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A b s t r a c t  

Dyna is an AI architecture that  integrates learning, 
planning, and reactive execution. Learning meth- 
ods are used in Dyna both for compiling planning 
results and for updat ing a model of the effects of 
the agent 's  actions on the world. Planning is incre- 
mental and can use the probabilist ic and ofttimes 
incorrect world models generated by learning pro- 
cesses. Execution is fully reactive in the sense that  
no planning intervenes between perception and ac- 
tion. Dyna relies on machine learning methods for 
learning from examples- - these  are among the ba- 
sic building blocks making up the archi tecture--yet  
is not t ied to any part icular  method. This paper 
briefly introduces Dyna and discusses i ts strengths 
and weaknesses with respect to other architectures. 

1 I n t r o d u c t i o n  t o  D y n a  

The Dyna architecture a t tempts  to integrate 

• Trial-and-error learning of an optimal reactive policy, a 
mapping from situations to actions; 

Learning of domain knowledge in the form of an action 
model, a black box that  takes as input  a si tuation and 
action and outputs  a prediction of the immediate next 
situation; 

• Planning: finding the optimal reactive policy given do- 
main knowledge (the action model); 

• Reactive execution: No planning intervenes between 
perceiving a si tuation and responding to it. 

In addition, the Dyna architecture is specifically designed 
for the case in which the agent does not have complete and 
accurate knowledge of the effects of its actions on the world 
and in which those effects may be nondeterministic.  

Dyna assumes the agent 's  task can be formulated as a reward 
maximization problem (Figure 1). At  each discrete t ime in- 
terval, the agent observes a situation, takes an action based 
on it, and then, after one clock tick, observes a resultant re- 
ward and new situation. The agent 's objective is to choose 
actions so as to max imize the  total  reward it receives in the 
long-term. 1 This problem formulation has been used in stud- 
ies of reinforcement learning for many years and is also be- 
ing used in studies of planning and reactive systems (e.g., 
Russell, 1989). Although somewhat unfamiliar, the reward 
maximization problem is easily mapped onto most problems 
of interest. 

1Most systems actually slightly discount delayed reward 
relative to immediate  reward. 
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Figure 1: The Problem Formulation Used in Dyna. The 
agent 's object  is to maximize the total  reward it receives over 
time. 1 

REPEAT FOREVER:  

1. Observe the world's s ta te  and reactively choose an 
action based on it; 

2. Observe resultant reward and new state; 

3. Apply reinforcement learning to this experience; 

4. Update  action model based on this experience; 

5. Repeat  K times: 

5.1 Choose a hypothetical  world state and action; 
5.2 Predict  resultant reward and new state  using action 

model; 
5.3 Apply reinforcement learning to this hypothetical  

experience. 

Figure 2: A Generic Dyna Algori thm. 

The main idea of Dyna is the old, commonsense idea that  
planning is ' t rying things in your head, '  using an internal 
model of the world (Craik, 1943; Dennett ,  1978; Sutton & 
Barto, 1981). This suggests the existence of a more primitive 
process for trying things not in your head, but  through direct 
interaction with the world. Reinforcement learning is the 
name we use for this more primitive, direct kind of trying, 
and Dyna is the extension of reinforcement learning to include 
a learned world model. 

The essence of Dyna is given by the generic algorithm in Fig- 
ure 2. In this algorithm, an "experience" is a single unit of 
experience consisting of a s tar t ing state,  an action, a resulting 
state, and a resulting reward. The first step of the algorithm 
is simply that  of a reactive system; the agent reads off of 
its reactive policy what to do in the current situation. The 
first three steps together comprise a s tandard reinforcement 
learning agent. Given enough experience, such an agent can 
learn the optimal reactive mapping from situations to action. 
The fourth step is the learning of domain knowledge in the 
form of an action model (Lin, 1991) that  can be used to pre- 
dict the results of actions. The fifth step of the algorithm is 
essentially reinforcement learning from hypothetical ,  model- 
generated experiences; this is in effect a planning process. 

S I G A R T  Bul le t in ,  Vol. 2, No.  4 160 



The theory of Dyna is based on the theory of dynamic pro- 
gramming (e.g., Bertsekas, 1987) and on the relationship of 
dynamic programming to reinforcement learning (Watkins, 
1989; Barto, Sutton & Watkins, 1990), to temporal-difference 
learning (Sutton, 1988), and to AI methods for planning and 
search (Korf, 1990). Werbos (1987) has previously argued 
for the general idea of building AI systems that  approxi- 
mate dynamic programming, and Whitehead (1989) and oth- 
ers have presented results for reinforcement learning systems 
augmented with with an action model used for planning. 
More recently, Riolo (1991) and Grefenstette et al. (1990) 
have explored in different ways the use of action models to- 
gether with reinforcement learning methods based on clas- 
sifter systems. Mahadevan and Connell (1990) have applied 
reinforcement learning methods together with ideas from sub- 
sumption architectures to a real robotic box-pushing task. 
Lin has explored Dyna architectures and related ideas on 
both simulated (Lin, 1991) and real robot tasks (Lin, per- 
sonal communication). 

