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Abstract

Background: Integrating rare variation from trio family and case–control studies has successfully implicated specific
genes contributing to risk of neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASD),
intellectual disability (ID), developmental disorders (DDs), and epilepsy (EPI). For schizophrenia (SCZ), however, while
sets of genes have been implicated through the study of rare variation, only two risk genes have been identified.

Methods: We used hierarchical Bayesian modeling of rare-variant genetic architecture to estimate mean effect sizes
and risk-gene proportions, analyzing the largest available collection of whole exome sequence data for SCZ (1,077
trios, 6,699 cases, and 13,028 controls), and data for four NDDs (ASD, ID, DD, and EPI; total 10,792 trios, and 4,058 cases
and controls).

Results: For SCZ, we estimate there are 1,551 risk genes. There are more risk genes and they have weaker effects than
for NDDs. We provide power analyses to predict the number of risk-gene discoveries as more data become available.
We confirm and augment prior risk gene and gene set enrichment results for SCZ and NDDs. In particular, we
detected 98 new DD risk genes at FDR < 0.05. Correlations of risk-gene posterior probabilities are high across four
NDDs (ρ > 0.55), but low between SCZ and the NDDs (ρ < 0.3). An in-depth analysis of 288 NDD genes shows there
is highly significant protein–protein interaction (PPI) network connectivity, and functionally distinct PPI subnetworks
based on pathway enrichment, single-cell RNA-seq cell types, and multi-region developmental brain RNA-seq.

Conclusions: We have extended a pipeline used in ASD studies and applied it to infer rare genetic parameters for
SCZ and four NDDs (https://github.com/hoangtn/extTADA). We find many new DD risk genes, supported by gene set
enrichment and PPI network connectivity analyses. We find greater similarity among NDDs than between NDDs and
SCZ. NDD gene subnetworks are implicated in postnatally expressed presynaptic and postsynaptic genes, and for
transcriptional and post-transcriptional gene regulation in prenatal neural progenitor and stem cells.
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Background
Integrating rare variation from family and case–control

(CC) studies has successfully implicated specific genes

contributing to risk of neurodevelopmental disorders

(NDDs) including autism spectrum disorders (ASD),

intellectual disability (ID), developmental disorders

(DDs), and epilepsy (EPI). These early-onset disorders

typically manifest as infant or childhood developmental

delay or regression, and can be co-morbid even within

individuals [1] at the symptom and syndrome levels.

ASD typically includes deficits in social function and

often includes cognitive deficits. ID is defined by severe

cognitive deficits. DD is characterized by physical or

neurological developmental delays frequently including

ID while EPI is defined by recurrent seizures and often

occurs in probands of the other NDDs [2–4]. Cognitive

dysfunction is a common thread among these disorders

and many of the risk genes identified for them point to

brain neuronal development as well as synaptic function.

For schizophrenia (SCZ), however, while sets of genes

have been implicated through studying rare variation

(including NDD risk genes) [5–7], only two risk genes

containing rare exonic variants with a strong effect have

been identified [6, 8, 9]. SCZ is an etiologically complex

psychiatric disorder characterized by hallucinations, delu-

sions, and cognitive symptoms. Heritability is estimated

to be 60–80% [10, 11] and the genetic architecture of

SCZ is highly polygenic with contributions from common

variation and rare inherited and de novo (DN) struc-

tural and exonic variants [5–8, 12–15]. With the advent

of affordable high-quality next-generation sequencing, the

genetics of SCZ and other diseases are increasingly being

better characterized, especially for rare variants. Rare

variants in CC and trio samples have been leveraged to

identify SCZ genes and gene sets. However, the SCZ rare-

variant genetic architecture remains poorly understood.

Such analyses could help gain further insights into this

disease, for example, by using the estimated number of

risk genes to calibrate false discovery rates (FDRs) for

gene discovery or by using the distribution of effect sizes

to improve power estimates and rare-variant association

study design. A better understanding of our certainty for

sets of risk genes for SCZ will provide a better picture of

biological pathways relevant for the disease.

We developed an improved hierarchical Bayesian mod-

eling framework [16], Extended Transmission and de

novo Association (extTADA), to analyze whole exome

sequence data in SCZ and four NDDs (ASD, ID, DD,

and EPI), which have substantial clinical and etiological

overlap. All are brain diseases with prominent impacts

on cognitive function. Multiple recent studies support-

ing genetic overlap among these disorders have included

common variant genetic correlations [17, 18], shared

molecular pathways [19, 20], and shared genes with DN

mutations [6, 21]. Using the largest sample assembled

to date for a unified analysis of these disorders, we

find greater overlap among the NDDs than with SCZ,

despite the emphasis on overlap in the SCZ rare-variant

literature [6, 7, 19]. We used the statistical support of

extTADA to compile a comprehensive list of 288 NDD

genes. Network analyses of these genes are beginning to

pinpoint and intersect functional processes implicated in

disease, brain cell types, and developmental time points

of expression.

Methods

Data

Additional file 1: Figure S1 shows the workflow for all data

used in this study.

Variant data for SCZ, ID, DD, EPI, and ASD

High-quality variants were obtained from published anal-

yses as shown in Additional file 1: Table S1. These

included DN data for SCZ and four NDDs, and CC data

for SCZ and ASD. Quality control and validation for

these data were carried out within the original studies

(Additional file 1: Table S1). To maintain consistency

across data sets, we re-annotated all of the variants in our

analyses. For SCZ CC data, we performed exome-wide

association analyses with andwithout covariates to test for

stratification, and used clustering of CC samples to iden-

tify non-heterogeneous samples for extTADA analysis

(see Additional file 1: Methods).

Variants were annotated using Plink/Seq (using Ref-

Seq gene transcripts and the UCSC Genome Browser

[22]) as described in Fromer et al. [6]. SnpSift version

4.2 [23] was used to annotate these variants further

using dbnsfp31a [24]. Variants were annotated as fol-

lows: loss of function (LoF) (nonsense, essential splice,

and frameshift variants); missense damaging (MiD)

(defined as missense by Plink/Seq and damaging by

each of seven methods [7]: SIFT, Polyphen2_HDIV,

Polyphen2_HVAR, LRT, PROVEAN, MutationTaster, and

MutationAssessor); missense; synonymous mutations

within DNase I hypersensitive sites (DHSs) [25], using

wgEncodeOpenChromDnaseCerebrumfrontalocPk.narrow

Peak.gz from ENCODE [26, 27] (downloaded 20 April

2016); and synonymous. Based on previous results with

SCZ exomes [5, 7], only CC singleton variants were used

in this study (i.e., they were observed once). The data

from the Exome Aggregation Consortium (ExAC) [28]

were used to annotate variants as inside ExAC (InExAC

or not private) or not inside ExAC (NoExAC or private),

using ExAC.r0.3.nonpsych.sites.vcf.gz (downloaded from

[29] 20 April 2016) and BEDTools.

The variant categories used in extTADA were LoF,

MiD, and silent within frontal cortex-derived DHS peaks

(silentFCPk).

http://wgEncodeOpenChromDnaseCerebrumfrontalocPk.narrowPeak.gz
http://wgEncodeOpenChromDnaseCerebrumfrontalocPk.narrowPeak.gz
ExAC.r0.3.nonpsych.sites.vcf.gz
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Mutation rates

We used the methodology based on trinucleotide context

[30, 31] and incorporating depth of coverage [6] to obtain

mutation rates for each variant annotation category. We

assigned 1/10 of the minimum non-zero mutation rate to

genes with calculated mutation rates equal to zero.

Gene sets

Multiple resources were used to obtain gene sets for our

study. First, we used known and candidate gene sets with

prior evidence of involvement in SCZ andASD. Second, to

identify possible novel significant gene sets, we collected

genes sets from available data bases (see below).

Known/candidate gene sets These gene sets and their

abbreviations are presented in Additional file 1: Table S2.

They included: gene sets enriched for ultra rare variants

in SCZ which were described in detailed in Supplemen-

tary Table 5 of [7] consisting of missense constrained

genes (constrained) from [30], loss-of-function intolerant

genes (pLI90) from [28], RBFOX2 and RBFOX1/3 target

genes (rbfox2, rbfox13) from [32], Fragile X mental retar-

dation protein target genes (fmrp) from [33],CELF4 target

genes (celf4) from [34], synaptic genes (synaptome) from

[35], microRNA-137 (mir137) from [36], PSD-95 com-

plex genes (psd95) from [37], ARC and NMDA receptor

complexes (arc, nmdar) genes from [38], and de novo

copy number variants in SCZ, ASD and bipolar dis-

order; allelic-biased expression genes in neurons from

Table S3 of [39]; promoter targets of CHD8 from [40];

known ID gene set from the Sup Table 4 and the 10

novel genes reported by [41]; gene sets from MiD and

LoF de novo mutations of ASD, EPI, DD, ID; the essen-

tial gene set from the supplementary data set 2 of [42];

lists of human accelerated regions (HARs) and primate

accelerated regions (PARs) [43] (downloaded May 11,

2016 from [44]; genes within 100kb [45]) (geneInHARs,

geneInPARs); known epilepsy genes from Supplementary

Table 3 of [46]; common-variant genes from Extended

Table 9 of [15]; 24 co-expression modules from Supple-

mentary Table 2 of [47]; and 134 gene sets from mouse

mutants with central nervous system (CNS) phenotypes

were obtained from [15, 48].

