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Abstract—Electricity systems are undergoing unprecedented
change, with growing capacity for low-carbon generation, and
an increasingly distributed approach to network control. Fur-
thermore, the severity of climate related threats is projected to
increase. To improve our understanding of the risks from these
changes, this paper presents a novel modeling approach to as-
sess the resilience of future electricity networks to climate haz-
ards. The approach involves consideration of the: 1) evolution of
electricity networks in response to changes in demand, supply,
and infrastructure development policies; 2) implication that these
policies have on network configuration and resilience; and 3) im-
pacts of potential changes in climate hazard on network resilience.
We demonstrate the research on the National Electricity Trans-
mission System of Great Britain and assess the resilience of this
system to changes in the intensity of wind storms under alterna-
tive energy futures. The analysis shows that infrastructure policies
strongly shape the long-term spatial configuration of electricity
networks and consequently this has profound impacts on their
resilience. Though the system is resilient to wind storms under
the current climate, our analysis shows that the system fails to
meet electricity demand after an increase of only 5–10% in the
intensity and frequency of wind storms, and a 50% increase could
lead to the loss of 85% of peak winter demand. The approach
is useful for identifying and communicating potential network
risks to wider stakeholders and policy makers seeking to design
a transition toward a low-carbon, yet resilient, future electricity
systems.

Index Terms—Complex system modeling, climate change, elec-
tricity networks, infrastructure resilience, resilience assessment.
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I. INTRODUCTION

E
LECTRICITY systems are a key element of the critical

infrastructure of a modern society [1]–[3]. Reliable op-

eration of electricity systems is being challenged from several

fronts. First, electricity systems are changing rapidly as a result

of the closure of many fossil fuel plants, the increased use of

low-carbon generation, and the deployment of smart grid tech-

nologies. Second, electricity demand is expected to increase as

a result of the electrification of heating and transport systems.

This will change demand profiles, with daily peaks and troughs

likely to become exacerbated [4]. These changes not only intro-

duce complexities for system operation but, in many situations,

may require changes to the network architecture which, in turn,

can alter the reliability and resilience of an electricity system.

Furthermore, predicted changes to the climate are expected to

increase the frequency and severity of extreme weather events

such as heatwaves, floods, and wind storms [5]–[8]. In compar-

ison to other disruptive events (e.g., equipment failure or ma-

licious attacks), weather-related hazards typically have a larger

geographical footprint and hence are more disruptive. In the

U.K., weather events are responsible for approximately half of

the energy not supplied [9]. In North America, around half of

energy supply failures and nearly three quarters of larger fail-

ures were caused by weather hazards [10]. Similar results have

also been reported in [11] and [12].

The vulnerability of electricity systems has been the subject

of past scrutiny [13]–[17], and recently a growing body of lit-

erature has sought to assess the resilience of electricity systems

to climate change and extreme weather events [18]–[22]. For

example, empirical studies [11], [23]–[26] have provided in-

sights into the historical vulnerability of a network to observed

weather conditions. Monte-Carlo simulation based approaches

have been used to model the stochastic behavior and dynamics

of electricity systems during disruptive events [17], [27]–[29].

However, most previous research has used artificial or simplified

network structures (e.g., IEEE bus-bar models) or transformed

an electricity system into a simplified form. The methods have

been rarely applied to assess the vulnerability and resilience of

large real-world electricity infrastructures to extreme weather

events. Furthermore, little consideration has been given to the

uncertainties and risks to the resilience of electricity systems

arising from infrastructure policies and changes to infrastruc-

ture networks.

To improve the understanding of how uncertainties associ-

ated with future climate may affect electricity systems, and how
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infrastructure development policies can better support the man-

agement of system risks, this research proposes an integrated

modeling framework for assessing the resilience of future elec-

tricity systems under climate hazards. The framework couples

simulations of a network growth model, a climate hazard model,

a fragility model, and a time series analysis model, with the aim

of exploring the following:

1) how electricity networks may evolve in response to

changes in demand, supply, and infrastructure policies;

2) how different network evolutionary pathways might im-

pact on the resilience of electricity systems;

3) how potential changes in the severity of climate-related

hazards may impact on network resilience.

This proof-of-concept study is implemented on the national

electrical transmission system of Great Britain (GB).

