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Abstract

Background: Based on amyloid cascade and tau hypotheses, protein biomarkers of different Aβ and tau species in

cerebrospinal fluid (CSF) and blood/plasma/serum have been examined to correlate with brain pathology. Recently,

unbiased proteomic profiling of these human samples has been initiated to identify a large number of novel AD

biomarker candidates, but it is challenging to define reliable candidates for subsequent large-scale validation.

Methods: We present a comprehensive strategy to identify biomarker candidates of high confidence by integrating

multiple proteomes in AD, including cortex, CSF and serum. The proteomes were analyzed by the multiplexed

tandem-mass-tag (TMT) method, extensive liquid chromatography (LC) fractionation and high-resolution tandem

mass spectrometry (MS/MS) for ultra-deep coverage. A systems biology approach was used to prioritize the most

promising AD signature proteins from all proteomic datasets. Finally, candidate biomarkers identified by the MS

discovery were validated by the enzyme-linked immunosorbent (ELISA) and TOMAHAQ targeted MS assays.
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Results: We quantified 13,833, 5941, and 4826 proteins from human cortex, CSF and serum, respectively. Compared

to other studies, we analyzed a total of 10 proteomic datasets, covering 17,541 proteins (13,216 genes) in 365 AD,

mild cognitive impairment (MCI) and control cases. Our ultra-deep CSF profiling of 20 cases uncovered the majority

of previously reported AD biomarker candidates, most of which, however, displayed no statistical significance

except SMOC1 and TGFB2. Interestingly, the AD CSF showed evident decrease of a large number of mitochondria

proteins that were only detectable in our ultra-deep analysis. Further integration of 4 cortex and 4 CSF cohort

proteomes highlighted 6 CSF biomarkers (SMOC1, C1QTNF5, OLFML3, SLIT2, SPON1, and GPNMB) that were

consistently identified in at least 2 independent datasets. We also profiled CSF in the 5xFAD mouse model to

validate amyloidosis-induced changes, and found consistent mitochondrial decreases (SOD2, PRDX3, ALDH6A1,

ETFB, HADHA, and CYB5R3) in both human and mouse samples. In addition, comparison of cortex and serum led to

an AD-correlated protein panel of CTHRC1, GFAP and OLFM3. In summary, 37 proteins emerged as potential AD

signatures across cortex, CSF and serum, and strikingly, 59% of these were mitochondria proteins, emphasizing

mitochondrial dysfunction in AD. Selected biomarker candidates were further validated by ELISA and TOMAHAQ

assays. Finally, we prioritized the most promising AD signature proteins including SMOC1, TAU, GFAP, SUCLG2,

PRDX3, and NTN1 by integrating all proteomic datasets.

Conclusions: Our results demonstrate that novel AD biomarker candidates are identified and confirmed by

proteomic studies of brain tissue and biofluids, providing a rich resource for large-scale biomarker validation for the

AD community.

Keywords: Alzheimer’s disease, Biomarker, Cerebrospinal fluid, Brain tissue, Cortex, Blood, Plasma, Serum, Mass

spectrometry, Proteomics, Proteome, Tandem mass tag, Systems biology

Background
Alzheimer’s disease (AD), the most common cause of de-

mentia, affects more than 5 million Americans and an

estimated 47 million worldwide [1]. It is a progressive

neurodegenerative brain disorder clinically characterized

by extracellular amyloid plaques deposition, intracellular

neurofibrillary tangle growth, memory and cognition im-

pairments [2–4]. Traditionally, AD is diagnosed by pa-

tient’s symptoms, memory and behavior tests, and

confirmed by post-mortem brain pathologies, with recent

additions of brain imaging of these pathologies [5]. Ac-

cording to the amyloid cascade and tau hypotheses, pro-

tein biomarkers in cerebrospinal fluid (CSF) and blood/

plasma/serum have also been developed or under develop-

ment, including amyloid-β (Aβ) level, Aβ42/Aβ40 ratio,

total tau level, and the accumulation of phosphorylated

tau isoform [6–9]. Currently, techniques like structural

magnetic resonance imaging (MRI), and molecular im-

aging of deposited Aβ and tau proteins using positron

emission tomography (PET), are highly accurate in detect-

ing the presence of pathophysiological and neuropatho-

logical changes of AD and are used in the drug

development [10, 11]. But their high cost and insufficient

accessibility are being major limitations [12]. Therefore,

the field will benefit from increasing availability of blood-

related and CSF biomarkers that systematically reflect the

AD pathogenesis. To accomplish this ambitious goal, un-

biased profiling of human CSF and blood samples has

been attempted to reveal AD novel biomarkers to improve

diagnosis and prognosis [13].

Proteomic profiling of human specimens is largely

achieved by the approach of modern mass spectrometry

(MS) [14, 15]. With the advances in peptide separation

power by multi-dimensional liquid chromatography

(LC), and the improvement of MS resolution and scan

rate, MS can profile more than 12,000 proteins (> 10,000

genes) from mammalian tissue samples [16–18]. Both

data dependent acquisition strategy (e.g. label free

method and stable isotope labeling) [19] and data-

independent acquisition strategy [20] are currently used.

Tandem-mass-tag (TMT) has been emerging as a com-

mon stable isotope labeling method [21], enabling up to

16-plexed analysis [22]. Although ratio compression oc-

curs during quantification because of peptide co-elution,

the limitation can be addressed by the introduction of

the MS3 method [23], extensive LC fractionation, MS

optimization, and computational correction [24], to

allow deep proteomic analysis [18, 25, 26].

Compared with the analysis of human cell cultures or

solid tissues, comprehensive proteomic analysis of hu-

man CSF and blood is often difficult because individual

protein concentration spans a large dynamic range of at

least 10 orders of magnitude [27]. For example, albumin

is the most abundant protein in human blood present at

a concentration of ~ 50mg/ml. In sharp contrast, the

cytokine of interleukin-6 is detected at a concentration

of 4.2 pg/ml in healthy individuals [28, 29]. To reduce

protein dynamic range, antibody-based depletion of the

most abundant proteins is often utilized to enhance the

detection of proteins of low abundance [30–32], but the
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depletion is not complete and can introduce experimen-

tal variations [32]. More recently, our group utilized the

superior separation capacity of the latest TMT-LC/LC-

MS/MS to bypass the depletion step and detect about

5000 proteins in human CSF and serum toward AD bio-

marker discovery [18, 25]. In addition, several other

groups used the similar strategies in AD biomarker stud-

ies [33, 34]. Although a large number of new protein

biomarker candidates have been reported by the MS

analysis, it is not straightforward to determine the reli-

able candidates for the following large-scale validation

studies.

