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Abstract

Most of the operational problems in container terminals are strongly interconnected. In this paper, we study the integrated
berth allocation and quay crane assignment problem in seaport container terminals. We will extend the current state-
of-the-art by proposing novel set partitioning models. To improve the performance of the set partitioning formulations,
a number of variable reduction techniques are proposed. Furthermore, we analyze the e�ects of di�erent discretization
schemes and the impact of using a time-variant/invariant quay crane allocation policy. Computational experiments show
that the proposed models signi�cantly improve the benchmark solutions of the current state-of-art optimal approaches.

Index terms� Container terminal operations; Berth allocation problem; Quay crane assignment; Mixed integer pro-
gramming; Set partitioning; Column reduction

1. Introduction

Fierce global competition in production and trade has forced all entities in supply chains to optimize their logistics
operations. The never ending quest for shorter lead times and reduced cost for logistics cost requires extremely e�cient
logistics systems. In 2013, the worldwide container trade accounts for about 22% of the 6.7 billion tons of dry-cargo
trade, and all loads are being transported by vessels via container terminals (UNCTAD [27]). Recent statistics show that
total container trade volumes reached 160 million Twenty-foot Equivalent Units (TEUs) in 2013 with a growth of 4.6%
(UNCTAD [27]). These statistics suggest that logistics e�ciency heavily relies on e�ective container terminal operations.
Due to the increasing importance of container terminals and high complexity of their operations, the need for optimization
has become evident in recent years. This can also be perceived by the increase of scienti�c literature where operations
research techniques are applied to container terminals (see Stahlbock and Voÿ [24] for a survey).

Recent advances in the modeling of container terminal problems have pushed the focus towards integration issues.
Conventional hierarchical optimization of sequential operations is known to have possible disadvantages, that may result
in infeasible, suboptimal or poor solutions. This is because decisions made in earlier steps were made without considering
the resultant knock-on e�ects in the following stages. This paper focuses on two important problems on the quayside of
terminal operations: the Berth Allocation Problem (BAP) and the Quay Crane Assignment Problem (QCAP). The �rst
problem allocates berthing positions and times for vessels, while the second determines the number of quay cranes (QCs) to
be assigned for the load and discharge operations. These two problems are mutually dependent. The number of available
QCs depends on where and when the vessel is berthed. Concurrently, the berthing time depends on the processing time
of the vessel, which in turn depends on the number of cranes assigned. An integration of those two problems was �rst
introduced by Park and Kim [20].

The goal of our work is to solve the integrated Berth Allocation and quay Crane Assignment Problem (BACAP),
where a berthing time and position for each vessel is assigned during a given planning horizon. A solution to the problem
also includes the assignment of QCs, by factoring in marginal productivity losses due to crane interference, and processing
times depending on the berthing position of the vessel. An objective is to propose a method that solves instances to
optimality. When instances cannot be solved to optimality, tight upper and lower bounds on the objective should be
generated. Such bounds can be used to evaluate the performance of future and past heuristics.

An important factor in berth and QC management is the use of policies for the assignment of QCs to vessels. Hence
why this paper analyses two main policies: time-invariant and time-variant QC assignment. The �rst policy decides how
many QCs to assign to a given vessel, and this number cannot change throughout the stay at berth. The second relaxes
this assumption and allows the number of assigned QCs to vary during the ship's stay at port. In both cases the number of
QCs assigned lies within a given interval speci�ed by the contract between the terminal and the shipping companies. Both
variants of the BACAP are modeled in this paper using a Generalized Set Partitioning (GSPP) formulation. Furthermore,
a set of column reduction techniques are presented which help to limit the number of feasible columns generated and to
provide better bounds.
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The literature on the BAP distinguishes between discrete and continuous versions of the problem with respect to the
berth partitioning. In the former version, vessels can only berth at prede�ned sections of the quay, while this restriction
does not apply to the latter version. The work proposed in this paper addresses optimal approaches for the continuous
case; Where the berth space is discretized in the same manner as Meisel and Bierwirth [18], Meisel and Bierwirth [19] and
Turkogullari et al. [25], with berthing at integer points (e.g. every 10 meters). Three discretization techniques are tested
in this paper however only one of the them guarantees optimal solutions to the original problem.

In order to validate and evaluate our models, we present a comparison with the BACAP state-of-the-art results by
Meisel and Bierwirth [18]. In Meisel and Bierwirth [18] a compact mathematical model, which can optimally solve some
instances of up to 20 vessels, is presented. For larger instances (30, 40 vessels), the model cannot generate integer upper
bounds. In the same paper, these upper bounds are generated using di�erent heuristic approaches.

This paper presents three major contributions: 1) Novel generalized set partitioning formulations that can solve more
instances than previous models. 2) Improved upper and lower bounds to almost all instances, bounds that will be of use
when testing new algorithms for the problem. 3) Techniques for reducing the number of variables in the model, techniques
that can be useful for problems that use a similar modeling approach.

The paper is organised as follows: First, a literature review is presented in Section 2. In Section 3, the problem
de�nition and mathematical models proposed by Meisel and Bierwirth [18] are given. The proposed GSPP models and
column reduction techniques are presented in Section 4. Extensive computational results are presented and discussed in
Section 5. The paper is concluded by Section 6.

2. Literature Review

The importance of container terminal problems has been revealed by many academic studies where authors illustrate
recent trends and point out gaps in the literature (see Stahlbock and Voÿ [24] for a general review). As regards the
integrated quayside problems, recent surveys of Bierwirth and Meisel [1], Bierwirth and Meisel [2] focus on berth allocation
and QC planning problems (assignment and scheduling) in container terminals. Authors classify berth allocation problems
according to spatial, temporal, processing time, and performance indicator attributes. Integration of berth allocation and
QC assignment is classi�ed as deep, hierarchical or through a feedback loop. Most papers present compact formulations
with deep integration. The BAP remains the main problem and the additional problem is either the assignment or
scheduling of QCs. Recently, Meisel and Bierwirth [19] integrated three of the main seaside terminal planning problems,
i.e. BAP, QCAP (in numbers and speci�c QC assignment) and the quay crane scheduling problem (QCSP).

The BAP is classi�ed as static or dynamic with respect to whether the arrival time of the vessels imposes a bound
on the berth start time. One of the �rst models for dynamic BAP was presented by Imai et al. [11] and was successively
improved by Imai et al. [12] for the continuous berth allocation case. The latter presents a two-stage heuristic approach
which uses discrete berthing solutions and reallocates them in a continuous manner. Cordeau et al. [8] proposed a Tabu
Search (TS) for the dynamic discrete BAP and a continuous variant. A well performing simulated annealing approach is
proposed by Kim and Moon [14] for the continuous BAP.

2.1. BACAP literature - BAP, QCAP properties

A list of relevant literature for the BACAP is summarized in Table 1, in which information about the problem
structure, objective function and solution approaches are presented. The studies are listed in chronological order of
publication year. In the pioneering paper for the BACAP, Park and Kim [20] presented a model for the problem. The
model supports time-variant QC assignments and is solved by using lagrangian relaxation-based heuristics. Afterwards
a dynamic programming method assigns the speci�c QCs to vessels. With respect to spatial attributes, some papers
focus on discrete berth allocation in the BACAP (Imai et al. [13], Giallombardo et al. [9], Vergados et al. [29]). However,
continuous berth layout in the BACAP has also attracted many researchers (see Table 1). Di�erent extensions appear in
the literature surrounding the berth allocation properties of BACAP. Meisel and Bierwirth [18] considered the marginal
productivity losses due to the QC interference. Experiments with di�erent levels of congestion show the strong impact
of the QC-interference on the cost function. The handling time which depends on the berthing position is modeled by
Meisel [17]. Another extension is the modeling of operational constraints of QCs. Giallombardo et al. [9] proposed a QC
pro�le scheme in which the authors include the e�ects of shifts, the interference of QCs, the priority of vessels and various
real-life constraints. They proposed a two-stage heuristic. In the �rst stage, QC pro�les are assigned to each vessel. In
the second stage, authors solve the remaining BAP via a TS heuristic. The BACAP is also studied by Blazewicz et al.
[3]. They considered the problem as a parallel machine scheduling problem and seek to minimize the makespan.

Problem variations can also be found with respect to the QC assignment. The two main policies are the time-variant
and time-invariant QC assignment. In the time-invariant version, authors mostly solve the QC assignment problem �rst
and then solve the BAP (Liang et al. [15], Chen et al. [6], etc.). Another modeling aspect is whether individual QCs are
assigned or the number of QCs to serve each vessel is determined. Imai et al. [13] considered the assignment of speci�c
QCs through detailed QC movement constraints. This ensures the assignment of speci�c QCs, however, the relationship
between the number QCs deployed and the processing time could be improved. In another example, Chen et al. [6] made
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speci�c QC-to-vessel assignment and this facilitates the calculation of QC requirements. They proposed valid inequalities
that link the berth scheduling and QC assignment better and some valid inequalities are in the form of non-crossing
constraints.

2.2. BACAP literature - Objective function properties

In terms of cost function, we see variations in the modeling of the BACAP. The most popular objective (see Table 1)
is the composition of berthing costs (QC costs) and time-dependent penalty costs (Chang et al. [5], Raa et al. [21], Meisel
and Bierwirth [18], etc.). Total weighted service time is another popular objective of the formulations (Liang et al. [15],
Yang et al. [30], etc.). As mentioned in Section 2.1, the deviation from expected berthing position may be embedded in
the objective with a cost (Chang et al. [5], Raa et al. [21], Turkogullari et al. [25]). Instead of being in the objective, the
deviation from expected berthing position might be modeled to a�ect the processing time (as in Meisel and Bierwirth
[18]). Then the model becomes harder to solve, because the processing time of a vessel would not only depend only on
the load of vessel which is mostly a parameter, it would also depend on a decision variable which is the berthing position.

