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a b s t r a c t

Integrated assessment and its inherent platform, integrated modelling, present an opportunity to syn-
thesize diverse knowledge, data, methods and perspectives into an overarching framework to address
complex environmental problems. However to be successful for assessment or decision making pur-
poses, all salient dimensions of integrated modelling must be addressed with respect to its purpose and
context. The key dimensions include: issues of concern; management options and governance ar-
rangements; stakeholders; natural systems; human systems; spatial scales; temporal scales; disciplines;
methods, models, tools and data; and sources and types of uncertainty. This paper aims to shed light on
these ten dimensions, and how integration of the dimensions fits in the four main phases in the inte-
grated assessment process: scoping, problem framing and formulation, assessing options, and commu-
nicating findings. We provide examples of participatory processes and modelling tools that can be used
to achieve integration.

© 2014 Elsevier Ltd. All rights reserved.

Learning objectives

� Have a basic understanding of what needs to be inte-

grated in integrated assessment and modelling, how and

why

� Identify key developments and publications in integrated

assessment and modelling

� Give examples of how integration dimensions are rele-

vant to phases of integrated assessment and modelling.

Assumed background knowledge

� Awareness of basic concepts and terminology related to

integrated assessment and environmental modelling

� Awareness of the complexity and uncertainty involved in

analysing environmental problems
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1. Introduction

The impacts and causes of environmental problems transcend
the boundaries of sectors, disciplines, system components and
other divides. This has driven the need for integrated assessment
(IA), a process that combines multiple and diverse components
across their social, organizational and conceptual boundaries to
provide a comprehensive analysis of the problem. Integrated
modelling (IM) facilitates this by providing a single platform to
explore the linkages and feedbacks between different system
components, including the social, economic and ecological impli-
cations of different natural or anthropogenic factors. IM is generally
considered the key tool for performing the IA process as it has the
capacity to help deliver a systematic and transparent approach to
integration. Together, integrated assessment and modelling (IAM)
can help decision-makers develop policies to managing environ-
mental resources and assets in a way that delivers acceptable
environmental and socioeconomic outcomes. More broadly, effec-
tive use of IAM supports social learning by promoting a science-
informed dialogue about the future.

The meta-discipline of IA first emerged in the context of global
change problems to overcome limitations of traditional disciplinary
methodologies, which were ineffective in handling the complex
feedbacks and interactions of socio-ecological systems (Funtowicz
and Ravetz, 1993; Rotmans, 1998). On looking into the historical
evolution of IAM, one can distinguish three phases. AlthoughWhite
(1969) has long recognized the need for integration to consider the
“multiple purposes” and “multiple means” of water management, it
was not until the 1990s when IAMwas explicitly recognized (i.e. the
inception phase). Mitchell (1990) talked about integrating three as-
pects of water systems: surface water and groundwater, and quan-
tity and quality; water and land interactions; and interrelationships
with social and economic development. During the inceptionphase,
the concept of IAM was defined and its practices became more
established, with much of this work emanating from research in
climate change, energy and economics (Dowlatabadi, 1995; Risbey
et al., 1996; Rotmans and van Asselt, 1996: Rotmans, 1998; Toth
and Hizsnyik, 1998; Weyant et al., 1996). Reflecting on this period,
Hoekstra (1998) commented that: “the [integration] concept is still
crystallizing, both in theory and practice”. In the 2000s, many of the
foundations in the IAMwere cemented (i.e. the foundational phase).
These included: drawing frameworks, features and principles of the
approach (e.g. Hare and Pahl-Wostl, 2002; Parker et al., 2002;
Jakeman and Letcher, 2003); crafting the methodology (e.g.
Dewulf et al., 2005; Castelletti and Soncini-Sessa, 2006; Jakeman et
al., 2006; Newham et al., 2007), and showcasing its utility through
case studies (e.g. Croke et al., 2007; Liu et al. 2008). Thefield is now in
a maturity phase. The accumulated learning and experience as well
as theadvancements in relatedmodellingandcomputingfieldshave
allowed for addressing more sophisticated topics, such as good
modelling practices (e.g. Van Delden et al., 2011), role of software
development and computing platforms (e.g. Larocque et al., 2014),
and uncertainty management (Haasnoot et al., 2014).

Whereas there is a wide consensus on the need for integration
(e.g. Medema et al., 2008), there is less agreement on what inte-
gration really means (Hering and Ingold, 2012), and how it can be
effectively incorporated into modelling processes. Integration is
defined as “the making up or composition of a whole by adding
together or combining the separate parts or elements” (Oxford
English Dictionary, 2014). In this paper, we aim to shed light on
what constitutes “integration” in IM, and how it is incorporated
into the various activities of IA in order to improve the way we
communicate aboutwhat and how to integrate. In this paper, IAM is
considered as the integration of components across and within ten
interrelated dimensions (Fig. 1). IAM should be a problem-driven

process and the first three dimensions correspond to key drivers
for integration, namely the need to account for multiple i) issues of
concern, ii) governance settings, and iii) stakeholders. This in turn
requires the integration of multiple, iv) natural and v) human
systems, and vi) spatial and vii) temporal scales. The remaining
three dimensions represent the methodological aspects related to
integrating viii) disciplines, ix) methods, models, other tools and
data, and x) sources and types of uncertainty. There is overlap be-
tween some of these ten dimensions, for example it is acknowl-
edged that stakeholders and governance settings are a part of the
human setting. However each of the ten dimensions is distin-
guished as a salient dimension of IAM. The IAM process and its
outputs can be rendered inadequate with a lack of careful consid-
eration and appropriate treatment of any one dimension.

The idea of integration as a multi-dimensional concept is not
new (see Table 1 for examples). In the context of integrated
assessment, Parker et al. (2002), Jakeman and Letcher (2003) and
Kelly et al. (2013) consider integration across five broad categories
e issues, stakeholders, disciplines, processes and models, and
scales. In the context of integrated research in environmental sci-
ence and policy, van Kerkhoff (2005) identified integration across
12 thematic categories; six of these categories involve integration
within the research sector (e.g. disciplines, research issues, research
and teaching, research methods etc.), one category represented
worldviews, and the final five categories related to integration
between research and non-research organisations.

Janssen (2009) considered integration as the communication
process of combining different elements (including tools, disci-
plines, scales etc.) and identified five types of integration e meth-
odological, social, semantic, technical and institutional. Strasser et al.
(2014) distinguished three dimensions of integration from a theo-
retical perspective, related to the integration of different linguistic
expressions and communicative practices (communicative), interests
and activities (social), and knowledge bases including theoretical
concepts and methods (cognitive). The integration dimensions by
Janssen (2009) and Strasser et al. (2014) were characterised in the
context of agricultural systems and climate change research,
respectively, but are applicable to all interdisciplinary fields.

Jønch-Clausen and Fugl (2001) discussed the concept of inte-
grated water resources management as the integration of two
categories e the ‘natural system’ and the ‘human system’. Accord-
ing to their categorisation, integration in the natural system
included links between: i) land and water, ii) surface water and
groundwater management, iii) water quantity and quality, iv) up-
stream and downstream zones, and v) freshwater and coastal zone
management. The associated integration in the human system in-
volves: i) holistic management across all levels of institutions, ii)
considering water use, development and risk in all economic
development planning processes for all sectors, iii) linking water
resources management and poverty alleviation, iv) linking water
resources management to national security and trade policies, and
v) stakeholder engagement in the planning and decision process.