Here we introduce an integrated approach to analyze

unbiased, large-scale and ultra-deep proteomes in cor-

tex, CSF and serum from multiple independent cohorts,

totaling 10 large proteomic datasets with 17,541 proteins

(13,216 genes) from 365 samples. We also analyzed CSF

samples from an AD mouse model to show protein cor-

relation with amyloidosis. Given this urgent requirement

for biomarkers that reflect AD neuropathology, compre-

hensive systems-based approaches are likely to develop

network-based biomarkers across multiple human tis-

sues (brain cortex and biofluids). Our ultra-deep CSF

profiling uncovered the majority of previously reported

AD CSF biomarkers and also identified deregulated pro-

teins associated with mitochondrial function. Further as-

similation of human cortex and CSF proteomes and

validation in the mouse model show amyloidosis-

induced changes. Finally, we introduced a comprehen-

sive systems approach to prioritize the most promising

targets for Alzheimer’s disease.

Materials and methods
Human brain cortex, cerebrospinal fluid, and serum

Human brain cortex, CSF, and serum specimen were

provided by the brain and body donation program at

Banner Sun Health Research Institute and the

Alzheimer’s Disease Research Center at Icahn School of

Medicine at Mount Sinai with well-established criteria

for clinical and pathological diagnoses [35, 36]. All sub-

jects consented to the study. A total of 110 human brain

tissue, 20 CSF, and 11 serum cases were used as discov-

ery cohorts (datasets i, ii, v, x in Table 1) for the present

proteomics study. All samples were frozen and stored at

− 80 °C in aliquots of polyethylene tubes until use. Sam-

ple information is provided in Table 1.

Mouse cerebrospinal fluid

Wide type (WT) control and 5xFAD transgenic mice

that overexpress familial AD mutants (the Swedish mu-

tation, K670N/M671L; the Florida mutation, I716V; and

the London mutation, V717I) and PS1 (M146L, L286V)

transgenes at the age of 9–12 months were used for the

spinal fluid collection. Mice were bred and maintained

in a specific pathogen free facility in the Animal Re-

source Center at St. Jude Children’s Research Hospital.

All protocols were approved by the Institutional Animal

Care and Use Committee. CSF samples were collected

following an established protocol [37], and then were

snap-frozen in liquid nitrogen, and stored at − 80 °C be-

fore analysis.

Protein extraction and quantification

The frozen samples were lysed in the fresh lysis buf-

fer comprised of 50 mM HEPES, pH 8.5, 8 M urea,

and 0.5% sodium deoxycholate with 1x phosphatase

inhibitor cocktail (PhosSTOP, Sigma-Aldrich). Protein

extraction and concentration measurement were done

by our established protocol [25, 38]. In brief, BCA

assay (Thermo Fisher Scientific) was used for measur-

ing protein amount, and the quantifications were fur-

ther confirmed by short SDS Coomassie-stained gel

[39]. The protein lysates were stored at − 80 °C in ali-

quots before use.

Table 1 Summary of Human and Mouse Proteome Datasets for Biomarker Analysis

Tissue Type Dataset Total Case AD MCI Control Proteins Quantified Reference

Human Cortex i 48 19 7 22 12,578 This study and cohort 1 in Bai B, et al. Neuron. 2020

Human Cortex ii 62 23 0 39 13,702 Cohort 2 in Bai B, et al. Neuron. 2020

Human Cortex iii 40 10 20 10 8817 Cortex cohort 1 in Higginbotham L, bioRxiv. 2019

Human Cortex iv 27 9 8 10 11,244 Cortex cohort 2 in Higginbotham L, bioRxiv. 2019

Human CSF v 20 11 0 9 5941 This study and Bai B, et al. Neuron. 2020

Human CSF vi 40 20 0 20 2875 CSF cohort 1 in Higginbotham L, bioRxiv. 2019

Human CSF vii 96 33 31 32 792 CSF cohort 2 in Higginbotham L, bioRxiv. 2019

Human CSF viii 10 5 0 5 2321 Sathe G, et al. Proteomics Clinical Applications. 2019

a Mouse CSF ix 11 6 0 5 1058 This study

Human Serum x 11 6 0 5 4826 Dey KK, et al. Clinical Proteomics. 2019

Summary 10 365 142 66 157 17,541

aNote: AD cases are 5 x FAD mice, control cases are age matched healthy mice
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Protein digestion and tandem-mass-tag (TMT) labeling

Protein digestion and labeling were carried out with a

previously optimized protocol [38, 40]. ~ 0.1 mg of quan-

tified proteins in the lysis buffer with 8M urea were first

digested with Lys-C (Wako, 1:100 w/w) at 21 °C for 2 h,

and then the solution was diluted 4-fold to urea concen-

tration of 2M; trypsin (Promega, 1:50 w/w) was further

added for digestion at 21 °C for overnight. The digestion

process was terminated by 1% trifluoroacetic acid (TFA).

The supernatant was desalted with Sep-Pak C18 cart-

ridge (Waters), and then dried by a speed vacuum. Each

sample was re-dissolved in 50mM HEPES (pH 8.5) for

TMT reaction for 30 min, and then mixed and pooled

equally. Pooled samples were desalted for the subse-

quent fractionation by offline basic pH Liquid chroma-

tography (LC).

Extensive two-dimensional LC/LC-MS/MS analysis

The pooled TMT labeled peptides were resolved and frac-

tionated by offline basic pH reverse phase LC, and each of

the fractions was analyzed by acidic pH reverse phase LC

coupled with MS/MS analysis [24, 41, 42]. The offline

basic pH LC was performed with an XBridge C18 column

(3.5 μm particle size, 4.6 mm× 25 cm, Waters), buffer A

(10mM ammonium formate, pH 8.0), buffer B (95%

acetonitrile, 10mM ammonium formate, pH 8.0), using a

2–3 h gradient of 15–35% buffer B [38]. Up to 180 frac-

tions were collected every minute for biofluid samples,

and a total of 40 concatenated fractions were collected for

cortex. In the acidic pH LC-MS/MS analysis, fractions

were analyzed sequentially on a column (75 μm× 15–30

cm, 1.9 μm C18 resin from Dr. Maisch GmbH, 65 °C to re-

duce backpressure) coupled with a Fusion or Q Exactive

HF Orbitrap mass spectrometer (Thermo Fisher Scien-

tific). Peptides were analyzed with a 1–3 h gradient (buffer

A: 0.2% formic acid, 5% DMSO; buffer B: buffer A plus

65% acetonitrile). For mass spectrometer settings, positive

ion mode and data-dependent acquisition were applied

with one full MS scan followed by a 20 MS/MS scans.

MS1 scans were collected at a resolution of 60,000,1 × 106

AGC and 50ms maximal ion time; higher energy

collision-induced dissociation (HCD) was set to 32–38%

normalized collision energy; ~ 1.0 m/z isolation window

with 0.3m/z offset was applied; MS2 spectra were ac-

quired at a resolution of 60,000, fixed first mass of 120m/

z, 410–1600m/z, 1 × 105 AGC, 100–150ms maximal ion

time, and ~ 15 s of dynamic exclusion.