In the gene-set tests for a given disease, we removed the

list of known genes and the list of DN mutation genes for

that disease. As a result, we tested 185 candidate gene sets

for ASD, DD, and SCZ, and 184 candidate gene sets for

EPI and ID.

Other gene sets We also used multiple data sets to iden-

tify novel gene sets overlapping with the current gene

sets. We assembled gene sets from the Gene Ontology

data base [49], KEGG, and REACTOME, and the C3

motif gene sets collected for the Molecular Signatures

Database (MSigDB) [50] plus the gene sets from The

Mouse Genome Database [51]. To increase the power

of this process, we used only gene sets with between

100 to 4,995 genes. In total, there were 2,084 gene sets.

These gene sets and the above gene sets were used in

this approach.

Transcriptomic data

Spatiotemporal transcriptomic data were obtained from

BRAINSPAN [52]. The data were divided into eight devel-

opmental time points (four prenatal and four postnatal)

[53]. Single-cell RNA-seq data were obtained from [54].

The extTADA pipeline

Recently, He et al. developed the Transmission and de

novo Association (TADA) pipeline, which integrates DN

and inherited (or CC) variants to increase power in the

identification of risk genes for ASD [16, 31]. TADA bor-

rows information across variant categories of DN and CC

samples in gene-level association analysis, which is critical

for sparse rare-variant sequence data, and showed better

power than the traditional approach of combining p values

from multiple data sets using Fisher’s method [16].

TADA assumes that a proportion of all genes (π ) com-

prise risk genes. Therefore, for each gene, TADA compares

two hypotheses: risk gene (H1) or non-risk gene (H0).

The method combines multiple categories of DN and CC

variants; however, TADA is an empirical Bayesian asso-

ciation method with respect to model parameters and

does not provide any uncertainty information (e.g., confi-

dence intervals) [16]. TADA uses a simple CC model with

parameter ranges that can imply protective variants in its

CC model [16, 31]. Here, we extend TADA into a flexible

and convenient model, which can be applied to differ-

ent population samples, including DN and CC data alone

or in combination. The new pipeline, Extended Trans-

mission and de novo Association, extTADA (Additional

file 1: Figure S2 and Table S3), uses a Markov chain Monte

Carlo (MCMC) approach to sample the joint posterior

of all genetic parameters given all variant categories, in

one step. The current pipeline provides Bayesian credible

intervals (CIs) for estimated parameters.

Additional details are in Additional file 1: Methods and

https://github.com/hoangtn/extTADA. Briefly, for a given

gene, all variants of a given category (e.g., either DN or

singleton CC LoF) were collapsed and considered as a

single count. Let γ be the relative risk (RR) of the vari-

ants, which is assumed to follow a distribution across risk

genes: γ ∼ Gamma(γ̄ × β ,β). γ̄ and β are hyperparam-

eters of γ as presented in Additional file 1: Table S3. The

data likelihood was considered a mixture of non-risk and

risk-gene hypotheses, H0: γ = 1 and H1: γ �= 1:

P(x|H1,H0) = πP(x|H1) + (1 − π)P(x|H0), (1)

https://github.com/hoangtn/extTADA
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where H0 and H1 represent γ and all other parame-

ters under the model, and the mixture proportion π is

interpreted as the proportion of risk genes genome-wide.

The data x are DN and CC variant counts (xdn, xca, xcn
for de novo, case and control data respectively). We

assumed that these data are from independent vari-

ant categories and independent population samples. The

extTADA likelihood is the product of data probabili-

ties over any number of population samples and variant

categories. The hyperparameters (γ̄ and β) for different

categories and π (Additional file 1: Table S3) were jointly

estimated based on the mixture model,

P(x|φ1,φ0) =

Gene Number
∏

i=1

[πP1i + (1 − π)P0i] , (2)

where φ1 and φ0 are sets of parameters of all population

samples and categories. P1i and P0i at the ith gene were

calculated across population samples and categories as

follows:

Pji = Pji(xi|φj)

=
[

Pji(dn)(xi(dn)|φj(dn))
] [

Pji(cc)(xi(ca), xi(cn)|φj(cc))
]

=

⎛

⎝

Ndnpop
∏

h=1

Cdn
∏

k=1

Pji(dn)hk (xi(dn)hk |φj(dn)hk )

⎞

⎠

×

⎛

⎝

Nccpop
∏

a=1

Ccc
∏

b=1

Pji(cc)ab (xi(ca)ab , xi(cn)ab |φj(cc)ab )

⎞

⎠ , j = 0, 1.

Ndnpop and Nccpop are the numbers of DN and CC

population samples, and Cdn and Ccc are the numbers of

annotation categories in the DN and CC data.

To simplify the estimation process in Eq. 2, we approxi-

mated the original TADAmodel for CC data P(xca, xcn|Hj)

using a new model in which case counts were con-

ditioned on total counts: P(xca|xca + xcn,Hj), and we

constrained the effect size distribution dispersion param-

eter (β) to prevent an implied proportion of protec-

tive variants (Additional file 1: Figures S2 and S3 and

Additional file 1: Methods).

extTADA uses a MCMC approach for Bayesian analy-

sis. We extracted posterior density samples from at least

two MCMC chains for simulated data and at least three

chains for real data. Posterior modes were reported as

parameter estimates for all analyses, with 95% CIs.

Then, gene-level Bayes factors (BFgene) can be calcu-

lated for each variant category to compare hypotheses H1

and H0 (BF = P(x|H1)/P(x|H0)). Data could be from het-

erogeneous population samples; therefore, we extended

TADA’s BFgene as the product of BFs of all variant cate-

gories including population samples as in

BFgene =

⎡

⎣

Ndnpop
∏

h=1

Cdn
∏

k=1

BFdnhk

⎤

⎦

⎡

⎣

Nccpop
∏

a=1

Ccc
∏

b=1

BFccab

⎤

⎦ .

(3)

We changed the order of integrals in the BF calcula-

tions to avoid numerical integration over P(q) because

the true range of this parameter is not known (Additional

file 1). We inferred significant genes by converting BFs to

FDRs using the approach of [55] as described in [31]. The

posterior probability (PP) for each gene was calculated as

PP = π × BF/(1 − π + π × BF) [56].

Testing the pipeline on simulated data

To test extTADA, we used the simulation method

described in the TADA paper [16]. To check the approx-

imate model of CC data, we simulated one CC variant

class and two CC variant classes. To check the integrated

model for both CC and DN, we simulated one CC and

one DN variant class. The original CC model in TADA

[16] was used to simulate CC data and then CC param-

eters were estimated using the approximate model. To

make the data more similar to real data, the frequency

of SCZ CC LoF variant counts was used to calculate the

prior distribution of q ∼ Gamma(ρ, ν) as described in

Additional file 1: Table S3.

Different sizes of samples were used. For CC data, to see

the performance of the approximate model, we used four

sample sizes: 1,092 cases plus 1,193 controls, 3,157 cases

plus 4,672 controls, 10,000 cases plus 10,000 controls, and

20,000 cases plus 20,000 controls. The first two sample

sizes were exactly the same as the two sample sizes from

the Sweden data in current study. The last two sample

sizes were used to see whether the model would perform

better if sample sizes were increased. For DN and CC data,

we used exactly the sample sizes of the largest groups

in our current data sets: 1,077 families, 3,157 cases, and

4,672 controls.

To assess the performance of model parameter esti-

mation, we calculated Spearman correlation coefficients

[57] between estimated and simulated parameter values.

For each combination of simulated parameters, we reran

the model 100 times and used the medians of estimated

values. We also used different priors for the hyperparam-

eters (e.g., ¯̄γ and β̄ in Additional file 1: Table S3) in the

simulation process and chose the most reliable priors cor-

responding with ranges of γ̄ . Because β̄ mainly controlled

the dispersion of hyperparameters, ¯̄γ was set equal to 1,

and only β̄ was tested.

To assess the performance of extTADA risk-gene iden-

tification, we compared expected and observed FDRs

(oFDRs). We defined oFDR as the proportion of FDR

significant genes that were true risk genes (determined

for data simulation). We simulated DN and CC data
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for a range of sample sizes, using parameter values ran-

domly sampled from the posterior density of our primary

SCZ analysis.