2.3. BACAP literature - Solution techniques

The solution approaches are clustered in novel mathematical models, exact methods and heuristic/analytic methods
in Table 1. Most of the papers propose novel mathematical models for the variants of BACAP. Raa et al. [21] enrich
current models by taking vessel priorities, preferred berthing positions and QC-assignment-dependent handling times into
account. The proposed BACAP model is solved using a rolling horizon approach.

2.3.1. Exact Methods

Several authors use set partitioning formulations to solve di�erent quayside planning problems. The �rst use of GSPP
aimed at solving the BAP (Christensen and Holst [7]), where the authors proposed a branch-and-price algorithm. The
approach can be used to solve both discrete and continuous BAP. For instances of up to 35 vessels, optimal solutions can
be found for the discrete BAP, while a gap of 8.3% is obtained for the continuous version. Buhrkal et al. [4] generated
columns a priori and solved the same GSPP model for the discrete case with an IP solver. The approach clearly improved
the state-of-the-art and solved the BAP up to 60 vessels to optimality. A recent study by Saadaoui et al. [23] also focuses
on the discrete BAP in which 10 berths are considered. They solve a linear programming (LP) relaxation of GSPP
model using column generation. When the column generation terminates, they impose the integrality constraints again
and resolve the GSPP with the active pool of columns. The framework solves instances of 120 vessels with an average
optimality gap of 0.20%. Umang et al. [26] proposed a GSPP model to solve a more complicated variant of BAP with
hybrid berth layout in bulk ports. The model, with a priori generated columns, can solve instances up to 40 vessels
to optimality. Robenek et al. [22] formulated a GSPP model for the integrated berth allocation and yard assignment
problem in bulk ports. The problem considers the cargo types on the vessel which a�ect the storage location in the yard
and consequently the berth allocation. They solve the problem with a branch-and-price algorithm. The instances include
10 cargo locations in the yard and 10 berths are available with di�erent equipment. The authors solve instances with 10,
25, and 40 vessels with average optimality gaps of 0.37%, 4.11% and 3.76%, respectively. The branch-and-price is only
run for instances of 10 vessels. Due to the time complexity, instances with 25 and 40 vessels are solved with the column
generation and the integrality constraints are imposed in the last stage of column generation to obtain an upper bound.

Vacca et al. [28] establish the �rst decomposition method for BACAP and it is based on the model by Giallombardo
et al. [9]. The authors suggest a QC pro�le which holds productivity losses due to QC interferences, vessel priorities
and QC assignment for each shift. The authors have implemented a branch-and-price scheme and several accelerating
techniques. The approach obtains the optimal results for 10 and 15 vessels and an average gap of 2.95% is obtained for
20 vessels and 5 berths in three hours of time limit.

An exact method to solve the BACAP with continuous (but discretized for each 50 meter) berth layout is presented
by Turkogullari et al. [25]. The authors solely consider a time-invariant QC assignment policy. They �rst formulate a
mathematical model to solve BACAP. The model generates optimum solutions up to 60 vessels where there are 24 berthing
sections. In addition to that, the authors propose a cutting plane algorithm to solve the BACAP with speci�c QC-to-
vessel assignment by using the optimum solutions of original BACAP model. It is noted that cutting plane algorithm can
convert each optimum BACAP solution to the optimum solution of BACAP with speci�c QC-to-vessel assignment for the
instances which are tested.

Chen et al. [6] have proposed a Benders decomposition method over the berth-level model proposed by Liu et al. [16].
The authors model a reduced version of the BACAP, where the berthing position of each vessel is given, thus leaving the
berthing start/end times, speci�c QC-to-vessel assignment and the positions of QCs as the only decisions to make. The
model is decomposed into a master problem and a sub-model, and the results show that the decomposition technique is
faster than the original formulation.

In this study, we present exact methods to solve variants of the BACAP (presented in Meisel [17] and Meisel and
Bierwirth [18]). Let us now clarify the di�erences between the BACAP de�nition used in this paper and that of Vacca
et al. [28] and Turkogullari et al. [25]. The problems considered in Christensen and Holst [7], Buhrkal et al. [4] and
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Saadaoui et al. [23] do not take QC assignment into account, while Chen et al. [6] assume a partial berth assignment is
given. In Vacca et al. [28], the authors formulate the BACAP with discrete berth allocation, QC moves from one vessel
to another are only allowed at the end of the working shifts (restricted time-variant QC assignment). The authors do not
consider berthing position dependent processing times, and there are also some di�erences due to the QC pro�le de�nition
and the objective function formulation. In Turkogullari et al. [25], the problem is solely considered for time-invariant QC
assignment case of the BACAP. The marginal productivity losses due to the QC interference are not taken into account.
The same is true for the berthing deviation dependent processing times and speeding up option. In their paper, the
authors also focus on speci�c QC-to-vessel assignment problem.

2.3.2. Heuristic Algorithms

There are also heuristic/analytic approaches which try to solve BACAP. The most popular metaheuristic used to solve
BACAP is genetic algorithms (GAs). Imai et al. [13], Liang et al. [15], Yang et al. [30] etc. test various GA con�gurations
which are speci�c for the de�ned problem. In the paper by Liang et al. [15], three di�erent chromosome structures are
used to prioritize vessels, to allocate berth, and to assign QC numbers. Chang et al. [5] formulate the chromosome as a
composition of four-dimensional indice pertaining to the arrival sequence, berthing position, berthing time and number
of QCs for vessels. Meisel and Bierwirth [18] propose three heuristics to solve the problem. They conclude that squeaky
wheel optimization (SWO) along with local re�nements does slightly better than TS. They also show that SWO and TS
are better than the First Come First Served-based heuristic. Vergados et al. [29] propose a Constraint Programming
(CP) model with a tailored branching heuristic within a Large Neighborhood Search framework. The model includes
QC-to-vessel assignment considering gang (a team of operators that work on QCs) allocations.

The work presented in this paper builds on the model presented by Meisel and Bierwirth [18]. The literature survey
and Table 1, show that the model incorporates many relevant constraints and includes several aspects of the problem in its
objective function. We therefore believe that the model is a good starting point for the studies carried out in our paper.

3. Modeling the BACAP: Meisel and Bierwirth (2009) Model

Before going into the details of the solution approach, let us introduce the BACAP. We do so by presenting the
formulation proposed by Meisel and Bierwirth [18] and its time-invariant QC assignment version. We propose an extension
to this model that allows modeling problems where the number of QCs assigned to a vessel cannot change during the
vessel's stay at the berth.

The objective of the BACAP is to �nd the best berthing position and time for upcoming vessels by ful�lling the QC
requirement of each vessel. A solution for each vessel determines the berthing position, the berthing start, end times and
the number of QCs that are operating on the vessel at any given time. The time horizon is discretized. Any discretization
can be used but it is useful to think of a discretization into whole hours. The berthing position is determined by a
continuous variable, but the data used with the model ensures that ships are berthed at integer positions.

An example of a BACAP plan can be seen in Figure 1 that shows the berthing plan in a time/space diagram. In this
example, three ships are berthed in the harbor. Each vessel is represented by a rectangle that shows the time and space
occupied by the vessel. The smaller rectangles indicate the assignment of QCs to vessels, each small rectangle represents
one QC. Each ship has an upper and lower limit on the number of cranes that can be assigned to it. These bounds are
determined by contracts between the vessel owner and the port and by the size of the ship. A limited number of QCs
are available in the harbor and this determines the maximum number of cranes that we can assign in any time slot. The
symbols used on the Figure 1 will be explained in the following section.
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Figure 1: Berth-time diagram of BACAP.

The objective function is a combination of time-dependent costs and QC assignment costs. The time dependent costs
can be attributed to the berthing start and end times while the QC dependent costs are a function of how many QCs are
assigned to each vessel. If a vessel is berthed before its Expected Time of Arrival (ETA), a speed-up cost occurs for each
rushed time unit. Delay costs depend on how many time units have passed from the Expected Finishing Time (EFT). An
ulterior penalty cost incurs if the berthing end time is beyond the Latest Finishing Time (LFT). An example of the cost
structure of vessel 1 can be seen in Figure 2. The �gure shows that during the vessel's stay, between its start (s1) and
end time (e1), QC operations costs are distributed along periods depending on the number of QCs operating. Since the
vessel start time is four periods earlier than its ETA (ETA1), speed-up costs occur. In the same manner, we must pay
delay costs due to the vessel`s end time being later than the EFT (EFT1). Finally, since operations go beyond the LFT
(LFT1), a one-time penalty is added to the cost.

Figure 2: Cost structure of BACAP for Vessel 1 in Figure 1.