Protein identification and quantification by the JUMP

software suite

The bioinformatics processing of protein identification

and quantification were carried out with the JUMP soft-

ware suite [43–45]. In brief, MS/MS raw data were

searched against a target-decoy database to estimate

false discovery rate (FDR) [46]. We combined the down-

loaded Swiss-Prot, TrEMBL, and UCSC databases and

removed redundancy (human: 83,955 entries) to create

the database. Main search parameters were set at pre-

cursor and product ion mass tolerance (±15 ppm), full

trypticity, maximal modification sites (n = 3), maximal

missed cleavage (n = 2), static mass shift including carba-

midomethyl modification (+ 57.02146 on Cys), TMT

tags (+ 229.16293 on Lys and N-termini), and dynamic

mass shift for oxidation (+ 15.99491 on Met). Peptide-

spectrum matches (PSM) were filtered by mass accuracy,

clustered by precursor ion charge, and the cutoffs of

JUMP-based matching scores (J-score and ΔJn). The

peptide was represented by the protein with the highest

PSMs according to the rule of parsimony when one pep-

tide was matched to multiple homologous proteins [47].

Protein quantification was performed based on the re-

porter ions from MS2 using our previously optimized

method [24].

Differential expression analyses of proteome datasets

Blood contamination is a major established covariate in

tissue/biofluids proteome analysis, especially in serum/

plasma [48]. Thus we applied a robust linear regression

model for blood contamination correction [49]. The re-

sidual was then used for the following differential expres-

sion analysis except for certain blood covariates (e.g.

coagulation in serum proteome) that are biased in AD and

control groups in the small cohorts of discovery pro-

teomes. Blood contamination outlier samples were re-

moved when biased blood covariates were detected. For

instance, three outlier samples were removed in CSF due

to erythrocyte contamination. Differential expression

analyses of discovery proteomes were carried out via

the LIMMA R package [50], and multiple test correc-

tion was performed by Benjamini-Hochberg (BH) proced-

ure [51]. For individual proteome analysis, we applied

two cutoffs, including Z score transformed Log2 fold

change > 2 and FDR < 0.05 or p value < 0.05. For mul-

tiple proteome integration, Z score difference > 2 and

FDR < 0.2 were used.

Principal component analysis

Principal component analysis (PCA) was used to visualize

the differences among different sample groups in discov-

ery proteomes. Log2 transformed relative expression of all

proteins was used as features of PCA. The pairwise Eu-

clidean distance between features was calculated. PCA

was performed using the R package prcomp [52].

Integrated ranking of proteins in individual datasets

though order statistics

To integrate multiple proteome datasets from distinct

tissue/biofluids and independent studies to prioritize
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disease proteins and pathways in AD, a comprehensive

order statistics-based protein ranking was carried out

similarly as previously described [17, 18], which com-

bined N distinct sets of protein rankings to output one

integrated ranking. In brief, a total of 10 individual data-

sets from three independent deep proteomic studies

were integrated for this analysis. The ranks of proteins

were normalized by the total number of proteins in each

dataset and the integrated protein ranking was generated

by the framework of order statistics [53, 54]. Specifically,

the ranks of each data source were randomly permutated

for 1000 times to derive null Q values, and the empirical

p values were then derived from the estimated null Q

distribution. Multiple test was corrected by BH method.

The integration was carried out in a 3-step tiered man-

ner. Discovery cohorts or reference cohorts were first

separately consolidated. Proteomes of individual tissue/

biofluids were then combined into cortex, CSF, or serum

ranking. Finally, after removing proteins without any

change in CSF and serum data sets, the three ranks were

integrated into a final integrative rank. To summarize

the integrated ranking into pathway rankings, we per-

formed pathway enrichment by GSEA [55]. The value

and FDR were derived by permuting the proteins sets

for 1000 times in a core pathway extracted from GO,

KEGG, and Hallmark. Pathways with FDR < 0.05 were

accepted as enriched pathways.

TOMAHAQ targeted MS validation assay

The TOMAHAQ analysis was executed essentially the

same as the previous study [25] using an established

protocol [56]. The selected AK2 and PCK2 peptides

were synthesized, purified, and labeled by a TMT0 re-

agent from Thermo Fisher Scientific, and were then

spiked into the TMT11-labeled pooled samples with op-

timized quantities. These labeled synthetic and target

peptide mixture were analyzed on a Fusion Orbitrap

mass spectrometer following the same steps applied in

the previous biomarker study [25]. Acquired targeted

MS3 level quantification were compared with the ori-

ginal discovery MS analyses. Finally, Pearson correlation

between the TOMAHAQ and the discovery MS assays

were carried out to confirm the validity of these bio-

marker candidates.

ELISA validation assay

GPNMB protein levels in the CSF samples from 7 AD

and 7 healthy controls were detected by human

Osteoactivin (GPNMB) ELISA kit (RayBiotech, US).

CSF samples were diluted 3 folds with the diluent

buffer before the assay. ELISA was carried out in ac-

cordance with the manufacturer’s manual. Student’s t-

test was applied for the DE analysis between AD and

Ctl groups, and Pearson correlation was performed to

compare the quantification between ELISA and the

discovery MS assay.

Results
Comprehensive integration of ultra-deep AD proteomes

in cortex, CSF and serum

To systematically investigate AD biofluid biomarkers

that are associated with AD pathogenesis, we per-

formed comprehensive integrated analyses of 10 inde-

pendent AD proteomic datasets covering 5 ultra-deep

discovery datasets and 5 deep reference datasets from

brain cortex, CSF and serum (Table 1). The cortex

proteome consists of 2 discovery cohorts and 2 refer-

ence cohorts. The CSF proteome consists of 1 discov-

ery cohort and 3 reference cohorts. The 5 reference

datasets were mined from 2 independent biofluid

proteome studies of AD [33, 34]. The integrative ana-

lyses were carried out via a CSF-centric manner, and

datasets were assigned with labels from i to x (Table

1, Fig. 1a). In total, we analyzed 17,541 proteins (13,

216 genes) from 365 AD, MCI and healthy control

cases (Fig. 1a), representing the most comprehensive

AD proteomic data to our knowledge.

We first examined the proteomic data quality of our 5

discovery datasets from cortex, CSF and serum (Supple-

mentary Table S1, S2, S3, S4 and S5). It appears that the

AD and control samples are distinguishable by principle

component analysis of the entire proteomic datasets

(Fig. 1b). We next examined the profiling depth of these

proteomic datasets. Ultra-deep proteomic profiling was

achieved through our newly established pipeline, which

combines undepleted biofluid sample processing, multi-

plexed tandem-mass-tag labeling, extensive two-

dimensional liquid chromatography fractionation and

high-resolution tandem mass spectrometry (termed

TMT-LC/LC-MS/MS) [18, 25]. As a result, our cortex

proteome (13,833 proteins from cortex datasets i and ii)

can cover 86% of the expressed cortex transcriptome

based on the human protein atlas database [57] (Fig. 1c).