We also conducted power analyses of larger sample SCZ

studies using parameters sampled from the posterior den-

sity of our primary SCZ analysis. For power analyses, we

assumed sample sizes ranging from 500 to 20,000 trio

families and equal numbers of cases and controls ranging

from 1,000 to 50,000 of each, and calculated the number

of risk genes at FDR ≤ 0.05.

We also tested when there was no signal for both

DN mutations and rare CC variants. We simulated one

DN category and one CC category with π = 0 and

γ̄ = 1. To see the influence of prior information of γ̄

(γ̄ ∼ Gamma(1, β̄)) for these results, we used different

values of β̄ .

Applying extTADA to real data

Estimating genetic parameters For SCZ, we analyzed

DN mutations and CC variants from non-heterogeneous

population samples. Three DNmutation categories (MiD,

LoF, and silentFCPk mutations) and one CC variant cat-

egory (MiD and LoF variants, pooled) were used in

Eq. 2 to obtain genetic parameters for SCZ. Detailed

analyses of SCZ data are described in Additional file 1:

Methods. We performed exome-wide association analy-

ses with and without covariates to test for stratification,

and used clustering to identify non-heterogeneous sam-

ples for extTADA analysis. For ASD, two DN (MiD and

LoF) and one CC (MiD and LoF pooled) variant categories

were analyzed. For the three other disorders, only DN data

(MiD and LoF categories) were analyzed because no rare

CC data were available.

Secondary analyses We compared our results with those

generated using mutation rates adjusted for the ratio

of observed to expected synonymous mutations. We

divided the observed counts by expected counts (= 2 ×

family numbers×total mutation rates), and then used this

ratio to adjust for all variant category mutation rates.

We conducted further analyses of the SCZ data. Each

variant category (LoF, MiD, silentFCPk DN mutations,

and LoF+MiD CC variants) was analyzed individually to

assess its contributions to the primary results. We con-

ducted secondary analyses including CC variants present

in ExAC, and with equal mean RR parameters (γ̄CC and

βCC) across CC population samples.

Running TADA on the current data sets We also ran

TADA for all the current data sets. To compare the results

of extTADA and TADA, TADA was run directly from vari-

ant counts as extTADA. We used the method of moments

implemented in TADA to estimate π and γ̄LoF,DN, and

then the burden of other variant categories was calculated

by dividing case counts by control counts. Gene-level

association tests were then conducted as implemented in

TADA. The results are shown in Additional file 1: Results,

Table S4, and Figure S4.

Gene set enrichment in extTADA results

Based on the extTADA results, we tested the enrichment

of gene sets by using gene PPs as follows. For each gene, we

obtained PP from extTADA. For each gene set tested, we

calculated the mean of PPs (m0). After that, we randomly

chose gene sets matched for mutation rates and recal-

culated mean PP n times (n = 10 million in this study)

(generating the vector m). The empirical p value for the

gene set was calculated as

p =
length(m [m > m0]) + 1

length(m) + 1
.

To correct for multiple tests, the p values were FDR

adjusted using the method of [58]. To match mutation

rates, for each gene, we chose random genes from the

1,000 genes with the closest mutation rates.

To test the results of the mean-PP-based method above,

we also compared the method with a permutation-based

method. For each condition, we chose the top 500 genes

with the smallest FDR values from the extTADA results.

For each gene set, we calculated the number of overlap-

ping genes between the 500 genes and the gene set (m0).

After that, we randomly chose gene sets having the same

length as the tested gene set, and recorded the intersect-

ing gene number with the top 500 genes. This process was

carried out n times to produce a vectorm (n = 10,000,000).

The matching of genes by mutation rate and the empirical

p value calculation were as described above.

Post hoc analysis of significant genes and gene length

Different FDR thresholds were used to test whether sig-

nificant genes could be affected by gene length. For each

FDR threshold, the mean gene length of significant genes

(m0) was calculated. Next, N gene sets (N = 10,000 in

this study) were randomly generated from genes having

DN mutations, and their mean gene lengths (m) were

calculated. The p value was calculated as

length(m [m > m0]) + 1

length(m) + 1
.

pLI/RVIS data in novel significant gene sets

Residual variation intolerance score (RVIS) information

(RVIS_Unpublished_ExACv2_March2017.txt) was down-

loaded from [59] and information on the probabilities of

LoF intolerance (pLI) was downloaded from [60] on 20

June 2017. To calculate p, µ, σ , and z for a gene set, we

used the same approach as [41] with 10,000 permutations.

RVIS_Unpublished_ExACv2_March2017.txt
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Single-cell enrichment analysis

We obtained gene expressions from 9,970 single cells that

were previously clustered into 24 different cell types [54].

We used the scran R package [61, 62] using the 50% of

the genes with mean expression higher than the median

to compute a normalization factor for each single cell.

The normalization factors were computed after cluster-

ing cells using the scran quickcluster() function to

account for cell type heterogeneity. We then performed

24 differential expression analyses using BPSC [63], test-

ing each cell type against the 23 other cell types using

the normalization factors as covariates. For each differen-

tial expression analysis, the t-statistics were then standard

normalized. Finally, for each cell type, we tested if the

standard normalized t-statistic for genes in the gene sets

was significantly higher than that for genes not in the

gene set.

Network and transcriptome analyses

We used GeNets [64] to test protein interactions from the

gene sets. Connectivity p values were obtained by permut-

ing 75,182 matched random networks, and communities

(subnetworks showing greater connectivity within than

between) were defined by hierarchical agglomeration [65].

Spatiotemporal transcriptome data were clustered using

a hierarchical method inside heatmap.2 of the pack-

age gplots [66]. We used a height of 9 (in the function

cutree) to divide the data from the clustering results

into eight groups. Default options were used for this clus-

tering process. Fisher’s exact test [67] was used to obtain

p values between spatiotemporal transcriptome clusters

and GeNets-based communities.

Results

The extTADA pipeline for rare-variant genetic architecture

inference

We present a pipeline for integrative analysis of trio-based

DN variants and CC rare variants, to infer rare-variant

genetic architecture parameters and to identify disease

risk genes. We extended the hierarchical Bayesian mod-

eling framework of He et al. [16] to develop extTADA

(Additional file 1: Figure S2 and Table S3) for Bayesian

analysis via MCMC.

Evaluating extTADA on simulated data We analyzed

simulated DN and CC data with one variant category

each and CC data with two variant categories, to exam-

ine inference on a single variant class as well as to

assess the conditional probability approximation for CC

data (Additional file 1: Figures S5–S8, Additional file 1:

Results). We tested sample sizes ranging from that of

the available data, 1077 trios and 3157 cases (equal con-

trols), and larger sample sizes of up to 20,000 cases

(see Additional file 1: Results).

We observed little bias in parameter estimation

(Additional file 1: Tables S5 and S6). With very large RR

of the inherited variants, we observed slight under- and

overestimation of the risk-gene proportion (π̂ ) and mean

RR ( ˆ̄γ ), respectively. We note that these conditions appear

outside the range of our SCZ analyses. Some bias can be

expected in Bayesian analysis and does not have a large

effect on risk-gene identification under this model [16].

We assessed this directly by calculating oFDR, i.e., the

proportion of genes meeting a given FDR significance

threshold that are true simulated risk genes). extTADA

risk-gene identification results were calibrated well (Fig. 1)

over wide parameter ranges. For small π (e.g., π = 0.02),

oFDRs were higher than FDRs when DN mean RRs (γ̄ )

were small (∼5). We also observed oFDRs were equal to

zero for some cases with small FDR, when very small

numbers of FDR-significant genes were all true risk genes.

We also ran extTADA on null data, π = 0 and γ̄ = 1,

for both DN and CC data (Additional file 1: Table S7).

Here, MCMC chains tended not to converge, π esti-

mates trended to very small values, and BFs and FDRs

identified almost no FDR-significant genes as expected

(Additional file 1: Table S7).

Data for analyses

Schizophrenia

We applied extTADA to the largest available DN and

CC SCZ whole exome sequence data, for inference

of rare-variant genetic architecture parameters and for

genic association. In total, 6,699 cases, 13,028 controls,

1,077 trio/quad families were analyzed (Additional file 1:

Table S1). Primary analyses included three variant cat-

egories for DN data (LoF, MiD, and silentFCPk) and a

single category of CC singletons [5, 7] not present in the

ExAC data (termed NoExAC) [28]: LoF+MiD. An array

of secondary extTADA analyses were conducted to help

validate and dissect our results.

