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Integrated analysis of the
microbiota-gut-brain axis in
response to sleep deprivation
and diet-induced obesity

Jibeom Lee1†, Jiseung Kang1†, Yumin Kim1, Sunjae Lee2*,
Chang-Myung Oh1* and Tae Kim1*

1Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology,
Gwangju, Republic of Korea, 2Department of School of Life Sciences, Gwangju Institute of Science
and Technology, Gwangju, Republic of Korea
Introduction: Sleep deprivation (SD) and obesity are common in modern

societies. SD and obesity frequently coexist, but research on the combined

consequences of SD and obesity has been limited. In this study, we investigated

the gut microbiota and host responses to SD and high-fat diet (HFD)-induced

obesity. In addition, we attempted to identify key mediators of the microbiota-

gut-brain axis.

Methods: C57BL/6J mice were divided into four groups based on whether they

were sleep deprived and whether they were fed a standard chow diet (SCD) or

HFD. We then performed fecal microbiome shotgun sequencing, gut

transcriptome analysis using RNA sequencing, and brain mRNA expression

analysis using the nanoString nCounter Mouse Neuroinflammation Panel.

Results: The gut microbiota was significantly altered by the HFD, whereas the gut

transcriptome was primarily influenced by SD. Sleep and diet are both important

in the inflammatory system of the brain. When SD and the HFD were combined,

the inflammatory system of the brain was severely disrupted. In addition, inosine-

5' phosphate may be the gut microbial metabolite that mediates microbiota-gut-

brain interactions. To identify the major drivers of this interaction, we analyzed

the multi-omics data. Integrative analysis revealed two driver factors that were

mostly composed of the gut microbiota. We discovered that the gut microbiota

may be the primary driver of microbiota-gut-brain interactions.
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Discussion: These findings imply that healing gut dysbiosis may be a viable

therapeutic target for enhancing sleep quality and curing obesity-related

dysfunction.
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1 Introduction

Sleep deprivation (SD) and obesity are common in modern

society. In the United States, only 65 percent of individuals report

sleeping for 7 hours or more per day. The average prevalence of

obesity in adults was 19.5 percent across OECD nations in 2015 (1).

These two clinical conditions are now recognized as serious

problems, because sleep and diet are both important for

maintaining physical and mental health. Insufficient sleep leads to

metabolic imbalance and an increased risk of metabolic diseases,

including cardiovascular disease (CVD), type 2 diabetes mellitus

(T2DM), hypertension, obesity, and depression (2, 3). Even acute

SD can cause altered glucose metabolism, changes in hormone

production, and weight gain (4–6). Similarly, obesity has been

linked to a variety of modern diseases, including T2DM, CVD,

and other metabolic illnesses (7).

Over the past decade, the microbiome has emerged as a

significant component of human health (8). Many studies have

revealed that the gut microbiome communicates with the host and

participates in the regulation of the systemic immune, metabolic,

and nervous systems, as well as gut metabolism (9). The gut-brain

axis (GBA) is a bidirectional communication pathway between the

gut and the brain. Recent research has revealed that gut microbiota

may play a role in mediating these interactions, which have been

dubbed microbiota-gut-brain interactions (9, 10).

Diet and obesity are well-recognized contributors to the gut

microbiome (11). Obesity is a major risk factor for gut dysbiosis,

and the gut microbiota contribute to metabolic dysfunction in obese

individuals (12). SD also induces dysbiosis in the gut microbiome.

Sleep disturbance and loss are linked to systemic inflammation and

oxidative stress in the gut (13, 14). Insomnia leads to significant

structural and functional changes in the gut microbiome (15),

which fluctuates in response to disturbances in sleep and

circadian rhythm (16). The gut microbiota can also influence

sleep quality through the GBA (17).