The ten dimensions identified in this paper are intended to
capture both the integration of different components from the real
world system (as in Jønch-Clausen and Fugl, 2001) and the meth-
odological aspects related to incorporating different types of infor-
mation, scales, perspectives, practices, theories, models and tools.
While uncertainty has not previously been considered a dimension,
its influence warrants explicit treatment. The notion of what is not
known is quite distinct fromwhat is knownwithin each of the other
dimensions, and has often been marginalised or even overlooked.
There are several challenges entailed in integrating across these ten
dimensions; in the next section we discuss these challenges as well
as some solutions proposed by various methodological and tech-
nological advances. This is followed by a discussion on how the ten
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dimensions fit into the IAM process and how modelling and
participatory tools can be used to support each step.

2. The ten dimensions of integration

2.1. Issues of concern

The need for integration arises above all from the need to tackle
connected issues of concern and anticipate unexpected side-effects.
The interdependent links between natural and human factorsmean
that one environmental problem (e.g. related to water quality or
quantity, ecosystem status or extreme climate events) can affect
other issues including social or economic issues (e.g. social welfare,
profitability, justice), and vice versa. The linkages between issues
can be direct, for example a decline in water quality is often linked
to reduced flow in rivers. However, some diverse issues are linked

via indirect pathways; one example is biofuels to provide clean
energy and food prices. Although at first glance the two issues seem
unrelated, the expansion of biofuel can lead to increases in food
prices as biofuel production competes with food crops for land and
water.

Issues are defined depending on stakeholders' worldviews and
positions in the system (Pahl-Wostl, 2007). Many environmental
problems are ‘wicked’, that is, highly complex with no clear defi-
nitions or solutions (Rittel and Webber, 1973). The challenge for
managing wicked environmental problems is that stakeholders
have different, and many times conflicting, views about the issue
and how it may be managed. For example, Dewulf and Bouwen
(2008) report a case study involving three actors, a hydropower
plant, a water supply company and sand miners. For the hydro-
power plant, which provides electricity to the region, the key water
management issue is reducing soil erosion and resultant sediment

Table 1
The dimensions of integration in this paper and how they correspond to dimensions identified in other studies.

Dimensions Parker et al. (2002), Jakeman and
Letcher (2003), Kelly et al. (2013)

van Kerkhoff (2005) Janssen (2009) Strasser et al. (2014)

Issues of concern - Issues - Research Issues

Stakeholders - Stakeholders - Worldview - Sociala - Sociala

Governance
setting

- Processes and modelsa - Management arrangements by scale
- Management by issue focus

- Institutional

Human setting - Processes and modelsa - Sectors - Sociala - Sociala

Natural setting - Processes and modelsa

Spatial scales - Scalesa

Time scales - Scalesa

Disciplines - Disciplines - Disciplines
- Research organisations
- Research and teaching

- Semantic
- Methodologicala

- Cognitivea

- Communicativea

Methods, models,
other tools and data

- Processes and modelsa - Data
- Research methods
- Research and application activities
- Resources

- Methodologicala

- Technical
- Communicativea

- Cognitivea

Uncertainty

a Indicates dimensions from other studies that overlap more than one of the 10 dimensions identified in this paper.

Fig. 1. The ten dimensions of integration in integrated assessment and modelling (IAM).
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flow to the reservoirs. On the other hand, miners do not frame
sediment as a problem but as a source of income. The water supply
company is primarily interested in providing sufficient drinking
water.

A holistic treatment of issues is important to ensure that diverse
stakeholder views and interests are included, to minimize conflicts,
and ensure amanagement option implemented to address one issue
does not cause unacceptable problems in other parts of the system.
IM can make use of participatory and soft systems methods to
identify stakeholders' key issues to be incorporated into the analysis
(Ekasingh and Letcher, 2008). For example, ElSawah et al. (2013)
used a cognitive mapping approach to identify and map how a
group of stakeholders define water security issues in arid areas.

The integration of issues affects the IAM process practically,
primarily through the selection of indicators (at appropriate scales)
to assess system ‘performance’, under different driving conditions
or scenarios, relative to somebenchmark performance (e.g. business
as usual). These indicators are contextual for the system of interest
and vary according to which issues are being evaluated and which
trade-offs are required to inform decisionmaking. Bymodelling the
system processes simultaneously, IM allows the evaluation and
comparison of the impact of drivers on multiple issues of concern.
These issues are represented in IAM as a set of indicators on the
quality of the environment (e.g. biodiversity, water quality) and the
community (e.g. unemployment rate, education, health).

The comparison of issues can be undertaken explicitly in IAM
with methods such as multi-criteria decision analysis (MCDA)
techniques, which are designed to systematically compare and rank
alternative scenarios (e.g. management options) using appropriate
environmental, social and/or economic indicators as evaluation
criteria. In MCDA, value judgements derived from the preferences
of the decision maker or stakeholders are used to weight the
relative importance of each criterion. Other methods for comparing
scenarios include cost benefit analysis, which assigns monetary
values to the costs and benefits of each alternative, and risk anal-
ysis, which identifies and assesses the risks associated with each
alternative. Using the IA framework, measures of each criterion can
be estimated for various scenarios or alternatives. As environ-
mental problems are driven by multiple objectives and criteria, a
single optimal solution very rarely exists. Rather, a Pareto set of
solutions can be identified, within which no single solution is
strictly better than any other and a trade-off is required between
the competing objectives (Bach et al., 2014). The selection of a so-
lution is made by ‘satisficing’, rather than optimising the decision
criteria. Satisficing refers to finding the options that are acceptable
at a given level of aspiration, such as meeting the needs of stake-
holders (Pidd, 2003).

An example of the treatment of multiple issues in an IM frame-
work is the EcosystemPortfolioModel (Labiosa et al., 2013). This is a
multi-criteria decision support system(DSS) designed to allowusers
to simultaneously assess the impact of land-use change scenarios on
a range of ecological (e.g. biodiversity potential, threatened and
endangered species, rare habitats, landscape fragmentation) and
socioeconomic criteria (e.g. indicators related to property values,
community profile and facilities and amenities). In another
example, Ausseil et al. (2013) developed an integrated model to
explore the impact of land use change scenarios (afforestation) on
multiple ecosystem services including climate regulation, erosion
control, water-flow regulation, food, fibre and natural habitat.

2.2. Governance setting

The governance dimension relates to interventions designed
and carried out to influence system processes (micro and macro) in
desirable directions (Ison et al., 2013). Governance may include:

public or private action; by an individual, an organisation or the
government; in an operational, tactical or strategic context; and
across or within institutional, sectorial and geographical bound-
aries. Interventions are combinations of management and admin-
istrative instruments andmeasures. Instruments aim to provide the
context or preconditions necessary for system actors to adopt
certain measures (Turner et al., 2008). Measures are “on the
ground” changes that contribute to achieving objectives, and can
range from technical (e.g. adoption of water-efficient irrigation
systems) to behavioural changes (e.g. reducing the frequency of
irrigation). Kaufmann-Hayoz et al. (2001) broadly classify in-
struments into six types based on how they are designed to influ-
ence the target group and micro-processes (cognitive,
behavioural):

� Command and control instruments aim to restrict the scope of
behaviour of a target group. These include regulatory standards,
licenses, and management zones.