DN mutations and CC variants were tested to select

classes and samples for the extTADA pipeline. For DN

mutations, we calculated the sample-adjusted ratios of

mutation counts between 1,077 DN cases and 731 DN

controls (Additional file 1: Table S1). Like [25], the highest

ratio was observed for silentFCPk (2.57), followed by MiD

(2.3), LoF (1.83), andmissense and silent (∼1.3) mutations

(Additional file 1: Figure S9). Three classes (LoF, MiD, and

silentFCPk) were used in extTADA analyses.

Since currently extTADA requires integer counts data,

adjustment for ancestry and technical covariates is not

possible. We performed exome-wide association analy-

ses with and without covariates to test for stratification,

and used CC samples to obtain homogeneous popula-

tion samples (see Additional file 1: Methods). First, for

the 4929 cases and 6232 controls from the Sweden pop-

ulation sample, we clustered all cases and controls based
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Fig. 1 Observed false discovery rates (oFDRs) and theoretical FDR with different combinations between γ̄dn and γ̄cc . Each panel is for one π value.
For example, the top left panel shows oFDR and FDR for π = 0.02. FDR false discovery rate, dn de novo, FDR false discovery rate, oFDR observed
FDR, RR relative risk

on principal components analysis and tested each clus-

ter for CC differences with and without adjustment for

covariates. We carried two clusters forward for analy-

sis (groups 1 and 3 in Additional file 1: Figure S10),

one with 3,157 cases and 4,672 controls, and the other

with 1,091 cases and 1,193 controls. We used only the

larger UK population sample from the UK10K project

data [8], as it showed comparable CC differences to the

homogenous Sweden samples. As in [7], NoExAC single-

ton CC variants showed significant CC differences and

InExAC variants did not (Additional file 1: Figure S10);

therefore, we used only NoExAC CC singletons in the

primary extTADA analyses. However, we also used all sin-

gletons in a secondary analysis for comparison. LoF and

MiD variants showed similar enrichment in our CC data

(Additional file 1: Figure S10); therefore, we pooled them

to maximize the CC information.

Neurodevelopmental disorders

The sample sizes for these diseases are shown in

Additional file 1: Table S1 and Figure S1. The numbers

of trios ranged from 356 for EPI, 1,112 for ID, and 4,293

for DD to 5,122 for ASD. As previously reported (see

references in Additional file 1: Table S1), these data have

strong signals for DN mutations contributing to disease

(Additional file 1: Table S8). Only ASD data included CC

samples (404 cases and 3,654 controls) from the Swedish

PAGES study of the Autism Sequencing Consortium [31]

(see Additional file 1: Methods for details).

Rare-variant genetic architectures inferred by extTADA

Schizophrenia

extTADA generated joint posterior density samples of all

genetic parameters for SCZ (Table 1, Fig. 2, and Additional

file 1: Figure S11). All MCMC chains showed convergence

(Additional file 1: Figure S12). The estimated proportion

of risk genes (π̂ ) was 8.01% of the 19,358 genes analyzed

(1,551 genes), with 95% CI (4.59%, 12.9%; 890 to 2,500

genes). DN LoF variants had the highest estimated mean

RR ( ˆ̄γ ), 12.25 (95% CI: 4.78-22.22). Estimated mean RRs

( ˆ̄γ ) were 1.22 (95% CI: 1-2.16) for silentFCPk and 1.44

(95% CI: 1-3.16) for MiD. For CC MiD+LoF variants, the

two Sweden samples had nearly equal mean RR estimates

( ˆ̄γ ), 2.09 (95% CI: 1.04-3.54) and 2.44 (95% CI: 1.04-5.73),

which were larger than that of the UK sample, 1.04 (95%

CI: 1-1.19).
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Table 1 Estimated parameters of proportions of risk genes (pi) and mean relative risk (meanRR) for DN and CC SCZ data and four other
NDDs: ID, EPI, ASD and DD

Parameter Estimated Lower credible Upper credible

mode interval boundary interval boundary

SCZ_pi (%) 8.01 4.59 12.9

SCZ_meanRR_silentFCPk_denovo 1.22 1.00 2.16

SCZ_meanRR_MiD_denovo 1.44 1.00 3.16

SCZ_meanRR_LoF_denovo 12.25 4.79 22.22

SCZ_meanRR_MiD+LoF_CCpop1 2.09 1.04 3.54

SCZ_meanRR_MiD+LoF_CCpop2 2.44 1.05 5.73

SCZ_meanRR_MiD+LoF_CCpop3 1.04 1 1.19

ASD_pi (%) 4.44 3.15 5.94

ASD_meanRR_MiDdenovo 3.71 2.06 8.71

ASD_meanRR_LoFdenovo 24.56 14.27 37.44

ASD_meanRR_LoFcc 4.04 2.08 8.24

ID_pi (%) 2.53 1.89 3.43

ID_meanRR_MiDdenovo 29.82 18.86 46.1

ID_meanRR_LoFdenovo 105.45 73.27 143.29

DD_pi (%) 2.84 2.29 3.45

DD_meanRR_MiDdenovo 23.42 13.97 33.97

DD_meanRR_LoFdenovo 88.32 67.54 115.09

EPI_pi (%) 1.14 0.52 2.1

EPI_meanRR_MiDdenovo 72.2 35.39 128.46

EPI_meanRR_LoFdenovo 89.71 45.31 169.43

These results were obtained by sampling three MCMC chains (20,000 times for each chain). These results are for three categories: loss of function (LoF) variants/mutations,
missense damaging (MiD) variants/mutations, and silent within frontal cortex-derived DHS peaks (silentFCPk) variants.
ASD autism spectrum disorders, CC case–control, DD developmental disorder, DN de novo, EPI epilepsy, ID intellectual disability, LoF loss of function,MCMC Markov chain
Monte Carlo,MiDmissense damaging, NDD neurodevelopmental disorder, SCZ schizophrenia, silentFCPk silent within frontal cortex-derived DHS peaks

To test the performance of the pipeline on individual

categories and to assess their contributions to the overall

results, we ran extTADA separately on each of four single

variant classes: silentFCPk, MiD, and LoF DN mutations,

and MiD+LoF CC variants (Additional file 1: Table S9).

All parameter estimates were consistent with the primary

analysis, with broader CIs. The much larger γ̄ CIs than in

integrative analyses demonstrated extTADA’s borrowing

of information across data types (also observed in simula-

tion, Additional file 1: Figure S6). To understand conver-

gence in these analyses better, we increased MCMC chain

numbers to five for each analysis. LoF DN and MiD+LoF

CC chains showed strong convergence, followed by MiD

DN. As expected, silentFCPk results (with only 53 muta-

tion counts) showed a lack of strong convergence.

We also assessed the sensitivity of genetic parame-

ter inference in several secondary analyses. We tested

extTADA for DN mutations not present in the ExAC

database, mutation rates adjusted for the ratio of

observed to expected synonymous DN mutations, and

an alternative model specification of variant annotation

categories. We adjusted mutation rates by a factor of

0.81, the ratio of observed synonymous mutations to that

expected based on mutation rates (See ‘Methods’). DN

mean RR estimates slightly increased as expected, and the

estimated proportion of risk genes increased slightly to

9.37% (95% CI: 5.47-15.12%), while the CC parameters

were very similar (Additional file 1: Table S10). Above,

we assumed that different CC population samples may

have different mean RRs, which could be due to clin-

ical ascertainment, stratification, or population-specific

genetic architectures. Analysis using a single mean RR

parameter for all three CC samples yielded similar π and

DNMmean RRs and an intermediate CCMiD+LoF mean

RR with a relatively narrower CI, γ̄CC = 1.93 (95% CI

1.08–3.21) (Additional file 1: Table S11 and Figure S13).

Considering all CC singleton variants (not just those

absent from ExAC) also generated similar genetic

parameter estimates, with slightly lower CC mean RRs

(Additional file 1: Table S12).
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Fig. 2 The densities of the proportion of risk genes (x-axis) and mean
relative risk (y-axis) for SCZ data. These were obtained after 20,000
iterations of three MCMC chains. The first two case–control
populations are derived from the Sweden data set while the third
case–control population is the UK population. The scales on the y-axes
are adjusted because mean relative risk varies between categories.
LoF loss of function, MCMC Markov chain Monte Carlo, MiD missense
damaging, Pop population, SCZ schizophrenia, silentFCPk, silent
within frontal cortex-derived DNase I hypersensitive site peaks

ASD, ID, DD, and EPI

extTADA genetic parameter estimates are presented in

Table 1, Fig. 3, and Additional file 1: Figure S11. MCMC

analyses showed good convergence, except for the EPI

data with small sample size (356 trios compared with over

1,000 trios for other diseases). Estimated risk-gene pro-

portions (π̂ ) for the NDDs were lower than that of SCZ.