Our CSF discovery proteome (5941 proteins in dataset v)

covers 80 and 86% of reference study 1 (2731 proteins in

dataset vi) and reference study 2 (2025 proteins in dataset

viii), respectively, while the reference studies 1 and 2

cover only 37 and 29% of our CSF proteome. Similarly,

our serum discovery proteome was compared with two

recent AD serum proteome studies [58, 59]. Our dataset

(4826 proteins in dataset x) covers 63 and 89% of the two

reference datasets (560 and 510 proteins), respectively,

while the reference datasets cover only 7 and 9% of our

proteome (Fig. 1d). Considering the low coverage of the

two human serum datasets, we did not use them in our

analysis. Together, these comparisons confirm the high

quality of our analyzed proteomes, highlighting the

deep coverage of the AD tissue/biofluid proteomes.
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Ultra-deep CSF proteome profiling identifies evident

mitochondrial protein reduction in Alzheimer’s disease

AD CSF biomarkers have been extensively explored in

shallow coverage due to technical challenges. Although

many biomarkers have been proposed, most of them

cannot be reproducible across laboratories; new proteo-

mics techniques that can support in-depth profiling are

urgently needed for biomarker studies. To explore novel

AD biomarker candidates in an ultra-deep proteome

setting, we recently developed a new in-depth biofluid

profiling pipeline [25] and applied it to the analysis of 20

CSF samples. In total, we quantified 5941 unique pro-

teins with a false discovery rate (FDR) of 1% in 11 AD

and 9 healthy control cases. Three sample outliers were

removed due to blood contamination. DE analysis was

carried out through LIMMA R package, resulting in 355

DE CSF proteins (Z value of log2Ratio > 2 and FDR <

0.05, Fig. 2a). Our ultra-deep CSF proteome identified

Fig. 1 Comprehensive integration of ultra-deep cortex, CSF and serum proteome datasets for biomarker analyses in Alzheimer’s disease. a

Workflow for data integration. The human brain cortex proteomes consist of 4 datasets including 2 discovery cohorts (data i and ii) that were

validated by 2 reference cohorts (data iii and iv). The human cerebrospinal fluid (CSF) proteomes consist of 4 individual datasets including one

discovery cohort (data v) that was validated by 3 reference cohorts (data vi, vii, viii). Differential expression (DE) of CSF proteome was carried out

through LIMMA R package, and then integrated with cortex proteome. Next, the human CSF proteome was compared with mouse CSF (data ix).

Finally, the cortex and CSF proteomes were integrated with the serum proteome (data x). b Principle component analyses (PCA) of discovery

proteomes. Dot plots show two-dimensional principle component analyses of all quantified proteins in the representative discovery datasets

including human cortex (ii), Human CSF (v), and human serum (x). Protein expression values of all datasets were log2-transformed for PCA

analyses. c Advanced tissue proteome profiling pipeline achieves ultra-deep proteome coverage in cortex. The unique proteins quantified in the

cortex discovery cohorts were combined and then compared to the cortex transcriptome with consensus normalized expression (NX) values > 1

in the Human Protein Atlas database. d Advanced biofluid proteome profiling platform achieves ultra-deep proteome coverage in human CSF

and serum. The CSF proteome was compared to the two deepest MS-based CSF proteome studies in AD so far, Reference study 1 (data vi,

Higginbotham L, BioRxiv, 2019) and Reference study 2 (data viii, Sathe G, Proteomics Clin Appl. 2019), similarly the serum proteome data was

compared to the two recent MS-based AD serum protein biomarker studies, Reference study 3 (Ashton N, Science Advances, 2019) and

Reference study 4 (Lan J, Journal of Proteome Research, 2018)
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Fig. 2 Ultra-deep CSF proteome profiling identifies evident mitochondrial protein reduction in Alzheimer’s disease. a Workflow for CSF proteome

analysis. b Ultra-deep CSF proteome unveiled evident decrease of mitochondrial proteins in AD. The X-axis of the volcano plot for all quantified

CSF proteins shows the Z score transformed log2 level fold changes comparing AD to Ctl. Y-axis shows the -log10 level FDR value. Previously

reported AD CSF biomarkers are plotted in black. Top DE proteins with FDR < 0.01 and Z value < − 5 are plotted in red. Red dashed lines indicate

the DE cutoff of FDR < 0.05 and Z score difference > 2. c Majority of top DEs are mitochondrial proteins showing decreased level in AD. Heatmap

shows the relative expression of top DE proteins with Z score difference > 5 and FDR < 0.01 comparing AD to Ctl, these DE proteins are classified

into distinct groups (a-e) according to their mitochondrial functions as indicated on the right side of the heatmap. d Pie chart shows the

mitochondrial functional groups classified in panel c. The number of proteins in each subgroup is labeled. e Deep profiling depth is a

prerequisite for confident detection of evident mitochondrial protein changes. CSF proteins are plotted as a function of their concentration rank

(x-axis) and their mean log10 level TMT intensity in all samples (y-axis). Top DE mitochondrial proteins with Z score difference > 5 and FDR < 0.01

were plotted in red. The median concentration rank of these mitochondrial proteins is labeled and marked by dashed red line
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most of previously reported AD CSF biomarker candi-

dates (12 out of 13, Supplemental Table S6), however,

the majority of them displayed no statistical significance

except SMOC1 and TGFB2, which may be due to the

small sample size in our pilot study and/or the small

changes of these proteins in AD (Fig. 2b). Nevertheless,

we still observed 68 top DE proteins, even under a

highly stringent threshold (Z value > 5 and FDR < 0.01).

Remarkably, 67 out of the 68 top DE proteins are mito-

chondrial proteins (Fig. 2b, c), and most of them are

tightly correlated with the others (Fig. S1). These pro-

teins are known to have functional roles in supporting

energy metabolism, mitochondrial biogenesis, reactive

oxygen species reduction, and mt DNA repair (Fig. 2d).

This correlated mitochondrial protein decrease in AD

is striking but was barely reported in previous CSF stud-

ies. To understand why these proteins were missed in

previous studies, we ranked all quantified proteins ac-

cording to their abundance, and found that these top DE

mitochondrial proteins were presented in the CSF at low

abundance, with a median abundance rank of 2960 (Fig.

2e). We then performed systematic investigation of the

DE proteins using distinct proteome coverage. If the

coverage is as shallow as the depth of 500 proteins, it is

sufficient to detect many previously reported AD bio-

marker candidates but miss all of these top mitochon-

drial DE proteins. While a small fraction of these

mitochondrial proteins starts to show up with the depth

of 2000–3000 proteins, the majority of these proteins

are revealed with the depth of at least 4000 proteins

(Fig. S2). Thus, ultra-deep profiling is a prerequisite to

detect these protein changes in AD CSF proteome. In

summary, our CSF proteomic analysis covers the most

of previously reported AD CSF biomarkers and unveils

evident mitochondrial protein reduction in the AD

patients.