In modern society, there are concurrent epidemics of SD and

obesity with a potential bidirectional relationship (18). While SD is

a well-known risk factor for obesity (19), obesity can also cause

sleep disorders, such as insomnia, obstructive sleep apnea, and

obesity hypoventilation syndrome (20). Although SD and obesity

frequently coexist, research on the combined consequences of SD

and obesity have been limited. Furthermore, to the best of our

knowledge, there have been no studies on the key regulators of

microbiota-gut-brain interactions in the gut and brain. In this
02
study, we investigated the shotgun metagenomic sequencing and

host gene expression profiles in response to SD and obesity in a

mouse model. In addition, we performed a multi-omics factor

analysis to identify a major driver of these profile alterations in

response to metabolic stress caused by SD and obesity.
2 Materials and methods

2.1 Mouse experimental model

Eight-week-old C57BL6/J male mice were randomly divided

into four cages and fed one of two diets: a standard chow diet or

high-fat diet (D12492; Research Diets, Inc., New Brunswick, NJ,

USA). Sleep conditions were either SD or exercise control (EC) after

eight weeks, with one day of habituation inside the wheel and five

days in the sleep environment, as stated in the graphical abstract

(Figure 1A; Supplementary Figure 1). C57BL/6J mice were then

divided into four groups based on whether they were deprived of

sleep and whether they were fed a standard chow diet (SCD) or

high-fat diet (HFD): EC+SCD, EC+HFD, SD+SCD, and SD+HFD

(number of mice per group = 3, the minimum requirement for

statistics). These mice were fed SD or HFD for 8 weeks as previously

described (21, 22). All mice were maintained in a 12 h dark-light

cycle, with the lights turning on at 7 AM and off at 7 PM. There are

no inclusion/exclusion criteria for mice selection for the analysis.

Because C57BL/6J mouse is genetically homogeneous inbred strain.
2.2 Mouse sleep deprivation

SD was achieved by placing mice individually in activity wheels

(Lafeyette Instruments, Lafayette, IN, USA) that had a motorized

wheel with a diameter of 6.985 cm and an internal wheel with a

diameter of 5.715 cm, with free access to food and water, as

previously described (23). First, the mice were habituated to the

activity wheel conditions for 24 h. We conducted experiments on

the SD mice, including the SD+SCD and SD+HFD groups, over the

course of five days using a slow rotational movement of the activity

wheel (programmed on a schedule of 3 s ‘on’ and 12 s ‘off’) for 18 h

(from ZT 06 to ZT 24) as previously described (24). SD in this study

involved forcing the mice to move to interrupt their sleep. Exercise

control is necessary to avoid confusing the interpretation of

experimental results because of the nonspecific effects of
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movement itself. For five days, mice were provided with the same

walking distance (EC+SCD and EC+HFD groups) but with a wheel

on/off schedule of 15 min on/15 min off at 3 m/min speed for 7.2 h,

enabling them to sleep uninterrupted for longer periods.
2.3 Tissue harvest and RNA precipitation

Mouse tissues were all harvested at 7 AM, and the harvest time in

each mouse sample did not exceed 3 min, limiting variations and stress

environments between the groups. After cervical dislocation, whole

blood was collected from the left ventricle of the heart tissue and

perfused with 4% paraformaldehyde (PFA). Whole blood was

centrifuged for 10 min at 6000 rpm, and floating serum was collected
Frontiers in Endocrinology 03
in a clean container. Blood sera were collected and stored at -80°C.

Overnight storage of brain tissue was performed in a 4% PFA solution.

RNA from colon samples was extracted using TRIzol (Invitrogen,

Waltham, MA, USA) and followed up according to the manufacturer’s

protocol. The extracted RNAwas then stored at < -80°C. The brain was

divided vertically, and the right hemisphere was used for RNA

extraction with a PureLink FFPE RNA Isolation Kit (Invitrogen).
2.4 Colon RNA sequencing

The quality of RNA from colon tissue was checked using the

Agilent 2100 bioanalyzer. Only samples with a high-quality score

(RNA Integrity Number) of 6 or higher were used for making a
A B

D

E

F

C

FIGURE 1

Gut flora depending on sleep conditions and diet type. The experimental design is described graphically here by the following two factors: diet type and
sleep (A). The sample distance for b-diversity was calculated using the Bray-Curtis method (B). Permutational multivariate analysis of variance was
applied to compare the means of samples for a single factor, either diet or sleep type, and two factors (C). The a-diversity was measured using the
Shannon index, and the median was analyzed using the Wilcoxon test, depending on two factors (left) and specifically diets for each sleep condition
(right) (D). The relative abundance of 29 genera in the 12 samples indicated a different proposition at the genus level (E). The mean proportion and 95%
confidence interval (P < 0.05) explained the main genus contributors related to each factor (F). *P < 0.05, **P < 0.01 and ***P < 0.001
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library. The quality of the sequencing was also checked using a Phred