Compared to previous work, a number of advances have been

made. First, previous research focuses only on the vulnerability

of current electricity networks [14], [17], [20], [21] and does

not consider uncertainties and risks from future development

and changes. By incorporating a network growth model into

the framework, we have simulated the evolution of an elec-

tricity network under different infrastructure policies and ex-

plored the resilience implications of these policies. Second,

assessments usually assume that a network component has a

constant failure rate for a given weather condition [16], [21].

Here, a fragility approach, which better reflects the stochastic

behavior of real systems, has been employed to investigate the

failure probability of a network component. Finally, previous

research analyses the climate resilience of electricity networks

using simplified weather classifications, e.g., by dividing the

embedded space of an electricity system into a small number

of weather zones, and components within a zone are assumed

to experience same weather conditions [28]. This paper has

used a high-resolution simulation method to generate time se-

ries of weather hazards simultaneously at multiple locations,

enabling a more realistic assessment of spatially varying hazard

properties.

The results serve as a useful means for communicating po-

tential network risks to wider stakeholders and policy mak-

ers in their decisions toward adapting electricity networks to

ensure not only the security of electricity supply but also

meet decarbonization objectives. Following this introduction,

Section II describes a spatial network model to simulate the

growth of electricity systems in response to socio-economic

drivers; Section III describes the integrated modeling approach

to assessing the resilience of electricity networks to climate haz-

ards; while Sections IV and V demonstrate the model using a

case-study of the GB national transmission network, before the

conclusions are summarized in Section VI.

II. NETWORK GROWTH MODELING

Drawing from complex network theory [30], [31], a model

has been developed to represent electricity networks, and to

simulate their growth and evolution.

A. Network Modeling

A network is defined here as a pair G = {V, E}, where V is

a set of network nodes (vertices) and E is a set of edges (links)

Fig. 1. Network representation of an example electricity system, where red
nodes are generators, and others are substation nodes. Links between nodes
represent electrical lines/cables. The number next to a node indicates the amount
of electricity it generates/supplies.

that connect pairs of nodes in V and E ⊂ VXV . An electricity

system is modeled as a network with two types of nodes, i.e.,

V = VG ∪ VD , with VG as a set of nodes representing power

generators that produce the electricity required by consumers,

and VD as a set of nodes representing electricity substations that

transfer electricity among power lines, or transport electricity

to customers or systems that satisfy consumer demand. A node

in VG is defined as 〈v, xloc , yloc , CG 〉, and a node in VD is

defined as 〈v, xloc , yloc , CD 〉, where v is the label of a network

node. All nodes are attributed with spatial information xloc and

yloc to indicate their geographical location. A node in VG has

an attribute CG that indicates the amount of electricity it can

generate. A node in VD has an attribute CD that indicates the

amount of electricity it supplies to customers or to lower voltage

systems, and a node without a customer/lower voltage system

connection has VD = 0. A network link is established between

a pair of nodes if there is an electricity line connecting them.

An example power network is shown in Fig. 1.

To ensure the security and reliability of power supply, an

electricity system needs to satisfy
∑

v i ∈VG

CG
i ≥

∑

vj ∈VD

CD
j . (1)

That is, the total amount of available electricity generation is

equal or greater than the total amount of electricity demand [32].

Failure of a network component could disconnect a generating

node from the system, and therefore reduce the amount of power

that the system can generate. A loss of load occurs when the

constraint in (1) is violated. For example, if the link < v3 , v7 >
fails in the network illustrated in Fig. 1, the generator v3 will be

disconnected from the system, leading to a loss of load.

B. Network Growth

Electricity networks evolve in response to population growth,

new technologies, and policy changes. This evolution can either

take the form of re-enforcing existing network components (e.g.,

by increasing their capacity), or constructing new network com-

ponents (i.e., nodes and links). The former is relatively easy to

model, because the fundamental network topology remains the

same and only the capacity attributes of the network components
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change. The latter, which is the focus of this work, is relevant

to long-term network development and is more complex due to

the range of uncertainties associated with long-term change.

The network growth model is built upon our previous research

[33], but the key model components are summarized here. Given

an initial electricity network G (embedded within space S), the

model evolves G into future networks by taking into account

the contributions of different drivers of future network growth,

including future electricity demand and supply, network wiring

practices, and infrastructure development policies. The set of

parameters used by the model are listed as follows:

N1 the number of new generators to be added to G.

N2 the number of new substations to be added to G.

ψ(a) the electricity supply density function of S in future, and

a is a subarea of S.

φ(a) the electricity demand density function of S in future,

and a is a subarea of S.

γ scaling parameter regulating generator distribution.

δ scaling parameter regulating substation distribution.