3.1. Time-variant model

Let us now introduce the model proposed by Meisel and Bierwirth [18]. Table 2 presents the mathematical notation.
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Table 2: BACAP mathematical notation
Parameters and sets:

V Set of all vessels to be served, V ∈ {1, 2, .., N}, where N is the number of vessels to be planned
L Length of the quay
T Set of 1 hour periods, T ∈ {0, 1, ..,H − 1}, where H is the end of planning horizon
li Length of vessel i ∈ V
b0i Desired berthing position of vessel i ∈ V
mi Quay crane capacity demand of i ∈ V given as QC-hours
rmini Minimum number of QCs agreed to serve vessel i ∈ V simultaneously
rmaxi Maximum number of QCs allowed to serve vessel i ∈ V simultaneously
Ri Feasible range of QCs assignable to vessel i ∈ V , where Ri = [rmini , rmaxi ]
ETAi Expected arrival time of vessel i ∈ V
ESTi Earliest time of arrival of vessel i ∈ V when it is speed up
EFTi Expected �nishing time of vessel i ∈ V
LFTi Latest �nishing time of vessel i ∈ V without any penalty cost
c1i Speed up cost of vessel i ∈ V on its journey to catch a berthing time earlier than ETAi
c2i Cost of exceeding the expected �nishing time EFT i for vessel i ∈ V
c3i Penalty cost by exceeding LFT i for vessel i ∈ V
c4 Cost rate per QC-hour of operations
α Interference exponent for the QCs. Only qα e�ective QC hours are obtained when assigning q QCs to a

ship for one hour
β Berth deviation factor. A ship i placed at position bi needs (1 + |b0i − bi|β)mi e�ective QC hours. |b0i − bi|

is the deviation from desired berthing position
M A large positive number
Q Available number of QCs

Decision variables:
bi ∈ Z+ Berthing position of vessel i ∈ V
si ∈ Z+ Time of starting the handling (berthing start time) of vessel i ∈ V
ei ∈ Z+ Time of ending the handling (berthing end time) of vessel i ∈ V
rit ∈ B 1; if there is any QC assignment to vessel i in period t, 0 otherwise
ritq ∈ B 1; if there is exactly q QC assigned to vessel i in period t, 0 otherwise
∆bi ∈ Z+ Deviation from desired berth if vessel i is in position b, ∆bi = |b0i − bi|
∆ETAi ∈ Z+ Required speedup to reach start-time si by vessel i, where ∆ETAi = |ETAi − si|
∆EFTi ∈ Z+ Tardiness of vessel i ∈ V when operations are �nished later than expected �nishing time,

∆EFTi = |ei − EFTi|
ui ∈ B 1; if �nishing time of vessel i ∈ V exceed latest �nishing time, 0 otherwise
yij ∈ B 1; if vessel i is berthed below vessel j in berth area, i.e. bi + li ≤ bj , 0 otherwise
zij ∈ B 1; if handling of vessel i ends no later than handling of vessel j starts in berth area, 0 otherwise

Time invariant decision variables:
piq ∈ B 1; if q QCs are assigned to vessel i, 0 otherwise

min
∑
i∈V

(c1i∆ETAi + c2i∆EFTi + c3iui + c4
∑
t∈T

∑
q∈Ri

ritqq) (1)
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subject to ∑
t∈T

∑
q∈Ri

qαritq ≥ (1 + ∆biβ)mi ∀i ∈ V (2)

∑
i∈V

∑
q∈Ri

qritq ≤ Q ∀t ∈ T (3)

∑
q∈Ri

ritq =rit ∀i ∈ V,∀t ∈ T (4)

∑
t∈T

rit =ei − si ∀i ∈ V (5)

(t+ 1)rit ≤ei ∀i ∈ V,∀t ∈ T (6)

ritt+H(1− rit) ≥ si ∀i ∈ V,∀t ∈ T (7)

∆bi ≥bi − b0i ∀i ∈ V (8)

∆bi ≥b0i − bi ∀i ∈ V (9)

∆ETAi ≥ETAi − si ∀i ∈ V (10)

∆EFTi ≥ei − EFTi ∀i ∈ V (11)

Mui ≥ei − LFTi ∀i ∈ V (12)

bj +M(1− yij) ≥bi + li ∀i, j ∈ V, i 6= j (13)

sj +M(1− zij) ≥ei ∀i, j ∈ V, i 6= j (14)

yij + yji + zij + zji ≥ 1 ∀i, j ∈ V, i 6= j (15)

si, ei ∈{ESTi, . . . H} ∀i ∈ V (16)

bi ∈{0, 1, . . . L− li} ∀i ∈ V (17)

∆ETAi,∆EFTi ≥0 ∀i ∈ V (18)

ritq, rit, ui, yij , zij ∈{0, 1} ∀i, j ∈ V,∀t ∈ T, ∀q ∈ Ri i 6= j (19)

The objective function (1) is a minimization of the overall cost which has two major components. The �rst, is based
on the vessels' time at port (speed-up cost, delay cost, and penalty cost). The second, is linked to the QC assignments
in which the number of QCs used is multiplied by the cost rate per QC-hour. Constraint (2) ensures that every vessel
receives the required QC capacity, taking into account productivity losses by QC interference, and increased QC demand
due to deviation from the expected berthing position. Constraint (3) enforce restrictions so that the assigned QC number
cannot exceed the available number of QCs in the terminal. Constraint (4) links the ritq and rit variables: if any q QCs are
assigned to vessel i in period t, then operations are ongoing on the vessel which should therefore stay at berth. Constraints
(5), (6) and (7) link the rit variables with the arrival and departure variables. The constraints guarantee that the rit
variables are only set to one when t ∈ [si, ei] and that operations are not preemptive. Constraint (8)-(12) determine the
deviation from the expected berthing place, the required speed-up for vessel to reach si, the tardiness of the operations,
and sets ui to one if the ship departs after LFTi. Constraint (13) and (14) are used to set the variables yij and zij .
These variables are used in constraint (15) to avoid that ships overlap in time or space. De�nition of domains (16) and
(17) ensure that start-time and end-time of operations are between the ETAi and the end of the planning horizon. The
berthing position of vessel i is restricted by the berth and the vessel length. Constraints (18) and (19) de�ne the domains
of the remaining variables.

3.2. Time-invariant model

In the model presented in Section 3.1 the number of QCs assigned to a vessel can change over time. However, some
terminals may opt not to change the number of QCs throughout the vessel`s stay at port, in order not to create additional
congestion of QC rescheduling, and therefore we propose a variant of the model where the number of QCs assigned to
a vessel is �xed throughout the vessel's stay. Mind that the number of cranes to assign is still a decision variable. This
problem has been studied in academic literature and is named time-invariant BACAP (Turkogullari et al. [25], Yang et al.
[30], Meisel [17], etc.). To model the time-invariant QC assignment we add the binary decision variable piq which is one
i� q QCs are assigned to vessel i. The time-invariant QC assignment is then enforced by the following constraints:

∑
q∈Ri

piq = 1 ∀i ∈ V (20)

ritq ≤ piq ∀i ∈ V,∀t ∈ T, ∀q ∈ Ri (21)

piq ∈ {0, 1} ∀i ∈ V,∀q ∈ Ri (22)
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Constraint (20) ensures that exactly one QC number is chosen for each vessel i. Constraint (21) links the ritq and piq
variables. If q QCs are assigned to vessel i (piq = 1), ritq is either one or zero. We have to allow ritq = 0 since there are
some periods t where the vessel is not at berth. If piq equals zero the corresponding ritq are forced to zero through the
entire planning horizon. Constraint (5) guarantees avoiding preemption by preventing any zero values for ritq within the
berthing interval. Constraint (20), along with Constraints (5-7), ensure that only a �xed number of QCs is used without
preemption in operations.

4. Generalized Set Partitioning Formulations

In this section, we present GSPP reformulations for the time-variant and time-invariant BACAP. These models are
based on models for the berth allocation problem presented by Christensen and Holst [7] (see also Buhrkal et al. [4]).
The addition of QC decisions is, to the best of our knowledge, novel. The proposed models contain a large number of
variables and it is tempting to use column generation to solve them. However, in this paper we use the simpler approach
of generating all variables a priori (as it also was successfully done in Buhrkal et al. [4]).

4.1. Time-Invariant GSPP Model

In the time-invariant GSPP model, a column represents a feasible assignment of a single vessel to a position in time
and space (recall Figure 1), as well as an assignment of QCs for the berthing period. In addition to the already introduced
notation, we introduce some additional notation. The set of columns (assignments) is denoted by Ω. We de�ne three
matrices (aij),(bpj) and (qtj), all containing |Ω| columns. Matrix (aij) contains a row for each vessel. Each element aij
is binary and it is 1 i� column j represents an assignment of vessel i ∈ V . Each element of (aij) contains exactly one
non-zero element. Binary matrix (bpj) contains a row per (berth, time) position. The entry bpj is one i� position p ∈ P
is occupied in the assignment that variable yj represents. The matrix (qtj) contains a row per time unit. An element
qtj indicates the number of QCs that are assigned to vessel j in time period t. Since we are modeling the time-invariant
version of the problem, each column contains zeroes and one or more copies of a number q̃ which indicate the number of
QCs used in the assignment that the variable represent. Each column j has a cost cj . This cost is easily calculated from
the vessel index, the (berth, time) position and the QC allocation. In the GSPP model, the berth dimension is discretized
into S berth cells. Each vessel can occupy multiple cells when the discretization is �ne enough. We let P be the set of
(berth, time) positions that a ship can occupy. This set contains H · S elements. The decision variables of the models
are denoted yj , j ∈ Ω, they are binary and indicate whether column (assignment) j should be used in the solution. The
model is:

min
∑
j∈Ω

cjyj (23)

subject to ∑
j∈Ω

aijyj = 1 ∀i ∈ V (24)

∑
j∈Ω

bpjyj ≤ 1 ∀p ∈ P (25)

∑
j∈Ω

qtjyj ≤ Q ∀t ∈ T (26)

yj ∈ {0, 1} ∀j ∈ Ω (27)

The objective function (23) minimizes the sum of the costs for the selected variables. Constraint (24) guarantees that
all vessels are served. Constraint (25) restricts each berth/time position to be used at most once. Constraint (26) ensures
that we do not use more QCs than are available at the container terminal.