� Economic instruments provide economic incentives to influence
choice of a target group towards a desirable option. These
include price signals, taxes, and subsidies.

� Service and infrastructure instruments aim to facilitate or
inhibit the behaviour of a target group (e.g. providing environ-
mentally responsible products to help reduce impacts).

� Collaborative agreements, such as certification standards, aim to
get a target group to stick to a certain course of action to achieve
common goals.

� Communication and diffusion instruments, such as marketing
and information campaigns, aim to trigger behavioural changes
by influencing how individuals make decisions (through
cognition, attitudes, or motivation).

The nub of the challenge for decision makers is to design a mix
of options (i.e. strategies) that are robust under various future
changes in the natural and human system settings. IM provides a
framework for identifying intervention options, and assessing the
risks and relative impacts (adverse and beneficial) associated with
trade-offs between multiple strategies under different scenarios.
Management interventions are usually treated as external input to
the IM. Examples include integrated biophysical and economic
models to manage water resources (Carmona et al., 2013; Qureshi
et al., 2013), fishing activities (Gao and Hailu, 2012), rangelands
(Ib�a~nez et al., 2014) and solid waste (Levis et al., 2013). An alter-
native approach is to examine how governance rules emerge from
the system dynamics; for example Smajgl et al. (2008) present an
agent-based framework for endogenously generating the emer-
gence of rules in response to changes in the collective behaviour of
individuals.

To be useful to decision and policy makers, models and scientific
information in general must be (Liu et al., 2008; Laniak et al., 2013):
relevant to the policy question and decision-making context;
scientifically credible; transparent and lack bias; readily accessible
and understandable by its users; and provided in a timely manner.
Morgan and Dowlatabadi (1996) argue that the central focus of IA
for decision making should be on characterizing and analysing
uncertainties, and incorporating values using an iterative and
adaptive approach depending on what has been learnt about the
critical parts of the problem, and their relevance to the policy
question. Both dimensions are covered in the issues of concern and
uncertainty sections.

2.3. Stakeholders

Stakeholders can be individuals or interest groups related to the
sources of the problem, as well as those affected by the problem,
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those with the expertise to understand them and those politically
responsible for them. IA frameworks can incorporate participatory
processes to ensure that a broad range of interests and perspectives
are considered. Effective stakeholder engagement can also support
the IA process by (van Asselt and Rijkens-Klomp, 2002; Reed, 2008;
Wittmer et al., 2006):

� Providing a source of information and ideas, including: local,
contextual and practical knowledge (e.g. opportunities and ob-
stacles to management options, information sources); and
stakeholder interests, perspectives and goals

� Reducing conflicts and building trust between different stake-
holder groups and decision makers, helping them to move to-
wards a ‘shared vision’

� Mutually educating researchers, decision makers and other
stakeholders

Involving stakeholders in the modelling process encourages
them to undergo the same thinking process as the modeller, and
also exposes them to the underlying assumptions, limitations and
capabilities of the model (Voinov and Bousquet, 2010). This
engagement helps to develop trust among stakeholder parties, and
a sense of ownership and trust of the model and its use to support
decisions that may affect them. If stakeholders are left feeling that
the model is inaccessible and difficult to understand and trust, this
may undermine the entire IAM process. Mutual learning through
stakeholder engagement in IAM can also lead to changes in the
participants' mental models and behaviour. In other words, out-
comes can be achieved through the model development process
itself. Section 3 below discusses where and how participation en-
ters the various stages of IAM. Voinov and Bousquet (2010) is a good
introduction to modelling with stakeholders and is evidence of the
strong trend towards participatory modelling. For integrated
models used for decision-making, stakeholder engagement can
also be beneficial by: providing accountability and transparency in
the decision making process; ensuring democracy and reducing
suspicion of the process by allowing stakeholders to understand
the problem and have the opportunity to influence the decision (i.e.
stakeholder empowerment); and thereby increasing the com-
munity's acceptance of the decision and commitment to its
implementation.

Stakeholder participation can occur at various stages of the IAM
process, including: i) issues definition and problem formulation, ii)
conceptual model development, iii) model review, iv) identification
of information and data sources, v) identification of scenarios and
management options, and vi) evaluation and trade-off of manage-
ment alternatives (Becker et al., 2010; Carmona et al., 2013). The
level and type of participatory involvement depends on the
modelling purpose and context. For example, if there is a large
social component to the problem and stakeholders play a crucial
role in the implementation of management options, then partici-
patory modelling may be highly valuable.

It is important that the tools used in participatory processes are
suited to the audience they are intended to engage. Numerous
software tools have been developed to facilitate specific partici-
patory processes. Examples include tools developed to elicit in-
formation from stakeholders (particularly experts) by providing a
consistent and structured framework to retrieve and quantify their
knowledge (James et al., 2010). If models are used, it is important
that the modelling approach is relatively easy to understand; for
example Bayesian networks are popular for participatory model-
ling as they have a graphical structure based on logical cause-and-
effect relationships (Castelletti and Soncini-Sessa, 2007). Compli-
cated and highly technical models may limit the ability of non-
technical stakeholders to meaningfully contribute to the process.

It may be necessary to dedicate considerable time to ensure that
participants understand the purpose of the modelling exercise and
what models, scenarios and other relevant concepts actually mean
(Becu et al., 2008). Participatory modelling is one of many tools to
engage stakeholders, with others including surveys, meetings,
focus groups, workshops and role playing games. It has also been
found that using a combination of participatory tools allows find-
ings to be cross-checked and validated (Becu et al., 2008). The
Conflict Resolution Support System (CRSS) is an example of a tool
developed as a platform for stakeholders to explore and understand
the underlying causes of conflict, thereby assisting them in devel-
oping and negotiating solutions (Nandalal and Simonovic, 2003).

The design and implementation of any software application or
model that is intended to support a participatory or IAM process,
begins with the assessment of key systems related to a problem
description. The elements of an IAM problem typically span a wide
range of possible systems with aspects of the human and natural
settings providing important core components, while the spatial
extent and timescales are key considerations.

2.4. Human setting

The human setting relates to all human elements relevant to the
problem, and may include population factors, politics, organiza-
tions, culture, technology and economic sectors (e.g. energy, agri-
culture, tourism). IAM can be used to investigate linkages within
the human system, for example between economic sectors as in
Elobeid et al. (2013) where the interplay between agricultural and
energy markets caused by biofuel expansion was explored. Human
behaviour and choices (e.g. social interactions between individuals
or household decisions) can be represented explicitly through
agent-based modelling, which is a popular approach for simulating
micro-level human interactions that collectively influence macro-
level patterns (Müller et al., 2013).

Human systems are also dependent on goods and services
provided by the natural system and concurrently modify the pro-
cesses and components of the natural system through their activ-
ities and resource use. This can directly and indirectly lead to
depletion or degradation of natural resources (e.g. surface water or
groundwater depletion, overfishing), production of adverse wastes
(e.g. air- or water-borne pollution), disruption of processes that
provide ecosystem services (e.g. erosion) and reduced health of
ecological systems (e.g. biodiversity loss). Subsequently, these im-
pacts can feedback to the human system causing social and eco-
nomic problems, which can further exacerbate previous issues and
cause new problems.