quality score (Q score). More than 92% of the sequencing had a high

score of Q30, which means the accuracy of the sequencing was at

99.9%. Colon RNA FASTQ was automatically counted as the

transcript amount using Kallisto (version 0.45.0). DESeq2 packages

were used to extract the list of differentially expressed genes (DEGs)

with a design matrix for diet, sleep, and interaction terms. Volcanoplot

was used to compare DEG analysis results without interaction terms,

and with an adjusted P-value cutoff of 0.01 and absolute value of log2

transformed fold-change 2. For pathway enrichment analysis using

clusterprofiler packages (version 4.0.5), such as Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) database-

based pathway enrichment, the input list had significant values that

were below the adjusted P-value of 0.05 for the DEseq2 results. Input

data were based on the Entrez ID labeling, which indicates that non-

available gene names in the Entrez ID are automatically removed.

During the analysis, the number of genes enriched in KEGG function

was 499 and 557 in SD vs. EC (Ref. SCD) and SD vs. EC (Ref. HFD),

respectively; however, the filtered genes were automatically recognized

at 479 and 541, respectively. The results of the pathway enrichment

analysis based on GO biological processes were 199 and 371 in SD vs.

EC (Ref. SCD) and SD vs. EC (Ref. HFD), respectively. Gene set

enrichment analysis (GSEA) was performed using the GSEA software

(version 4.1.0) on 3895 gene sets. The enrichment map of GSEA was

programmed in Cytoscape (version 3.8.2) using the enrichmentMap

tool (version 3.3.3).
2.5 Shotgun metagenomic sequencing

Using sterilized forceps, internal feces from the colon were

collected, and colon tissue was washed with phosphate-buffered

saline to remove any remaining feces and then stored at -80°C.

Shotgun sequencing was used to sequence precipitated fecal DNA.

The total number of reads produced from 12 samples averaged

76,004,118 ± 636,745.9436, with at least 92% of the nucleotides

having a Phred quality score ≥30. Overall, a total of 6 different

phyla, 22 families, 29 genera, and 53 species were detected using

Metaphlan (version 3.0). The HUMAnN program (version 3.0) was

used to measured estimated genes, as referred by uniref90, which

were quantified as copies per million, and the total sum of all genes

ranged from 1,294,101 to 1,467,302, depending on the samples.

STAMP (version 2.1.3) and Mofapy2 (version 1.2.2) were used to

examine the metagenomic data from the relative abundance results

(version 0.6.4). a- and b-diversities were calculated from species-

level taxa using the vegan package (version 2.5-7). In particular, for

Mofapy2, significant gene sets of positive and negative weights from

colon RNA sequencing and brain nCounter were manually

extracted from the GO database.
2.6 Brain nanoString nCounter

Brain RNA samples were loaded onto the nCounter

Inflammation Panel (nanoString, Seattle, WA, USA). The

cartridge counted the probe-tagged fluorescent barcode with a
Frontiers in Endocrinology 04
digital analyzer equipped with a microscope. One molecule was

quantified as the count value. Gene expression levels between

samples were confirmed using 13 housekeeping genes: Aars,

Asb10, Ccdc127, Cnot10, Csnk2a2, Fam104a, Gusb, Lars, Mto1,

Supt7l, Tada2b, Tbp, and Spnpep1. Counting data from the

nanoString nCounter analysis were analyzed using R software

(versions 4.1.0 and 4.1.1). The DEseq2 package was used to

analyze the DEGs.
2.7 Ethical statement

All experiments were reviewed and approved by the

Institutional Animal Care and Use Committee of Gwangju

Institute of Science and Technology (Approval number: GIST-

2021-064).
3 Results

3.1 High-fat diet mainly loaded gut
microbiome diversity

To determine the impact of SD and HFD-induced obesity on

the baseline composition of the gut microbiome, fecal samples were

collected, and shotgun metagenome sequencing was performed for

taxonomic profiling and functional analysis. To calculate inter-

group dissimilarity (beta-diversity), we computed the Bray-Curtis

dissimilarity, and unweighted and weighted Unifrac. Beta-diversity-

based principal coordinate analysis plots (Figure 1B; Supplementary

Figure 2) showed a strong distinction by diet. This means that diets

had a greater impact on gut microbial diversity than that of sleep

variables. In the permutational multivariate analysis of variance test

(Figure 2C), diet showed a significant effect, but sleep did not cause

significant differences between the groups (Figure 1C).