We illustrate the model with a small example containing two vessels, the �rst with a length of one and the second
with a length of two berth units. Vessels 1 and 2 have a requirement of 2 and 4 QC hours, respectively. In this example
we disregard that interference and a bad positioning can increase QC capacity demand. Furthermore, Vessel 1 has
{rmini , rmaxi } = {1, 2}, and vessel 2 has {rmini , rmaxi } = {3, 5}. The earliest berthing start times (ESTi) for the two vessels
are 1 and 2. Additionally, we assume that there are two berthing spaces, three planning periods, and six QCs available
to serve the vessels. For the �rst vessel, all feasible solutions are presented in Table 3, while for the second, only a small
portion is illustrated. The �rst two rows indicate which vessel the column is representing. The next six rows represent
the 6 available time/space positions and indicate which position each assignment occupies. The last three rows indicate
how many QCs are used in each time period by the assignment. The 15 columns with heading yj indicate 15 possible
assignments for vessel 1 and 2 while the column RHS gives the right hand side of each constraint. The last column simply
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Table 3: Structure of assignment matrix for given example

j= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 RHS

Vessel 1 1 1 1 1 1 1 1 1 1 1 = 1
aijVessel 2 1 1 1 1 1 = 1

Space1/Time1 1 1 ≤ 1

bpj

Space1/Time2 1 1 1 1 1 1 ≤ 1

Space1/Time3 1 1 1 1 1 ≤ 1

Space2/Time1 1 1 ≤ 1

Space2/Time2 1 1 1 1 1 1 ≤ 1

Space2/Time3 1 1 1 1 1 ≤ 1

Time 1 1 1 2 2 ≤ 6

qtjTime 2 1 1 1 1 2 2 3 4 5 ≤ 6

Time 3 1 1 2 2 3 4 5 ≤ 6

indicates the mathematical representation (symbol) of the columns in the model. Note that some of the columns presented
in Table 3 might be removed by the column reduction techniques which will be discussed later.

The simple structure of the model is convenient, but its drawback is that the model can contain many variables
(dependent on choice of planning horizon and discretization of the berth space). This model also handles the case where
the number of QCs assigned to a vessel vary from time-period to time-period. This variant can be represented by allowing
the entries in each column of the (qtj) matrix to take more than two values.

Modeling the time-variant QC assignment this way, however, will increase the number of variables dramatically,
therefore we have not pursued this direction. Instead, a di�erent modeling approach for the time-variant number of QCs
is presented in Section 4.2.

4.2. Time-variant GSPP Model

As for the time-invariant model, a column for the time-variant GSPP formulation represents a feasible assignment of
a single vessel to a berth with its expected processing time. The di�erence, compared to the model from Section 4.1,
is on how the processing times and QC assignment are handled. The exact number of QCs to serve the vessel in each
period is not embedded in the column representation. Alternatively, since we know the minimum and maximum number
of QCs that can serve a vessel in parallel (rmini , rmaxi ), we can calculate the minimum and maximum processing time for
a given ship at a given position (recall that position impacts processing time though the β parameter). Then, we proceed
to generate an assignment for each possible processing time. The set of columns is again denoted by Ω. We de�ne two
matrices (aij), (bpj) which contain |Ω| columns. aij and bpj are interpreted in the same way as in Section 4.1. ΩB(b, i)
is the set of columns that places the start of ship i in berth b (so a column will only occur in one of the sets ΩB(b, i)
even if it takes up several berths). ΩT (t, i) is the set of columns (assignments) that represent a placement of ship i that
occupies time period t. Each column j has a cost value cj . This cost includes the cost components which are related to
the timing of the vessel (too early/too late), but leaves out the component related to the number of QCs used (see (1)),
since this information cannot be deduced from the information in the column. There are two sets of decision variables:
yj determines if the column j is used or not, while ritq is a binary variable that is 1 if q cranes are assigned to vessel i at
time t. The additional parameters and notations that are not listed in Section 3 and 4.1 are as follows:

Additional set notations for GSPP model:
P : Set of positions: a position is a pair (berth, time slot), P ∈ {0, 1, ..,H · S}
B: Set of berthing spaces, B ∈ {1, 2..., S}
ΩB(b, i): The set of columns representing a placement of ship i in berth b.
ΩT (t, i): The set of columns representing a placement of ship i that occupies time period t.
Additional parameters:

ti,b: Minimum time (number of time periods needed to serve ship i in berth b): ti,b =
⌈

(1+β∆bib)mi
(rmaxi )α

⌉
t̄i,b: Maximum time (number of time periods needed to serve ship i in berth b): t̄i,b =

⌈
(1+β∆bib)mi

(rmini )α

⌉
∆bi: The absolute distance of berthing place b from desired position of vessel i: ∆bi = |b0i − b|
Decision variables:
yj ∈ {0, 1}: 1 if column j (a certain ship/position/duration combination) is used, 0 otherwise
ritq ∈ {0, 1}: 1 if q cranes are assigned to ship i at time t, 0 otherwise

Hence, the mathematical model can be formulated as:
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min
∑
j∈Ω

cjyj + c4(
∑
∀i∈V

∑
∀t∈T

∑
q∈Ri

qritq) (28)

subject to

∑
j∈Ω

aijyj = 1 ∀i ∈ V (29)

∑
j∈Ω

bpjyj ≤ 1 ∀p ∈ P (30)

∑
i∈V

∑
q∈Ri

qritq ≤ Q ∀t ∈ T (31)

∑
t∈T

∑
q∈Ri

qαritq ≥
∑
b∈B

(1 + ∆biβ)
∑

j∈ΩB(b,i)

yj

 ∀i ∈ V (32)

∑
q∈Ri

ritq =
∑

j∈ΩT (t,i)

yj ∀i ∈ V, t ∈ T (33)

yj ∈ {0, 1} ∀j ∈ Ω (34)

ritq ∈ {0, 1} ∀i ∈ V, t ∈ T, q ∈ Ri (35)

The objective (28) is formulated as a sum of column costs (which include speedup, lateness and penalty costs) and
QC assignments costs. Constraint (29) and (30) are the same as (23)-(27). Constraint (31) guarantees that at most Q
QCs are used in each time period. The next two constraints (32) and (33) link the columns used and the QC assignment
variables in terms of berthing time and position. Constraint (32) ensures that enough QC capacity is assigned to each
vessel. The left hand side of constraint (32) measures the number of e�ective QC hours assigned to the vessel and takes
the interference factor into account. The right hand side calculates how many e�ective QC hours are necessary and takes
the berthing position into account. Constraint (33) imposes that QCs are only assigned to a vessel when it is at port. This
constraint also imposes that at most one QC assignment policy can be applied (

∑
q∈Q̄ ritq ≤ 1 where Q̄ ∈ {1, 2..., Q}) for

each vessel in each period. What is more, constraint (33) guarantees that the QC assignment is non-preemptive in the
periods between the column start and end interval.

In the time-variant model, not only the number of constraints, but also the number of columns is higher compared
to the time-invariant model. In the time-invariant GSPP, we typically generate rmaxi − rmini columns for each ship and
position (berth/time) combination. For the time-variant case it is t̄i,b − ti,b. Since the QC requirements (mi) are rather

high in the instances, we typically have t̄i,b − ti,b > rmaxi − rmini and the time-variant GSPP thus needs a larger number
of columns.

The GSPP models o�er some modeling advantages compared to compact models like the one presented in Section 3.1.
GSPP models allow the handling of many types of constraints implicitly while generating the feasible columns. Also
various objective functions can easily be handled as long as they can be decomposed into a cost per column.

4.3. Discretization policies

The complexity of GSPP and the number of columns vary by using di�erent discretization policies of the continuous
berth space. In the original data set proposed by Meisel and Bierwirth [18], the length of the berth is 100 units (1000m:
100x10m segments). In this paper, three approaches are proposed to test the performance of the formulations:

• Berth Length of 1: In this representation, we have 100 berthing spaces (S) where each of them has a 1 unit of length
(ls : 10m in real-life). This formulation directly corresponds to the version studied by Meisel and Bierwirth [18].

• Berth Length of 2: In this version, we have 50 berthing spaces (S) where each of them has 2 units of length (ls :
20m in real-life). This representation results in a smaller model but the solution quality is decreased since we cannot
use the quay space as e�ciently as in the BL=1 approach. This discretization is inspired by the distance between
bollards at the port.

• Dynamic (Hybrid) Discretizing: In this approach, we let the discretization length be dependent on the speci�c vessel.
The policy is derived from the observation that the berthing of the optimal solution for vessel i usually lies around its
desired berthing position (b0i ). Hence, we do a �ner discretization for 5 berthing spaces around the desired berthing
position, for the rest of the berth length, a discretization of 2 is used. This policy usually results in around 55
berthing spaces depending on whether b0i is close to the start or the end of the berth.

The di�erent discretization policies are tested in Section 5.3 for both the time-variant and time-invariant case.
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4.4. Column Reduction Strategies and Valid Inequalities for set partitioning models

The number of necessary columns may be very large when dealing with a high number of vessels and a �ne discretization.
Hence, in this section we propose some rules for eliminating columns that cannot be part of the optimal solution. This
decreases memory consumption and makes the model easier to solve.

In each column reduction technique, an upper bound (UB) z̄ is required for the value of the objective function (1). By
having this bound, we can decide whether to keep a column or simply remove it. The upper bound can be obtained using
a heuristic for the BACAP, for now it is simply assumed that an upper bound is known.

4.4.1. Preprocessing-1: Simple redundancy

Given the upper bound z̄ on the objective value, a simple but nevertheless useful preprocessing rule is to remove
columns with cost cj > z̄. This applies to both GSPP models. But for the time-variant version, a better bound can be
obtained since cj does not include the QC component. To do so, we calculate a lower bound (LB) on the costs of the QC
assignments. First, the minimum number of crane hours needed (θ) is calculated by (36).

θ =
∑
i∈V

rmini

⌈
mi(

rmini

)α
⌉

(36)

Given a vessel, the shortest possible processing time (when rmini vessels are assigned) can be calculated with

⌈
mi

(rmini )
α

⌉
,

we then multiply this with the ship's minimum number of required QCs. This is obviously a lower bound on the number
of QC hours needed for the ship and it is easy to calculate. Using θ, we calculate a lower bound on the QC component of
the objective using z = c4θ and all columns with cj + z > z̄ can be removed.