Integration of CSF and cortex proteomes discovers

consistent CSF biomarkers in Alzheimer’s disease across

independent studies

To investigate CSF protein changes that are associated

with AD pathology, we systematically integrated 4 co-

horts of cortex and 4 cohorts of CSF datasets from three

independent MS-based proteome profiling studies

(Fig. 3a). The cortex proteome covered majority of pro-

teins quantified in the CSF (Fig. 3b). We applied a cutoff

(Z value > 2 and FDR < 0.2) for all datasets, resulting in

1261 DE proteins in the CSF and 245 DE proteins in the

cortex; 44 out of them were changed in both proteomes

(Figs. 3b-d), with most of them showing increases in

both cortex and CSF (e.g. TGFB2, IGFBP5, and SLC5A3)

or increase in the cortex but decrease in CSF (e.g. DPYD

and S100A4, similar to the expression pattern of Aβ42

peptide [60]). Interestingly, MDK, CTHRC1, and Aβ,

which were reported as the most significantly elevated

proteins in our AD brain cortex study [18], were not sig-

nificantly changed in the small cohort of CSF samples

(Fig. 3c). Superimposing these 44 proteins along with

APP and TAU onto STRING protein-protein interaction

database [61] elucidated 4 protein interaction modules

associated with amyloid pathology and mitochondrial

functions, while no TAU related protein interaction

module was identified with this small list (Fig. 3e). Not-

ably, most of these module proteins are correlated with

the amyloid level (Fig. S3).

To evaluate the reliability and reproducibility of these

44 DE proteins across laboratories, we compared our

CSF proteome with two independent MS-based CSF

proteomic studies [33, 34]. SMOC1 and C1QTNF5

showed up in all three independent studies. OLFML3,

SPON1, and SLIT2 stood out in this study and reference

study 1 (data vi) [33]. GPNMB emerged in this study

and reference study 2 (data viii) [34] (Fig. 3c, d). All six

proteins were reported to be tightly associated with AD

pathogenesis [18]. While, SMOC1 and GPNMB have

been reported as putative CSF biomarkers in previous

studies [18, 33, 62], C1QTNF5, OLFML3, SPON1 and

SLIT2 are novel candidates that show reproducibility

across distinct laboratories and pipelines (e.g. depleted

vs undepleted CSF). Notably, the expression level of all

six proteins started to raise in the cortex of mild cogni-

tive impairment patients, implicating their potential as

early diagnosis biomarkers for Alzheimer’s disease

(Fig. 4a). Moreover, our CSF proteome profiling also dis-

covered potential AD biomarkers of low abundance that

were beyond the detection limits of other studies. For in-

stance, the abundance rankings of SLC5A3, BBOX1,

CAMK4, and CAMKK2 in the CSF were 3039, 3040,

4191, and 5787, respectively, all beyond the detecting

limits of previously reported studies (Figs. 3d, 4b). The

levels of CAMK4 and CAMKK2 were decreased in both

cortex and CSF. Finally, HTRA1, a possible genetic risk

factor for AD and an enzyme that degrades ApoE4 and

APP [63, 64], was also revealed as a novel DE protein in

our CSF proteome (Fig. 4b). Collectively, the integration

of CSF and cortex proteomes unveils consistent CSF

biomarker candidates in AD.

Integration of human and mouse CSF proteomes

identifies consistent mitochondrial protein decrease in

Alzheimer’s disease

CSF biomarkers that are conserved in human and mouse

models are valuable for the AD community to explore

AD-related molecular mechanism. Here we conducted

proteomic analysis to identify Aβ-induced protein

changes in CSF from 5xFAD mouse, in which mutant

APP and PSEN1 are overexpressed to generate a high

level of Aβ peptide. An 11-plex TMT-LC/LC-MS/MS
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Fig. 3 Integrated analysis of cortex and CSF proteomes unveils consistent CSF biomarkers in AD across independent studies. a Scheme for the

integration of cortex and CSF proteomes. b Venn diagram shows overlap of quantified proteins in cortex discovery cohort (data i) and CSF

discovery cohort (data v). c Integration of cortex and CSF proteomes identifies consistent CSF biomarkers in AD across independent studies.

Proteins quantified in both cortex and CSF are plotted as a function of their Z score comparing AD to Ctl in cortex (x-axis) and their Z score

comparing AD to Ctl in CSF (y-axis). Fourty-four DE proteins with Z score difference > 2 and FDR < 0.2 in both proteomes are plotted in black.

Proteins consistently showed up as AD biomarkers in all three independent CSF studies are labeled in red, proteins stood out in this study and

reference study 1 (Higginbotham L, BioRxiv, 2019) are labeled in blue, and proteins emerged in this study and reference study 2 (Sathe G,

Proteomics Clin Appl. 2019) are labeled in turquoise. Red dashed lines indicate Z value difference > 2 in CSF and cortex. d Heatmap shows Z

score transformed log2 level fold changes and -log10 FDR values of the 44 DE proteins comparing AD to control in cortex and CSF proteome

datasets. e Integration of DE proteins and protein-protein interaction (PPI) database unveils enrichment of amyloid pathology and mitochondrial

functions. Protein-protein interaction modules were derived from superimposing the 44 DE proteins along with APP and TAU on STRING PPI

database. The interaction modules were build based only on the most confident interaction sources including experiments and database. The

default statistic criteria of STRING with a cutoff of minimum interaction score of 0.4 was applied to derive PPI modules. The pairwise PPI

interactions scores are displayed next to the edges
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analysis (6 samples from 5xFAD and 5 samples from

age-matched wild type mice) allowed the quantification

of 1056 mouse CSF proteins, with 85 DE proteins (Z

value > 2 and p value < 0.05, Fig. 5a, b). Eleven out of

these 85 proteins were overlaid with the human CSF DE

proteins (Fig. 5c). Strikingly more than 50% of these

Fig. 4 Expression levels of reported and novel AD CSF biomarker candidates in cortex and CSF proteomes. a Dot plots overlaid onto boxplots

showing expression levels of biomarker candidates that are consistently detected in at least two independent MS-based AD CSF proteome

studies in the cortex and CSF proteomes. The p values of the DE analyses between AD and healthy control are displayed on the top of the plots.

DE analyses were carried out through the LIMMA R package. X-axis shows sample groups, y-axis indicates Log2 transformed TMT intensity.

Boxplot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, expression levels of each individual

samples. b Dot plots overlaid onto boxplots showing expression levels of novel biomarker candidates detected in our ultra-deep proteome in

cortex and CSF datasets. The p values of the DE analyses between AD and healthy control are displayed on the top of the plots. DE analyses

were carried out through the LIMMA R package. X-axis shows sample groups, y-axis indicates Log2 transformed TMT intensity. Boxplot center line,

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, expression levels of each individual samples
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consistent DEs are from mitochondria, suggesting that

mitochondrial dysfunction is highly conserved in AD

and the 5xFAD mouse. Many of these mitochondrial

proteins were changed in AD cortex with an expression

pattern similar to Aβ42 peptide (i.e. increase in cortex

and decrease in CSF), such as HADHA and CYB5R3

(Fig. 5c, d). We also discovered C4B and SPP1 that are

known to be tightly associated with AD pathogenesis

among the top DE proteins in the mouse CSF (Fig. 5b).

We detected the increase of C4B and SPP1 in AD cortex

but failed to detect their significant changes in our small

human CSF cohort (Fig. 5e). In summary, the integrative

analysis of mouse and human CSF elucidated Aβ-

induced protein changes in mouse CSF and unveiled

consistent mitochondrial disorder in AD in both human

and mouse CSF.