At the phylum level, the Firmicutes/Bacteroidetes (F/B) ratio is

significantly associated with intestinal homeostasis (25). The HFD

significantly increased the microbiota F/B ratio by increasing the

content of Firmicutes; in contrast, SD decreased the F/B ratio, but

the difference was not statistically significant (Tables 1, 2).

Figure 1D shows the intragroup diversity (alpha diversity)

expressed using the Shannon index. The HFD decreased alpha

diversity while SD increased alpha diversity, but these changes were

not statistically significant. At the genus level, the HFD decreased

the relative abundance of the genera Prevotella and Muribaculum

and increased that of Lactococcus. SD increased the abundance of

Firmicutes (Figures 1E, F).
3.2 Predictive metabolomic profiling of gut
microbiota following sleep deprivation and
consumption of a high-fat diet

Gut microbiota composition was then examined at the species

level. Figure 2A shows the diverse compositions of the bacterial

species within each group. The HFD reduced the relative abundance
frontiersin.org
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D
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FIGURE 2

Difference for genetic expression and clade distribution of the gut microbiome. The clade distribution pattern in a group (n=3) is referred to as a tree
cladogram (A). The top 10 significantly variable gut microbiota species were measured using an analysis of variance test depending on sleep and diet
conditions (P < 0.05) and expressed as z-scores of relative abundance values (B). Eleven environmental factors affecting Bray–Curtis b-diversity and
its ordination are shown as arrows (P < 0.005) (C). The inosine-5’-phosphate biosynthesis I and II were estimated from DNA reads, and species
attribution was identified (D).
TABLE 1 The significant taxa either diets or sleep parameter.

PARAMETERS TAXA W p-value (< 0.05)

PHYLA Diets

Bacteroidetes 1 0.008

Firmicutes 30 0.066

F/B 36 0.005

FAMILIES Diets

Muribaculaceae 0 0.005

Prevotellaceae 0 0.005

Staphylococcaceae 34 0.013

Enterococcaceae 32 0.025

Streptococcaceae 36 0.003

(Continued)
F
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of Muribaculum intestinale and Prevotella MGM1 and MGM2 and

increased the abundance of Anaerotruncus colihominis and

Lactococcus lactis. When compared to that in the control (EC

+SCD group), Muribaculaceae bacteria DSM 103720 abundance

increased in the SD+SCD group but not in the SD+HFD group.

When SD and an HFD were combined, Ileibacterium valens was a

key player (Figure 2B). Principal component analysis (PCA)
Frontiers in Endocrinology 06
ordination plots of the relative abundance of species indicated the

main drivers of each principal component (Figure 2C).

The gut microbiota is an important part of host digestion, and

this process results in hundreds of microbial metabolites (26).

Recent findings suggest that there is a bidirectional link between

the brain and intestine, the so-called GBA; microbial metabolites

are major mediators of this communication (26–28). To understand
TABLE 1 Continued

PARAMETERS TAXA W p-value (< 0.05)

Sleep Tannerellaceae 3 0.020

GENERA
Diets

Muribaculaceae (unclassified) 0 0.005

Muribaculum 0 0.004

Prevotella 0 0.005

Staphylococcus 34 0.013

Enterococcus 32 0.025

Lactococcus 36 0.003

Sleep Parabacteroides 3 0.020

SPECIES

Diets

Bacteroides caecimuris 5 0.045

Bacteroides uniformis 2 0.013

Muribaculaceae bacterium DSM 103720 0 0.005

Muribaculum intestinale 0 0.004

Prevotella sp MGM1 0 0.003

Prevotella sp MGM2 4 0.031

Staphylococcus aureus 34 0.013

Enterococcus gallinarum 32 0.025

Lactococcus lactis 36 0.003

Clostridium sp ASF356 0 0.003

Lachnospiraceae bacterium M18 1 2 0.013

Anaerotruncus colihominis 33 0.010

Sleep

Bacteroides sartorii 3 0.020

Parabacteroides distasonis 5 0.045

Parabacteroides merdae 4.5 0.026
In 4 taxonomy classification including phyla, familes, genera, species, significant taxa were measured as wilcoxon test depending on the variable, diets and sleep. The total number of each
taxanomy were 7 phyla, 22 famila, 29 genera and 53 species as metaphlan results. This table only described the p-value below 0.05.
TABLE 2 Firmicutes, bacteroidetes and both ratios.