4.4.2. Preprocessing-2: Contribution regarding Lower Bound (LB)

The second preprocessing procedure is based on calculating a lower bound on the total objective by selecting the �best�
column for each ship. For each ship we calculate the increased lower bound caused by selecting a column j instead of the
vessel's best column. If that lower bound is greater than the upper bound, column j can be discarded. In the following,
the idea is explained in more detail. We �rst describe the procedure for the time-invariant case, since this is the simplest.

Let Ω(i) be the columns corresponding to vessel i, then we can calculate σi, the lowest column cost for columns
representing ship i by:

σi = min
j∈Ω(i)

{cj} (37)

A lower bound on the overall objective is then:

z2 =
∑
i∈V

σi (38)

Let τ(j) be the vessel associated with column j, then any column j for which z2 + cj −στ(j) > z̄ can be removed. The left
hand side (LHS) computes the lower bound on the objective if column j is used instead of the best column for ship τ(j).

The preprocessing rule also works for the time-variant GSPP, but in this case it can be improved since cj does not
contain the QC component. Let ε(i, d,∆b) be a lower bound on the number of QC hours needed to serve ship i when
berthed ∆b units away from the desired position and having a stay of d time units at port. With this we can calculate an
improved lower bound φ(j) for column j's contribution to the objective function:

φ(j) = cj + c4ε(τ(j), d(j),∆b(j)) (39)

where d(j) and ∆b(j) are the duration of the port stay and the deviation from best berth position for column j, respectively.
We now use φ(j) to de�ne the lowest contribution σi for each ship i:

σi = min
j∈Ω(i)

{φ(j)} (40)

and we compute the lower bound on the total objective as before: z2 =
∑
i∈V σi. A column can now be eliminated if

z2 + φ(j)− στ(j) > z̄.
What remains, is to describe how we calculate the lower bound ε(i, d,∆b). When a vessel is placed ∆b positions away

from the desired position, we have to put in (1 + ∆bβ)mi raw crane hours to serve the vessel. To minimize the number of
QC hours needed, we have to spread the work evenly during vessel's stay interval to avoid high interference factors. We
would have to work for d1 hours with x QCs and for d2 hours with x + 1 QCs. A method to calculate the ε function is
presented in Algorithm 1.

The idea behind the procedure is identifying available capacity gaps in given processing times. By knowing the
processing time of a given vessel i, we can calculate how many periods corresponds to which number of QCs in a solution.
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Algorithm 1 Approximation of ε

Require: i, rmini , rmaxi , d(j), (1 + β∆b(j))mi

if (d(j)(rmini )α ≥ (1 + β∆b(j))mi)
return d(j)rmini ;

else
Find q ∈ {rmini , ..., rmaxi } such that d(j)qα ≤ (1 + β∆b(j))mi ≤ d(j)(q + 1)α

p = d(j);
while (p ≥ 0) do
δ = p(q + 1)α + (d(j)− p)(q)α;
if (δ ≥ (1 + β∆b(j))mi)
result = p(q + 1) + (d(j)− p)q;

end if
p = p− 1;

end while
return result;

Since it is a lower bound calculation procedure, the result shows the least amount of QC hours required in the given
circumstances. We can now calculate q. If q was allowed to be fractional we would need to solve it by (41).

d(j)q̂α = (1 + β∆b(j))mi ⇒ q̂α =
(1 + β∆b(j))mi

d(j)
⇒ (q̂α)

1/α
=

(
(1 + β∆b(j))mi

d(j)

)1/α

q̂ =

⌊(
(1 + β∆b(j))mi

d(j)

)1/α
⌋

(41)

Theorem: The number of quay crane hours calculated using the Algorithm (1) is a lower bound on the number of
QC hours needed to serve vessel i when berthed ∆b units away from the desired position and having a stay of d time units
at the port.

Proof:
See Appendix.A for proof �
Corollary: There is always a QC assignment plan which only includes q̂ or q̂ + 1 number of QCs for each period (in

which vessel i is at port), and this plan satis�es total QC requirement of vessel i (i.e. (1 + ∆bβ)mi) and minimizes the
total number of QC hours needed to serve vessel i when berthed ∆b units away from the desired position.

Proof:
Proven Theorem guarantees Corollary, see Appendix.A for proof of Theorem �

4.4.3. Probing-1: Feasible assignment set �xing

We classify the next two methods as probing methods since they �x the value of one variable to one and analyze the
immediate consequences. If as a consequence the lower bound rises above the upper bound then the corresponding variable
can be eliminated. These methods are explained using the notation for the time-variant GSPP, but they work just as well
for the time-invariant version.

The procedure goes through all variables yj and iteratively �xes them to one. Fixing a variable to one usually implies
that many other variables (columns) are becoming infeasible due to the overlap in berth/time space. Let I(j) be the set
of infeasible columns when column j is used. A lower bound for the total cost when having selected j is:

z3(j) = φ(j) +
∑

i∈V \τ(j)

(
min

j′∈Ω(i)\I(j)
{φ(j′)}

)
(42)

the formula uses the cost lower bound of column j and adds the best cost of the remaining ships' columns. Taking into
account that columns infeasible with the selection of column j are not included in the calculation, we have that if z3(j)
turns out to be greater than z̄ then column j can be removed.

4.4.4. Probing-2: Vessel pairs �xing

The second probing method extends the previous method by considering pairs of vessels when computing lower bounds.
The method starts by pairing vessels. First the variable that assigns ship j with lowest φ(j) is found. Among these N
assignments the ones that overlap the most in time/berth space are selected to form the �rst pair. These assignments are
removed from the set of available assignments and another pair is formed by selecting the ones with most overlap among
the remaining assignments. This continues until all vessels are paired up (or one vessel remains). Now that vessels have
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been paired up, we can compute a lower bound on the contribution of each vessel pair. For a vessel pair {i1, i2} this is
done by (43).

z(i1, i2) = min
j1∈Ω(i1),j2∈Ω(i2)\I(j1)

{φ(j1) + φ(j2)} (43)

i.e. by selecting an assignment j1 for vessel i1 and an assignment j2 for vessel i2 that minimizes φ(j1) + φ(j2) and do not
overlap. Let P be the set of pairs and assume N is even. A lower bound for the total objective is

z4 =
∑

{i1,i2}∈P

z(i1, i2) (44)

we again go through all j ∈ Ω and �x yj to one, iteratively. Fixing yj to one has several e�ects. The ship τ(j) corresponding
to column j is part of exactly one pair from P. Since j is �xed we may have to redo our choice for that pair. This amounts
to �nding the best assignment j′ for the other ship in the pair while ensuring that assignments j and j′ do not overlap. For
the other pairs we check if the best assignment for that pair overlaps with j. If not, we go on and use the best assignment,
if there is an overlap we search for the best assignment pair that does not overlap with j.

Let i be the ship that was paired up with τ(j) then we can write the lower bound obtained by �xing yj = 1 formally
as:

z4(j) = φ(j) + min
j′∈Ω(i)\I(j)

{φ(j′)}+
∑

{i1,i2}∈P\{i,τ(j)}

(
min

j1∈Ω(i1)\I(j),j2∈Ω(i2)\(I(j)∪I(j1))
{φ(j1) + φ(j2)}

)
(45)

We can eliminate yj whenever z
4(j) > z̄. The two probing algorithms are rather time consuming, but the running time

can be kept at a reasonable level by careful implementation. The two simpler preprocessing routines are also executed
before running the probing methods in order to reduce the set of available columns.

4.4.5. Valid inequality based on φ(j)

The computed φ(j) bounds give rise to a simple inequality that eliminates some non-optimal solutions from the solution
space: ∑

j∈Ω

φ(j)yj ≤ z̄ (46)

Constraint (46) ensures that the sum of all lower bounds of columns cannot be larger than the upper bound. The inequality
can cut away feasible integer solutions, but only those that have an objective greater than the upper bound. It is likely
that a black-box solver will be able to generate cover inequalities from the inequality since it is a knapsack constraint.

4.4.6. Reduction of ritq variables

Finally, the time-variant version of GSPP may be improved with respect to variables ritq. There can be no QC
assignment before the EST of vessels and assignment of QCs have to be within the given interval Ri =

[
rmini ; rmaxi

]
.

Constraints (47) and (48) eliminate QC assignments that do satisfy these requirements.

ritq = 0 ∀i ∈ V, q /∈ Ri, t ∈ T (47)

and

ritq = 0 ∀i ∈ V, q ∈ Ri, t ∈ T : t < ESTi (48)

The preprocessing and probing described above remove some yj variables. This can force some ritq to zero. We let it
be up to the preprocessing routines of the black-box IP solver to eliminate such ritq variables.

4.5. Discussion of solution methods

In this paper we generate the complete models (23-27 for the time-invariant case and 28-35 for the time-variant case)
using the columns that are left after the column reduction techniques presented in Section 4.4. These models are then
solved by CPLEX.

Since the models contain a large number of columns, an alternative solution approach would be to solve the LP
relaxation of the models using a column generation algorithm and obtain integer solutions using a branch-and-price
algorithm. Such an approach has been used for related problems by, for example, Vacca et al. [28] and Robenek et al. [22].
A simpler alternative to branch-and-price is to solve the integer model in the last iteration using the columns generated
while solving the LP relaxation of the complete model using a column generation algorithm. Such an approach is used by
Saadaoui et al. [23], but it is not guaranteed to obtain an optimal solution when the problem is solved in this way.