α scaling parameter regulating node linkage.

Spatial distribution of future electricity supply ψ(a) and de-

mand φ(a), respectively, influences how new generators and

substation nodes are allocated in space. The probability of con-

structing a new generator node v in a subarea a of S is defined

as proportional to the supply density ψ(a) of a, i.e.,

P
(
v ∈ VG

)
∼ ψ(a)γ . (2)

Similarly, the probability of constructing a new substation

node u is proportional to the demand density φ(a), i.e.,

P
(
u ∈ VD

)
∼ φ(a)δ

(3)

where γ and δ are scaling parameters, with the greater the value

of γ (or δ), the more likely that v is allocated to an area of high

electricity supply (or high demand).

A new node connects to G by considering network wiring

practices and cost, and the efficiency of power flow. The proba-

bility Π(〈v, w〉) of building an edge 〈v, w〉 between a new node

v and an existing node w is

Π(<v,w>) ∼ e−
d v , w

α (4)

where dv ,w is the physical distance between v and w, and α
is a scaling parameter introduced to calibrate the connection

probability. The smaller the α, the more likely a short link will

be established, thereby reducing network construction cost. The

larger the α, the more likely a long-range link will be established,

facilitating power flow over long distances. New network links

are unable to cross an existing link, in line with power industry

practice.

Fig. 2 illustrates how the model is used to grow the network

shown in Fig. 1. Here, the network is fitted into four demand

zones a1−4 , and there is an increase of 50 MW of demand in a1 ,

then a new substation node v9 is more likely to be constructed

within this zone relative to the other zones. However, according

to (3), v9 has a few options to connect to the rest of the net-

work: connecting to v2 is the most economic choice as it is the

closest node to v9 , whilst connecting to v7 facilitates the use

of the surplus electricity in a3 and a4 , thereby improving flow

efficiency. We will demonstrate in Section IV how to configure

Fig. 2. Illustration of electricity network growth. Demand in area a1 has
increased, and v9 is introduced to meet this demand increase. It has a few
options for network connection, e.g., linkage to v2 is the most economic, and
linkage to v7 improves flow efficiency.

the model to generate future networks in response to the choices

of infrastructure policies.

III. RESILIENCE ASSESSMENT OF ELECTRICITY SYSTEM

UNDER CLIMATE HAZARDS

To assess the impacts of climate hazards on the resilience of

future electricity networks, an integrated framework has been

developed. The framework couples simulations of a climate haz-

ard model, a fragility model, and a time series network analysis

model, described as follows.

A. Hazard Modeling

Wind storms have been shown to cause the highest percent-

age of faults in electricity infrastructure [11] and are therefore

used here to demonstrate the resilience framework. This has

been achieved using a wind extremes simulator which gener-

ates time series of wind gust simultaneously at multiple loca-

tions across the U.K. [34]. Historical time series of wind gust

from ERA-Interim reanalysis data [35] are used to characterize

the space-time properties of extreme events. Storms with statis-

tically similar properties are then simulated at a pressure level

of 850 hPa (around 1.5 km above the surface) and at a spatial

resolution of 80 km. The wind fields are then downscaled by

interpolation to a finer regional model grid of 12 km spatial res-

olution and converted to surface 3-s gust speed by application

of regression models. The output of the simulator is in the form

of simultaneous correlated time series of wind gust speed at

locations specified by the user (two example wind profiles gen-

erated with the simulator are shown in Fig. 3). The simulator

reproduces the observed extreme statistics and spatial correla-

tion of extreme winds, by considering seasonal variations in the

occurrence of storms throughout the year [see Fig. 4(a)] as well

as the seasonally varying lengths and intensities of storm events

[see Fig. 4(b)–(d)].

The simulator can generate arbitrarily long time series to

enable the analysis of extreme (by definition, infrequently
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Fig. 3. Two example wind fields generated with the wind simulator showing
the spatial variability of storms in Great Britain.

Fig. 4. Distributions of observed storm characteristics (black) showing inter-
annual variability over 32 years of record, with fitted statistical model (red line).
(a) Annual storm occurrence, (b) storm duration, (c) storm maximum (850 hPa)
wind speed, and (d) storm maximum wind speed as a function of storm duration.

occurring) events at a single site, or multisite high wind speeds

that have not been observed simultaneously, but are physically

possible. Climate models are not yet able to produce reliable

projections of future extreme wind statistics because of their

coarse grid resolution relative to topographic variability. How-

ever, more atmospheric energy associated with climate change

is considered likely to increase the intensity and frequency of ex-

treme wind events [36], [37]. Here, the intensity and frequency

of wind storms are adjusted to explore the sensitivity to possible

future changes.