2 C o m p o n e n t s  o f  D y n a  

Instantiat ing the Dyna architecture involves selecting three 
major components: 

• The structure of the action model and its learning algo- 
rithms; 

• An algorithm for selecting hypothetical states and ac- 
tions (Step 5.1, search control). 

• A reinforcement learning method, including a learning- 
from-examples algorithm and a way of generating vari- 
ety in behavior. 

The structure and learning of the action model lie mostly 
outside the the scope of the Dyna architecture. Recall that  
the action model is meant to be simply a mimic of the world; 
it  takes in a description of a s tate and an action and emits 
a prediction of the immediate resulting state and reward. 
Actual  experience with the world continually produces ex- 
amples of desired behavior for such a model. These can be 
used in conjunction with any of a large number of learning 
algorithms for supervised learning (learning from examples). 
The design of that  algorithm, its knowledge representation 
and generalization capabili t ies will of course have a large ef- 
fect on the quality of the learned model, on how efficiently 
it is learned, and on how easily it  can be primed with prior 
domain knowledge. Nevertheless, we consider those issues to 
be outside the scope of the Dyna architecture per se. Because 
Dyna makes no strong assumptions about the action model, 
i t  can use a wide variety of methods now existent or yet to be 
developed. One assumption Dyna does make that  is not true 
of some supervised learning methods is that  they can operate 
incrementally, that  is, processing examples one by one rather 
than saving them up and making multiple passes. 

At this t ime l i t t le  can be said about how hypothetical s tart ing 
states and actions should be selected. It can be done in a 
large variety of ways, but  there has been li t t le experience 
with any but the simplest. For example, in my previous work 
I have selected among previously observed states at random, 
either uniformly or in proportion to their frequency of prior 
occurrence. This is essentially the issue of search control-- 
what part  of the state space shall be worked on (planned 
about) next? Larger problems will of course require that  
the search be controlled more carefully. For some choices of 
search control method, the form of planning done in Dyna 

may be essentially the same as t radi t ional  kinds of planning, 
but for others it  is clearly different. The following section 
discusses planning in Dyna further. 

Among the reinforcement learning algorithms that  can be 
used in Steps 3 and 5.3 of the Dyna algorithm (Figure 2) 
are the adaptive heuristic critic (Sutton, 1984), the bucket 
brigade (Holland, 1986), and other genetic algorithm meth- 
ods (e.g., Grefenstette et al., 1990). For concreteness, con- 
sider the simplest, most recent, and perhaps most promising 
method, Q-learning (Watkins, 1989). The basic idea in Q- 
learning is to learn an evaluation function that  gives the value 
of performing each action in each state.  This function is usu- 
ally denoted Q(x, a), where x is a s ta te  and a is an action 
(the name "Q-learning" comes from this choice of notation). 
When using Q-learning, the action chosen in a state x is usu- 
ally simply the action a for which Q(z, a) is maximal.  

The update  algorithm for Q-learning can be expressed in a 
general form as a way of moving from a unit of experience to 
a training example for the evaluation function. This train- 
ing example is then input to a supervised learning algorithm. 
Just as in learning the action model, the choice of supervised 
learning algorithm will have a strong effect on the perfor- 
mance of the Dyna architecture, but  is not a part  of the 
architecture itself. Recall that  a unit of experience consists 
of a start ing state (z), an action (a), a next s tate (y), and a 
reward (r). From this one forms the training example: 

Q(z,  a) should be r+7m~xQ(y,b) ,  

where % 0 < 3' < 1, is a constant that  determines the relative 
value of short-term versus long-term reward. Strong formal 
results are available for the case in which the Q function is 
implemented as a table. For that  case, Watkins (1989) has 
shown that  Q-learning from real experiences--direct  agent- 
environment interaction without using an action model--wil l  
converge to the optimal behavior under weak conditions. 