It is not clear if a branch-and-price approach would be advantageous for the size of BACAP instances currently used
in the literature (see e.g. Meisel and Bierwirth [18]) since CPLEX in general is very good at solving GSPP as long as the
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model �ts into memory. However for larger instances branch-and-price algorithms will be competitive considering that at
some point the number of generated columns for the complete models simply becomes too large to �t in the memory (see
Saadaoui et al. [23], for evidence of this for the BAP). The most interesting research direction related to branch-and-price
algorithms is perhaps to use model 23-27 to solve the time-variant case (see comments at the end of Section 4.1) since we
expect that the LP relaxation of the time-variant version of model 23-27 would be tighter than that of 28-35. Generating
all columns for this model variant (23-27) is out of the question for all but the smallest instances, but its LP relaxation
could be solved using column generation and a branch-and-price algorithm would therefore be feasible.

5. Computational Results

We compare our results to those that can be obtained by the model presented by Meisel and Bierwirth [18]. All models
are solved by using the CPLEX 12.6 solver. The column generator and reduction techniques are implemented in C++. In
order to have a fair comparison, the model presented by Meisel and Bierwirth [18] is run for 10 hours using our computer
and CPLEX version. The best result from the original and our re-implementation are reported. All tests are run on a
32 core AMD Opteron at 2.8Ghz and 132Gb of RAM. All running times are measured in seconds. The running times
are reported for both the column generation and solver times. Due to memory restrictions only 5 threads are active per
experiment.

5.1. Benchmark instances and running conditions

The benchmark is provided by Meisel and Bierwirth [18]. The data set includes three main vessel types (namely
Feeders, Medium, and Jumbo vessels). Furthermore each vessel type di�ers in technical speci�cations and cost values.
The generation of these instances is based on empirical data. The benchmark consists of 30 instances, and contains ten
instances of 20, 30, and 40 vessels, respectively. We consider a container terminal with a quay of length L=1000 meters
with 10 QCs available. The planning horizon is one week (168 hours), and planning operations are based on working
hours. It should be noted that the planning horizon is set as a hard constraint by the benchmarks.

The vessels' speci�cations and parameters regarding the arrival and �nishing time and the cost values can be obtained
from Meisel and Bierwirth [18]. The interference coe�cient (α) is set to 0.9, and the increase in the QC-hours needed due
to berthing deviation is set to 0.01 (Meisel and Bierwirth [18]).

The complete column generation procedure works as follows: First, all feasible columns are generated, and after that
the two preprocessing techniques are applied. The probing methods described in Section 4.4.4 are run last, since they are
the most time consuming and therefore it is bene�cial to reduce the set of columns as much as possible before running
them.

The models based on Meisel and Bierwirth [18] (time-variant and time-invariant versions) are rerun with the same
conditions reported in their paper. CPLEX 12.6 is run with a time limit of 36000 seconds using the options: emphasize
optimality and aggressive cut generation. It is observed that the compact models require the aggressive cut generation
option since the computation for the root node relaxation takes only little time, and most of the time is spent on branching
for an integer solution.

For the set partitioning formulations, we observed that the best results were obtained by setting the MIP emphasis
parameter to discover hidden feasible solutions and by turning on local branching heuristic. Another strategy that is
applied to overcome the problem of �nding an integer initial solution is to warm-start the models. Such solutions are
also necessary for providing an upper bound for the column reduction strategies. Section 5.2 explains how the warm start
solutions are found.

5.2. Upper bound and warm start strategies

Warm starts (and consequently the upper bounds) are obtained by solving a simpler version of the GSPP model. For
the time-invariant GSPP, modeling each berth with a length of 4 units provides a warm start for all versions of time-
invariant models (berth length of 1 (BL=1), berth length of 2 (BL=2), and dynamic discretization). This simpler model
is solved with a time limit of 15 minutes and, in most cases, the model can be solved to optimality.

For the time-variant version one can use the solution from the time-invariant model as long as the discretization policy
is kept the same, e.g. the solution to the time-invariant GSPP (BL=1) is not an upper bound for the dynamic-discretized
time-variant GSPP. The time-invariant version of the model, which will generate a warm start, is run with a time limit of
20 minutes (not including the time to obtain BL=4 results). The additional runtime depends on the computational time
generating the upper bound of the time-invariant case. In small and medium scale instances, the upper bounds obtained
from the time-invariant models perform quite well. However, for large scale instances, BL=1 time-invariant models do not
perform well. Hence, for the BL=1 versions the upper bound is selected among the time-invariant version with a berth
length of 2 or dynamic discretization.
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5.3. Computational Results

We present results for both the time-invariant and time-variant versions of the GSPP models and compare the results
with those provided by the model of Meisel and Bierwirth [18]. Moreover we analyze the impact of the three berth
discretizations and the column reduction techniques.

The performance of GSPP models are presented in Tables 4-to-7. In each table, the �rst column, "#", indicates
instance ID. The columns denoted "Z" show the best upper bounds obtained, while "LB" reports the best lower bounds
found. The gap (G) is calculated between upper and lower bounds. In Tables 4 and 7, the "TC" and "TOPT " are the
time spent (in seconds) generating columns and the time spent solving the mathematical model, respectively. The column
"R−+" illustrates whether the optimal solution is found in the root node relaxation. If yes, there is a "+", otherwise a "-".
The column RLB reports the lower bounds obtained in the root node. It should be noted that if the instance is solved
to optimality in the root node, there is no root node LB. Additionally, the number of nodes in the branch and bound
(B&B) tree is presented in "#nodes B&B" columns. The following four columns show the e�ect of the column reduction
techniques. The column under column reduction section named | Ω | shows the number of columns generated. After that,
the number of columns left is reported in each cell. Column | Ω1 | shows the number of columns left after the the two
simple preprocessing steps, while | Ω2 |and | Ω3 |, shows the number of columns left after the probing methods 1 and
2, respectively. The two columns ("UB TOPT " and "ZUB") report the upper bound used as a warm start solution and
the length of time we spent computing this upper bound. Di�erent from Table 7, Table 4 (for the time-invariant case)
contains results that show the performance without using the preprocessing steps in the last four columns.

5.3.1. Time-Invariant GSPP results

The computational results for the time-invariant version of the GSPP are shown in Table 4 and 6. There is a clear
tradeo� between the number of columns and solution quality.

Table 4 shows the results for a berth length of 1 unit (ls : 10m in real-life, BL=1) which is the original problem studied
in Meisel [17]. In this case, the GSPP formulation produces optimal results for all small and medium scale instances
(N = 20, 30 vessels). For large scale instances (N = 40 vessels), only four instances cannot be solved to optimality within
the 10 hour time limit. For small and medium scale instances, the runtime (TOPT ) is always less than 13 minutes, and the
optimal solution is often found in the root node. This is clearly not the case for the instances with large scale instances.

Note that the column generation time (TC) is small for any type of instance. In most small and medium scale instances,
it is less than 10 seconds. The number of generated columns can be reduced signi�cantly using the proposed rules. For
small scale instances, simple preprocessing can, on average, reduce 77% of the columns, while for medium and large scale
instances the reduction drops to 58% and 20% respectively. The main reason for the drop in e�ectiveness is the quality
of upper bounds obtained for each class of instance and the complexity of the analyzed instances. The results also reveal
that the second probing algorithm is more e�ective than the �rst, and can reduce the number of columns even further. In
total 85% of all columns are removed on average in the small scale instances, while for medium and large scale instances
the number is 70% and 28% on average, respectively. The upper bounds computed initially (as warm start) are relatively
tight and only two upper bounding models cannot be solved to optimality within 15 minutes. There is an average of 7% of
optimality gap (see GUB column for each instance size in Table 4). Model with small time limits also outperforms SWO
heuristic for 8 instances of 10 large scale instances (see SWO (ZH)best column in Table 5). These results show that the
performance of GSPP formulations for small time limits is also strong. The results of GSPP (BL=1) without any probing
(but including the two simple preprocessing methods) are presented in the last columns of Table 4. For this experiment
there is no clear winner, but one can argue that the extra complexity involved in the probing algorithms does not pay o�
here.

Table 5 summarizes results for the time-invariant BACAP. For this problem, the known upper and lower bounds have
been improved for all instances. The GSPP (BL=1) results outperform BL=2 and dynamic discretization results for all
instances except #21, #23. For instance #23, BL=2 and dynamic discretization policies both present best upper bound,
while for instance #21, dynamic discretization performs the best. The dynamic discretization policy still �nds the optimum
solutions of original problem (BL=1) for 14 out of 30 instances. We can conclude that �ner discretization outperforms
other discretization methods for most of the instances. The last column of Table 5 presents the results of squeaky wheel
optimization (SWO) heuristic which is proposed by Meisel [17] for BACAP with time-invariant QC assignment (BL=1
version).