B. Fragility Modeling of Network Components

The resilience of individual electrical components to wind

storm is evaluated through the use of fragility curves. Strong

wind causes a number of issues in electricity systems, the

most serious being collapse of transmission towers, which are

typically distributed at intervals of a few hundred meters along

a transmission line. Wind can also directly damage the lines,

e.g., through shackle failure, or clashing of conductors or insu-

lators. In the latter cases, wind-related trips might be rectified

in a few hours; however, the restoration of an entire tower will

take considerably longer. In this study, we only consider the

collapse of an entire tower and model its resistance against

hazard with a fragility curve [38]–[40], which expresses the

failure probability of a tower as a function of wind speed. The

shape of the curve depends on the strength of the tower and

the variability of the different parameters that contribute to that

strength.

A fragility curve can be developed using a number of tech-

niques, ranging from empirical analysis of past events, profes-

sional judgment of experienced individuals, analytical methods,

or a combination of these. In this study, we have adopted the

methodology proposed in [41], which was developed for the

Federal Emergency Management Agency to produce fragility

curves for seismic hazard. Since there is insufficient data that

record wind-related failures of electricity towers in the U.K., an

analytical approach was used in this research. Structural mod-

els of the L2D towers (the most common tower in the U.K.

transmission network) were made using a commercially avail-

able structural analysis package. The modeling incorporated a

material and geometrically nonlinear analysis to find a wind

speed that would result in the collapse of a tower [42]. Uncer-

tainty associated with the different parameters that contribute

to structural resistance was considered using the approach de-

scribed in [41] where uncertainty is described by two factors,

namely:
βγ , which “represents the random variability that is observed

in the available test data from which the fragility parameters

are determined” and

βu , which “represents uncertainty that the tests represent the

actual conditions of installation and loading that a real com-

ponent in a building will experience or that the available test

data are an inadequate sample to accurately represent the true

random variability” [41].
The total uncertainty is the vector sum of the two, i.e.,

β =
√

βγ2 + βu2 . (5)

Due to the lack of observational data that can be used to

define βγ , the recommended value of βu = 0.25 is adopted

by following [41]. This estimate of the uncertainty is likely to

lead to conservative strength estimates at low wind speeds and

nonconservative estimates at high wind speeds; however, they

are unlikely to be greater than the uncertainties relating to future

scenarios. The final fragility curve used in this study for the L2D

tower is shown in Fig. 5.

C. Time Series Analysis of System Resilience

Wind storms can cover a large geographical area, have peaks

of intensity at multiple locations, and wind intensities that vary

in time. To assess the impacts of the spatio-temporal variation

of wind storms to the resilience of electricity systems, a time

series analysis approach is used to assess the resilience of both

current and future electricity networks.

At each time step t, a wind storm profile (i.e., the spatial

distribution of wind intensity) is generated, and downscaled to



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FU et al.: INTEGRATED APPROACH TO ASSESS RESILIENCE OF FUTURE ELECTRICITY INFRASTRUCTURE NETWORKS TO CLIMATE HAZARDS 5

Fig. 5. Fragility curve for L2D towers (which are commonly used in the U.K.
transmission network) after [44].

ground level as described in Section III-A. This is mapped over

the electricity network to provide a wind loading at the trans-

mission towers. Using the fragility function in Section III-B,

the wind loading is then converted into a failure probability.

A line fails if any of its supporting towers collapse and the

network link becomes inactive, disconnecting any generation

capacity, or removing any associated demand from the system.

For computational efficiency, and in line with other large-scale

system studies [27], [29], [43]–[45], the remaining connected

network components are assumed to operate under all power

flow conditions.