3 P l a n n i n g  a n d  R e a c t i n g  i n  D y n a  

Just as reinforcement learning with real experience (Steps 1- 
3) is meant to learn the optimal way of behaving for the real 
world, reinforcement learning with hypothetical  experience 
(Steps 5.1-5.3) is meant to learn the optimal way of behaving 
given the action model. Reinforcement learning with hypo- 
thetical experience is in fact an incremental form of planning 
that  is closely related to dynamic programming. Here we 
will call i t  incremental dynamic programming, after Watkins 
(1989), or IDP planning for short. Assuming IDP planning 
steps can be done relatively quickly and cheaply compared 
to real steps (i.e., K > >  1) and that  the model is correct, 
IDP planning will greatly speed the finding of the optimal 
policy. In small tasks this has been shown to be true even 
if the model must be learned as well or if the world changes 
(Sutton, 1990). 

Results from dynamic programming (Bertsekas & Tsitsiklis, 
1989) can be adapted to show that  IDP planning based on 
the tabular  version of Q-learning converges onto the opti- 
mal behavior given the action model. This is a strong result 
because it applies to nondeterministic environments and no 
mat ter  how deep a search is required to find the optimal ac- 
tions. Strictly, it  applies only to the tabular  case, but the 
results should be similar for supervised learning methods to 
the extent that  they can accurately approximate the desired 
functions. 

Dyna is fully reactive in the sense that  no planning intervenes 
between observing a state and taking an action dependent 
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Figure 3: Simplistic Comparison of Architectures: A) Con- 
ventional Planning, B) Reactive Systems, C) IDP Planning 
(incremental compiling into reactions). 

on that state. In the Dyna algorithm given in Figure 2, IDP 
planning takes place after action selection, but conceptually 
these processes proceed in parallel. 2 The critical issue is that 
planning and reacting processes are not strongly coupled: the 
agent never delays responding to a situation in order to plan 
a response to it. Although t h e  agent always responds reac- 
tively and instantly, this does not mean it must immediately 
respond decisively; for example, it may choose the response 
of sitting still. Figure 3 contrasts this approach to combining 
planning and execution with that of conventional planning 
systems and of reactive systems. 

IDP planning has both advantages and disadvantages com- 
pared to other planning methods. The primary advantage 
is that it is totally incremental; any time spent planning re- 
sults in an improvement in the agent's immediate reactions 
or evaluation function for some state. Thus, performance 
continually improves, and arbitrarily long optimal sequences 
of actions can be found. In addition, it readily handles non- 
deterministic tasks and is extremely general in that it makes 
no assumptions about the world other than that is can be at 
least partially predicted. 

The primary disadvantage of IDP planning is that it may 
require large amounts of memory. Whereas traditional plan- 
ning methods are based on constructing search trees and 
backing-up evaluations on demand, IDP planning is based on 
storing backed-up evaluations (and possibly reactions) associ- 
ated with each state or state-action pair. Even if supervised 
learning methods are used instead of tables, this is still a 
memory-intensive approach. It will require far more memory 
than depth-first search, for example. 

4 P o t e n t i a l  P r o b l e m s  w i t h  D y n a  

In the rest of this paper we briefly discuss a number of po- 
tential problems with the Dyna architecture. 

~The Dyna algorithm given in Figure 2 also sacrifices re- 
activity somewhat for the sake of pedagogy. A more fully re- 
active version of the algorithm would move Step 5 inbetween 
Steps 1 and 2. More generally, the four main functions of the 
algorithm--reacting, reinforcement learning, model learning, 
and IDP planning--should be thought of as running simul- 
taneously and independently. 

4 .1  R e l i a n c e  o n  S u p e r v i s e d  L e a r n i n g  

On realistic problems, the state space is obviously far too 
large for table-based approaches, and thus Dyna must rely on 
methods for learning and generalizing from examples. How- 
ever, despite enormous amounts of work in several disciplines, 
fully satisfactory methods for supervised learning remain to 
be found. For example, there remain difficult issues in gener- 
alization and knowledge representation that must be solved. 
Nevertheless, I do not feel it is inappropriate to base an in- 
tegrated architecture on a capability for effectively learning 
from examples. Would not any integrated architecture rely 
on such 'a  capability at some level? Any architecture using 
analogy, compilation, reminding, or even similarity would do 
so. If the answer is clearly 'yes,' then why not build this in 
as a basic part of the architecture? 

4 .2  H i e r a r c h i c a l  P l a n n i n g  

Dyna as described is a very flat system. It plans at the level of 
individual actions. If those actions are muscle twitches, then 
Dyna will be of no help planning a trip across the count ry- -  
and neither will any other planner that operates at a single 
level. Planning must be done at several levels and the results 
combined in some way. We have had lots of experience doing 
this with conventional planners, but it has not been tried with 
Dyna. To my knowledge there is no reason as yet to think 
that hierarchical planning will be either easier or harder in 
Dyna than it is in conventional planners. 

