is specifically a top-down-style

flow chart. If two sequences match

throughout, it can be regarded as the same

gene. Of course, the candidates for

comparison must be well-known

transcripts because even if a gene were

Frameshift

Proper naming

Uninformative name

Annotation pipeline

Candidates for
comparison
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found to be similar to an unknown

transcript, we would be no closer to

understanding our gene. Therefore,

candidates for comparison were identified

among annotated transcripts of MGD,13

RefSeq and LocusLink.14 Also, a gene

that is similar to another well-known

gene only in the coding region might also

be the same gene. For this reason, other

candidates were identified for comparison

with PIR15 and in the Swiss-Prot16 non-

redundant database. Both the similarity

and the length of the alignment block

were considered. Then, one of the

following four paths was followed,

according to the degree of homology. If a

similar well-known transcript could not

be found, InterPro,17 MDS18 and

SCOP19 were used to find possible

protein domains. If no fully wide coding

region was identified, the well-known

clusters that consist of expressed sequence

tags (ESTs) were looked for. UniGene

and TIGR20 were used as the well-

known clusters. If no well-known EST

cluster was matched, each EST was

looked for. If no protein domains, no

EST clusters and no ESTs was identified,

the name ‘unclassifiable’ was assigned.

Thus, CAS used a top-down-style

decision tree to place each transcript into

one of 19 categories on the basis of its

degree of similarity with known

sequences. Human gene database, H-

invitational Database (H-InvDB), has

similar annotation methods, into five

similarity categories.21

The determination of a coding region

is an indispensable task, but the clustering

of transcripts simplifies naming. By

clustering, we not only decrease the

number of targets but also eliminate

possible nucleotide insertions or deletions

derived from cloning or sequencing

Clustering

Figure 2: ProCrest coding viewer in FANTOM. (1) The coding-potential view for clone
2810011A17, which is similar to RAS-RELATED PROTEIN RAB-32 [Homo sapiens] (see Figure
3). The density plot marked ‘Q’ denotes sequence quality. Squares and angled lines show the
open reading frames (ORF) in each possible reading frame. The height of each line is
proportional to the coding-potential score in each ORF. Regions with coding potential are
above line ‘Z’; conversely, probable non-coding regions are below line ‘Z’. M shows the
location of ATG codons in one predicted coding region, and * marks the stop codon. (2) The
coding-potential view for clone A930022G03, which is a FASCIN 2 (RETINAL FASCIN)
homologue [Homo sapiens]. At about 900 bp is the boundary between two high-coding-
potential regions. This boundary suggests a frameshift. In fact, there is also a gap in the
alignment of the transcript with human FASCIN2 and a steep rise in sequence quality at around
900 bp
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problems. Moreover, a fragment may be

shown to be a part of one longer

transcript. On the other hand, a specific

transcription start point or specific splicing

may be hidden by clustering. If the

genome with sufficient accuracy was

released, probably cDNAs would be

mapped on the genome and clustering

realised as for other organisms.21,22

However, since the genome was not

sufficient at that time, an original cDNA-

based clustering program, ClusTrans, was

developed to cluster all of our transcripts,

supplementary information 19 of Okazaki

et al.4

The second step: Human
curation
Although a perfect decision tree was

aimed for, mistakes deriving from data

errors cannot be avoided. Human

curation compensates for such mistakes.

To review and appropriately modify the

annotation, an integrated view is needed

of the annotation and the evidence on

which it is based. CAS integrates a human

curation interface for reviewing and

modifying the annotation (Figure 3). In

addition to the annotation by the

automated pipeline, the genome mapping

coordinates, the results of CDS region

prediction by other programs, the quality

of sequencing, the complexity of the

amino acids, the contig assembly and so

on are considered by human curators. For

example, the genome mapping

coordinates are useful because they

indicate whether the transcript is properly

spliced. Sequence quality and contig

assembly information is essential for

assessing the quality of any annotation

because sequence quality allows the

curators to determine whether

discrepancies between the cDNA

sequences and possible matches in target

databases reflect sequencing errors or

genuine polymorphisms, mutations or

closely related isoforms. The integrated

approach makes a reliable judgment

possible.