A collapsed tower is brought back into the system once it

has been repaired. The time required to repair an electricity

component usually varies with weather conditions, location,

and the time of failure [16], [22], [46]. In this paper, we follow

the repair model defined in [16] and [22], but simplify it and

only investigate the impacts of weather effects on the repair

time of a tower. The time to repair (TTR) of a collapsed tower

is determined as a function of wind speed and it increases with

wind speed according to

TTR = fw (w (t)) ∗ TTRnorm (6)

where TTRnorm is the repair time for an electricity tower during

normal wind conditions, and is modeled as normally distributed

random variables with mean of T̂ TRnorm and fw (w(t)) is a

weight factor due to wind which is modeled as

fw (w (t)) =

{
1, if w (t) < wnorm

1 + k∗(w (t)−wn o rm )

T̂ T Rn o rm

, if (w (t) ≥ wnorm

(7)

where w(t) is wind speed at time t, wnorm is the wind speed

threshold over which TTR is increased, and k is a coefficient

for determining how fast that TTR increases with w(t). wnorm ,

T̂ TRnorm , and k can be estimated using observed data [16],

[22]. With limited published information on past failure inci-

dents of electricity transmission towers in the U.K. that can be

used to calibrate these parameters, we have used the values of

T̂ TRnorm = 48 h, wnorm = 20 m/s, and k = 2.0 in our simu-

lation (see Section V), which are comparable to the ones used

in [42]. We understand this assumption can introduce inaccu-

racy in simulation. However, when used consistently, it provides

Fig. 6. Illustration of dynamic change of generating capacity and loss of load
occurrences for an electricity network.

us a useful means to explore the sensitivity of possible future

changes to network resilience.

A failed tower is brought back online once its repair time

has elapsed, restoring any transmission line and isolated parts

of the network, and returning any offline generation capacity.

This failure–repair dynamic causes a change in the available

generation capacity of the electricity network (see Fig. 6). The

generation capacity of the system is evaluated against the sys-

tem demand at each time step. A loss of load occurrence (LLO)

is recorded each time that the generation capacity is below the

demand. The demand can either be the daily peak load variation,

which includes the peak loads of each day, or the load duration,

which represents the hourly variation of the load [47], [48].

However, given the level of uncertainty in estimating the associ-

ated parameters in future, it would not be appropriate to express

a reliability measure to such a degree of accuracy. As such a

single constant peak demand (winter peak demand here) is used

to calculate LLO. The duration of each loss of load, LLD, is

also recorded. Expected energy not supplied, ENS, is recorded

for each loss of load, calculated as ENS = LLO∗LLD. The

above-mentioned information is recorded whenever generation

capacity is below demand, and is aggregated for each simulation

year i.

A set of metrics, calculated by averaging over the results of

N simulation years, are calculated to measure the reliability of

the electricity network. Loss of load frequency per year

LOLF =
1

N

N∑

i=1

LLOi (8)

loss of load expectation per year

LOLE =
1

N

N∑

i=1

LLDi (9)

and ENS in MWh per year [49]

EENS =
1

N

N∑

i=1

ENSi . (10)
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Fig. 7. Network representation of current NETS plotted on a backdrop of 17
regionalized electricity demand zones (winter peak demand of 2010).

IV. CASE STUDY APPLICATION TO NATIONAL ELECTRICITY

TRANSMISSION NETWORK OF THE GB

A case study of the National Electricity Transmission System

(NETS) of GB is used to demonstrate the methods described

in Sections II and III. Possible network development pathways,

under different future scenarios, are described in this section.

The results of the storm resilience assessment of the NETS are

reported in Section V.

A. Case Study Description

The NETS transmits power at high voltages (between 132 and

400 kV) to satisfy demand across GB. NETS has a generation

capacity of 74.7 GW (from major generators), and the maximum

recorded load for 2014/2015 was 52.5 GW, or around 70 per cent

of the major generating capacity [50]. There is an average power

flow of about 11 GW from the north to the south of GB across

the NETS.

A network representation of the NETS was constructed using

datasets obtained from [51]. To improve computational effi-

ciency, power lines and cables have been straight lined; parallel

overhead lines sharing the same towers have been defined as a

single network link and are both considered to fail if one of sup-

porting towers collapses; and small geographically colocated

generation plants are aggregated into a single network node.

The resultant network has 261 nodes, 335 links (each repre-

senting a pair of parallel lines). There are 65 generating nodes

and 196 substation nodes. Fig. 7 shows the network plotted on a

backdrop of 17 regionalized demand zones (winter peak demand

of 2010 [52]).

B. Evolutionary Designs of NETS

Future network development scenarios are considered for the

year 2050. By this time, the NETS is anticipated to have under-

gone significant change, with the introduction of a large amount

of renewable generation, and the increase in electricity con-

sumption from the electrification of heating and transport sys-

tems [4]. Although some commitments have been made (e.g.,

the planning and construction of around 25 GW of wind genera-

tion in Scotland and from coastal areas), there is still uncertainty

on the longer term transition pathways for the future network

[51].

