
Integrated Asset Analysis Framework

for Model-Driven Development
of SOA Based Solutions

Karthikeyan Ponnalagu, Nanjangud C. Narendra, and G.R. Gangadharan

IBM Research India, Bangalore, India
{pkarthik,narendra,gangadharan}@in.ibm.com

Abstract. In SOA based application development, a plethora of archi-
tectural constructs such as processes, services and components need to be
built. This requires modeling of the application at different levels of ab-
straction such as business architecture, application architecture and run-
time architecture. Model driven development (MDD) is hence considered
the primary development approach for building SOA applications. Exist-
ing MDD methodologies and tools only support searching and discovery
of assets, and do not support their analysis in order to determine their
suitability for reuse. This often results in selecting potentially incompati-
ble assets among the various layers of the solution, resulting in redundant
asset customizations. In order to address this issue, we present a novel
framework and methodology that enables the integrated analysis of ex-
isting assets associated across multiple abstractions of the solution from
different asset repositories. This approach helps in creating a consistent
asset reusability view across all the phases of SOA development with mul-
tiple reusable asset options to compare and select. We present an experi-
mental evaluation of our methodology on real-life SOA assets distributed
across multiple repositories and illustrate how our integrated mechanism
can help consistently maximize reuse of assets in SOA development.

Keywords: Service-Oriented Architecture, Asset Analysis, Reuse.

1 Introduction

In SOA based solution development, the Model Driven Development (MDD) ap-
proach enables business analysts and application architects to better integrate
business requirements with IT specifications [1,2,3,4]. As illustrated in Figure 1,
in a typical SOA based solution development, models at higher abstraction level
representing the business domain are translated into service models, which in
turn are refined and realized as traditional design models (class diagrams, se-
quence diagrams, etc.) finally followed by implementation. The process of discov-
ering and leveraging existing potential reusable assets from repositories will min-
imize the cost and effort of building SOA based solutions, rather than developing
from scratch. However, improper selection of reusable assets across the various
layers of the solution results in incompatibilities among the assets, thereby in-
curring increased customization effort. As the volume of available assets in most

G. Pallis et al. (Eds.): ICSOC 2011, LNCS 7221, pp. 257–269, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



258 K. Ponnalagu, N.C. Narendra, and G.R. Gangadharan

Fig. 1. SOA Lifecycle Tooling View

repositories are generally large (in terms of hundreds), discovering the appro-
priate asset and customizing it for compatibility with the existing artifacts in
the SOA based solution is quite challenging. This exercise can even take up to
a week per asset for an experienced architect.

Therefore, an integrated view of assets from multiple abstractions sourced
from different repositories at different stages of development is required. Such
a view enables architects to identify the most appropriate set of assets to reuse
with minimal customization effort. This kind of view can also be reused for
similar solutions in the same domain reducing the time invested in searching
for the assets in the first place. In this perspective, the key contribution of our
paper is an integrated asset discovery and analysis framework to aid model-
driven development of SOA based solutions. The salient features of our paper
are as follows:

– A novel approach that progressively generates a reusable integrated asset
analysis reference model from multiple repositories across the different ab-
straction layers of the solution

– An extensible mechanism that supports diverse abstractions of business and
service models towards integrating newer asset specifications and repositories

– An integrated asset assessment that enables both top-down and bottom-up
trade-off considerations in selecting or rejecting candidate assets

– A mechanism that enables dynamic selection of search context related filters
discovered from the initial searches and employed in subsequent searches

The remainder of the paper is organized as follows. We present a Request for
Quote (RFQ) process model as our running scenario in Section 2. Section 3
discusses the different architectural layers of the SOA model and corresponding
support for asset analysis across different asset specifications and repositories. In



Integrated Asset Analysis Framework for Model-Driven Development 259

Section 4, we present our framework and methodology for analyzing existing ar-
chitectural assets in SOA based solution design. Section 5 illustrates asset search
and identification algorithm that analyzes existing assets across multiple repos-
itories and helps in identification of reusable assets via a context-based filtering
mechanism. In Section 6 we evaluate our framework and its constituent algo-
rithm on our running example. Related work is discussed in Section 7, followed
by concluding remarks in Section 8.

2 Running Example

Request for Quote (RFQ) business process provides a facility for automating the
premium quote generation for customers who wish to obtain insurance policies
in various sectors including automobiles, home, and life.

Nowadays independent search, discovery, and reuse assessment is conducted
across each of the phases with differing asset requirements. Similarly, we perform
independent asset searches with a random sequence for specific asset types in the
RFQ application. A total of 33 independent searches are conducted through a
single user interface connected with multiple repositories (see Section 6 for more
details). Each search is focused on searching a specific asset type ignoring the
search results from the previously executed search. Thus, a total of 182 assets are
discovered. Figure 2 depicts the distribution of these assets across the different
modeling abstractions.