The performance of the GSPP (BL=1) can be compared with a modi�ed version of the model by Meisel and Bierwirth
[18] (presented in Section 3.2). Table 6 shows the results from this model. Upper and lower bounds, gaps, computational
times, and the number of nodes in the B&B tree are presented. Results show that even for the small scale instances, there
are two cases in which no integer solution was found. In this benchmark, only �ve instances are solved to optimality. The
GSPP formulation solves all the instances to optimality in much shorter times. For medium and large scale instances,
there are only two instances in which an upper bound is obtained and the lower bounds are signi�cantly worse than those
from the GSPP formulation.
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Table 5: Results of GSPP, SWO heuristic-BACAP-TI (Meisel [17])

GSPP (BL=1) GSPP (BL=2) GSPP (Dynamic) SWO

N # Z LB G Z LB G Z LB G (ZH)best

20

1 89.0 89.0 0.0% 92.8 92.8 0.0% 91.4 91.4 0.0% 89.0

2 56.2 56.2 0.0% 56.2 56.2 0.0% 56.2 56.2 0.0% 56.2

3 85.7 85.7 0.0% 87.7 87.7 0.0% 85.7 85.7 0.0% 89.8

4 81.8 81.8 0.0% 94.4 94.4 0.0% 81.8 81.8 0.0% 81.8

5 59.2 59.2 0.0% 60.4 60.4 0.0% 60.4 60.4 0.0% 59.2

6 59.2 59.2 0.0% 62.8 62.8 0.0% 59.2 59.2 0.0% 59.2

7 75.2 75.2 0.0% 77.0 77.0 0.0% 77.0 77.0 0.0% 75.8

8 61.4 61.4 0.0% 68.4 68.4 0.0% 61.4 61.4 0.0% 61.4

9 79.0 79.0 0.0% 79.0 79.0 0.0% 79.0 79.0 0.0% 79.0

10 101.0 101.0 0.0% 102.5 102.5 0.0% 102.0 102.0 0.0% 105.0

Gav 0.0% Gav 0.0% Gav 0.0%

(Topt)av 126 (Topt)av 36 (Topt)av 76

30

11 143.2 143.2 0.0% 143.2 143.2 0.0% 143.2 143.2 0.0% 148.0

12 92.0 92.0 0.0% 92.0 92.0 0.0% 92.0 92.0 0.0% 93.4

13 110.0 110.0 0.0% 110.0 110.0 0.0% 110.0 110.0 0.0% 111.2

14 107.4 107.4 0.0% 112.4 112.4 0.0% 107.6 107.6 0.0% 115.8

15 168.4 168.4 0.0% 170.8 170.8 0.0% 170.8 170.8 0.0% 175.8

16 121.6 121.6 0.0% 121.8 121.8 0.0% 121.6 121.6 0.0% 126.6

17 109.4 109.4 0.0% 109.4 109.4 0.0% 109.4 109.4 0.0% 114.6

18 135.0 135.0 0.0% 143.0 143.0 0.0% 136.2 136.2 0.0% 144.4

19 176.2 176.2 0.0% 179.8 179.8 0.0% 176.2 176.2 0.0% 180.8

20 139.8 139.8 0.0% 141.0 141.0 0.0% 139.8 139.8 0.0% 139.8

Gav 0.0% Gav 0.0% Gav 0.0%

(Topt)av 410 (Topt)av 107 (Topt)av 234

40

21 247.0 233.1 5.6% 250.6 250.6 0.0% 246.8 246.8 0.0% 293.2

22 178.4 178.4 0.0% 185.4 185.4 0.0% 180.6 180.6 0.0% 193.8

23 269.0 247.8 7.7% 268.6 268.6 0.0% 268.6 264.2 1.7% 331.4

24 307.0 283.8 7.6% 310.6 303.8 2.2% 307.0 292.5 4.7% 366.0

25 164.6 164.6 0.0% 168.2 168.2 0.0% 165.8 165.8 0.0% 171.6

26 258.2 258.2 0.0% 265.2 265.2 0.0% 258.2 258.2 0.0% 278.4

27 205.4 205.4 0.0% 216.8 216.8 0.0% 206.6 206.6 0.0% 235.8

28 300.1 267.5 10.9% 314.8 282.6 10.2% 313.1 272.1 13.1% 412.4

29 227.6 227.6 0.0% 235.2 235.2 0.0% 229.4 229.4 0.0% 255

30 210.1 210.1 0.0% 224.4 224.4 0.0% 217.0 217.0 0.0% 284.2

Gav 3.2% Gav 1.2% Gav 1.9%

(Topt)av 21032 (Topt)av 11565 (Topt)av 14160

Table 6: Reformulation of compact model-BACAP-TI

# Z LB G TOPT #Nodes # Z LB G #Nodes # Z LB #Nodes

1* 89.0 86.2 3.1% * 2769450 11* 150.4 108.3 27.9% 1557183 21* X 116.4 762709

2 56.2 56.2 0.0% 7397 383896 12* X 74.1 - 1205386 22* X 97.5 438579

3* X 67.6 - * 2605595 13* X 88.3 - 1408812 23* X 142.5 745119

4* X 68.7 - * 2166910 14* X 85.3 - 1284386 24* X 139.4 415411

5 59.2 59.2 0.0% 4151 466141 15* X 97.3 - 1427223 25* X 115.9 824894

6 59.2 59.2 0.0% 105 5428 16* X 96.2 - 1500854 26* X 102.4 433046

7* 75.2 75.1 0.16% * 1748332 17* X 87.9 - 1311279 27* X 133.4 947127

8 61.4 61.4 0.0% 12057 876111 18* 135.7 106.5 21.5% 1694085 28* X 140.8 721192

9 79.0 79.0 0.0% 4464 385267 19* X 118.0 - 1019351 29* X 123.0 792108

10* 101.0 90.5 10.4% * 4744212 20* X 105.1 - 1135501 30* X 128.6 905548

G = [Z−LB
Z

], * represents that 10h time-limit has been reached

Finally, the performance of dynamic discretization which shows promising results is evaluated in detail. Dynamic
discretization models have less columns than the BL=1 case, but more than the BL=2. Since discretization is one in 5
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units around the desired berthing position, and two for the rest, the number of columns is closer to the GSPP (BL=2).
On average, the number of columns is 44% less than the BL=1 case. For small and medium instances, the computational
time needed to reach optimality is reduced by 50%, and 54% compared to BL=1 case (TGAP =

TOPT.Dynamic−TOPT.BL=1

TOPT.BL=1
).

The results show that, with dynamic discretization, optimal solutions can be obtained for all but 3 instances (#23, #24,
#28). It is observed that for instances (#21, #23), which are not solved to optimality in the BL=1, dynamic discretization
obtains a lower objective value in 10 hours of computational time.

Figure 3 illustrates the gap between each discretization policy and the best known solution for each instance. Apart
from instance (#21, #23), BL=1 discretization presents the best upper bounds for each instance. Dynamic discretization
performs better than BL=2 case in all instances (in some instance they found identical solutions).

Figure 3: Gap (%) from best known solution for BL=1, BL=2 and dynamic discretized BACAP- Time-Invariant QC policy

5.3.2. Time-Variant GSPP results

Tables 7 and 8 present the results of the time-variant version of the GSPP formulation (see, Section 4.2). As before,
we �rst present results for a berth length of 1 unit. Afterwards, we present summary of results for di�erent discretization
policies and solution approaches.

The results from the BL=1 case are reported in Table 7. This problem corresponds to the one solved by Meisel and
Bierwirth [18]. The results in Table 7 show that only one of the small instances cannot be solved to optimality. For
medium instances, the average gap is less than 2%, while for large instances it is around 15%. It should be noted that the
standard deviation of the optimality gap for large instances is high.

The column reduction techniques remove a larger fraction of the columns compared to the time-invariant case, but the
number of surviving columns has nevertheless increased by a factor of 2.8 on average. Overall, all four reduction tools have
deleted 90% of the columns in the small instances, while 72% and 27% are reduced for medium and large scale instances,
respectively. The computational time to generate the columns remains acceptable for small and medium scale instances,
for large scale instances the average time is 10 minutes.

Compared to the time-invariant case the complexity of the model has increased and it becomes reasonable to see that
the quality of the warms start solutions have decreased. For several large scale instances, the model faces memory issues.
Six of them ran out of memory and were rerun using only one thread (which reduces memory usage).
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Table 7: GSPP (BerthLength=1, Variable QC assignment)

Computational results of GSPP Performance of column reduction UB Gen.

# Z LB G1 TC TOPT R−
+ RLB #Nodes | Ω | | Ω1 | | Ω2 | | Ω3 | UB ZUB

B&B TOPT

1 84.1 84.1 0.0% 20 321 - 83.3 2887 1234646 317414 261017 159035 142 89.0

2 53.9 53.9 0.0% 1 2 + - - 1086872 68846 57230 4265 1 56.2

3 76.3 76.3 0.0% 4 1096 - 75.0 1081145 936469 321403 279470 242882 186 85.7

4 76.2 76.2 0.0% 3 717 - 74.0 82907 1366755 255422 233926 153491 160 81.8

5 56.8 56.8 0.0% <1 56 + - - 882054 87858 71329 54527 31 59.2

6 57.6 57.6 0.0% <1 1 + - - 1103729 23934 16177 1411 7 59.2

7 68.0 68.0 0.0% 7 203 - 67.1 2614 1197949 210198 184265 85013 59 75.2

8 56.1 56.1 0.0% 1 87 - 55.9 45 1193809 111140 89978 71392 100 61.4

9 75.1 75.1 0.0% 5 924 - 73.2 72287 954820 240732 213842 140247 152 79.0

10 89.3 88.4 1.1% 19 36000 - 83.1 813843 1281315 464115 440292 391410 282 101.0

Gav 0.1% Rav 82% 16% 43% GUB 8%

11 139.8 139.1 0.5% 58 36000 - 133.8 219068 1744848 816725 744802 616533 418 143.2

12 81.8 81.8 0.0% 3 337 + - - 1607596 341504 302519 189863 84 92.0

13 102.4 102.4 0.0% 11 1122 - 100.5 10488 1727182 429088 381602 334247 143 110.0

14 99.1 99.1 0.0% 23 12960 - 97.4 5798205 1525995 475467 440336 281220 161 107.4

15 154.2 145.1 5.9% 27 36000 - 136.8 30374 1761414 995156 951700 830382 621 168.4

16 115.4 111.6 3.3% 29 36000 - 107.8 330293 1796509 670045 618100 381185 169 121.6

17 102.6 102.6 0.0% 20 1416 - 100.7 41326 1696500 474650 429690 293693 119 109.4

18 121.9 120.0 1.6% 69 36000 - 117.4 804373 1709858 726816 677637 634660 556 135.0

19 165.2 161.6 2.2% 349 36000 - 158.8 56899 2004197 1195939 1153256 1001574 748 176.2

20 132.5 129.6 2.2% 243 36000 - 128.6 144075 1801078 812503 750895 521506 475 139.8