Group n
Firmicutes Bacteroidetes F/B

Median IQR Median IQR Median IQR

SD + SCD 3 13.09 11.74-20.24 67.95 64.37-75.73 0.17 0.16-0.29

SD + HFD 3 56.23 47.96-57.47 12.47 8.09-20.62 4.51 3.28-5.75

EC + SCD 3 18.24 11.91-30.63 29.28 28.81-51.63 0.25 0.22-0.86

EC + HFD 3 25.94 20.61-50.57 0.87 0.56-5.89 62.01 32.20-74.21
fro
The median and interquartile range (IQR) of firmicutes, bacteroidetes, and those ratios were specifically explained in the table. There were 3 in each category. SD, sleep deprivation; SCD, standard
chow diet; HFD, high fat diet; EC, exercise control.
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the metabolic effects of sleep and diet, we performed strain-level

functional pathway-enriched pathway analysis (Figure 2D). Among

the enriched pathways, inosin-5’-phosphate (5’-IMP) biosynthesis-

related strains were significantly increased in the SD+HFD group

compared to those in the other groups.
3.3 Transcriptome analysis of mouse large
intestine after sleep deprivation and
consumption of a high-fat diet

Next, to compare the effects of sleep and diet on the gut

transcriptome, we performed RNA-seq analysis of the large

intestine of mice from the EC+SCD, EC+HFD, SD+SCD, and SD

+HFD groups. PCA was performed to reveal the major stress on the
Frontiers in Endocrinology 07
gut transcriptome between sleep and diet. Figure 3A depicts the

results. Unlike the gut microbiota, which was mostly affected by

diet, the gut transcriptome was primarily affected by sleep. In a DEG

analysis (Figure 3B), 90 genes were upregulated, and 26 genes were

downregulated in the SD+SCD group compared to those in the EC

+SCD group. Gasdermin C-like 2 (Gsdmcl2), chymase 1 (Cma1),

solute carrier family 37 member 2 (Slc37a2), Alpha-2,8-

sialyltransferase 8E (St8sia5), and gasdermin C4 (Gsdmc4) genes

were the top five upregulated DEGs (based on P-value). Stress-

associated endoplasmic reticulum protein 1 (Serp1), death-

associated protein 1(Dap), transmembrane protein 35A

(Tmem35a), ubiquitin-like modifier enzyme 5 (Uba5), and bone

gamma-carboxyglutamate protein 3 (Bglap3) were the top five

downregulated DEGs (based on P-value). In the HFD group, only

11 genes were upregulated, and 23 genes were downregulated (SD
A B

D

E F

C

FIGURE 3

Colon RNA sequencing. Principal coordinate analysis plot (A). Volcanoplot of three differentially expressed genes (DEGs) with cut-off conditions of
adjusted P-value < 0.01 and |Log2 (fold change)| > 2 (B). Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed for a group
of genes (adjusted P-value < 0.05 and |Log2 (fold change)| > 1) (C). Gene set enrichment analysis based on Gene ontology (GO) biological processes
was plotted as an enrichment map; a total of 2487 and 1408 gene sets were upregulated in the sleep deprivation (SD) + high-fat diet (HFD) and
exercise control (EC) + HFD groups, respectively (D). The intersected 32 GO pathways between the two DEGs are described similarly (E). In the case
of normalized count levels, 613 genes were significantly different depending on the diet and sleep conditions, and two clusters were summarized in
the GO BP pathway enrichment analysis (F).
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+HFD vs. EC+HFD). The Serp1 gene was also one of the top five

downregulated genes in the SD+HFD group compared to that in the

EC+HFD group (Figure 3B).

Gsdmcl2, Cma1, Slc37a2, and St8sia5 were downregulated in the

SD+HFD group compared to those in the EC+SCD group but were

upregulated in the SD+SCD group compared to those in the EC

+SCD group (Figure 3B). After SD, the tumor protein D52-like 1

(Tpd52l1), cellular communication network factor 3 (Ccn3), and

UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransfera 9

(B3gnt9) genes were downregulated in both SCD- and HFD-fed

mice (Supplementary Figure 3).