In order to understand environmental problems and help design
effective policies, it is essential to understand the underlying hu-
man drivers, for example barriers to adoption of potential solutions.
Socio-ecological research has emerged in recognition of the dy-
namic and coupled interactions between human and natural sys-
tems (e.g. Young et al., 2006). It emphasises the co-evolution of
natural and social systems, where understanding changes in one
requires understanding of changes in the other, rather than treating
them separately (Folke, 2006; Vespignani, 2012). IM can be a useful
tool for investigating interactions between human-environment
systems. For example integrated models of global climate change
have been developed to explore human impacts and feedbacks on
greenhouse gas emissions and climate change by considering a
range of processes that influence mitigation such as social and
cultural change, institutional change, economic development, en-
ergy transition and technological change (Schwanitz, 2013). The
integration of socioeconomic and environmental considerations
through IM is becoming increasingly common for assessing and
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managing natural resources (Laniak et al., 2013; Kragt et al., 2011)
and agricultural systems (van Ittersum et al., 2008).

2.5. Natural setting

This dimension relates to the integration of components of the
biophysical systems of interest (climate, land, water, atmospheric
and/or ecological systems). In the past, a fragmented, piecemeal
approach was taken to managing natural resources, disregarding
the interdependence of system components (Katsanevakis et al.,
2011). For example, until recently, surface water and groundwater
development were considered separately. There has been
increasing recognition that such system components do not oper-
ate in isolation and require a holistic approach to assessment and
management. For instance, an integrated approach to water re-
sources management may involve joint consideration of surface
water, groundwater, climate, vegetation, fauna, soils, wetlands and/
or estuaries.

In IM, connecting different system components can involve
linking sub-models that represent relevant processes such that the
model output(s) of one sub-model is treated as input(s) for another,
or sub-models share inputs. For example, Dyer et al. (2014) linked
output from down-scaled climate scenarios and river management
models to hydrological, water quality, and ecological response
models to predict the flow-on impacts of combined changes in
climate and management conditions. Holguin-Gonzalez et al.
(2013) developed an integratedmodel to assess the impact of waste
water on the habitat suitability of macroinvertebrates, where a
water quantity and quality sub-model produced data for six vari-
ables (e.g. temperature, flow, DO, water depth etc.) that were fed
into the ecological models. In another example, Borusk et al. (2004)
combined several sub-models representing different physical,
chemical and biological estuarine processes to form a eutrophica-
tion model to predict ecosystem response to various nutrient
management options. By considering the system (including the
human system components) as a whole, IAM improves under-
standing of the problem and may help elucidate underlying causes
and point to potential longer term solutions.

2.6. Spatial scale

There are different spatial scales at which the various important
processes of a system occur or can be represented by data or a
model. The system's drivers, characteristics and processes at one
scale are important determinants of environmental conditions at
subordinate scales (Stewart-Koster et al., 2007). For example
climate processes (regional scale) are one of the key drivers of
stream flow (catchment-scale), which interacts with finer-scale
processes to determine microhabitat-scale properties such as ve-
locity and depth. On the other hand, large-scale properties can
emerge from interactions at the fine-scale; for example large-scale
land cover changes resulting from social processes at a
neighbourhood-scale that influence farm practices (Caillault et al.,
2013). Also, the same type of process may occur at vastly
different scales depending on the characteristics of the system
component; for example, a single groundwater system can range
from less than 100 km2 to over 100 000 km2 in size.

Common approaches to conceptually represent the spatial
dimension in models include: being spatially non-specific (non-
spatial); spatially averaging values for the entire area (lumped) or
homogeneous sub-areas (compartmental); discretising the units
into uniform cells (grid-based); or allowing continuous distribution
over space (Kelly et al., 2013). IM must accommodate multiple
spatial scales of system processes; in addition, the stakeholders or
IM users may be interested in issues that occur at different scales.

Knowledge, data and computational constraints can require a
compromise between the scales of interest and the different scales
of the biophysical and socioeconomic processes (Van Delden et al.,
2011). There are twomain approaches to resolving the mismatch of
scales in IM frameworks: 1) upscaling or downscaling processes to
a single targeted scale; and 2) using a nested or multi-scale
approach (Voinov and Shugart, 2013).

Using the first approach, the targeted scale should be in line
with the objectives of the IM and may be that of the key processes
or critical thresholds. Processes occurring at finer scales can be
upscaled, in other words aggregated to a larger scale, using simple
functions (e.g. mean, median, x-percentile, variance) or more
complex techniques such as block kriging (Bastin et al., 2013).
Aggregated values can also be calculated using statistical modelling
as in P�erez Domínguez et al. (2009) where farm-level bio-economic
processes were upscaled to analyse market processes at a regional
level. Downscaling to a finer resolution often requires information
on auxiliary environmental variables to provide information about
fine scale heterogeneity and the use of statistical techniques such as
regression analysis to estimate the disaggregated values (Park,
2013). Upscaling can help reduce computational time, but the
process may lead to important patterns being overlooked (Voinov
and Shugart, 2013). It is essential that the scale-dependency of
the processes is considered, as a mismatch between the process
and scale of study can lead to misleading results (Anselin, 2001).

If practical and knowledge constraints permit, it is possible to
incorporate multiple scales into an IM framework (Scholes et al.,
2013). For example, the SAHRA project integrated three resolu-
tions into a single IM to address multiple questions related to eco-
hydrological (plot-scale), engineering and land management (me-
dium-scale), and institutional and socioeconomic (sub-basin-scale)
issues (Liu et al., 2008). The integration of GIS within the modelling
framework in Labiosa et al. (2013) allowed users to analyse trade-
offs between multiple criteria at the scale of the 30 m � 30 m
cells or of groups of cells (e.g. user-defined or pre-defined land
parcels).

Other challenges related to spatial scales to be accounted for
include capturing emergent behaviour at a larger scale that ema-
nates from local-scale processes, and spatially disjunct processes
where cause and effect do not occur in the same or adjacent area
(e.g. El Nino phenomena) (Scholes et al., 2013).

2.7. Time scale

Temporal scales of processes are often related to their spatial
scale, and many of the challenges and approaches to deal with the
spatial scales are relevant to those for temporal issues. Phenomena
observed at a given scale are influenced by constraints imposed by
broader-scale system dynamics which are typically slower and
larger processes, and by finer-scale system dynamics which are
typically faster and smaller (Cash and Moser, 2000). Processes can
occur over timeframes spanning minutes to hours or less (e.g. some
biological or chemical functions), or days to weeks (e.g. ecological
processes), whilst others may occur over years (e.g. socioeconomic
processes), decades or longer (e.g. species assemblage shift, climate
change). Due to time lags, cause and effect may not be obvious,
especially if other disturbances have occurred in the intervening
period. For the same reason, it can be difficult to attribute present-
day disturbances to ecological condition due to legacy effects from
past disturbances (Allan, 2004).

Models can be static (non-temporal), lumped over a given time
period, dynamic or continuous (Kelly et al., 2013). As with spatial
issues, multiple temporal scales can be reconciled in IM frame-
works by upscaling and downscaling processes or using a multi-
scale approach. The IM goal should dictate the appropriate choice
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of time horizon (extent) and time step (resolution) to ensure that the
important processes and responses are captured by the model.