In this study, a scenario-based approach is used to explore

the possible transition pathways of the NETS. This provides a

mechanism with which to relate network changes to the devel-

opment of future infrastructure policies. A winter peak demand

of around 95GW is anticipated by 2050 [51], [52] and, assuming

that the system will maintain its load factor of 70%, this will

require a generation capacity of ∼135.7 GW.

Four future scenarios have been designed to explore two ma-

jor uncertainties related to future infrastructure policies and

strategies: 1) the degree of centralized/distributed power gener-

ation and 2) the level of investment in network re-enforcement.

Consideration of these two factors provides four different snap-

shots of the NETS in 2050 (shown in Fig. 8). All four scenarios

incorporate the existing 25 GW commitments, but the shortfall

of 45 GW is realized differently within each scenario.

Taking current NETS as input, the model described in Sec-

tion II was used to generate future NETS. The regionalized

demand distribution of 2050 [32], which is shown as the back-

drop for the four example future NETS in Fig. 8, was used to

formulate the demand density φ(a). The model was then param-

eterized with a primary objective of investigating the impact

of the choice of infrastructure policies on network develop-

ment. This was achieved by reconfiguring three parameters of

the model, including the number of new generation nodes N1 ,

the number of substation nodes N2 , and the future electricity

supply density ψ(a). N1 and N2 were modeled as normally dis-

tributed integers with mean N̂1 and N̂2 , and standard deviation

σ1 and σ2 , respectively. φ(a) was formulated depending on the

centralized/distributed infrastructure policy choice, discussed as

follows.

Other parameters, including γ, δ, and α, took fixed values

obtained in our previous research [33] of γ = 0.58, δ = 0.58,

and α = 0.034, respectively. Fixing these values ensures that

the networks generated in all scenarios follow the node allo-

cating and network wiring practices of existing NETS, also en-

abling us to focus on investigating only the influence introduced

by infrastructure policies. The parameter settings for generating

future NETS of four scenarios are listed in Table I.

Centralized generation encourages fewer, larger generation

locations. The network growth model was configured with N1

taking a small value, and having electricity supply density ψ(a)
set to be high values in the periphery of GB and being nega-

tively correlated with demand density φ(a). This ensures that

a small number of large generators (largely nuclear generators
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Fig. 8. Four infrastructure development scenarios and example future NETS which were generated with the model described in Section II using the parameter
values listed in Table I, and with γ = 0.58, δ = 0.58, and α = 0.034. The networks are plotted on top of the regionalized demand distribution of year 2050
[32].

TABLE I
PARAMETER SETTINGS

scenario (N̂1 , σ1 ) (N̂2 , σ2 ) ψ (a)

I (15, 5) (0, 0) high density in the periphery of

GB, ψ (a) negatively correlated

with φ(a)

II (50, 5) (0, 0) ψ (a) positively correlated with

φ(a)

III (15, 5) (100, 20) high density in the periphery of

GB, ψ (a) negatively correlated

with φ(a)

IV (50, 5) (100, 20) ψ (a) positively correlated with

φ(a)

according to [4]) will be constructed and located away from de-

mand centers. Distributed generation prefers smaller generation

sites close to demand centers, and the network growth model

was configured with N1 assigned a greater value and with ψ(a)

being positively correlated with φ(a). This ensured that new and

small capacity generations were built and collocated with the

demand. The number of generation nodes in a centralized case

is set to be lower compared to the one in a distributed case.

High cost network plans accommodate increased demand by

the building of new substations and transmission lines (the aver-

age number of new substation nodes was set to 100 in this case),

and they were distributed proportionally to the demand distribu-

tion. Low cost network plan disincentivises any new build, but
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Fig. 9. Dynamic evolution of generating capacity of NETS at 6-h interval time steps for a randomly selected simulation year when wind storms increase their
frequency and intensity by 10%, 30%, and 50%.

existing network components are upgraded with higher capacity

to accommodate increased demand.

V. STORM RESILIENCE ASSESSMENT OF NETS UNDER

ALTERNATIVE DEVELOPMENT SCENARIOS

The resilience of the present and future NETS was analyzed

by simulating 100 years of wind storms at 6 hourly intervals

at a 12 km × 12 km resolution using the method described in

Section III. Unless otherwise specified, all results reported in

this research were averaged over this time frame. Wind storms

with increased intensity and frequency, incrementally up to 50%

for each, were generated to explore the sensitivity of the metrics

in (9) and (10) to possible changes in climate.