For ASD, the estimated π was 4.44%, (3.15%, 5.94%) or

859 (610–1150) risk genes, consistent with the result of

550–1,000 genes estimated in the original TADA model

[16] using only DN LoF data. For DD and ID, the π

estimates were similar, 2.84% or 550 risk genes (2.29%,

3.45%; 443–668 genes) and 2.53% or 490 risk genes (1.89%,

3.43%; 366–664 genes), respectively, which was smaller

than that for ASD. The estimated π value for EPI, 1.14%

or 221 risk genes (0.52%, 2.1%; 101–407 genes), was the

lowest but with a broad CI. The estimated mean RRs of

DN mutations in all four NDDs were much higher than

those of SCZ, indicating a stronger contribution of DN

mutations in these four NDDs. For ASD, the estimated

mean RRs for DN mutations were consistent with previ-

ous results and much lower than for the other diseases. ID

and DD had the highest estimated DN LoF mean RRs ( ˆ̄γ ),

105.45 (73.27, 143.29) and 88.32 (67.54, 115.09), respec-

tively. Even though the EPI estimated DN LoF mean RR

( ˆ̄γ ), 89.71 (45.31, 169.43), was similar to those of ID and

DD, the estimate for the EPI DN MiD mean RR, 72.2

(35.39, 128.46), was somewhat higher than those of the

other diseases. The previously estimated EPI mean RR of

81 [68] is consistent with the current results, and it will

be of interest to see if this result remains consistent in

additional data in the future.

Identification of risk genes using extTADA

Schizophrenia

Additional file 2: Table S13 includes supporting data as

well as association results for SCZ. Four genes achieved

PP > 0.8 and FDR < 0.1 (SETD1A, TAF13, PRRC2A,

and RB1CC1). Two genes, SETD1A (FDR = 0.0033)

and TAF13 (FDR = 0.026), were individually signifi-

cant at FDR < 0.05. SETD1A has been confirmed as

statistically significant in previous studies [8, 25], while

TAF13 was reported as a potential risk gene only in

the study of [6]. However, FDR was high (0.74) for the

gene RBM12, which was reported as a risk gene for psy-

chosis by [9]. If we increase the FDR threshold to 0.3,

as in a recent ASD study, using TADA [31] we identify

24 candidate SCZ risk genes (SETD1A, TAF13, RB1CC1,

PRRC2A, VPS13C, MKI67, RARG, ITSN1, KIAA1109,

DARC, URB2, HSPA8, KLHL17, ST3GAL6, SHANK1,

EPHA5, LPHN2, NIPBL, KDM5B, TNRC18, ARFGEF1,

MIF, HIST1H1E, and BLNK ). Of these, EPHA5, KDM5B,

andARFGEF1 did not have any DNmutations (Additional

file 2: Table S13). We note that still more genes show sub-

stantial support for the alternative hypothesis over the null

model [69] (58 genes with PP > 0.5, corresponding to BF

> 11.49, FDR < 0.391; Additional file 2: Table S13). We

note that the secondary analyses slightly impacted support

for individual genes (Additional file 1: Tables S11 and S12,

Additional file 2: Table S14).

Neurodevelopmental disorders

The results for the extTADA risk gene of the four disor-

ders ID, DD, ASD, and EPI are presented in Additional

file 2: Tables S15–S18. With FDR < 0.05, there were 56,

160, 49, and 9 significant genes for ID, DD, ASD, and EPI.
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Fig. 3 The densities of the proportion of risk genes (x-axis) and mean relative risk (y-axis) for ASD, EPI, ID, and DD data. These were obtained after
20,000 iterations of three MCMC chains. For ASD, there are two de novo classes and one case–control class. For other disorders, only two de novo
classes are publicly available for our current study. The scales on the y-axes are adjusted because mean relative risk varies between categories and
disorders. ASD autism spectrum disorders, DD developmental disorder, EPI epilepsy, ID intellectual disability, LoF loss of function, MCMC Markov
chain Monte Carlo, MiD missense damaging

For FDR < 0.1, there were 69, 196, 64, and 10 significant

genes.

The genetic parameters inferred after adjusting muta-

tion rates for observed silent DN rates are presented

in Additional file 1: Table S10. For ASD, ID, and

EPI, the proportions of risk genes were higher than

in the primary analyses because the adjustment ratios

were less than 1. As a result, the number of signif-

icant genes also increased with different FDR thresh-

olds. For DD, the adjustment ratio was >1 (1.16) and

the number of significant genes decreased (134 genes

with FDR < 0.05). Altogether, 72/134 genes were not

among the 93 DD genes reported in a previous study

[70], 33 of which were in the list of curated DD

genes [71].

We also tested the correlation between gene length and

top genes with three different FDR thresholds: 0.05, 0.1,

and 0.3. No significant results were observed for these cor-

relations (adjusted p ≥ 0.25). Only for ASD genes with

FDR < 0.05 was a slight gene-size effect observed (unad-

justed p = 0.05, adjusted p = 0.25, Additional file 1:

Table S19).

Novel significant genes in ID and DD The results

for the other DN mutation methods using these same

data have been recently reported [41, 70]; nevertheless,

extTADA identified novel genes with strong statistical

support from these recent data.

For ID, we found 56 and 69 genes with FDR ≤ 0.05

and 0.1, respectively. We compared these results with the
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risk-gene list of [41], which included previously reported

and novel ID genes. Altogether, 14 of 56 genes with

FDR ≤ 0.05 (AGO1, AGO2, ATP8A1, CEP85L, CLTC,

FBXO11, KDM2B, LRRC3C, MAST1, MFN1, POU3F3,

RPL26, TNPO2, and USP7) were not on the list. Of the

14 genes, six (AGO2, CEP85L, CLTC, FBXO11, MFN1,

and TNPO2) were strongly significant (FDR< 0.01); these

were genes hit by two or three MiD or LoF DNs that

were not identified by the analyses of [41]. pLI and RVIS

information were obtained for 12 of these 14 genes, and

tested using the method of [41]. The median of pLIs

was 1 (observed 1; simulated data: µ = 0.11, σ = 0.17,

z = 5.08, empirical p < 9.99 × 10−5). In addition, nine

genes (AGO1, AGO2, ATP8A1, CLTC, FBXO11, KDM2B,

MAST1, TNPO2, and USP7) had pLI = 1 and one gene

(RPL26) had pLI = 0.916. The median of the RVISs was

−1.49 (observed −1.49; simulated data: µ = −0.014,

σ = 0.21, z = −7.03, empirical p < 9.99 × 10−5). Two

genes (CLTC and FBX011) were in the latest list of curated

DD genes released on 18 May 2017 [71]. After removing

these two genes, pLI was still highly significant (observed

median 1; simulated data: µ = 0.3, standard deviation =

0.39, z = 1.7, empirical pwas<9.99×10−5), and the RVIS

information was notmuch different (observed−1.48; sim-

ulated data: µ = −0.01, σ = 0.23, z = −6.26, empirical

p < 9.99 × 10−5).

For DD, there were 160 and 196 genes with FDR ≤ 0.05

and 0.1, respectively. Only 52 of 160 genes with FDR ≤

0.05 were among the 93 genome-wide significant genes

reported by a recent DD study [70] (see below); 98 genes

are novel. The 98 genes also included QRICH1 (FDR =

3.15 ×10−5), which was reported as a suggestive DD gene

[70]. Like ID, the total MiD+LoF DN counts of these 98

genes were not high (between 2 and 6). Surprisingly, 54 of

the 98 novel genes were strongly supported in our results

(FDR < 0.01). We assessed the known DD genes in the

93 genes with FDR > 0.05 and saw two common reasons

for the differences. Note that we did not analyze the 17

known DD genes on the X chromosome. Most often, our

MiD counts were lower than the missense counts of the

previous study, since we defined MiD mutations by the

intersection of seven prediction algorithms. In addition,

extTADA used only the data from 4,293 trios while [70]

was a meta-analysis with data from other smaller studies.

Still, our results are in agreement with previously pub-

lished DD gene results (62 of 75 known DD genes on

non-chromosome X have extTADA FDR≤ 0.1; extTADA

FDR vs published P, Spearman’s ρ = 0.78, P = 2×10−16).

We sought to validate the large number of novel signifi-

cant DD genes compared with those of [70] using the same

data. First, we compared the enrichment of our candidate

gene sets for known DD genes and our novel DD genes.