We observe that the discovered assets have reuse compatibility issues with
each other because they do not share the same characteristics such as status of
their approval, supported languages, and compliance to standards or regulations.
Some of these assets have high mismatch probabilities if they are considered for
reuse with assets from other asset types. For example, the third search in the
independent search sequence is based on case study as asset type. From the total
of 8 filters associated with the assets resulted in this search, 6 filters have unique
values leading to a mismatch probability of 75%. We illustrate the associated
mismatch probabilities for assets belonging to all the asset types in Figure 2.
Thus we have a larger scale of asset types to consider for reuse in each of the
solution development phases. Such a scenario leads to redundant customizations
and inconsistencies in solution development due to the lack of a methodology
that integrates the asset search and discovery steps and helps in generating a
consistent system-wide asset reuse view. Figure 3 illustrates the RFQ business
process retrieved from one of the searches as a process map asset type belonging
to business architecture layer.

3 Exploring Asset Analysis in SOA Based Solutions

Understanding the architecture and the associated models of an SOA based so-
lution is paramount in setting the context for search, discovery and analysis of
existing assets. From our experience in analyzing SOA based solutions, we have
noticed that there are multiple touch points to initiate asset search. We describe



260 K. Ponnalagu, N.C. Narendra, and G.R. Gangadharan

Fig. 2. Asset Distribution

them under the following three layers of abstraction: Business architecture, Ap-
plication architecture, and Operation architecture.

In the context of SOA, business architecture models involve business pro-
cess models, component business models, requirement models, and domain data
models. The most common and widely used Business Architecture specification
is the business process model as discussed in [5]. The Component Business Model
(CBM) [6], a methodology for business architecture modeling defines a hierarchy
of business components, helps in identifying the domains the assets can tenta-
tively belong to, while the process model focuses on validating the functional
specifications of the discovered assets. Thus the impact of discovering and ana-
lyzing existing assets in the business architecture space is much higher, because
of the context of information available at the business specification level and
the flexibility one can assume with the higher abstraction the associated models
bring in. However there should be no conflicts in integrating the business archi-
tecture assets with subsequent selection of application and operational assets.

Application architecture methodologies provide a mature environment for ar-
chitecting and designing SOA solutions. The core functionality of such method-
ologies includes supporting multiple business specification models and enabling
architects to develop the correct SOA based design of the solution. They also
provide capabilities to represent business architecture specifications such as pro-
cess models in the form of UML Models. From a MDD perspective, they enable
generation of multiple implementation models depending on the stipulated de-
ployment environment.

Operational architecture models basically involve the enhancement of gener-
ated implementation artifacts for hosting in a runtime environment, focusing on



Integrated Asset Analysis Framework for Model-Driven Development 261

Fig. 3. Process Model Representation for the Request for Quote Solution

actual custom development and generation of exclusive set of artifacts for the
runtime environment. This is supported by model driven engineering capabili-
ties that generate starter code at the completion of the solution design exercise.
Hence, operational architecture for SOA based solutions provide greater scope
of code reusability especially with the MDD approach.

An integrated view of associated models related with RFQ application for
these three layers is illustrated in Figure 4. Due to the lack of integrated and
implicit automated asset analysis and discovery mechanisms in typical MDD
approaches, there exists such a closely linked chain of capabilities that quickly
model and transform a business specification model into an application archi-
tecture specification and associated set of code artifacts.

4 Asset Analysis Framework: Design and Methodology

Our framework complements the service specification and design components
prevalent in MDD tools such as Rational Software Architect (RSA)1 via discov-
ery, selection, and adaptation of existing assets that can realize the identified
service functionalities without fresh implementation at multiple SOA layers. In
model driven SOA solution context, our framework incorporates a way to ac-
cess assets stored in different repositories and to view existing assets from one
integrated modeling tool.