A. Baseline Study of the Present Network

The resilience of the present NETS was studied first. Fig. 9

shows a time-series of the NETS generation capacity, calculated

at 6 hourly intervals. This shows that the NETS is resilient to

storms at the current level of intensity and frequency, but this

resilience will decrease if storms increase in intensity and fre-

quency in future. Loss of load starts to occur if the intensity and

frequency of wind storms increases by 5%–10%, and this accel-

erates rapidly with increasing wind intensities and frequencies.

The frequency of large-scale loss of load increases dramatically

when the increase of storm intensity and frequency is over 30%.

The system could collapse under a 50% increase of wind

intensity and frequency as shown in Fig. 10, which plots the

probability distribution of the capacity margin of NETS under

different storm scenarios. Capacity margin is defined here as

the difference between connected generations and winter peak

demand. In the most severe case (50% increase of storm in-

tensity and frequency), a shortfall of electricity of as much as

45 GW could occur, although this scenario has a low probability

associated with it. This shortfall counts for 85% of winter peak

demand (52.5 GW), and is greater than the summer peak de-

mand (43 GW) of GB, indicating a probability of catastrophic

failure of the whole system.

Increasing storm intensity and frequency have different ef-

fects on system performance, as shown in Fig. 11. Increasing

storm intensity has the greater impact, with LOLF increasing

exponentially with the increase rate of storm intensity. Increas-

ing storm frequency has less impact, and a linear relationship

Fig. 10. Probability distribution of capacity margin of NETS when wind
storms increase both frequency and intensity by 10%, 30%, and 50%.

Fig. 11. LOLF (Loss of load occurrences per year) as a function of increasing
rate of wind storm intensity and frequency, where I stands for wind intensity
and F stands for wind frequency.

between LOLF and change rate was observed. Other resilience

metrics, such as LOLD and EENS, exhibit similar relationships.

Analysis was also carried out to identify vulnerable network

nodes and links of NETS. This was obtained by first calculating

the number of failure occurrences for each network component
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Fig. 12. Vulnerability map of network nodes/links of NETS, superimposed
onto a map of the maximum wind speed from 100 years of simulated storms in
each 12 × 12 km grid cell for the current climate.

under all-weather scenarios. The results were then normalized

against that of the network component which experiences the

highest number of failures. This generates a vulnerability index

for each network component, in range [0,1], and the larger the

value the more vulnerable the component. The results are plot-

ted in Fig. 12, where the vulnerability map of NETS overlays

the maximum wind speed (under current climate conditions).

This shows a positive correlation between the failure probabil-

ity of network components and the maximum wind speed in the

simulation period. For example, failure probabilities are typi-

cally higher in northern and western coastal areas of GB. This

explains the large-scale loss of load observed in simulations as

there is a large quantity of power generation surplus in the north

and coastal areas, and power typically flows from the north to

the south. As there are currently only limited connections be-

tween the north and south, failure of these network components

can severely constrain power transmission. Protecting and en-

hancing the reliability of these components are vital to securing

power supply in GB.

B. Storm Resilience Analysis of Future NETS

This section analyses the reliability of the future NETS, with

the aim to understand the implication of infrastructure policies

on the climate resilience of the NETS. The network growth

model (presented in Section II) was used to generate future

NETS for scenarios I–IV (as described in Section IV). Results

are presented in Fig. 13, which show the average from 100

future network realizations, each subjected to 100 years of wind

storms.

The results show that infrastructure policies have significant

implication for the long-term resilience of the NETS. While the

networks of all four scenarios remain resilient to wind storms

for the current climate, Fig. 13(a) shows that this resilience

decreases as storm intensity and frequency increase. Loss of

performance is most significant for scenario I, and least for

scenario IV. Fig. 13(b) and (c) shows the variability of generation

capacity and capacity margin under four scenarios. Networks of

scenario IV demonstrate the lowest variability and hence best

performance. Moreover, scenario IV is the only future scenario

that shows an improvement in network resilience relative to the

current configuration. For example, for an increase in storm in-

tensity and frequency of 30%, LOLF increases by 148%, 116%,

and 65% for scenarios I, II, and III, respectively, but drops to

76% for scenario IV.

The poor performance of scenario I networks is mainly due

to the preference toward large capacity, centralized generations

that are located at the extremities of the NETS, e.g., wind gener-

ation in the north and in coastal areas, and large nuclear gener-

ation in peripheral areas of GB. These are far from demand

centers, and often at the locations of the most severe wind

storms. Though networks under scenario II have generations

close to demand, they also experience an overall decrease in

performance compared to the present NETS. This is mainly

due to the low-cost policy that disincentivises the construction

of new substations and overhead line routes. Moreover, as the

number of generation sites increases, the loss of a transmis-

sion line in this scenario becomes more likely to disconnect a

generator than the present NETS.