This step involves not only a review of

the automated annotation but also its

revision by an expert in genome

nomenclature. Although we had great

confidence in the automated annotation,

we realised that additional human review

and curation was still needed to evaluate

and confirm the assignments. Thus, the

large number of specialists in the

FANTOM Consortium reviewed and

refined the annotations. Therefore, CAS

includes not only the automated

annotation pipeline results but also the

human curation results in each cDNA

annotation. On the other hand, each

cluster was annotated by Jackson Lab.25

The final step: Genome
mapping, the representative
transcript and protein set, and
gene ontology terms
FANTOM attempted an integrated

analysis of the genome and the

transcriptome. cDNA mapping to the

genome sequence gives better solutions

for, for example, multigene families and

complex alternative splicing than EST

assemblies. After the human curation, the

mouse draft genome was released and all

transcripts were mapped to the genome.

Although there are various tools for

alignment, verification is still often

required, but this problem will be

considered later in this paper. The

representative transcript and protein set

(RTPS) derived from the RIKEN

transcripts provides a substantial new

discovery resource because of its non-

redundancy. The RTPS pipeline,

supplementary information 9 of Okazaki

et al.,4 clustered the transcripts and

selected those that were representative.

Gene ontology (GO) term assignments

are also useful, but each GO term

assignment must include the evidence

codes. The genes in the MGD were

assigned GO terms by MGI annotators.26

In some cases, GO terms were also

assigned by FANTOM Consortium

members, or by using translation tables of

Swiss-Prot keywords, InterPro domains,27

EC assignments, and SCOP structural

domains to GO terms. We must not

forget, however, that there are differences

Human curation

Representative
transcript and protein
set (RTPS)

Gene ontology (GO)
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of the abstraction levels and evidence

types among assignments of GO terms.

Only a few genes were not assigned GO

terms. Together, genome mapping, the

RTPS and GO terms provide very

important information. Many FANTOM

collaborators use these resources, and they

gave impressive results during categorised

annotation.

CATEGORISED
ANNOTATION
Categorised annotation refers to the

discovery of functional properties and

grouping. There are many groups of

transcripts, for example, sense–antisense

pairs and non-coding transcripts. When

we annotate transcripts, if the target

organism is closely related to a well-

Categorised annotation

Figure 3: An integrated view of the annotation of the 1,868-nt clone 2810011A17, which is similar to the RAS-RELATED
PROTEIN RAB-32 [Homo sapiens]. There are two alignments, forward and reverse of annotation target cDNA. ‘MmDNA’
track shows BLASTN23 alignments to Mouse DNA sequence set from RefSeq+LocusLink+MGD. ‘Prot’ track shows
FASTY24 alignments to protein sequence set from Swiss-Prot + PIR. In these tracks, two numbers that are separated by
slash mean ratios of identity and match length, respectively. If there is no similarity with well-known sequence, ‘CDS
predict’ track and Protein motif tracks (‘Pfam’, ‘InterPro’ and ‘Superfamily’) help us to annotation. The steps in the ‘Splicing
(MGSCv3)’ row show the exon boundaries
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known organism,22 one-by-one

annotation is effective by similarity. If not,

we have no choice but to use this

categorised annotation. From now on,

various categorisations may be developed.

However, categorised annotation that

integrates transcripts and the genome

gives the knowledge of new kind.

Therefore, we would like to focus

attention on the integration of the

genome and the transcriptome, which

means the transcripts, their surroundings

and their expression profiles.

Antisense transcripts
Because mRNA is single-stranded, a pair

of mRNA transcripts might hybridise

according to the Watson–Crick rule, thus

possibly altering transcription, maturation,

transport, stability or translation.28

Intuitively, we see that transcripts from

overlapping parts of the genome will

sometimes hybridise. By genome

mapping, Kiyosawa et al.29 found 2,481

sense–antisense pairs and 899 further pairs

exhibiting non-antisense bidirectional

transcription. The major difference

between these two groups was the

expression pattern; many sense–antisense

pairs were co-expressed. Moreover, they

focused on CpG islands in the genome

near these sense–antisense pairs. There

are many mature tools for genome

mapping and CpG-island prediction, but

Kiyosawa et al. extended our knowledge

of the reliability of such transcripts,

because they integrated genome mapping

and GpG-island prediction efficiently.