Our framework basically contains three main components (see Figure 5):

1. The Contextual Asset discovery component, that enables the construction
of multiple optimized asset search queries based on the business architecture

1 http://www-01.ibm.com/software/awdtools/swarchitect/websphere/



262 K. Ponnalagu, N.C. Narendra, and G.R. Gangadharan

Fig. 4. An integrated view of RFQ Application models

model and to initiate asset search in iterative fashion across the multiple
repositories and across multiple abstractions such as service models, designs,
service component definitions and code implementations

2. The Core Asset Modeling component that retrieves the asset artifacts and
represents them in the generic Asset Model.

3. The Asset Analysis Component that facilities automated or manual compar-
ison of the selected asset models against the corresponding business archi-
tecture elements such as business process, business entity models

The requirement-centric context used for initiating search and selection of filters
is formulated at two levels. The initial level is based on the type of business
specification document such as process model, CBM, business use case model,
etc. This basically helps in identifying the type of artifacts such as service model,
detailed design, actual code implementation, deployment plan, etc., that will be
required to take the solution development to its completion. The second level
is based on the actual structural and behavioral content (such as the details of
tasks, sub-processes, etc.) that dictates the search of functional and technical
specification of the asset artifacts.

The metamodel illustrated in Figure 6 contains the UML based representa-
tion of the key asset types. Transformation of asset types and the associated
structural constructs by the assets into UML metamodel helps in performing a
uniform analysis with respect to the given solution requirement.



Integrated Asset Analysis Framework for Model-Driven Development 263

Fig. 5. Asset Analysis Framework Generic Design View

5 Contextual Asset Search and Identification Algorithm

Our novel algorithm for asset search and identification provides greater control for
accurate discovery and analysis of existing assets (see Algorithm 1). At the begin-
ning, the framework needs to be registered with the list of repositories prevalently
used in the organization. The algorithm basically follows a two-phased search ap-
proach. The first phase of our algorithm iterates across all the repositories to find
the suitable match for the process or the associated tasks with limited search.
The search is initiated with the process related information retrieved from the
UML representation and enhanced by adapting the search query based on the pre-
designed format supported in the repository under search. The results retrieved
are consolidated with the removal of duplicate results on subsequent iterations.
The assets thus retrieved are associated with their basic information appended to
the corresponding elements in the process model. In each repository, a basic vali-
dation is performed to ensure whether each of the elements in the process model
have at least one asset associated with them. Otherwise the search for unassoci-
ated elements are repeated in other repositories.

In most cases, such a basic search results in a huge number of assets with
most of them being unrelated or obsolete. Performing a manual validation of
the appropriateness of these assets for a solution context is one of the factors
that make architects to go for development from scratch. In our earlier work, [7],
we defined a business process consisting (a) a set of associated service models,
(b) data dependencies between the services based on the execution of preced-
ing services (produced data dependencies), (c) data dependencies between the
services based on the input model of preceding services (received data dependen-
cies), and (d) control flow dependencies that provides the choreography of the
services. Extending this modeling representation for searching existing assets,



264 K. Ponnalagu, N.C. Narendra, and G.R. Gangadharan

Fig. 6. Asset Analysis Metamodel

the second phase of algorithm proceeds as follows: Task models execute base
search aided with the set of input and output data models. The control flow
and data flow dependency models categorize search with single repositories and
also extract filter matching that reduces the search space with lower number
of asset artifacts. Basically filters are multi-dimensional and help us categorize
results as per domain, functional, or technology perspective. This enables asset
identification that can realize the functionality of a group of tasks with a single
coarse-grained asset. This guided search approach will complement work such
as [8], where the authors discussed SOA centric transformation of pre-identified
legacy assets repositioned as services and processes. Iterating the second phase
subsequently for all task groups results in a reduced single asset association for
the tasks or the process itself. The actual execution of this algorithm depends
on the searching capabilities and metadata support of the specific repositories.

6 Implementation and Evaluation

The prototype of the proposed framework has been developed as a set of plug-
ins. The core functionalities such as representation of assets as UML models
and analysis of the generated asset model from an imported asset artifact are
implemented as a central plug-in. Subsequently for each supported repository,
a corresponding repository specific plug-in is developed and integrated into the



Integrated Asset Analysis Framework for Model-Driven Development 265

Algorithm 1. Integrated Asset Search and Identification Algorithm for a Pro-
cess Model
1: Get P = S,E,D,C
2: Get R1, . . . , Rv

3: Populate unalloted list of elements E[] with S1, . . . , Sn for P
4: E[]= E1 . . . En + 1
5: for all Ri ∈ R do
6: for all E[i] ∈ E[] do
7: Construct base search query for Ri with E[i]
8: Initiate base search with E[i]
9: Get ResultSet[] Rp

10: ConsolidateSearchResult (Rp,E[i],E)
11: end for
12: if E[] = ∅ then
13: break
14: end if
15: end for
16: Generate candidate asset model with final result set F
17: Get asset list A[] from F
18: if [A] > [P ] then
19: FilterSearch ()
20: else
21: Build solution template with candidate assets
22: Proceed to manual asset analysis and new process design
23: end if

procedure ConsolidateSearchResult(ResultSet[] R, Element Ei, V ector
E)