Integration of CSF, serum, and cortex proteomes

indicates consistent mitochondrial signatures in

Alzheimer’s disease

Compared with CSF biomarkers, blood-based bio-

markers are more promising for first-line diagnosis and

are urgently needed. We systematically compared the

CSF, serum and cortex proteomes to investigate AD

pathogenesis signatures. An ultra-deep serum profiling

of 6 AD and 5 healthy control cases was performed to

quantify 4826 unique proteins [25]. As the serum sam-

ples are often contaminated by proteins from red blood

cells, we first corrected this variable by a linear regres-

sion model-based approach [49], and then defined 396

DE proteins (Z value > 2 and p value < 0.05). Compari-

son with DE proteins in CSF and cortex led to 94 DE

proteins in serum and cortex, 107 DE proteins in serum

and CSF, and 37 proteins in all three layers of pro-

teomes. Strikingly, 22 out of these 37 proteins are mito-

chondrial proteins (Fig. 6a), highlighting mitochondrial

changes as the most consistent AD signature across cor-

tex, CSF and serum.

The DE analysis in serum identified several AD rele-

vant changes among the top DE proteins (e.g. GGT1

and ANO2) (Fig. 6b). For example, a study has reported

a linear association between serum GGT concentration

and the risk of AD [65]. Interestingly, 4 out of the 6

mitochondrial proteins that decreased in AD in both hu-

man and mouse CSFs were also reduced in the AD

serum (i.e. ALDH6A1, ETFB, SOD2, and PRDX3),

highlighting their robustness as the AD biofluid signa-

ture (Fig. 6b, Fig. S4). We next investigated proteins that

were differentially expressed in both CSF and serum.

Fifty-two of total 107 DE proteins were mitochondrial

proteins, showing decreased levels in AD in both serum

and CSF (Fig. 6c). We further examined the total 94 DE

proteins in serum and cortex and found that most of

these proteins were increased in cortex and decreased in

serum, including 21 mitochondrial proteins (Fig. 6d),

which is reminiscent of the distribution pattern of Aβ

peptides (higher in cortex and lower in serum in AD

cases) [66]. The accumulation of proteins in the cortex

may be resulted, at least partially, from prominent pro-

tein aggregation in the brain. Indeed, we previously iden-

tified the deposition of mitochondrial components in the

profiling of aggregated proteome in AD brain [67]. Inter-

estingly AD-correlated protein panel of CTHRC1, GFAP

and OLFM3 in brain [18] were revealed as top DE pro-

teins in AD serum (Fig. 6d, e). Together, the integrated

analysis shows mitochondrial protein changes as the

most consistent AD signature carried over from brain

cortex to CSF and serum.

Integrating the rankings of ten individual datasets

through order statistics prioritizes top AD protein

signatures

Integration of multiple dimensions of data has proven

powerful for prioritizing core disease proteins and path-

ways [17, 18, 49]. Here we extended this idea by combin-

ing datasets from distinct AD tissue/biofluids and

independent studies to rank disease proteins and path-

ways using order statistics [53] and gene set enrichment

analysis (GSEA). The integration was carried out in a 3-

step manner. Specifically, discovery cohorts or reference

cohorts were separately combined. Proteomes of individ-

ual tissue/biofluids were then combined into cortex,

CSF, or serum datasets for ranking. Finally, the three

ranks were integrated into a final rank (Fig. 7a, Supple-

mental Table S7). SMOC1 and tau proteins were ranked

the top 2 of the list, consistent with many previous AD

biomarker studies. Other proteins such as GFAP, NTN1,

OLFM3, NPTX2, C1QTNF5, C4B, and SPP1 were also

showed up as top proteins, agreeing with our current

understanding of AD pathogenesis. Moreover, mito-

chondrial proteins were ranked high in the list as well

(e.g. SUCLG2, PRDX3, CPT2, HSD17B10, ALDH6A1,

GATM, and SOD2) (Fig. 7b). We prioritized signaling

pathways by GSEA and identified 10 major pathways

(FDR < 0.05; Fig. 7c) out of the 16 core pathways de-

tected in the deep AD cortex study [18]. Collectively

these 10 pathways can be classified into 4 major categor-

ies including mitochondrial functions, inflammation,

amyloid and tau pathway, and synaptic function. Finally,

we performed two alternative validation assays to con-

firm the MS discoveries. ELISA assay was used to

analyze the CSF samples of 7 healthy controls and 7 AD

cases, confirming the increase of the candidate bio-

marker GPNMB in the AD samples (Fig. 8a, b). Due to

the limitation of available ELISA kits, we also imple-

mented the TOMAHAQ-based targeted MS assay to val-

idate the change of two mitochondrial proteins (AK2

and PCK2) in the CSF samples. In this targeted MS
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assay, tryptic peptides in AK2 and PCK2 were synthe-

sized as internal standards to guide the quantification of

native corresponding peptides (Fig. 8c) [56]. Consist-

ently, both mitochondrial proteins were confirmed to

be reduced in the CSF AD samples (Fig. 8d-f). To-

gether, we prioritized a list of promising AD signa-

tures through a systems biology approach. These

rich data resources will serve as a foundation for fu-

ture large-scale biomarker validation studies for the

AD community.

Discussion
Recent breakthroughs, especially in-depth and large-

scale omics studies of brain tissue, have dramatically ex-

tended our discovery of molecular pathogenesis in AD

[18, 49]. New dysregulated genes/proteins/pathways have

been increasingly identified and linked to AD pathogen-

esis, suggesting of multifactorial pathologies in AD.

However, in-depth proteome discovery in the proximal

body fluids (e.g. CSF and serum/plasma) is still rare,

largely due to technical challenges to address the com-

plexity of CSF and serum/plasma proteomes. The rela-

tionship between diverse brain pathologies and protein

alterations in body fluids is not fully explored at the

proteome level. Furthermore, the variable results ob-

tained from studies evaluating proteins involving in

amyloid and tau pathology as disease biomarkers under-

lined the importance of novel biofluid biomarkers [68].

To meet the challenges to analyze CSF and serum/

plasma proteomes in AD, we have recently developed an

in-depth biofluid profiling platform [25] that combines

un-depleted biofluid sample processing, multiplexed

TMT labeling, extensive two-dimensional LC fraction-

ation and high-resolution tandem mass spectrometry.

The platform enables the quantification of 5941 and

4826 proteins in CSF and serum, respectively, providing

the most in-depth biofluid proteome landscape so far for

the AD community.

In addition to the issue of proteome coverage, repro-

ducibility is often another concern in many of previously

published AD biomarker studies. Even some novel CSF

protein biomarker candidates have been proposed, many

of them, however, are not successfully repeated across

different laboratories, distinct proteomic platform, and/

or independent cohorts, raising a substantial bottleneck

for selecting reliable candidates for large-scale validation.