4 .3  A m b i g u o u s  a n d  H i d d e n  S t a t e  

So far we have assumed that the agent can observe the rele- 
vant aspects of the world's state at no cost and on every time 
step, assumptions that are clearly violated in many tasks of 
interest. This is a l imitation that Dyna shares with most 
other planning and problem solving systems--they are all 
based on state. For example, a robot may not be able to de- 
termine from its immediate surroundings which of two similar 
rooms it is in, or whether a door is locked, or whether there 
is a person in the room on the other side of the door. In these 
cases the robot cannot unambiguously determine the world's 
state, as much of it is hidden from him. 

There are a number of techniques for dealing with this prob- 
lem, though none is clearly a general solution. In some cases, 
uncertainty about the true state on the world can be mod- 
eled as probabilistic state transitions (Kaelbling, 1990). Ap- 
proaches such as Dyna that can handle stochastic tasks can 
then be used without change. In other cases, the state de- 
scription can be augmented with past inputs to disambiguate 
state. For example, a robot may not be able to sense a wall 
in front of it, but if it remembers that it just  bumped into 
it and backed off, and makes that memory part of the cur- 
rent state description, then the situation can be handled by 
state-based methods. 

Whitehead and Ballard (1991) have proposed learning per- 
ceptual strategies for disambiguating state descriptions cre- 
ated by a marker-based visual system. Ming Tan (per- 
sonal communication) has also explored the use of Cost- 
Sensitive learning in reinforcement learning for a similar pur- 
pose. There is considerable relevant work in the dynamic 
programming literature, but that direction has not been ex- 
plored yet. 
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4 .4  E n s u r i n g  V a r i e t y  i n  B e h a v i o r  

In order to maintain an accurate action model, the agent 
must try actions that it believes to be inferior. If it only 
tries those that it believes are best, and the world changes, 
it may never discover the change and never discover what- 
ever new actions are really best. The simplest way to ensure 
behavioral variety is to require the agent to choose an ac- 
tion at random a small percentage of the time. This crude 
strategy has many disadvantages, but is adequate for many 
problems. Another approach is to choose actions based on 
a probability distribution, such as a Boltzmann distribution, 
that favors the apparently best actions, but does not select 
them 100% of the time. If desired, the ' temperature '  of the 
distribution can be reduced over time to increase the prefer- 
ence for the apparent best actions (Watkins, 1989), but this 
creates agMn the inability to handle long-term changes in the 
world. The 'adaptive heuristic critic' architecture (Sutton, 
1984) also has this problem. Perhaps the best solution devel- 
oped so far, though still far from perfect, is the exploration 
bonus proposed by Sutton (1990). 

4 .5  T a s k a b i l i t y  

Superficially, the Dyna architecture is not taskable. Dyna is 
based on the reward maximization problem (Figure 1) which 
recognizes only one goal, the maximization of total reward 
over time. In addition, the object of the planning and learn- 
ing processes are to learn one policy function that maps states 
to actions with no explicit 'goal'  input. However, this may 
merely mean that the goal specification must be part of the 
state description. For example, consider a Dyna robot re- 
warded for picking up trash, but which must recharge its 
battery occassionally. When its battery is running low the 
optimal behavior will be to search out the recharger, whereas 
when it has plenty of power the optimal behavior will be to 
search out more trash. If the charge on the battery is part of 
the state description then these two apparent goals can easily 
be part of a single policy. 

Similarly, to train a dog, e.g., to heel or to roll over, one pro- 
vides distinctive cues, e.g., movements or sounds, that signal 
to the animal which of its actions will be rewarded now. It can 
be time-consuming to teach animals new behaviors because 
of the absence of a common language. It may be possible 
to task Dyna agents more directly than that. If one directly 
modifies the part of the action model that predicts reward, 
that could in turn cause the policy to change substantially 
through IDP planning. 

4 .6  I n c o r p o r a t i o n  o f  P r i o r  K n o w l e d g e  

Prior knowledge can be incorporated in Dyna systems 
through the initial values of the policy and internal evalu- 
ation functions such as the Q function. In principle this 
could be a very flexible and efficient method, but there is 
little work with it yet. Lin (personal communication) has 
demonstrated in preliminary results a very effective method 
that he calls ' teaching' in which an outside agent, say a hu- 
man expert, takes control over the agent and demonstrates a 
correct solution to the problem. This experience is processed 
by the Dyna system (or, in Lin's case, Dyna-like system) in 
the normal way, and greatly speeds subsequent learning. 
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