The KEGG enrichment analysis indicated that DEGs between

the SD+SCD and EC+SCD groups were enriched in digestive

system-related pathways, including “Pancreatic secretion” and

“Protein digestion and absorption” (Figure 3C). The DEGs

between the SD+HFD and EC+HFD groups were enriched in

nucleic acid metabolism-related and lipid metabolism-related

pathways (Figures 3C, D). Figure 3E shows the common GO

terms related to SD. The nutrient metabolism-related terms,

including “carbohydrate biosynthetic process,” “fatty acid

metabolic process,” and “glycoprotein biosynthetic process,” and

immune system-related terms, including “cytokine-mediated

signaling pathway,” “leukocyte migration,” and “macrophage-

derived foam cell differentiation,” were highly enriched in both

the SCD and HFD conditions after SD (Figure 3E).

Using DEGs among the four groups, we performed heatmap

clustering analysis. Figure 3F shows a heatmap of GO terms based

on the DEGs in each cluster. Cluster A, which was composed of

DEGs in the EC+HFD group, included immune system-related GO

terms such as “leukocyte proliferation,” “lymphocyte proliferation,”

and “regulation of mononuclear cell proliferation.” Cluster D,

which was composed of DEGs in the EC+SCD group, included

DNA replication-related genes (Figure 3F).
3.4 Neuroinflammatory changes in the
brain after sleep deprivation and
consumption of a high-fat diet

To identify neuroinflammatory changes associated with SD or an

HFD in the brain, we employed a nanoString neuroinflammation

panel (29), which covers 770 genes related to neuroinflammation in

the brain. Figure 4A shows volcano plots of the DEGs between each

group. Under the SCD, cathepsin S (Ctss), endothelial cell adhesion

molecule (Esam), and minichromosome maintenance complex

component 6 (Mcm6) were the top three upregulated genes, and

aspartate beta-hydroxylase (Asph), ribosomal protein S (Rps21), and

BRCA-associated RING domain 1 (Bard1) were the top three

downregulated genes after SD. The mcm6, C-C motif chemokine

ligand 4 (CCl4), and interleukin 1 receptor kinase 3 (Irak3) genes

were upregulated in the EC+HFD group compared to those in the EC

+SCD group (Figure 4A).

Using DEGs from the four groups, we compared the expression

patterns in each group. In the SD+HFD group, Fc epsilon receptor

1 g (Fcer1g), growth arrest and DNA damage inducible alpha

(Gadd45a), and RAS like proto-oncogene B (Ralb) gene
Frontiers in Endocrinology 08
expression was significantly increased compared to that in the

other groups (Figure 4B). Figure 4C shows the DEGs between

each group and their roles in neuroinflammation. Under the SCD,

five genes related to adaptive immune response, three genes related

to microglial function, and three genes related to the cell cycle were

differentially expressed after SD. Under the HFD, two genes related

to cytokine signaling, two genes related to the innate immune

response, and three genes related to microglial function were

differentially expressed after SD. Adaptive immune response-

related genes did not show significant differences between the SD

+HFD and EC+HFD groups. Sialic acid-binding Ig-like lectin 1

(Siglec1), a marker for active neuroinflammation (30), was highly

expressed in the SD+HFD group compared to that in the SD+SCD

group. Compared with that in the EC+SCD group, the SD+HFD

group had the highest number of DEGs (Figure 4A). These genes

were related to inflammation, neuropathology, and microglial

function (Figure 4D).
3.5 Integration analysis of gut microbiome
and host gene expression

To identify the main factors that mediate the microbiota-gut-

brain interactions, we performed multi-omics factor analysis

(MOFA) by integrating microbiome and gene expression data

(31, 32). Figure 5A displays the four determinants discovered by

the factor analysis. Among the four factors, factors 1 and 2 showed

effective discriminating values (Figure 5A; Supplementary Figure 4).

The variable with the largest weight in factors 1 and 2 was from the

microbiome layer. Prevotella sp. MGM1 in factor 1 and Bacteroides

satori in factor 2 showed the highest weight in this analysis

(Figure 5B; Supplementary Figure 5).

Figure 5C shows the GO terms with a high weight of factor 1 in

the DEGs for the gene expression data. In the colon RNA

sequencing data, “regulation of vasoconstriction,” “oxidation and

reduction process,” “small molecule metabolic process,” and

“Termination of RNA polymerase II transcription” were the top

enriched GO terms. Figure 5D shows the absolute loadings of the

top features of factor 1. Factor 1 was positively correlated with the

P21(RAC1) activated kinase 1 (Pak1) gene in the brain and

negatively aligned with Neuroglin 1 (Nlgn1) in the brain, as well

as with serin/arginine-rich splicing factor 3 (Srsf3) and H2A.Z

variant histone 1 (H2az1) genes in the colon (Figure 5D). Factor

2 was positively correlated with the Apoprotein E (APOE) and

Calreticulin (CALR) genes in the brain and negatively aligned with

the Srsf3 and H2az1 genes in the colon (Supplementary Figure 5).
4 Discussion

Here, we examined the effects of SD and diet-induced obesity on

the gut microbiota, gut transcriptome, and brain gene expression. In

addition, we integrated these data to reveal the main drivers of

microbiota-gut-brain interactions. In the present study, we revealed

the pleiotropic effects of SD and a HFD on the gut and brain.