We found that many of the same gene sets were signifi-

cantly enriched in both previously known and our novel

DD genes, with very strong concordance across gene sets

(Additional file 1: Figure S14). Altogether, 92 of 98 novel

DD genes had pLI and RVIS information. The median

pLI was 0.997 (observed 0.997; µ = 0.033, σ = 0.036,

z = 26.46, empirical p < 9.99 × 10−5). The median

of the RVISs was −0.92 (observed −0.92, simulated data:

µ = −0.02, σ = 0.07, z = −11.86, empirical p was

< 9.99 × 10−5). We also found that 43 of the 98 novel

DD genes occur in the latest list of curated DD genes

(described above), showing that extTADA was able to

detect DD genes later identified in other studies. Alto-

gether, 50 of the 55 novel genes not in the curated DD

gene list of had pLI/RVIS information. The median of

the 50 pLI values was 0.9415 (observed 0.94, simulated

data: µ = 0.045, σ = 0.064, z = 13.95, empirical p

was <9.99 × 10−5). The median of the RVISs was −0.72

(observed −0.72, simulated data: µ = −0.01, σ = 0.10,

z = −6.87, empirical p < 9.99 × 10−5). Finally, we used

GeNets with the InWeb protein–protein interaction (PPI)

network [64] to test the connections between the 98 novel

and 93 known genes (191 genes in total). Out of 191 genes,

94 (46 known and 48 novel) were connected to eight com-

munities (overall p = 0.006, and community connectivity

p < 2 × 10−3) (Fig. 4).

Power analysis under inferred genetic architecture

We simulated risk-gene discovery using extTADA for the

genetic architecture of SCZ inferred from the current data

(Fig. 5 and Additional file 1: Figure S15), using the CC

population sample with highest mean RR. Samples sizes

from 500 to 20,000 trio families and from 1,000 to 50,000

cases (number of controls = number of cases) were simu-

lated as in our validation analyses, using parameters from

the posterior distribution samples given the SCZ data. The

number of risk genes with FDR ≤ 0.05 ranged from 0 to

238. Based on this analysis, we expect >50 risk genes for

total sample sizes of trio families plus CC pairs of∼20,000.

The results suggest that, assuming sequencing costs are

proportional to the number of individuals, generating CC

data is more efficient than generating trio data despite the

larger relative risk of DN mutations.

Gene-set enrichment

Known and novel gene sets are enriched in SCZ

risk genes from extTADA We tested 185 gene sets

previously implicated in SCZ genetics or with strong

evidence for relevance to SCZ rare variation [5, 7, 15,

39, 42, 68] (Additional file 1: Table S2). FDR-significant

results (adjusted p < 0.05) were observed for 17 gene

sets including those previously reported using these

data [5–7] (Table 2). The most significant gene sets

were missense constrained and LoF intolerant (pLI09)

genes, targets of RBFOX1/3 and RBFOX2 splicing fac-

tors, CHD8 promoter targets, targets of the fragile X
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Fig. 4 GeNets network analysis for developmental disorder significant genes (p < 2 × 10−3). These are 93 genome-wide significant genes from [70]
and 98 significant genes (FDR < 0.05 from extTADA) not in the 93 genes. Triangular shapes are the 98 novel genes from extTADA. FDR false
discovery rate

mental retardation protein (FMRP), and CELF4 tar-

gets (all p < 2.0 × 10−4, adjusted p ≤ 7.13 × 10−3,

Table 2). Genes harboring DN single-nucleotide poly-

morphisms (SNPs) and indels in DD, and post-synaptic

density activity-regulated cytoskeleton-associated (ARC),

NMDA-receptor (NMDAR), and mGluR5 complexes

were also enriched. Genes exhibiting an allelic bias

in neuronal RNA-seq data [39] were also enriched

in SCZ extTADA results (p = 1.9 × 10−3, adjusted

p = 2.58 × 10−2). The two brain RNA-seq co-expression

modules derived from the hippocampus [47], M3 and

M13, were also significant. Finally, significant enrich-

ment was also obtained for the mouse mutant gene

sets with psychiatric-relevant phenotypes includ-

ing abnormal emotion or affect behavior, abnormal

cued conditioning behavior, and abnormal sensory

capabilities/reflexes/nociception (FDR < 0.05).

To test more novel gene sets for enrichment in the

SCZ extTADA results, we added gene sets from GO,

KEGG, REACTOME, C3 from MSigDB [72], and The

Mouse Genome Database, filtered for sets includ-

ing 100–5,000 genes (see ‘Methods’ for details), and

FDR-adjusted for the full set of 2,269 gene sets tested

(Additional file 1: Table S20). Significant results were

observed in eight gene sets including five of the known

gene sets. The top known gene sets still had the low-

est p values in these results. We observed significant

enrichment of two C3 conserved non-coding motif

gene sets [73]: GGGAGGRR_V$MAZ_Q6, genes con-

taining the conserved M24 GGGAGGRR motif, and

ACAGGGT,MIR-10A,MIR-10B, including microRNA

MIR10A/B targets; and MP:0005179, decreased circu-

lating cholesterol level less than the normal amount

(Additional file 2: Table S20).
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Fig. 5 Number of risk genes for different sample sizes based on the genetic architecture predicted by extTADA. Case–control number is only for
cases (or controls); therefore, if case–control number = 10,000, this means cases + controls = 20,000. The numbers in brackets show risk-gene
numbers if we use only case–control data or only de novo mutation data

Multiple gene sets are enriched across NDDs

We saw above that genes containing DN mutations

in several of the diseases studied here are enriched

in SCZ extTADA results. We, therefore, tested gene

set enrichment in the four NDDs and combined this

information with the SCZ gene-set information above

(Additional file 2: Tables S21 and S22). Of the 185 known

or strong-candidate gene sets tested in SCZ, 106, 116,

68, and 60 gene sets were significant (FDR < 0.05)

for ID, DD, ASD, and EPI, respectively. There were 11

gene sets that were significant across all five diseases:

constrained, PLI09, rbfox2/13, FMRP targets, CELF4,

ARC, NMDAR network, abnormal emotion/affect behav-

ior, abnormal sensory capabilities/reflexes/nociception,

abnormal excitatory postsynaptic currents, and hip-

pocampus co-expression module M3 [47]. The significant

result of genes in M3 replicated the result of [47]. How-

ever, we note that many more gene sets were significant

across two or more NDDs, but not SCZ (Fig. 6). Our

broader set of 2,269 gene sets showed a similar pattern of

sharing; there were only four gene sets that were signif-

icant (FDR-adjusted p < 0.05) in all five diseases, while

many more gene sets were significant across two or more

NDDs (Fig. 6).

To validate the gene-set results above, we tested gene-

set enrichment using the number of genes in the gene set

that were in the extTADA top 500 genes. We saw high

correlations between the PP-mean-based approach above

and this approach (Additional file 1: Figure S16).

Network facilitated interpretation of NDD risk genes

Overlap among NDD extTADA results There was no

gene significant across SCZ and the four NDDs with FDR

< 0.05 or 0.1. Only SCN2A was significant across the

four NDDs with these thresholds, but was not in SCZ

(FDR = 0.35). This gene has been reported as a strong

risk gene for multiple NDDs (reviewed in [2]). Only one

additional gene, STXBP1, was significant across the four

NDDs when the threshold FDR was increased to 0.3 and

it was not significant for SCZ (FDR = 0.9). At FDR <

0.3, several genes were shared among two or three NDDs,

whereas only three genes were shared between SCZ and

any NDD (Fig. 6). We also calculated the correlations

between risk-gene PPs for all diseases. Interestingly, high

correlations were observed for the four NDDs (ρ > 0.5)

but not for SCZ and the NDDs (ρ < 0.3, Fig. 6), either

for all genes or for significant/suggestive genes in any

disease. The pattern of sharing of top extTADA results
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Table 2 Enrichment of known gene sets from extTADA results for schizophrenia