Both scenarios III and IV invest in new substations and

overhead line routes. This improves network connectivity, and

generators have more paths to transport power. Failure of a

transmission line is, therefore, less likely to disconnect a gen-

erator from the demand. Scenario IV networks perform better

than the current NETS because a decentralized policy allocates

small generators close to demand centers. This both reduces the

likelihood of generation disconnection, as high demand areas

are typically in less storm intensive regions of GB, and also

deceases the impacts of a generation disconnection because a

distributed policy encourages use of smaller capacity generation

and so services fewer people.

Putting our results into context, we make the following ob-

servations. First, due to a lack of empirical data to define some

parameters, such as βγ in (5) and T̂ TRnorm in (6), recom-

mended or estimated values have been adopted. Second, large

uncertainties surround the modeling of climate change sce-

narios. This is particularly true for wind extremes, where the

problem is compounded by limitations of the models in repro-

ducing current wind extremes and the coarse spatial resolution

of climate models relative to topographic variability. Finally, to

reduce computational overhead and complexity, a few simplifi-

cations have been made. For example, the complex geometries

of power lines have been simplified as straight lines, parallel

lines are represented as single lines and assumed to experi-

ence same load during extreme weather events, whilst the net-

work components are assumed to have no capacity restrictions.

These assumptions to manage uncertainties in available data are
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Fig. 13. Resilience analysis of future NETS under alternative infrastructure development policies and scenarios (a) LOLF measure of future NETS as a function
of wind storm intensity and frequency increase, and results are compared against that of present NETS (red curve), (b) distribution of capacity margin of future
NETS under wind storms with 30% increase of storm intensity and frequency, and (c) dynamic evolution of generating capacity of future NETS under four
scenarios with 30% increase of storm intensity and frequency (here, we only plot the results for the time steps when max storm speed exceeds 20 m/s).

necessary for systems scale analysis. Since these were used and

treated consistently in our simulations, the observations and re-

sults generated in this research provide meaningful insights into

the trade-offs and benefits of infrastructure policy choices for

the scenarios considered, and in relating network changes to the

development of future policies and strategies.

VI. CONCLUSION AND FUTURE RESEARCH

Electricity networks are undergoing unprecedented change

in response to the pressures of rising demand and emissions

reduction targets. Networks are also threatened by projected

changes to the intensity and frequency of weather hazards. To

address these multiple and concurrent challenges, we have de-

veloped a system-level modeling framework for assessing net-

work resilience. The framework has been demonstrated through

application to the electricity transmission network of GB.

The analysis shows that infrastructure policies critically shape

the long-term spatial configuration of electricity networks. This

has profound impacts on system resilience. Four policy scenar-

ios were tested, based on the degree of centralization of gen-

eration and the investment costs. Only scenario IV increased

system resilience relative to the current system as it had the

combined effects of reducing the impact of loss of generators

and increasing network redundancy. Currently, there is a surplus

of electricity generation in the north of GB, providing power to

large demand centers in the south and the midlands. The lines

between the north and south are already near capacity, though

additional connectors are planned. Under scenarios I and III,

with more centralized generation, the impacts of a wind storm

disrupting these north–south connections are far greater than

for the current network. In these scenarios, centralized genera-

tion should be coupled with improved network connectivity to

enhance, or maintain, present levels of resilience. Our analysis

further shows that under the current climate the transmission

network is resilient to wind storm; however, under all future

network scenarios, a slight increase of 10% in intensity and fre-

quency would impact on network resilience. Further increases in

intensity would exponentially increase the impacts of disruption

from extreme wind events.

The approach provides a useful means for communicating

potential network risks to different stakeholders who are try-

ing to address often conflicting social (e.g., security of supply),

economic (e.g., network cost), and environmental (e.g., decar-

bonization) objectives. Moreover, the research highlights the

value of using systems based approach for assessing the re-

silience of infrastructure networks. Although the focus here has

been on electricity systems and storm hazards, the approach
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could be used to assess the resilience of other complex in-

frastructure systems, and other climate-related hazards. Finally,

further development will consider the climate resilience of

systems-of-systems, e.g., the impacts of climate hazards on a

coupled electricity and transport network.
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