Previous studies have shown that SD can affect bodyweight by
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suppressing appetite (33) and decreasing energy expenditure (34).

In both human and animal studies, SD have positive associations

with obesity and weight gain (35, 36). However, our results did not

show an effect of SD on body weight in either the standard chow

diet (SCD) group or the HFD group, which may be due to the

relatively short duration of SD in our experiment.

The HFD reduced gut microbiota biodiversity in terms of both

alpha and beta diversity (Figures 1C, D). The gut transcriptome was

primarily influenced by SD (Figures 3A, B), whereas brain gene

expression associated with neuroinflammation was significantly

altered following exposure to a HFD with SD (Figures 4A, D).

Gut microbiota analysis revealed that the HFD caused dramatic

changes in the physiology of the gut microbiota (Figures 1, 2). SD
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did not induce robust changes in the gut microbiota, as in other

previous studies (37, 38). Our results showed that the HFD both

alone and with SD increased Firmicutes (Table 2), which has already

shown significant correlations with obesity and sleep quality

(39, 40).

Interestingly, the HFD alone increased the F/B ratio, whereas

the HFD with SD decreased the F/B ratio by increasing

Bacteroidetes (Table 2). Recent research by Gregory et al. has

revealed a link between poor sleep and a higher body mass index

(BMI), as well as a positive relationship between sleep quality and

the F/B ratio (41). This is consistent with our findings, which show

that sleep deprivation leads to a decrease in the F/B ratio. Recent

findings also suggest that an increased F/B ratio leads to more
A B

D

C

FIGURE 4

Brain Nanostring nCount analysis. Volcanoplot of the four differentially expressed gene (DEG) results (P-value < 0.05) (A). A total of 33 significantly
expressed genes are listed by z-score in the heatmap (B). The table includes details regarding four DEGs in sleep deprivation (SD) + standard chow
diet (SCD) vs. exercise control (EC) + SCD, SD + high-fat diet (HFD) vs. EC + HFD, EC + HFD vs. EC + SCD, and SD + HFD vs. SD + HFD, including
the cell types to which they are particularly linked and the biological processes to which they are applied (C). The detailed DEGs for EC + SCD vs. SD
+ HFD are described (D).
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effective glucose fermentation and higher nutritional absorption

(42). This means that the increased F/B ratio in the HFD mice may

be a compensatory reaction to overeating, and sleep disrupts this

compensation. Prevotella species have shown negative associations

with a HFD in mice (43) and significant relationships with weight

change in a human randomized controlled trial (44). In this study,

Prevotella sp. MGM1 and MGM2 levels were decreased in both the

EC+HFD and SD+HFD groups compared to those in the other

groups (Figure 2B).

The abundance of Prevotella and Muribaculum was higher in

the SD+SCD group than that in the EC+SCD group but did not

increase in the SD+HFD and EC+HFP groups. Recently, Badran

et al. (45) reported that fecal microbiota transplantation using a
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fecal slurry, which has abundant levels of Prevotella and

Muribaculaceae, improves sleep disturbances in mice. The

composition of gut microbiota may adapt to defend against the

stressors associated with sleep deprivation, while a high-fat diet

(HFD) may complicate these protective responses. The gut

microbiota is a critical factor in the body’s ability to adapt to

stress, affecting neuroendocrine substances such as ghrelin and

serotonin (46). This suggests that the gut microbiota plays a

crucial role in regulating the body’s stress response. There is

increasing evidence that gut microbiota may have a role in

mitigating the effects of sleep disturbance. Studies in both

humans and animals have shown that probiotic intervention can

improve sleep quality (47, 48). To identify the possible mediators of
A

B

D

C

FIGURE 5

Multi-omics factor analysis from the gut microbiome to the colon and brain axis. The sample variation was represented by four captured factors of
the multi-omics factor analysis (MOFA)2 and the distribution of the sample was plotted for factors 1 and 2 (A). The weighted gut microbiome species
in factor 1 are described following the ranks, and strongly associated species are described (B). The seven significant gene sets related to Factor 1 are
listed with P-values (C). The top 10 features of factor 1 weights, which are estimated to provide a strong effect in specific variation, in colon RNA
sequencing (left) and brain nanostring (right) are shown as weight values, and the correlation analysis (D).
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microbiota-GBA interactions, we performed a microbial pathway