There are also differences between space and time. Time is
intrinsically directional. A static model generally still captures a
notion of cause-and-effect that occurs over time. There is a strong
distinction between past, present and future that separates events
and circumstances that cannot be changed from those that are
simultaneous and those that can still be influenced. What has been
done cannot be undone. This results in concepts such as the pre-
cautionary principle and adaptive management that explicitly
tackle the temporal permanence of impacts. This is in stark contrast
to spatial differences where, in principle, conditions in different
locations are always open to being modified.

2.8. Disciplines

In addressing the preceding dimensions, many complex envi-
ronmental problems require integration of knowledge and com-
petencies from a broad range of paradigms (e.g. positivist,
interpretive) and disciplines (e.g. ecology, economics, hydrology,
geomorphology, engineering, computer science, sociology, political
science and psychology). A paradigm represents the very general
philosophical assumptions underlying the research intervention.
Differences in paradigms lie in their assumptions about both the
nature of reality and knowledge. Positivistic disciplines, such as
ecology and hydrology, assume that systems have objective
boundaries independent from the subjective views of observers. On
the other hand, interpretive disciplines (e.g. cognitive psychology)
assume that our very subjective views and underpinning values
determine how we make sense of surrounding systems and the
way we produce and interpret our knowledge about these systems.

Traditionally, disciplines have been fragmented into intellectual
silos and developed their own set of theories, assumptions and
research methods. IM provides a platform to bring together mul-
tiple disciplines and provide a shared understanding of the system.
It is however faced with challenges associated with incorporating
the divergent views, types and formats of information, languages,
methodologies and tools of the different science domains (Voinov
and Shugart, 2013; Laniak et al., 2013; Kragt et al., 2013).

Although the call for integration across disciplines is not a new
one, the actual development of inter-disciplinary research to
address environmental problems is still lagging behind (Pahl-Wostl
et al., 2013). This lag is due to three main barriers to integration
across disciplines: 1) cultural and historical; 2) conceptual; and 3)
technical. Cultural barriers include individuals and research groups
who are territorial of their disciplinary field, driven by fear and lack
of trust, as well as discipline-based funding and institutional ar-
rangements. Newell et al. (2005) argue that this is the more chal-
lenging barrier because it is rooted in our education systems which
promote “the only right answer” mindset. Pahl-Wostl et al. (2013)
assert that the academic reward system hinders integration of
disciplines, and discourages scientists from bridging their disci-
plinary silos.

Conceptual understanding of a system may differ across disci-
plines because of differences in their phenomena of interest, as well
as the way they perceive the system processes (e.g. type, resolution
and scale of data collected) and frame the issues. Divergent char-
acterisations of a phenomenon can arise from differences in the
chosen boundaries of the issue (i.e. the inclusion/exclusion of
specific elements), the focal point, and the assumptions regarding
the nature of the phenomena (Dewulf et al., 2007). To bridge these
gaps, it is important for the different researchers to: acknowledge
one another's perspectives; explore incompatible and comple-
mentary contributions of the different knowledge frames; and be
willing to incorporate other concepts into their previously held

frames as well as establish new frames (Dewulf et al., 2007). In
order to overcome some of these conceptual barriers, Newell et al.
(2005) developed a conceptual template to capture an interdisci-
plinary view of concepts used to represent aspects of environ-
mental problems. The template categorises a broad list of concepts
across disciplines into six conceptual clusters: i) dynamics and
system, ii) organisation and scale, iii) controlling models, iv) man-
agement and policy, v) adaptation and learning, and vi) history.

The technical barrier relates to the differing research practices
and tools adopted by the various disciplines. We discuss the inte-
gration of diverse methods, models, other tools and data in the
section below. Related to this is the use of different linguistics and
semantics, with disciplines potentially assigning different mean-
ings to the same term or using different terminology to describe the
same phenomena. Knowledge representation through formal on-
tologies is one way to overcome this ‘confusion of tongues’ (Voinov
and Shugart, 2013). Ontologies explicitly express all concepts, sys-
tem properties and processes in a man- and machine-readable
format such that they are unambiguously defined. Standard on-
tologies (e.g. OWL, RDF) help facilitate the flow of communication
between cross-disciplinary teams, including interoperability be-
tween their models (Janssen et al., 2009; Arnold, 2013). Ontologies
also support declarative modelling, where the model is specified
according to the components and variables of the system and the
functional relationships between them (rather than the algorithms
that perform the calculations), allowing more efficient re-use and
integration of models from divergent disciplines (Rizzoli et al.,
2008; Villa et al., 2009).

2.9. Methods, models, other tools and data

This dimension concerns the technical integration of different
methods, models, other tools and data fromvarious disciplines and/
or representing different processes or perspectives. There is a
plethora of modelling and analytical tools that can be used in the IA
process as summarised in Table 2. In this paper IM is emphasized as
the key tool for performing IA, but other various tools are applicable
depending on the purpose of the task. For example participatory
methods seek contribution from stakeholders through their
expression of knowledge, ideas, preferences or values, and are
suitable for identifying objectives, issues of concern, performance
measures and management alternatives. This section focuses on
modelling tools; participatory tools are discussed in more detail in
Section 3 below. While the IA process can involve the use of mul-
tiple tools separately, tools can be integrated as in integrated
models, which can be useful for simultaneously modelling the
impact of management scenarios on different system components
or criteria.

Voinov and Shugart (2013) distinguish two main approaches to
IM: 1) developing the model, typically from scratch, using one
modelling methodology to represent the whole system (integral
models); and 2) coupling existing models such that the models
operate together and exchange information (assemblage approach).
The first approach can also incorporate existent models, however
those component models are translated and reprogrammed to fit
into the whole model (Voinov and Shugart, 2013). As this type of IM
is generally developed by one team using a single formalism, the
model tends to bemore cohesive both conceptually and technically.
The second approach reuses models developed and tested by spe-
cialists in that particular area, which can be advantageous if com-
plex processes need representation and can also reduce model
development cost, time and effort. However coupling model com-
ponents involves challenges related to interfacing, interoperability,
information exchange between models and the organisation of
components (Rizzoli et al., 2008).
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There are several IM frameworks available, each having different
properties and requirements, and suited to different contexts and
applications. Kelly et al. (2013) reviewed five common types of
models for integrated assessment: coupled component models,
system dynamics, Bayesian networks, agent-based models and
knowledge-based models. The suitability of IM modelling type
depends on the purpose of themodel, the type of data available, the
type of processes of interest (e.g. interactions between individuals,
aggregated effects, feedback loops, etc.) and whether the focus of
the model is to represent depth in specific processes or breadth of
the whole system (see Kelly et al., 2013). Researchers tend to use
tools they are familiar with rather than those most appropriate for
the study conditions. Guidelines such as Kelly et al. (2013) can help
to inform the appropriate selection of tools.

A third alternative approach to IM is developingmeta-models or
emulation models, which are simplified or more computationally
efficient versions of other models, and provide similar outputs for
given inputs (Castelletti et al., 2012). Where the original model is
complex, speeding up computation might allow more runs to be
made to allow exploration of uncertainty, or might allow the model
to be used in an interactive setting with stakeholders. The simpli-
fication might also help identify dominant characteristics of the
system that are not otherwise obvious (e.g. Young et al., 1996), or
allow the efficient derivation of model properties, such as sensi-
tivities to changes in inputs (e.g. Blatman and Sudret, 2010).