Alternative splicing
Another approach to constructing the

transcriptome is high-throughput

sequencing of cDNA ends (ESTs), but

full-length cDNA assemblies are better for

complex alternative splicing analysis.

Zavolan et al.30 developed a new

computational procedure to identify and

classify the forms of splice variation

present in a gene. BLAST is very useful

for simply mapping to the genome, but

Zavolan et al. achieved a more rigorous

analysis by refining the alignment result

using Sim431 or BLAT32 and following

the splicing consensus. More important,

these strict alignment tools defined a

maximum intron length. This is

important because a transcript that is rare

and has a very long intron might fail the

mapping.

Expression profiles
There are many integrated viewers

between gene expressions and cDNAs,

for example, READ,7 H-ANGEL in H-

InvDB and expression tracks in UCSC

Genome Browser Database.33 However,

further analysis and focusing are necessary

to categorising. Two examples are given

below.

The secretome comprises proteins

secreted into the extracellular

environment. Grimmond et al.34

developed a computational strategy to

identify the secretome derived from the

RTPS. These proteins must include a

signal peptide that is required for entry

into the secretory pathway, and they lack

any transmembrane domains or

intracellular localisation signals. They

identified 2,033 unique proteins,

including more than 500 novel proteins

and 92 proteins fewer than 100 amino

acids in length. By expression profiling the

secretome and performing a clustering

analysis, they found that several groups of

genes were highly expressed in a tissue-

restricted fashion. This is important

annotation information, but unfortunately

it is not useful for naming. There is room

for further investigation of the integration

of gene naming conventions with gene

expression profiles.

Nikaido et al.35 also published an

impressive study of transcripts that were

differentially expressed by parthenogenote

and androgenote embryos. They

extracted natural antisense transcripts,

non-coding RNAs and candidate

transcripts from the imprinted region by a

multiple database search. Clearly,

imprinting cannot be predicted from the

genome sequence and its annotation, but

prediction becomes possible by including

the transcriptome in the analysis. Genome

Expression profiles

Antisense transcripts

Secretome

Alternative splicing

Imprinting
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mapping is also needed to extract the

imprinting relevant to a disease locus.

This is a typical example of how the

integration of analyses of the genome,

mRNA transcripts and gene expression

profiles brings about new knowledge.

CONCLUSION: BEYOND
FANTOM
Integrated analysis of the genome and the

transcriptome creates a synergistic effect,

providing extremely valuable insights into

the nature of life. The transcriptome

shows the exact locations of genes,

whereas genome sequences provide

information on promoters, exon–intron

junctions, and so on. Recently, the goal is

changing from a sequence-based to an

expression-based analysis, that is, from the

analysis of static cell status to the

modelling of dynamic cell activity.

However, the integration of the genome

and the transcriptome should be the basis

of all analyses, including dynamic analyses.

An analysis of the mammalian circadian

clock by Ueda et al.36 is a notable

example. First, they examined the

expression profiles of many transcripts,

and selected cycling genes. Then, they

identified transcription factor response

elements near the transcription start site

on the genome.

One of the surprising results of

FANTOM was the prominence of non-

coding sequences. Out of 37,086

transcriptional units (TUs), 15,815 had a

high probability of being non-coding.

Although CAS defines transcripts coding

for fewer than 100 amino acids as non-

coding, as mentioned before, some

natural, short coding genes also exist.

Numata et al.37 extracted 4,280 transcripts

from 15,815 non-coding TUs as the

candidate non-coding set. Moreover,

further experimental and informatic

analyses are being performed of such

sequences. A top-down style decision tree

for automated annotation of non-coding

sequences is also needed. H-InvDB has

annotation flow of non-coding, but it is a

debatable point. What is the functional

region for annotation in non-coding

genes that is equivalent to the CDS in

coding? Rfam38 is one interesting

example.

In 2003, we developed the cap analysis

gene expression (CAGE) method.39 The

high-throughput nature of this

technology offers a way of understanding

gene networks by the correlation of

promoter usage and gene transcription

factor expression. This shifts the target of

the analysis to the genome network,

which means to the modelling of dynamic

cell activity. We would be pleased if, as

our research develops, it becomes useful

to many other researchers.
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