analysis and found that the abundance of 5’-IMP synthesis-related

species was highly increased in the SD+HFD group compared to

that in the other groups (Figure 2D). 5’-IMP plays a key role in

purine nucleotide synthesis and regulates various immune

responses (49). In addition, 5’-IMP is important for hypnotic

action in the brain (50). The adenosine and its metabolite inosine

have been shown to be closely linked to the regulation of the

circadian rhythm (51). Studies have shown that inosine activates the

adenosine A2A receptor (52, 53), which plays a role in regulating

sleep. Furthermore, research in animal models has demonstrated

that inosine administration can increase neuronal proliferation in

the brain and prevent depression-like behavior. Additionally,

inosine has been found to prevent memory impairment in a rat

model of Alzheimer’s disease (54).Therefore, increased 5’-IMP

synthesis might be a protective response in the gut against

metabolic stresses induced by SD and an HFD.

Gut transcriptome analysis revealed that SD caused robust

changes in the gut transcriptome (Figure 3). In this study, the most

significantly enriched pathways were related to ribosome biogenesis

and nucleic acid metabolic processes (Figure 3C), which are critical

for gut mucosal defense (55) and colorectal cancer progression (56).

This result elucidates the current association between sleep, obesity,

and colon cancer. Both SD and obesity are high-risk factors for

colorectal cancer development (57, 58). Recent studies have shown

deleterious effects of SD on the gut (14, 59). For example, SD causes

premature death by increasing reactive oxygen species in the gut (14).

We also found that SD enhanced the renin-angiotensin system

(RAS)-associated pathways in the gut (Figure 3C). The gut RAS

interacts bidirectionally with the gut microbiota and can promote

intestinal inflammation and fibrosis (60, 61).

In the brain, genes related to neuroinflammation were altered

by both SD and the HFD. The Mcm6 gene was highly upregulated

after SD under the SCD and HFD conditions (Figure 4A). This gene

encodes a protein that is a component of the MCM complex, which

is required for the initiation of eukaryotic genome replication (62).

Furthermore, this gene has shown positive correlations with poor

prognosis in brain and gastrointestinal tumors (63, 64). The most

severe neuroinflammatory changes were observed in the SD+HFD

group compared to those in the EC+SCD group. CXC motif

chemokine ligand 10 (Cxcl10), insulin-like growth factor-1 (Igf1),

and cluster of differentiation 70 (Cd70) were the top three highly

elevated genes (Log2FC). These genes are well-known markers of

proinflammatory signals (65–67).

To determine the main driver of the microbiota-gut-brain

interactions, we performed factor analysis. MOFA2 revealed that the

major feature of factors 1 and 2 was gut bacteria (Figure 5;

Supplementary Figure 5). This suggests that the main driver of

microbiota-gut-brain interactions with SD and an HFD is the gut

microbiome. Notably, the SRSF3 genes in the gut showed significant

negative correlations with factors 1 and 2. According to recent studies,

SRSF3 suppresses tumorigenesis (68) and inhibits cellular senescence

(69). Thus, reduced SRSF3 expression might be an important

contributor to gastrointestinal dysfunction caused by SD and an HFD.
Frontiers in Endocrinology 11
Our study had several limitations. First, we performed an

MOFA based on microbiome and transcriptome data. Further

evidence, such as the blood metabolome and gut proteome, is

required to substantiate our conclusions. Second, we only tested

adult male mice. As a result, sex differences and aging were not

reflected in our study.

In summary, our study revealed novel associations between the

gut microbiota and host responses after SD and diet-induced

obesity. Obesity with SD has deleterious effects on gut and brain

health. We discovered that the gut microbiota may be the primary

driver of microbiota-gut-brain interactions, and 5’-IMP may be an

essential microbial metabolite that facilitates gut-brain

communication. These findings imply that healing gut dysbiosis

may be a viable therapeutic target for enhancing sleep quality and

curing obesity-related dysfunction.
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