IM also involves integrating different types of data (e.g. nominal,
ordinal, binary, numeric) fromvarious sources. Data pre-processing
or manipulation can be applied in some cases to make the data
compatible for use, for example transforming continuous data to
discrete data. However in other cases, disparate data (e.g. qualita-
tive vs. quantitative data) can be difficult to meaningfully trans-
form. Often the type of data available will dictate what models or
tools can be applied.

Linking or incorporating models built under different modelling
paradigms, semantics, programming languages and scales, is a
challenge when using components based on existent models. This

becomes especially difficult if the legacy models or code are poorly
documented. Appropriate model documentation should include
clear definition of model objectives and all model inputs/outputs,
including data format, scales, units and data sources (Jakeman et al.,
2006). Also, if the original data, model or software code have been
altered in any way (including data pre-processing), the changes
should be tracked and recorded (e.g. version control). If models are
coupled under inappropriate conditions or translated incorrectly,
there is a high risk of the IM being unsuccessful, referred to by
Voinov and Shugart (2013) as ugly constructs or ‘integronsters’.
This includes when a model is applied beyond their intended ca-
pabilities or validated range. Transparent reporting and docu-
mentation of models facilitates communication between
modellers, model users, and other experts and stakeholders
involved to ensure the model is not re-used in the wrong context or
misinterpreted.

There has also been a call for the establishment of standard
protocols in data management and modelling to increase interop-
erability between tools (Castronova et al., 2013). The need for
standardisation of modelling processes becomes more crucial
when models are linked with other models. There are general
guidelines for modelling practice standards such as Jakeman et al.
(2006), which details ten iterative steps to model development
and evaluation. However documentation protocols also need to be
designed in a way that accommodates a modelling paradigm's
theoretical and conceptual foundation, for example the ODD pro-
tocol in agent based modelling (Grimm et al., 2006), the SDM-Doc
in systems dynamics (Martinez-Moyano, 2012), and the good
practice guidelines for BN modelling (Chen and Pollino, 2012).
Similarly, guidelines for good practice in participatory modelling
have been outlined in Korfmacher (2001) and Langsdale et al.
(2013).

Another advancement toward greater interoperability between
tools has been through shared semantics. As discussed in the
‘Disciplines’ section, integration of semantics can be achieved
through ontologies to provide a standardised data and knowledge

Table 2
Categorisation of tools to support the IA process.

Tool Category Examples of tools Application Purpose

Exploratory tools Statistical analysis, data mining, multivariate
exploratory techniques, data-based models

Search for patterns in data and relationships
between variables

� Improve system understanding
� Identify indicators and criteria

Knowledge
representation
tools

Process-based models, integrated models such
as Bayesian networks, decision trees, conceptual
models, mind maps, spatial analysis, mapping

Summarize and represent what is understood
about the system by integrating or encoding
knowledge and data

� Improve system understanding
� Communication of knowledge
� Social learning
� Identify knowledge gaps

Optimisation tools Multi-objective optimisation models, genetic
algorithms, cost-benefit analysis

Find the solution that optimises the objective
function based on a single criterion, or finds
the set of solutions at the Pareto frontier
when multiple criteria are involved

� Improve system understanding
� Screen or evaluate alternative

management options

Participatory tools Participatory modelling, focus groups, scenario
analysis, stakeholder workshops, role playing games

Interactive or deliberative
approaches where stakeholders contribute
by expressing their knowledge, ideas,
preferences and/or values

� Identify objectives, issues, preferences,
management options

� Obtain information from stakeholders
� Improve system understanding
� Social learning
� Support negotiation, reduce conflict

and build trust

Prediction tools Data-based models, process-based models,
integrated models

Estimate impacts of alternative scenarios
on criteria of interest

� Improve system understanding
� Evaluate alternative management

options

Trade-off tools Integrated models, MCDA Explore trade-offs involved with different
alternatives based on two or more criteria

� Improve system understanding
� Evaluate alternative management

options
� Facilitate negotiation and

conflict resolution

S.H. Hamilton et al. / Environmental Modelling & Software 64 (2015) 215e229222



structure, to resolve ambiguities about concepts and relationships.
There are two main approaches to making an existing model
interoperable with other disparate models: 1) rewrite the code to
make their language compatible, or 2) to use a wrapper, which acts
as an interface that converts the code or data into a compatible
form (Bastin et al., 2013; Castronova et al., 2013). Model integration
frameworks such as OpenMI and TIME have created software
interface specification standards to allow compliant model com-
ponents and tools to readily exchange data (Rahman et al., 2003;
Gregersen et al., 2007; Knapen et al., 2013). OpenMI and other
software standards support two-way linkages of existing and new
model components from different developers, across multiple
disciplines and scales, and are therefore highly suitable for devel-
oping integrated models of complex systems (Knapen et al., 2013).

Other technologies, particularly web-based platforms, have
enabled collaboration and information exchange between experts
and stakeholders in different locales, greatly facilitating large IAM
projects that often involve multiple research teams (Arnold, 2013;
Bastin et al., 2013). Also, data sharing has become supported by
web-based data repositories, such as the Long Term Ecological
Research Network (www.lternet.edu), USGS National Water Infor-
mation System (waterdata.usgs.gov/nwis) and STORET (Storage and
Retrieval) Data Warehouse (www.epa.gov/storet). Although IAM is
faced with many technical challenges related to gathering infor-
mation and representing such complex systems, there are many
promising technologies and approaches being developed to over-
come them.

2.10. Uncertainty

Uncertainty is widely accepted to be pervasive in any attempt to
manage and understand environmental problems. Uncertainty can
be interpreted in different ways depending on the discipline, and
the context of application. Ascough et al. (2008) presented a ty-
pology for uncertainty in environmental decision making, which
includes knowledge uncertainty, variability uncertainty, linguistic
uncertainty, and decision making uncertainty.

Uncertainty can be characterised by: 1) its source and location
within the IA process (e.g. problem framing, model structure,
model inputs/outputs) (Refsgaard et al., 2007); 2) its level along the
spectrum from determinism to total ignorance; and 3) its nature
(epistemic, stochastic or ambiguity uncertainty) (Walker et al.,
2003). IM must address integration of these three dimensions of
uncertainty both within and across the model components. Inte-
grated models encompass multiple models, often from a broad
scope, and therefore take on an even higher level of abstraction and
require a larger number of assumptions. This results in an “explo-
sion of uncertainty” (Jones, 2001) not only through the accumula-
tion of uncertainty stemming from the individual sub-models but
also from the integration of those models.

Guillaume et al. (2012) propose an uncertainty management
framework containing seven iterative steps: (i) identifying the
uncertainties, (ii) prioritising resources to address them, (iii)
reducing the uncertainty, (iv) describing the uncertainty, (v)
propagating it through the model, (vi) communicating the un-
certainty to model users and (vii) anticipating residual uncer-
tainty. When integrating several different model or system
components, it may not be useful to invest considerable effort and
resources toward reducing uncertainty in one area if the results
are dominated by uncertainty in another area (Guillaume et al.,
2012). In other words, to be effective uncertainty management
should be prioritised toward uncertainties that are most relevant
to the IA task.