Gene set Gene number Overlapping gene number p value FDR

Constrained 1003 939 3.3e-06 6.2e-04

pLI09 3488 3241 1.0e-05 8.2e-04

rbfox2 3068 2895 1.3e-05 8.2e-04

chd8.human_brain 2798 2601 5.0e-05 2.3e-03

rbfox13 3445 3230 1.7e-04 6.3e-03

FMRP_targets 839 792 2.1e-04 6.5e-03

celf4 2675 2468 2.7e-04 7.1e-03

Module.M3 162 145 5.6e-04 1.3e-02

DD.allDenovoMiDandLoF 1271 1271 7.0e-04 1.4e-02

ARC 28 25 1.0e-03 1.8e-02

NMDAR_network 61 58 1.5e-03 2.3e-02

abnormal_emotionORaffect_behavior 392 363 1.5e-03 2.3e-02

AlleleBiasedExpression.Neuron 802 619 1.9e-03 2.6e-02

Module.M13 149 129 2.0e-03 2.6e-02

abnormal_cued_conditioning_behavior 74 67 2.5e-03 2.9e-02

mGluR5 39 36 2.4e-03 2.9e-02

abnormal_sensory_capabilitiesORreflexesORnociception 607 579 4.5e-03 4.9e-02

mir137 3260 2940 7.0e-03 6.5e-02

abnormal_behavior 2037 1937 7.0e-03 6.5e-02

Pardinas2017_extTable9 534 522 7.0e-03 6.5e-02

PSD-95_(core) 65 57 8.0e-03 6.7e-02

abnormal_excitatory_postsynaptic_currents 73 67 8.0e-03 6.7e-02

list.EPI.43genes.2017.Epi4K.2017 43 38 9.2e-03 7.2e-02

abnormal_socialORconspecific_interaction 257 238 9.4e-03 7.2e-02

abnormal_associative_learning 204 190 1.5e-02 1.1e-01

abnormal_social_investigation 64 54 1.8e-02 1.2e-01

Module.M1 1244 1071 1.8e-02 1.2e-01

synaptome 1887 1816 1.9e-02 1.3e-01

abnormal_motor_capabilitiesORcoordinationORmovement 1398 1326 2.0e-02 1.3e-01

CYFIP1_all 37 34 2.1e-02 1.3e-01

abnormal_fearORanxiety-related_behavior 232 213 2.3e-02 1.4e-01

abnormal_behavioral_response_to_xenobiotic 219 208 3.0e-02 1.7e-01

abnormal_learningORmemoryORconditioning 449 414 3.1e-02 1.7e-01

abnormal_brain_size 193 180 3.6e-02 1.8e-01

abnormal_contextual_conditioning_behavior 95 88 3.4e-02 1.8e-01

abnormal_excitatory_postsynaptic_potential 64 58 3.5e-02 1.8e-01

abnormal_aggression-related_behavior 69 62 3.7e-02 1.8e-01

Module.M2 38 35 4.1e-02 2.0e-01

abnormal_discrimination_learning 21 20 4.3e-02 2.0e-01

These p values were obtained from 10,000,000 simulations, and then adjusted using the method of [58]. The information for these gene sets is summarized in Additional
file 1: Table S2. The second column (Gene number) shows the number of genes in the gene set. The third column shows the number of overlapping genes between the
gene sets and the 19,358 genes used by extTADA.
FDR false discovery rate
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across diseases was consistent when examining gene set

enrichment (Fig. 6).

Given the high level of sharing among neurodevelop-

mental disease risk genes and the large number of novel

significant genes we identified, we undertook network

analyses to assess and interpret the neurodevelopmental

disease risk genes. We chose 288 NDD genes with differ-

ent FDR thresholds to balance the number of significant

genes across the four NDDs. These thresholds were 0.05

for DD, 0.1 for ASD and ID, and 0.5 for EPI.

First, we used GeNets [64] to test for significant con-

nectedness and structure of NDD genes in the InWeb

PPI network. Including second-degree indirect connec-

tions, the 288 NDD genes were connected with 89 can-

didate genes to make a network of 377 genes. These

377 genes were connected in seven communities (sub-

networks, C1–C7), including 149 of the 288 NDD genes

(overall connectivity p value and connectivity p values for

each community <1.3× 10−5, Fig. 7 and Additional file 2:

Table S23). Canonical pathway enrichment was observed

for five communities, suggesting that they are function-

ally distinct. Significant pathways included beta-catenin

nuclear signaling, transcriptional regulation of white

adipocyte differentiation, WNT signaling pathway, and

circadian clock (C2); release of several neurotransmitters

(C3); spliceosome (C4); ribosome and 3′ UTR-mediated

translational regulation (C5); and neurotransmitter recep-

tor binding and downstream transmission in the postsy-

naptic cell, calcium signaling, and post NMDA receptor

activation events (C6) (Additional file 2: Table S24). Sim-

ilar results were obtained on restricting the network to

direct edges only (connectivity p < 0.002, Additional

file 1: Figure S17), although the resulting 12 communities

were less functionally distinct in pathway enrichment.
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a b

c d

Fig. 7 Analyzing results for 288 neurodevelopmental disorder genes. a GeNets results for the top 288 neurodevelopmental disorder genes. Here,
149/288 genes were connected into seven main communities (colored genes) and the unconnected genes were put into the eighth community. b
Enrichment of the 288 genes in different cell types. c Grouping the 288 genes to distinct spatiotemporal expression. Genes were clustered into eight
groups using a hierarchical clustering method (color bar). d The proportions of different clusters in the eight communities

Second, we used mouse single-cell RNA-seq data [54]

to test NDD gene enrichment across brain cell types.

Significant results were observed for hippocampal CA1

pyramidal cells (p = 1.6 × 10−9), followed by neurob-

lasts, medium spiny neuron cells, somatosensory pyrami-

dal cells, and dopaminergic neuroblasts (p < 6.6 × 10−4,

Fig. 7). We further tested each GeNets PPI community

separately (Additional file 1: Figure S18), and found

multiple cell types enriched in five communities, C2–

C6, consistent with their regulatory or synaptic pathway

enrichment. Specifically, C2, C4, and C5 were significantly

enriched in neuroblasts and neural progenitor cells while

C3 and C6 were enriched for pyramidal CA1 and SS cells

(among a few others).
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Third, we used BRAINSPAN RNA-seq data to cluster

the 288 genes based on their spatiotemporal expression

in the developing brain (Fig. 7). The genes clustered into

eight groups, and again correlated with PPI communities.

Genes in prenatally expressed groups (clusters 1, 3, and 4)

were overrepresented in regulatory communities C2 and

C4 (p = 3.78 × 10−5). Postnatally expressed groups (clus-

ters 5, 7, and 8) were in higher proportions in the synaptic

communities C3 and C6 (p = 1.42 × 10−7).

Discussion
In this work, we built a pipeline, extTADA, for the inte-

grated Bayesian analysis of DN mutations and rare CC

variants to infer rare-variant genetic architecture parame-

ters and identify risk genes. We applied extTADA to data

available for SCZ and four other NDDs (Additional file 1:

Figure S1).

The extTADA pipeline

extTADA is based on previous work in autism sequencing

studies, TADA [16, 31]. It conducts a full Bayesian analy-

sis of a simple rare-variant genetic architecture model and

it borrows information across all annotation categories

and DN and CC samples in genetic parameter infer-

ence, which is critical for sparse rare-variant sequence

data. Using MCMC, extTADA samples from the joint

posterior density of risk-gene proportion and mean rel-

ative risk parameters, and provides gene-level disease-

association BFs, PPs, and FDRs. We hope that extTADA

(https://github.com/hoangtn/extTADA) will be generally

useful for rare-variant analyses across complex traits.

extTADA can be used for rare CC variant and/or DN

mutation data. The current TADA version uses multiple

steps or requires prior information for genetic parameters

[8, 74, 75], whileextTADA jointly estimates all parameters

in a single step without requiring any prior information. If

multiple variant categories are used and at least one has a

high mean RR, then the parameter results can be accurate

for a range of sample sizes (Additional file 1: Figures S6

and S7).

The inference of rare-variant genetic architecture is of

great interest in its own right [76], but of course risk-gene

discovery is a primary objective of statistical genetics.

We have shown how the two are not separable through

a power analysis of larger sample numbers under the

inferred genetic architecture parameters (Fig. 5). These

analyses, incorporated into extTADA, show how study

design should be influenced by an analysis of currently

available data.

As in all Bayesian and likelihood analyses, wemust spec-

ify a statistical model; the true model underlying the data

is unknown and could in principle yield different results.

This is addressed by analyzing a simple model that can

allow illustrative, interpretable results, and by assessing

sensitivity to alternative model specifications. extTADA

uses relatively agnostic hyper-parameter prior distribu-

tions (Additional file 1: Figure S2), without previously

known risk-gene seeds. extTADA assumes that differ-

ent variant classes share risk genes such that the mixture

model parameter π applies to all data types, facilitating

borrowing of information across classes. This is supported

by convergent DN and CC rare-variant results in SCZ

[5–8] (Additional file 1: Table S9); however, some evi-

dence exists for disjoint risk genes for DN vs CC protein-

truncating variants e.g., in congenital heart disease [77].

We assume Poisson-distributed counts data and Gamma-

distributed mean RR across genes for analytical conve-

nience. The Poisson distribution is likely to approximate

genetic counts data well [16], assuming linkage disequi-

librium can be ignored and that stratification has been

adequately addressed. Poisson DN counts further assume

known mutation rates; in our data, mutation rate adjust-

ment for silent DN rates was actually anti-conservative

(except for DD). Differences between DN studies are not

unlikely even though previous studies of [8, 31] did not

adjust mutation rates to account for it. Additional lim-

itations include that we are using public data sets from

different sequencing centers, with different technologies

and coverages. Thus, although we developed extTADA to

utilize summary counts data, care must be taken to avoid

sample heterogeneity, particularly when individual-level

data are not available. The ability to incorporate covari-

ates, perhaps by modeling Gaussian sample frequency

data, would be an important further extension of TADA-

like models. In this study, BFs and FDRs are used to obtain

the statistical significance of a gene. These measurements

can be converted to p values using a simulation-based

method implemented in the TADA package. A detailed

explanation of this approach was presented in [16].