Gav 1.6% Rav 61% 8% 24% GUB 8%

21† 223.1 178.3 20.1% 51 36000 - 178.0 326 2513805 2056806 2023788 1928308 1200 250.6

22 171.0 166.1 2.9% 445 36000 - 163.1 37143 2010843 1370334 1310042 963164 239 185.4

23† 264.4 196.7 25.6% 335 36000 - 196.4 27 2364293 2014422 1983473 1923115 1200 269.2

24‡ 302.2 245.4 18.8% 846 36000 - 239.4 22 2258599 2176590 2144639 2065263 1200 320.4

25 148.1 141.2 4.7% 52 36000 - 139.9 10063 1690236 1117012 1041771 943454 195 168.2

26† 245.0 208.8 14.8% 1327 36000 - 208.0 300 2269042 2005944 1965226 1831379 1200 265.2

27 184.9 176.0 4.8% 113 36000 - 173.9 5507 2017218 1612962 1560262 1460709 423 216.8

28‡ 315.2 215.3 31.7% 1499 36000 - 215.3 15 2543836 2340412 2327678 2277105 1200 320.2

29 226.7 186.0 18.0% 433 36000 - 185.5 974 2163279 1669144 1643406 1495597 350 235.2

30† 187.8 175.0 6.8% 477 36000 - 173.9 4103 2441545 1875349 1811354 1614804 1200 226.7

Gav 14.8% Rav 19% 3% 8% GUB 12%

† represents that CPLEX solver has faced a memory over�ow while the instance was running using 5 threads. Hence, † instances are rerun with
only one thread. ‡ represents instances that run with one thread, and again faced a memory problem. The results are reported on the time

when CPLEX ran out of memory.

We can conclude that the GSPP model can solve the problem considered in Meisel and Bierwirth [18] to optimality, or
near optimality, for instances with 20 or 30 vessels. For larger instances the performance is more erratic and only a subset
of those instances can be solved reasonably well. In the following the performance of the time-variant GSPP model is
compared with the compact model proposed by Meisel and Bierwirth [18]. Table 8 summarizes the results. In addition to
the upper and lower bounds of the compact model, the best results from the heuristic procedures described in Meisel and
Bierwirth [18] are presented. Additionally, the results from the time-variant GSPP model and the Meisel and Bierwirth
[18] model with warm-start solutions are presented in Table 8. Results show that there are only four instances which are
solved to optimality by the compact model, while 13 instances are solved to optimality by the BL=1 discretized GSPP
model. The compact model performs very poorly on the medium and large scale instances in terms of producing upper
bounds, and the lower bounds are consistently outperformed by the GSPP model. When warm-starts are imposed on
Meisel and Bierwirth [18] model, eight instances are solved to optimality, and four instances resulted in a better upper
bound compared to the GSPP models. We also observe that the upper bounds produced by all versions of the GSPP
models often improve upon the best known upper bounds produced by the state-of-the-art heuristics. We hope that the
improved upper and lower bounds will be helpful in evaluating future heuristics and exact methods for the problem.

Table 8 also helps to compare performance of di�erent discretization methods. Since BL=1 discretization solves many
of small and medium scale instances to optimality, BL=1 outperforms dynamic and BL=2 discretization for all such
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instances except instance #16, for which dynamic discretization presents the best upper bound. For small and medium
scale instances, dynamic discretization continuously outperforms BL=2. For large scale instances, comparison is more
interesting. BL=1 discretization performs better for three out of ten instances. While, BL=2 outperforms the other two
methods in �ve instances, and dynamic discretization does the same with two instances.

5.3.3. Results for the berth allocation problem

The GSPP model, tested until now, can also solve the BAP by simply �xing the QC assignment decisions. This would
result in a model similar to the one presented by Buhrkal et al. [4]. The latter, however, has only been tested for the
discrete variant of the problem, where each berth holds exactly one vessel. Here we show how such models perform on the
continuous variant. This problem is a special case of the BACAP.

We changed the same set of instances to include the number of QCs assigned (and consequently the processing
time) as a parameter. The required change in the benchmark is achieved by replacing rmini , rmaxi in each data set with

ri =
⌈
rmini +rmaxi

2

⌉
. Hence, the generation of columns will be based on the single value of the ri parameter. The time-

invariant version of GSPP without the knapsack constraints (constraint (26)) will be used for this experiment. The rest
of the parameters are kept the same. We use the instances from Meisel and Bierwirth [18] and solely test the BL=1
discretization. Column reduction techniques were not applied and no upper bounds were computed a-priori.

The results are summarized in Table 9. Each row corresponds to 10 instances, the �rst column reports the instance
size, while the next shows the average optimality gap (all instances were solved to optimality). The next column shows
the average time needed to generate the model, then follows the time for solving the IP model and the last column shows
the average number of columns generated. For the two last columns the number in square brackets indicates the standard
deviation (σN ) and coe�cient of variation (σN/µ).

Table 9: Results for the BAP without quay crane decisions

N Gav Tc TOPT | Ω |
20 0.00% 3 131 [40,0.30] 141391 [17472,0.12]

30 0.00% 5 340 [143,0.42] 215967 [9128,0.04]

40 0.00% 6 893 [541,0.60] 286668 [25173,0.08]

The results show that the GSPP model is able to handle the �ne discretization very well and the application of the
model to the standard BAP can be taken further than what was done by Buhrkal et al. [4]. It seems likely that even larger
instances could be solved within a couple of hours, but we have not tested this. We also conducted tests with the BL=2
discretization and the dynamic discretization. For the 40 ship instances the average solution costs were 2.8% and 1.71%
higher than those from the BL=1 discretized model, respectively. Meanwhile the average running time was 209 seconds
for BL=2 models and 606 seconds for dynamic discretized models. Based on the results, we recommend using the BL=1
model for instances of this size or smaller.

6. Conclusions and suggestions for future work

In this paper, we have proposed novel GSPP formulations for the BACAP considering both time-variant and time-
invariant QC assignment policies. The proposed models solve the problem introduced in Meisel and Bierwirth [18].
Computational results show that the performances of both the time-variant and time-invariant GSPP formulations are
strong with respect to both upper and lower bounds. In particular, the GSPP formulation can provide optimal solutions in
relatively short computation times for the small and medium sized instances. For these instance sizes, all instances could
be solved to optimality for the time-invariant case, while 13 out of 20 instances could be solved for the time-variant case.
For large scale instances, the objective value and lower bounds have been improved. We believe that the improved bounds
would be useful in the evaluation of new heuristics to solve such instances. Note that both upper and lower bounds have
been improved compared to the state-of-the-art results for all 60 instances when the results of compact model with warm
start is also taken into account, and for 56 of 60 instances otherwise. This paper also discusses the e�ects of time-variant
and time-invariant QC assignment policy for terminals. We show that there is an additional cost of time-invariant QC
policy and we quantify this di�erence, although for arti�cial instances.

The GSPP model has also been used to solve classical berth allocation problems with a �ne discretization of the
berthing space, and the results show that the model is very e�ective.

The presented set partitioning models contain many variables and therefore several variable reduction methods are
proposed and evaluated. These novel column reduction techniques for the BACAP can reduce the number of columns by
up to 90% for some benchmarks. By using the proposed reduction techniques, in most cases, we create models that can be
handled in the memory available in current computers, however this is not always the case. We believe that the reduction
techniques can be generalized to other variants of the berth allocation problem.
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A convenient property of the proposed solution method is that most of the work is done by a black-box IP solver (in
this case CPLEX). This means that the solution approach will automatically bene�t from new developments in solver
techniques and will also bene�t from future hardware improvements that are supported by the underlying IP solver (for
example a far more massive parallelism).

Future research could be directed towards including more constraints in the model, if that is deemed necessary to apply
the model in a particular port or it could be directed at designing improved solution methods. Since a major limitation
of the proposed model is the rapid growth in the number of variables with increase in problem size, a natural extension
of the current work is to attempt to generate variables dynamically using delayed column generation and solve the model
using a branch-and-price algorithm.
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AppendixA. Proof of Theorem 1

Assume that a better solution existed (resulting in fewer QC hours used). Let hr be the number of hours we use r
QCs in this solution, and h be the duration of the port stay (d(j) for given column j). We must have:∑

r∈{rmin,...,rmax}

hr = h (A.1)

in order for the preemption constraint to be satis�ed.

• (a) If hr = 0 for all r ∈ {rmin, . . . , rmax}\{q, q+1} then we cannot do better than the solution computed in Algorithm
(1) since here we computed all possible combinations by using q and q + 1 QCs.

• (b) Therefore, let us �rst analyze the situation where hr = 0 for all r < q and hr̄ > 0 for some r̄ > q + 1. If
hq = 0 then this solution is clearly worse than the one computed by the algorithm because of constraint (A.1).
Thus we must have hq > 0 and we can make a more balanced solution that uses the same amount of QC hours by
incrementing hq+1 and hr̄−1 by one (if q+1 = r̄−1 then we increase hq+1 by 2) and decrementing hq and hr̄ by one.
We continue doing so until either hq = 0, showing that the starting solution was not better than the one computed
by the algorithm or hq > 0 and hr̄ = 0 for all r̄ > q + 1. Now we are back at case (a) and we see that the starting
solution could not have used fewer QC hours than the one computed by the algorithm.

• (c) Now let us analyze the situation where hr > 0 for r < q. In that case we must have hr̄ > 0 for some r̄ > q.
Otherwise we would have selected a lower q in the initial checks. We construct a more balanced solution that use
the same number of QC hours by increasing hr+1 and hr̄−1 by one (if r+1 = r̄−1 then this should be interpreted as
increasing hr+1 by 2) and decreasing hr and hr̄ by one. By continuing to do so we either get to situation (a) or (b)
and we see that the starting solution could not have used fewer QC hours than the one computed by the algorithm.
�
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