1: Identify asset validity for status and accessibility
2: Identify asset uniqueness (whether they are not already allotted)
3: Group related assets (through existing relationships with other allotted assets if

any)
4: Assign allocation link with the corresponding E
5: Remove E from unalloted list E[]
6: Populate the resultant R to F

procedure FilterSearch()

1: Create task groups based on E, D, C from P
2: for all Ri do
3: Identify corresponding asset lists AE, AD, AC

4: Identify common filters across each of AE, AD, AC

5: Apply common filters across the final Asset List A[]
6: Consolidate result list and remove undiscovered from A[]
7: end for



266 K. Ponnalagu, N.C. Narendra, and G.R. Gangadharan

framework. The functionalities of the repository specific plug-ins involve: con-
necting to the corresponding repository through an authenticated connection
as mandated by the repository; and enabling search, discovery, selection, and
retrieval of assets from the repository.

We evaluated the prototype on a SOA design project for developing Request
for Quote business process model (illustrated in Section 2). The objective was
to identify reusable services in the business domain and to further design and
implement them. We have designed the business process model using Websphere
Business Modeler 2 and logical Data model in Rational Data architect 3. Both
the models can be imported into Rational Software Architect(RSA) for service
identification. The Service Model is built using SOMA-ME [4], which is a service
modeling application developed as a RSA plugin. RSA’s UML to SOA transfor-
mation transforms UML design artifacts to create the code artifacts from the
UML Service Model for those elements that are not available as an existing as-
set from any of the connected repositories. For evaluation, we have integrated
the iRAM4 repository with our framework to export, import, reuse, track, and
analyze any type of assets including SOA service model and other related work
products. We choose iRAM as the repository for conducting our experiments
because it enables search and discovery of multiple asset types from a single web
browser interface.

As we discussed in Section 2, the available set of assets based on the search
meta-data was quite large, i.e., 182, from the first phase of our algorithm. Many
of these assets have high mismatch probabilities if considered for reuse with other
independently identified assets. Hence we proceed for further filtering to identify
the most appropriate set of assets for building the required RFQ solution. At the
completion of each search, we collected the search results and the corresponding
filters associated with all of the assets available in the search space. Now we
randomly selected any of the assets from the search space and identified the
corresponding filters.

As we see in Figure 7, the initial search on just specific asset types is similar
to the first phase of our algorithm in terms of total number of search results.
Then the subsequent searches based on the retrieved filters are conducted. We
observe that the subsequent searches always result in assets in the range of 2-
5 (in most of the cases), irrespective of the type of assets we searched in the
initial search. Now we compare the independent asset search and integrated as-
set search corresponding to the asset types “Architecture Documentation” and
“Code/Software Components”. The independent search would have resulted in
9 assets belonging to the type “Architecture Documentation” and 16 assets be-
longing to “Code/Software Components”. With the integrated search approach,
if we started our initial search with “Architecture Documentation” and selected
one of the 9 assets, subsequent searches based on the filters associated with the
selected asset would not have resulted in any assets. This means selecting any

2 http://www- 01.ibm.com/software/integration/wbimodeler/
3 http://www-01.ibm.com/software/data/integration/rda/
4 http://www-01.ibm.com/software/awdtools/ram/



Integrated Asset Analysis Framework for Model-Driven Development 267

Fig. 7. Integrated Asset Search

other assets belonging to a different asset type purely based on independent
searches would have resulted in reuse mismatch. For example, we can compare
the redundant exercise involved in selecting and analyzing one of the 16 assets
for the type “code/ Software Component” that subsequently results in reuse
mismatch with a selected asset of type “Architecture documentation” in the in-
dependent search approach. Our integrated approach helps avoiding at least 15
independent searches and subsequent exercise of selecting and analyzing from
at least 170 assets. This indicates a scale down from 182 assets to 9 assets to
be considered if the initial search is started with the asset type “Architecture
documentation”. Figure 7 illustrates the integrated search in terms of number
of subsequent searches, the total assets resulted from the subsequent searches ,
with the initial search for each of the asset type.

7 Related Work

Generally, asset analysis in model driven service design and development is seen
as a challenging research problem. Rainer et. al. provide an overview of method
imperatives that address the requirements for SOA projects [9]. Zimmermann
et. al. [10] propose a multi-level SOA decision catalog that includes asset reuse
more as part of service realization techniques. [5] presents an overview of the
SOA specific repositories currently used in practice across the different phases
of the SOA lifecycle. With reference to SOA design and development, a relevant
work on reusing mainframe assets in SOA based solutions [11] discusses the
consideration of mainframe assets. Generic guidelines for assessing mainframe
assets in the context of SOA development are also described in [11].