To address this issue, we systematically integrated our

ultra-deep CSF proteome with two other discovery-

driven deep CSF proteomic studies in AD, resulting in 6

biomarker candidates that were repeatedly emerged in at

least two independent studies including SMOC1,

C1QTNF5, OLFML3, SPON1, SLIT2 and GPNMB. Re-

markably, all of them were reported to be highly linked

to AD pathogenesis in brain tissue [18]. SMOC1 has

been shown to accumulate in plaque structures of AD in

brain. The expression levels of SMOC1, OLFML3,

SLIT2, and GPNMB were highly correlated with the Aβ

level in AD brain, and these findings were also recapitu-

lated in the 5xFAD mouse model [18]. Consistently,

SMOC1 and GPNMB were reported to be CSF bio-

marker candidates for AD in other recent biomarker

studies [62, 69]. These proteins represent the most

promising CSF biomarker candidates of AD for future

large-scale studies.

Mitochondrial function and energy metabolism are

known to be severely compromised processes repeatedly

reported in AD [18, 70]. Emerging lines of evidence sug-

gest the growing importance of mitochondria damage

and energy defects in AD pathogenesis [70], and mito-

chondrial deficit is proposed as a major hallmark of AD

pathogenesis besides amyloid and tau pathologies [70].

Studies in a C. elegans model expressing pan-neuronal

human Aβ show that metabolic stress is a primary

(See figure on previous page.)

Fig. 5 Integration of human and mouse CSF proteomes identifies consistent mitochondrial protein decrease in Alzheimer’s disease. a Summary

of the DE analysis of mouse CSF proteome, and its integration with human CSF proteome. The analysis was carried out in 4 steps. 1) 1056

proteins were quantified in 6 5XFAD and 5 WT groups that were pooled from 32 mice. 2) 85 proteins were identified as DE proteins with a Z

score difference > 2 and p value < 0.05. 3) 11 out of these 85 proteins are differentially expressed in both human and mouse CSF samples. 4) 6

out of these 11 DE proteins are mitochondrial proteins. b Volcano plot for quantified mouse CSF proteome. X-axis shows the Z score transformed

log2 fold changes comparing AD to Ctl. Y-axis shows the -log10 p value. Top DE proteins in mice CSF are plotted in black and labeled. Proteins

that are differentially expressed in both human and mouse CSF are plotted in red, and mitochondrial proteins are further labeled. Red dashed

lines indicate the DE cutoff of p value < 0.05 and Z score difference > 2. c Heatmap shows Z score, −log10 FDR value or p value of the 11 DE

proteins in mouse CSF, human CSF, and human cortex proteomes. d Expression levels of representative Mitochondrial DE proteins in human

cortex, human CSF and mouse CSF. Dot plots overlaid onto boxplots showing expression of representative DE proteins in panel c and d. The p

values of the DE analyses between AD and healthy control are displayed on the top of the plots. DE analyses were carried out through the

LIMMA R package. X-axis shows sample groups, y-axis indicates Log2 transformed TMT intensity. Boxplot center line, median; box limits, upper

and lower quartiles; whiskers, 1.5x interquartile range; points, expression levels of each individual samples. e Expression levels of representative

top DE proteins in human cortex and mouse CSF. Dot plots overlaid onto boxplots showing expression of representative DE proteins in panel c

and d. The p values of the DE analyses between AD and healthy control are displayed on the top of the plots. DE analyses were carried out

through the LIMMA R package. X-axis shows sample groups, y-axis indicates Log2 transformed TMT intensity. Boxplot center line, median; box

limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, expression levels of each individual samples
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Fig. 6 Integration of CSF, serum, and cortex datasets elucidates consistent mitochondrial signatures in Alzheimer’s disease across proteomes. a

Summary of the DE analysis of serum proteome, and its integration with CSF and cortex proteome. Four thousand eight hundred twenty-six

proteins were quantified in AD serum samples. Three hundred ninety-five proteins were identified as differentially expressed proteins with a Z-

score transformed log2 fold difference > 2 and p value < 0.05. One hundred seven out of these proteins are differentially expressed in both serum

and CSF proteomes, 94 of these proteins are differentially expressed in both serum and brain proteomes, 37 proteins are differentially expressed

in serum, CSF, and Cortex proteome. Twenty-two out of the 37 DE proteins are mitochondrial proteins. b Deep serum proteome analysis

identifies decrease of mitochondrial proteins. The X-axis of the volcano plot shows the Z score transformed log2 fold change comparing AD to

Ctl and Y-axis indicates -log10 p value. Top DE proteins in serum are plotted in black and labeled. Proteins that are differentially expressed in

human CSF, mouse CSF, and human serum proteomes are plotted in red and labeled. Red dashed lines indicate the DE cutoff of p value < 0.05

and Z value difference > 2. c Integration of serum and CSF proteomes identifies consistent and massive mitochondrial protein decrease. Proteins

that are quantified in both serum and CSF are plotted as a function of their Z values comparing AD to Ctl in CSF (x-axis) and in serum (y-axis).

Fifty-five non-mitochondrial DE proteins with Z value difference > 2 and FDR < 0.2 in CSF or p value < 0.05 in serum are plotted in black, and 52

mitochondrial DE proteins are plotted in red. Names of two mitochondrial proteins that were applied for TOMAHAQ targeted MS assay (Fig. 8)

were labeled. Red dashed lines indicate Z value difference > 2 in CSF and serum. d Integration of serum and cortex proteomes unveils

mitochondrial protein changes and amyloid-correlated protein panel. Proteins that are quantified in both serum and cortex are plotted as a

function of their Z value change comparing AD to Ctl in cortex (x-axis) and in serum (y-axis). Seventy non-mitochondrial DE proteins with Z value

difference > 2 and FDR < 0.2 in cortex or p value < 0.05 in serum were plotted in black. Three top DE proteins that were reported in the amyloid-

correlated protein panel in previous cortex study were labeled.Twenty-four mitochondrial DE proteins are plotted in red. Red dashed lines

indicate Z value difference > 2 in serum and cortex. e Expression levels of representative DE proteins in cortex and serum. Dot plots overlaid onto

boxplots showing expression of representative DE proteins in cortex, CSF, and serum proteomes. The p values of the DE analyses between AD

and healthy control are displayed on the top of the plots. DE analyses were carried out through the LIMMA R package. X-axis shows sample

groups, y-axis indicates Log2 transformed TMT intensity. Boxplot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x

interquartile range; points, expression levels of each individual samples
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pathogenic event [71] and impaired mitochondrial cal-

cium efflux contributes to disease progression [72].

Enhanced mitochondrial proteostasis may reduce

amyloid-β proteotoxicity [73] and NAD+ supplementa-

tion normalizes key Alzheimer’s features and DNA dam-

age responses in an AD mouse model [74].