The uncertainty of data or model componentsmay take a variety
of forms, such as measures of performance (Bennett et al., 2013),

bounds, scenarios or probability distributions. Transformation may
be needed if they are to be combined (Bastin et al., 2013). The
propagation of uncertainties through integrated models involves
determining the effect on the output of changes in the inputs. This
may be as simple as running alternate scenarios, or a Monte Carlo
method, consisting of running random samples from a distribution.
Some forms of uncertainty, for example ‘unknown unknowns’,
cannot be quantitatively measured (Bastin et al., 2013). Quantifying
structural uncertainty remains a challenge in environmental
modelling in general, although peer review and comparison of
models with alternative structures has been found to be useful in
assessing this type of uncertainty and helping to understand its
causes and effects (e.g. Gupta et al., 2012; Rosenzweig et al., 2013).

IA may also require the integration of different epistemological
and pragmatic attitudes toward uncertainty and how it should be
addressed. Differences may arise from contrasting goals and in-
terests (e.g. management vs science), views of model usage or at-
titudes toward risk (van Asselt et al., 1996). Depending on
perspective, the appropriate treatment of uncertainty may be
eliminating it with further research, quantifying it, having man-
agers actively manage issues that arise, or simply ignoring it until it
becomes a more pressing issue. It is increasingly being accepted
that the pervasiveness of uncertainty in models means that un-
certainty cannot be fully quantified let alone reduced; this has led
to the increasing popularity toward adaptive and learning-oriented
approaches (Cundill and Fabricius, 2009; Crona and Parker, 2012).

Due to the dynamic nature of biophysical and socioeconomic
systems, uncertainty can also vary as a function of time. Un-
certainties increase as projections are made further into the future.
Scenario analysis may be suitable for planning over long horizons
or when the outcomes of alternatives are difficult to estimate (e.g.
climate change). Rather than attempting to make these pre-
dictions, a representative spectrum of plausible scenarios can be
constructed and evaluated to assess possible risks and opportu-
nities, and strategies to respond to them (Liu et al., 2008;
Mahmoud et al., 2009).

3. Fitting the dimensions into the IAM process

Here we discuss how integration of the ten dimensions fits into
the IAM process. We broadly describe the process in terms of four
major phases (Scholes et al., 2013): 1) scoping, 2) problem framing
and formulation, 3) assessing options and 4) communicating find-
ings. IAM processes rarely follow a linear path. Therefore, these four
phases tend to be iterative, and often some activities across phases
occur simultaneously. For instance, the problem scope or the con-
ceptual model may be re-examined and modified as new insights
come to light. Integration can be achieved in these IAM phases
using a mix of stakeholder participation processes and modelling
tools (Jakeman and Letcher, 2003; Voinov and Bousquet, 2010);
examples are given in Table 3.

The first phase focuses on collecting local knowledge about the
system under study. Walz et al. (2007) define local system knowl-
edge as “the insights of individuals into the socio-economic,
administrative, cultural, political, and environmental dynamics
with a particular region.” These data (mainly qualitative) help re-
searchers make sense of the problem and its scope (Smith, 1989;
Bardwell, 1991), including identifying the objectives, the system
boundaries, the stakeholders and their issues of concern. The
scoping phase of an IAM project must also consider the resources
available, in terms of funds, time and skills. It is necessary for the
project to set priorities based on how crucial each issue is, and to be
pragmatic in selecting appropriate tools and methods. The end of
the other three phases should also involve a critical review that
reflects on these priorities and the project objectives. The review
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should evaluate whether the past and planned activities are in line
with the scope to ensure the project remains focussed. Software
engineering provides techniques and tools (e.g. rapid prototyping)
that allow stakeholders to try ideas, evaluate the development
process, and refine modelling requirements (Verweij et al., 2010).

Ideally, all relevant stakeholder groups should be identified and
appropriately engaged as early as possible to enhance the effec-
tiveness of the IAM process and the credibility and value of its
outputs (Reed, 2008; Voinov and Gaddis, 2008). Stakeholders can
be broadly categorized according to their influence on and interest
in the process and its outputs. For example, who has the power to

block the modelling process and implementation of its results?
Categorising stakeholders guides the design of the participatory
component of the project (i.e. who will be involved in the model-
ling process, when, why and how).

Participatorymethods (See Fig. 2) have an important role to play
in IAM as they help:

� establish relationships with key stakeholders and interest
groups;

� learn about the historical context related to stakeholders and
issues; and

Table 3
Relevance of integration of the 10 dimensions to each phase of IAM, and relevant techniques to support integration.

Dimension Scoping Problem framing and formulation Analysis and assessment of options Communication
of findings

Issues of
concern

Identifying important issues
/ rapid appraisal, stakeholder
workshops, focus groups

Including relevant indicators to use as
performance criteria
/ soft systems methodologies, stakeholder
workshops, focus groups, expert elicitation

Evaluating alternatives based on how it
is predicted to affect the performance
measures
/ MCDA, analytic hierarchy process,
multi-objective optimisation, trade-off
analysis

Target communication
towards issues of concern

Governance
setting

Identifying connected
management settings
/ stakeholder workshops,
focus groups

Identifying management options to assess
/ stakeholder workshops, focus groups,
mental models, conceptual models,
expert elicitation

Modelling impacts of management
alternatives
/ integrated models, scenario analysis

Target communication
towards management
interests

Stakeholders Involving relevant stakeholders
/ stakeholder analysis; focus
groups; snowball sampling

Balancing representation of stakeholder
interests
/ mental models, conceptual models, soft
systems methodologies, ODD, Delphi method

Involving stakeholders to assess
assumptions used; Deriving preferences
from stakeholders to weight
criteria
/ participatory modelling, group model
building, Institution/actor power mapping,
behavioural modelling; Delphi method

Targeting stakeholders
interests
/ role playing games

Natural
setting

Including relevant natural
system components
/ stakeholder workshops,
focus groups, expert elicitation

Defining natural system behaviours and
indicators
/ stakeholder workshops, focus groups,
mental models, conceptual models, expert
elicitation

Modelling natural system processes
/ process-based models, data-based
models, integrated models

Reporting states of
biophysical models to
interested audiences

Human
setting

Including relevant human
system components
/ stakeholder workshops, focus
groups, expert elicitation

Defining human system behaviours and
indicators
/ stakeholder workshops, focus groups,
mental models, conceptual models,
expert elicitation

Modelling human system processes
/ process-based models, data-based
models, integrated models

Expressing interactions
of human behaviour
and natural system

Spatial scale Determining spatial extent
of key processes

Defining spatial heterogeneity and
interactions

Defining model spatial elements
/ multi-resolution spatial modelling,
cellular automata

Spatial representation
of results
/ GIS tools

Time scale Determining relevant time
scales
/ space-time domain plotting,
narrative story lines

Determining temporal extent
and resolution
/ scenario analysis, future visioning

Defining model time steps
/ dynamic models, multi-scale modelling

Temporal
representation
of results

Disciplines Including relevant researchers
and reviewing relevant
literature

Balancing interests of researchers and
level of detail of representation

Collaborative modelling; Involving
researchers in assessing their
connection with other components
/ standard ontologies, declarative
modelling, expert review

Bridging language
barriers;
Interdisciplinary
collaboration

Methods,
models,
other tools
and data

Identifying relevant tools
and data
/ requirements identification
and analysis

Defining relationship between tools
/ system analysis and design techniques

Using tools; Combining tools
/ integrated models; wrappers; Integrated
modelling environments (OpenMI)

Making tools
understandable within
and outside project
team
/ web-based
technologies;
visualisation tools;
user-friendly GUI

Uncertainty Considering alternative
boundaries of scope

Considering alternative problem
formulations

Considering alternative model instances
/ uncertainty quantification, hypothesis
testing, (pseudo) Monte Carlo methods

Conveying alternative
possible answers
rather than a single
conclusion, and the
reasons for them
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� reveal the divergent and potentially conflicting values, interests
and underlying objectives held by stakeholders (Voinov and
Bousquet, 2010).