268 K. Ponnalagu, N.C. Narendra, and G.R. Gangadharan

The said approaches primarily explore the repositories space and the generic
technical capabilities of interacting with the repositories. They rely on high level
of manual involvement in reuse of existing assets that remain disconnected from
the tool centric service modeling activities. However, in our paper, we propose an
efficient and interactive framework for discovering and selecting different types
of assets, and providing a modeling scope to analyze and study the assets in the
context of the required solution. We also discuss how our framework with its
plug-in based architecture can be extended or customized with respect to sup-
porting new repositories or to cope with changing standards or specifications. In
traditional approaches, the candidate assets both at the process and the individ-
ual task levels are identified through manual keyword centric search with limited
meta data information available. Then, the assets are subjected to fitgap analysis
by the architects. After passing through this crucial test, legacy transformation
of such assets into actual services as discussed in [8], with or without customiza-
tion, is considered. Our asset analysis algorithm performs such an optimization
that captures dependencies across the business functions (tasks in business pro-
cesses) that need to be realized either independently or collectively with one or
more available assets, and satisfies the specified constraints both at the process
as well as at the individual task (business function) levels. Furthermore, our
asset analysis algorithm performs multi-level (Base search and Filtered Search)
identification for facilitating optimal asset reuse across mutliple repositories.

8 Concluding Remarks

In this paper, we have presented an architectural asset analysis framework and
methodology for model-driven development of SOA solutions, involving a vari-
ety of business, service, and design models. We have evaluated the asset analysis
methodology using the framework during the design of an SOA solution with
multiple asset repositories. We have also shown how our methodology supports
asset searching based on the solution context and from multiple repositories,
thereby improving asset search effectiveness. In future, we plan to work on auto-
mated comparison of assets retrieved in a given search, that leads to establishing
relationships of similar candidate assets from the same or different repositories.
We also plan to establish a multi-dimensional asset modeling and generation
framework that helps document asset requirements and constraints as well as
capabilities and analytical details of existing assets. This would enable better
governance of asset publishing in repositories.

References

1. Arsanjani, A., Allam, A.: Service-oriented modeling and architecture for realization
of an soa. In: IEEE SCC (2006)

2. Schmidt, D.C.: Model-driven engineering. IEEE Computer (February 2006)
3. Johnson, S.K., Brown, A.W.: A Model-Driven Development Approach to Creating

Service-Oriented Solutions. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 624–636. Springer, Heidelberg (2006)



Integrated Asset Analysis Framework for Model-Driven Development 269

4. Arsanjani, A.: Soma-me: A platform for the model-driven design of soa solutions.
IBM Systems Journal 47(3), 397–414 (2008)

5. Aguilar-Savén, R.S.: Business process modelling: Review and framework. Interna-
tional Journal of Production Economics, 129–149 (2004)

6. Cherbakov, L., Galambos, G., Harishankar, R., Kalyana, S., Rackham, G.: Impact
of service orientation at the business level. IBM Systems Journal 44(4), 653–668
(2005)

7. Ponnalagu, K., Narendra, N.C.: Discovering and Deriving Service Variants from
Business Process Specifications. In: Bouguettaya, A., Krueger, I., Margaria, T.
(eds.) ICSOC 2008. LNCS, vol. 5364, pp. 691–707. Springer, Heidelberg (2008)

8. Zhou, N., Zhan, L.J., Chee, Y.M., Chenr, L.: Legacy asset analysis and integration
in model-driven soa solution. In: IEEE SCC (1), pp. 554–561 (2010)

9. Gimnich, R.: Using existing software assets in soa design. In: CSMR, pp. 309–310
(2009)

10. Zimmermann, O., Koehler, J., Leymann, F.: The role of architectural decisions in
model-driven soa construction. In: OOPSLA (2006)

11. Chordes, M.: Unleash the power of mainframe assets into soa (2007),
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/

SWW12599-USEN-00 unleashing soa wp 0919.pdf

ftp://ftp.software.ibm.com/software/rational/web/whitepapers/SWW12599-USEN-00_unleashing_soa_wp_0919.pdf
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/SWW12599-USEN-00_unleashing_soa_wp_0919.pdf

	Integrated Asset Analysis Framework for Model-Driven Development of SOA Based Solutions
	Introduction
	Running Example
	Exploring Asset Analysis in SOA Based Solutions 
	Asset Analysis Framework: Design and Methodology
	Contextual Asset Search and Identification Algorithm 
	Implementation and Evaluation
	Related Work
	Concluding Remarks
	References