Mitochondria have gradually been recognized as a major

novel therapeutic target in AD [70]. In this study, we

identified consistent and evident mitochondrial protein

decreases in AD CSF and serum samples, which have

rarely reported until the availability of the deep CSF/

serum profiling (our reference datasets) [25, 33]. This is

Fig. 7 Integrating the protein rankings in individual datasets though order statistics prioritizes top AD signatures. a Workflow for tiered

integration of individual proteome ranking by order statistics. Rank of each individual dataset was integrated by discovery or reference cohorts

separately first, and was then combined into cortex, CSF, or serum ranking. Lastly, the three ranks were integrated into a final integrative ranking.

b Top protein signatures of Alzheimer’s disease prioritized through the integrated ranking. Heatmap shows the ranking of top AD signature

proteins with a final integrated ranking p value < 0.001 in each of the ten datasets. Protein ranks are labeled on the right side of the heatmap.

The rankings of proteins are shown by boxes of two-color gradients, with missing values indicated by grey boxes. c Mitochondrial function is the

most significantly enriched pathway in the integrated ranking. Pathways are enriched by GSEA and further categorized into four groups. The

barcode plots represent the positions of proteins in the sorted integrated ranking
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understandable because, as our analysis suggested, high

proteome coverage is a prerequisite to detect mitochon-

drial changes due to their low abundance, explaining

why they are missing in numerous previous biofluid

studies of shallow proteome coverage. Although the

causative factors of mitochondrial dysfunction in AD

are not fully understood, we believe that the mito-

chondrial changes in the cortex, CSF and serum are

highly associated in AD based on several lines of

evidence. Mitochondrial changes can co-occur with

amyloid deposition early in the brain of asymptom-

atic cases with amyloid pathology, as well as mild

cognitive impairment subjects [18, 33, 75]. Amyloid

peptides have been reported to directly aggregate in

mitochondrial compartment [75, 76]. Recently, vas-

cular deposits of Aβ peptides (amyloid angiopathy)

are increasingly recognized as a common pathology

in AD cases, supporting that Aβ peptides circulate

within the interstitial fluid, including CSF, and blood

vessels through perivascular (e.g. lymphatic) drainage

pathways during the crosstalk between the brain and

the vascular system [77]. As Aβ can form vascular de-

position, it is likely that Aβ could lead to mitochon-

drial damage in the vascular system. This local Aβ-

induced mitochondrial damage may partially address

an important question – where is the origin of the

identified mitochondrial proteins? Interestingly, emer-

ging data suggest that mitochondria can be released

into extracellular space, and transferred between cells

[78], although mitochondria have traditionally been

known as the intracellular powerhouse. For instance,

neurons can transfer damaged mitochondria to astro-

cytes for disposal and recycling, and astrocytes can

also release mitochondria to neurons under stress

[79]. Astrocytic mitochondria may also be released

to the CSF as a biomarker for evaluating brain integ-

rity, with low CSF mitochondrial quantity and activ-

ity indicating brain damage [80]. Nevertheless, the

origin of the mitochondria proteins is worth future

investigation. We acknowledge that our results only

indicate a correlation between mitochondria changes

in proximal body fluids and brain lesions in AD.

Further studies are clearly required to understand

the mechanism behinds the associated mitochondrial

protein changes in the cortex, CSF and serum in

AD.

Here we demonstrate that a mitochondrial signature is

the most significant and consistent changes detected

across human brain cortex, CSF and serum in AD, and

it has been recapitulated in the 5XFAD mice as well. It

has been mentioned that these mitochondrial changes

can only be confidently detected in an ultra-deep prote-

omic setting. This exciting finding provides a strong ra-

tionale not only for the development of disease

diagnostic biomarkers but also the implementation of

novel prognostic biomarkers for therapeutic strategies

targeting mitochondria in AD.

Conclusions
In summary, we quantified 13,833, 5941, and 4826 pro-

teins from human cortex, CSF and serum respectively

through our newly established TMT-LC/LC-MS/MS

platform. We showed evident changes of many mito-

chondria proteins across AD cortex, CSF, and serum.

Through a series of integrated analyses of 10 AD tissue

and biofluids proteomic datasets from three independent

deep proteomic studies, we revealed a number of AD

biomarker candidates of high confidence, providing a

rich data resource not only for selecting reproducible

candidates for large-scale biomarker validation, but also

for exploring protein-mediated cortex-CSF-blood com-

munication during disease progression to reveal disease

mechanism that may guide the development of novel

therapeutic strategies.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s13024-020-00384-6.

(See figure on previous page.)

Fig. 8 Validation of MS discoveries by ELISA and TOMAHAQ assays a) Validation of MS discoveries by ELISA assay. Dots overlaid onto boxplots

showing expression level of the AD biomarker candidate GPNMB in CSF quantified by ELISA assay. Seven healthy control and 7 AD samples were

analyzed. The p value of the DE analysis between AD and healthy control by Student’s t-test is displayed on the top of the plots. X-axis shows

sample groups, y-axis indicates the ELISA measurement of GPNMB concentration in CSF (ng/ml). Boxplot center line, median; box limits, upper

and lower quartiles; whiskers, 1.5x interquartile range; points, expression levels of individual samples. b Scatter plot shows the correlation

between the ELISA and the discovery MS data. Pearson correlation coefficient (r) is displayed. X-axis shows the Log2TMT ion intensities of GPNMB

quantified by MS. Y-axis indicates the CSF concentration of GPNMB (ng/ml) quantified by ELISA. c Workflow for the TOMAHAQ targeted MS

validation assay. A synthetic trigger peptide was spiked into the mixture of multiplexed samples to validate the quantification of a candidate

biomarker peptide. The synthetic peptide and native peptide were co-eluted, and the synthetic peptide was presented at high concentration,

triggering the MS instrument to quantify the native peptide by MS3 using a predefined isolation offset. MS3 ions were produced by pre-

determined y or b ions from targeted MS2 spectra, and the resulting reporter ions were applied for the quantification of the targeted biomarker

candidate. d Comparison of the TOMAHAQ results and the discovery MS data. e Scatter plot shows the correlation between the TOMAHAQ and

the discovery MS results of AK2 in the human CSF samples. Pearson correlation coefficient (r) is displayed. X- and Y- axes indicate the Log2 TMT

intensities from the discovery MS and TOMAHAQ assay, respectively. f Scatter plot shows the correlation between the TOMAHAQ and the

discovery MS results of PCK2 in the human CSF samples
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Additional file 1: Supplementary Figure S1. DE mitochondrial

proteins are tightly correlated with each other in human CSF. S2. Ultra-

deep profiling depth is a prerequisite to detect evident mitochondrial sig-

natures presented in AD CSF. S3. PPI module proteins are highly corre-

lated with each other. S4. Mitochondrial proteins that have decreased

expression levels in the examined biofluids in both human and mouse

AD.

Additional file 2: Supplementary Table S1. Differential expression

analysis of whole proteome from Human brain cortex tissues (data i). S2.

Differential expression analysis of whole proteome from Human brain

cortex tissues (data ii). S3. Differential expression analysis of whole

proteome profiling of Human CSF (data v). S4. Differential expression

analysis of whole proteome profiling of Mouse CSF (data ix). S5.

Differential expression analysis of whole proteome from human serum

(data x). S6. Previously reported AD CSF biomarker candidates. S7.

Integrated ranking of proteins in all ten datasets
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