Depending on the modelling purpose and the local situation,
various participatory approaches can be used. For example, rapid
appraisal (Beebe, 1995) is an umbrella approach that covers a wide
range of data collection methods, such as one-to-one interviews,
field trips, and information meetings that allow the modeller to
gather data quickly. Rapid appraisal might be followed with more
detailed and structured discussions through stakeholder work-
shops or focus groups with a subset of stakeholders with a partic-
ular interest.

After all concerns and interests are expressed, it may be neces-
sary to narrow these down to a smaller set of objectives and issues
that can be fine-tuned through the process (Van Delden et al., 2011).
Interactive or deliberative participatory methods can help non-
experts to articulate their knowledge, preferences and values in a
structured group process, and help the group reach consensus on
the problem and scope to be addressed (van Asselt and Rijkens-
Klomp, 2002). Related to this are soft systems thinking and prob-
lem structuring methodologies (e.g. soft systems methodologies;
Checkland and Holwell, 1998) which provide a holistic framework
(theories, techniques, and tools) that can support stakeholder
participation through scoping and subsequent phases.

The second phase involves building the evidence base to help
conceptualise the problem (Scholes et al., 2013). This evidence in-
cludes any relevant literature, data, models and hypotheses, as well

as expert and stakeholder knowledge which can be obtained with
elicitation tools (e.g. James et al., 2010). Logical thinking and
mapping tools can be useful in representing knowledge and artic-
ulating ideas (Wolstenholme, 1999; Kelleher and Wagener, 2011).
Mapping techniques vary from very simple and unstructured (e.g.
mind maps), to semi-formal and moderately structured (e.g. con-
ceptual models, causal loop diagrams), to very structured (e.g.
DPSIR; Gregory et al., 2013).

Participatory methods and tools can be utilised to inform and
enhance the conceptualization phase. For example through group
brainstorming, a conceptual model(s) can be drawn up to show and
summarise all the important variables and processes to be incor-
porated into the model, their linkages to one another, and to per-
formance indicators (Vennix, 1999). This can also be a valuable
opportunity for stakeholders to think critically and reflect on their
understanding of the system.

During this phase researchers and stakeholders also identify the
appropriate criteria, indicators, functions and scales to represent
the issues of concern and their related biophysical and socioeco-
nomic processes (Reed et al., 2006). Scenario planning is a useful
approach for helping stakeholders develop a coherent storyline
about the cause-and-effect relationships that link future changes in
the system drivers, processes, and dependent values (i.e. social,
cultural, economic). Scenarios promote “what-if” thinking,
explicitly reasoning about the consequences of alternative
conceptualisations of a system, actions and events.

Selecting combinations of participatory methods may be a chal-
lenging task as it depends on several criteria, including (Hare, 2011):

Fig. 2. The IAM process phases and steps. The level of model- and stakeholder-support required for each of the steps is indicated by the colour shading. (Adapted from Becker et al.,
2010). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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� the purpose of the participatory activity in the context of the
IAM objectives;

� the types and forms of data required to support model
development;

� available time, skills, and resources required versus what is
available; and

� the relative fit between the selected engagement methods and
stakeholder preferences and capacity.

The third phase involves identifying candidate solutions and
assessing the various management options or scenarios through
modelling or other tools. This includes selecting the appropriate
modelling approach, model structure and parameter values (e.g.
Kelly et al., 2013; Jakeman et al., 2006) in conjunction with partic-
ipants to assure that the modelled outputs are aligned with the
relevant problem objective. The models are run to estimate the
possible impacts of the alternatives on the selected criteria or in-
dicators. If the systemprocesses require detailed representation and
appropriate disciplinarymodels exist, the suitable approachmay be
to couple the existing models into an integratedmodel (Voinov and
Shugart, 2013). Other approaches may be more suitable under
certain settings. For example system dynamics modelling is
appropriate where system feedbacks are important (Winz et al.,
2009), Bayesian networks are suitable when data or knowledge is
limited (Chen and Pollino, 2012), and agent-based models are
suitable for modelling emergent behaviour from local interactions
(Filatova et al., 2013). The performance measures from the different
alternative options can be compared and ranked using techniques
such as multi-criteria decision analysis (MCDA), life cycle analysis
(LCA), cost benefit analysis (CBA) and risk analysis (Sinclair, 2011).

The final phase is about communicating the model findings
and their possible implications to the end user (e.g. decision
maker). This includes reporting the uncertainties about the model
output or findings. The appropriate style and language of
reporting depends on the audience and the purpose of the IAM
project. The integrated models and other tools may be packaged
in a software platform to facilitate communication and interaction
between stakeholders and/or experts (Croke et al., 2007). How-
ever, it is crucial that any software or decision support tool be
designed and developed with a clear understanding of end-user
needs and expectations. Many decision support tools fail to be
adopted due to inadequate consultation with the intended end
users; the establishment of trust and credibility during the
development process can be more important than the end prod-
uct itself (McIntosh et al., 2011).

It is clear that the outcome and usefulness of any IAM project
hinges on adequate incorporation of each of the ten dimensions.
When designing, evaluating or using findings from any IAM
project, we encourage the practice of systematically and explicitly
considering how each dimension is addressed, as well as un-
certainties related to those left out. Ideally, this practice would
involve identifying the components being integrated in each of the
ten dimensions and providing a rationale for the approach to
combining them. Often practical, knowledge and/or data con-
straints will cause discord between how the dimensions are and
should be integrated. Even when integration across a dimension is
not explicitly addressed, underlying assumptions are often
implied. For example, by considering only a select few natural or
human system components in an integrated model, it is assumed
that other system components are not relevant to the problem. In
another common example, if the spatial scales of processes are
upscaled, it is assumed that processes occurring at finer scales are
not important. Such assumptions should be made explicit and,
where appropriate, assessed for their implications on the study
outputs.

4. Conclusion

It is broadly recognised that the interconnectedness of our
world requires integrated rather than piecemeal approaches to
resolving complex environmental issues, particularly in view of the
increasing speed and pervasiveness of connections associated with
globalisation. Yet, there is little agreement on what and how to
integrate. This paper has highlighted ten dimensions of integration
that are of particular interest in integrated modelling and assess-
ment. To go beyond integration as a buzzword, it is important that
those undertaking an IAM project are aware of which of these di-
mensions they are actually addressing within their work, and
which they are not. Inadequately integrating these dimensions and/
or omitting important ones may result in impacts of interventions
being overlooked, or the modelling effort being rendered irrele-
vant. In recommending to modellers to reflect on their practice, we
would particularly emphasise the need to take a purpose-driven
approach. The need for integration arises from the need to inte-
grate issues, management and stakeholders, and the nature and
level of integration of the other dimensions should always be per-
formed with that context in mind. Integrated assessment and
modelling is not about integration for its own sake. Its raison d’être
lies in helping to tackle the complex multi-issue problems faced by
coupled human-environment systems.
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