Insights for SCZ

The current study generally replicated previous studies

and generated new insights for SCZ. In this study, we

described in detail the rare-variant genetic architecture of

SCZ. It appears more complex than those of ASD, ID, DD,

and EPI; the estimated number of SCZ risk genes, ∼1,551,

is higher than those of the four other NDDs, and their

RR is weaker (Figs. 2 and 3, Table 1). Based on our infer-

ence, we showed that tens of thousands of samples are

required to identify many rare-variant risk genes (≥50)

[76], and that, in contrast to autism studies [16, 31],

CC studies may be more efficient than trio stud-

ies in risk-gene identification. We found that SETD1A

[8, 25] is the most significant gene across analyses (FDR ∼

1.5× 10−3), and that TAF13 [6] is FDR significant. Of two

genes with 0.05 < FDR < 0.1, rare duplications covering

RB1CC1 have been reported in SCZ [78] and in ID and/or

DD [79]. Two novel conserved non-coding motif gene

https://github.com/hoangtn/extTADA
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sets showing brain-specific expression [73] were enriched

(Additional file 1: Table S20), including targets of the

transcription factor MAZ and of microRNAs MIR10A/B.

In addition, we see a slight overlap between rare and

common variant genes [15] (p = 0.007, FDR = 0.06).

Insights for NDDs

We used extTADA to infer genetic parameters for four

other NDDs: ASD, EPI, DD, and ID (Table 1, Fig. 3). The

ASD results from extTADA are comparable to previous

results [16, 31]. We found lower risk-gene proportions

particularly for DD and ID, and exceptionally high DN

MiD mean RR estimated for EPI (also consistent with

previous analyses [80]). The small estimated π and large

RR ( ˆ̄γ ) facilitated the identification of novel risk genes,

particularly for DD. We did not restrict our primary anal-

yses to private DN mutations (not in ExAC) as recently

discussed [81]; however, we note that mutation rate cali-

bration might be required for analyses focusing on private

mutations. Nonetheless, multiple ID/DD genes discov-

ered in this study are in lists of curated ID/DD genes. In

addition, our novel significant genes have similarly high

conservation (e.g., pLI and RVIS), like recently discovered

ID/DD genes [41]. This shows that using both private and

non-private DN mutations provide power for finding sig-

nificant genes. One might expect that the large estimated

proportions of risk genes (π ) might correspond to large

mutational targets for disease risk and substantial com-

mon SNP heritability estimates, as observed for ASD and

SCZ [82, 83]; however, the large reported SNP-heritability

for EPI [84] seems an exception to this pattern, and data

for more disorders may better inform this hypothesis. We

also highlight the sharing of risk genes across the NDDs

(Fig. 6). Multi-phenotype analyses leveraging this sharing

could have higher power for detecting novel risk genes.

We conducted network analyses of 288 top NDD risk

genes from extTADA. We identified highly significant

PPI connectivity and communities differentially enriched

for functionally distinct canonical pathways (Fig. 7 and

Additional file 2: Table S24). A substantial number of

the genes found are synaptic, and particularly present in

communities C3 (presynaptic) and C6 (postsynaptic).

The presynaptic PPI community identified in this study

(C3, Fig. 7) accumulates genes for which synaptic pheno-

types are particularly strong in null mutantmice (STXBP1,

STX1B, SYT1, RIMS1, and VAMP2). STXBP1, the only

significant gene across the four NDDs (FDR < 0.3),

is involved in preparing synaptic vesicles for regulated

secretion (reviewed in [85]). The stxbp1 (munc18-1) null

mutant shows a loss of all aspects of synaptic transmission

[86] and it is the strongest phenotype among all mutants

described to date for presynaptic genes. The loss of one

copy of the gene in mice leads to subtle synaptic defects

[87], which are more severe in inhibitory neurons than

in excitatory neurons [87]. Therefore, this implicates an

excitation/inhibition imbalance, a central aspect in EPI

pathogenesis, which is implicated also in autism and SCZ

[88]. Known clinical features of DN heterozygous STXBP

mutations (reviewed in [89]) include severe ID, seizures,

and autistic traits [89].

Of the postsynaptic density proteins, C6 includes

the prerequisite glutamate-gated ion channel-forming

subunit GRIN1 of the NMDA receptor complex. In

contrast to AMPA-type glutamate receptor subunits,

which are not present, NMDARs are important for

Ca-dependent signaling and plasticity processes. The Ca-

dependent calmodulin kinase II (CAMK2A) and phos-

phatase PPP3CA are also identified as NDD risk genes in

C6. Interestingly, PPP3CA has just been recently identi-

fied as a novel epileptic encephalopathy gene [90]. Other

important protein phosphatases are found in different

communities: PPP1CB in C5 and PPP2R5D in C2. Muta-

tions in these Ca-mediated signaling proteins are well

known to affect synaptic plasticity and lead to major

neuronal dysfunction [91–95].

The postsynaptic community C6 also contains the

three GABA-binding beta subunits (GABRB1-3) of the

GABAA receptor (out of the myriad of GABAA receptor

subunit diversity), G-protein coupled receptor signaling

(GABBR2, RGS14, and GNAO1), cell adherence-mediated

signaling (CNNTD1 and CNNTB1 in C2), and the major

postsynaptic density protein-interaction scaffold organiz-

ing proteins DLG4, SHANK3, and SYNGAP1, mutants

of which have been shown to have a major impact on

synaptic function [96, 97]. Also notable among the 288

NDD risk genes are ion channels with roles in excitability

including calcium channel subunits CACNA1A/1E (C6);

the auxiliary calcium channel subunit CACNA2D3 (C8);

three pore-forming sodium channel subunits, SCN8A

(C6), SCN1A (C5), and the well-known strong NDD

risk gene SCN2A (C8); and potassium channel sub-

units KCNQ2/3 (C8) [98]. Finally, transcriptional activa-

tor AUTS2 occurs in unconnected C8 and is a candidate

for NDDs including ASD, ID, and DD [99].

In single-cell RNA-seq data, the top enriched cell types

were CA1 pyramidal cells and striatal medium spiny

cells, similar to SCZ [54]. In contrast to SCZ, neu-

roblasts and neural progenitor cells were also clearly

enriched for NDDs. Enrichment in neuroblasts and

neural progenitor cells was driven by PPI communi-

ties (C2, C4, and C5) enriched in regulatory path-

ways, while enrichment in neurons was driven by the

synaptic communities (C3 and C6) (Additional file 1:

Figure S18). Expression of NDD genes across develop-

ment correlated with PPI communities and scRNA-seq

enrichment. The majority of the 288 NDD genes are

expressed in the brain prenatally [100–102], particu-

larly genes in regulatory PPI communities [103, 104].
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Multiple NDD genes are also expressed across devel-

opment stages [105], including those in synaptic com-

munities. These analyses reveal that different cellular

machinery is involved in NDD etiology, and together

with the occurrence of at least some known interactors

across PPI communities (see above), this suggests that

even synaptic proteins confer risk in pre- and postnatal

stages of development, perhaps through as yet unknown

mechanisms.

Limitations of the current study

There are limitations of the current study. First, there are

inherent limitations to model-based analyses, as noted

above. Second, we used limited variant annotation cate-

gories based on our previous studies [7, 16, 25]; we did

not use all non-synonymous DN mutations [6, 70], con-

tributing to the differences between our significant DD

genes and previously published results [70], and did not

ExAC-filter DN mutations [81]. As with any genetic anal-

ysis, our findings should be replicated and validated in

future studies. Finally, the current sample sizes are not

large: only approximately 1,000 trios for SCZ and ID, and

only 356 for EPI, resulting in broad CIs. The EPI parame-

ters in particular did not show strong convergence (which

may increase sensitivity to prior distributions). Future

studies with more comprehensive sets of variant cate-

gories and larger sample sizes are likely to improve the

current findings.

Conclusions
We have developed the extTADA pipeline and analyzed

rare variants in SCZ and four NDDs. For SCZ, we gen-

erated new insights particularly for rare-variant genetic

architecture. It is more complex than the four other NDDs

with a larger risk-gene proportion. For developmental

delay (DD), 98 new significant genes were identified and

validated in silico. These genes are highly connected with

previous DD genes in a PPI network, and have similar con-

servation and gene set enrichment to known DD genes.

To understand NDD genes better, we further analyzed

288 top NDD genes from extTADA. PPI network analysis

shows that these genes are strongly connected in func-

tionally distinct subnetworks based on canonical pathway

enrichment, single-cell RNA-seq cell types, and develop-

mental transcriptomic data, revealing some of the most

important players and processes dysregulated in NDDs.
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