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Abstract. Myeloid disorders, especially myelodysplastic 

syndrome (MDS) and acute myeloid leukemia (AML), cause 

significant mobility and high mortality worldwide. Despite 
numerous attempts, the common molecular events underlying 
the development of MDS and AML remain to be established. 
In the present study, 18 microarray datasets were selected, 
and a meta‑analysis was conducted to identify shared gene 
signatures and biological processes between MDS and AML. 
Using NetworkAnalyst, 191 upregulated and 139 downregu-

lated genes were identified in MDS and AML, among which, 
PTH2R, TEC, and GPX1 were the most upregulated genes, 
while MME, RAG1, and CD79B were mostly downregulated. 
Comprehensive functional enrichment analyses revealed 
oncogenic signaling related pathway, fibroblast growth 
factor receptor (FGFR) and immune response related events, 
‘interleukine-6/interferon signaling pathway, and B cell 
receptor signaling pathway’, were the most upregulated and 
downregulated biological processes, respectively. Network 
based meta‑analysis ascertained that HSP90AA1 and CUL1 

were the most important hub genes. Interestingly, our study 
has largely clarified the link between MDS and AML in terms 
of potential pathways, and genetic markers, which shed light 
on the molecular mechanisms underlying the development and 

transition of MDS and AML, and facilitate the understanding 
of novel diagnostic, therapeutic and prognostic biomarkers.

Introduction

Hematopoietic stem cells (HSCs) reside in bone marrow (BM), 
and the BM microenvironment provides essential extrinsic 
signals to maintain the repopulation and differentiation of 
HSC (1). In addition, lineage specific transcriptional factors 
account fundamentally for the intrinsic control of HSC (2). 
When normal differentiation is hampered, the accumulation 
of immature HSCs and malignant neoplastic proliferation 
will occur. Myeloid disorders, especially myelodysplastic 
syndrome (MDS) and acute myeloid leukemia (AML), are 

the most frequently reported malignant cases, which cause 
high mortality in adults (3). MDS is defined as clonal HSC 
malignancies characterized by ineffective hematopoiesis and 
dysplasia, with clinical manifestations of peripheral cytopenias, 
hypercellular BM, and variable degrees of increased blasts (4). 
AML normally originates from a small number of hematopoi-
etic leukemic stem cells (LSCs) in BM, and their self‑renewal 
and differentiation will generate leukemic progenitors, which 
will produce a considerable amounts of immature clonogenic 
leukemic blasts and interfere the normal hematopoiesis (5). 
Heterogeneous subsets of MDS and AML patients have been 
classified following World Health Organization (WHO) or 
French‑American‑British criteria (6), mainly based on subjec-

tive clinical findings (number of cytopenias and percentage of 
marrow blasts) and biological properties (specific cytogenetic 
and molecular lesions) (4). In addition, approximately 30% of 
the patients with MDS would progress into AML (7). Thus, a 
number of approaches have been developed to compare MDS 
and AML in the cytogenetic and molecular aspects, and some 
hallmark genes or phenotypes being established (8). However, 
the molecular mechanisms and biological events underlying 
MDS and AML development and their transition remain to be 
addressed.

Gene expression profile analysis is a powerful research 
strategy, which integrates data in genetics, molecular transcrip-

tion, and functional genomics to reveal dysregulated genes 
between patients and healthy donors. Microarray provides 
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increasing body of gene‑wide transcriptional data regarding 
MDS and AML. However, results vary between studies due 
to diversity in cohort selection, specimen source, and experi-
mental designs. Therefore, meta‑analysis is advantageous to 
enhance statistical power to detect the dysregulated genes 
and biological pathways by combining different publically 
available datasets.

Microarray data integration‑based meta‑analyses rely on 
efficient in silico tools. With the advances of ever‑growing 
theories and bioinformatics tools, we can now employ in silico 

tools to efficiently combine multiple microarray datasets 
regardless of different populations, experimental designs, and 
diseases (9). NetworkAnalyst is a powerful web‑based tool, 
which supports robust and reliable gene expression analysis 
through approaches including preliminary data processing, 
sample annotation, batch effect adjustment, dataset integra-

tion, and results visualization (10). To maximally overcome 
the impact caused by the differences in study design and 
platform usage among different datasets, ‘Combining Effect 
Size (ES)’ analysis and Random Effect Modeling were applied 
to achieve more consistent and accurate results by taking into 
consideration of both direction and magnitude of gene expres-

sion changes. In the present study, we have selected 8 and 10 
eligible microarray datasets for MDS and AML, respectively, 
from publicly available dataset repositories. To our knowledge, 
this is the first time that common transcriptional signature of 
MDS and AML are illuminated in patients vs. healthy indi-
viduals based on meta‑analysis. Our results will shed light on 
the mechanistic foundations for MDS progression into AML, 
and propose novel targets for the prevention and development 
of both MDS and AML (11).

Materials and methods

Search strategy. Microarray‑based gene expression 
profile studies were identified in the Pubmed database 
(http://www.pubmed.com), Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/gds/) and ArrayExpress dataset 
of the European Molecular Biology Laboratory‑European 
Bioinformatics Institute (http://www.ebi.ac.uk/arrayexpress/) 

for MDS and AML. The following key words were used for 
MDS and AML respectively: myelodysplastic syndrome or 
dysmyelopoietic syndrome or hematopoetic myelodysplasia 
or MDS, and microarray or gene expression profile or gene 
expression profiling and acute myeloid leukemia or acute 
myeloblastic leukemia or acute myelocytic leukemia or 
acute nonlymphoblastic leukemia or acute nonlymphocytic 
leukemia) or acute myelogenous leukemia or AML or ANLL 

and microarray or gene expression profile or gene expression 
profiling.

Inclusion and exclusion criteria. Eligible studies and datasets 
should follow these inclusive criteria: i) patient and healthy 
control studies of human; ii) analysis of gene expression 
profiling; iii) comparable experimental conditions and 
untreated; and iv) available complete raw and processed 
microarray data. Studies were excluded if they were: i) letters, 

abstracts, meta‑analysis, review articles and case repor; ii) 
cell lines were used in experimental design; iii) RT‑PCR only 
for profiling studies; and iv) studies without healthy control. 

All the datasets and references, which are conformed to the 
criteria mentioned above, were carefully screened. The latest 
search was performed on May 30, 2017.

Data extraction and processing. Full text and supplementary 
materials of selected articles were screened and the key items 
were extracts as listed: GEO series accession number, type 
of disease, number of patients and healthy donors, specimen 
sources and platform of microarray (Table I). The series matrix 
files were downloaded from GEO datasets for all studies, with 
the exception of GSE983, whose CEL files were obtained and 
processed further by R platform to generate preliminary series 
matrix file. Common Entrez IDs were used to substitute all the 
gene probes in accordance with the corresponding microarray 
platforms. Before integrative meta‑analysis, individual dataset 
was normalized by log2 transformation and R‑mediated 
mean, and quantile normalization. Expression data of patients 
with MDS or AML and healthy donors were defined as 
class 2, and 1, respectively, according to the guidelines of 
NetworkAnalyst (10).

Batch effect adjustment. NetworkAnalyst is capable of massive 
datasets integration on the premise of batch effect adjust 
option. The processed and normalized datasets were uploaded 
and subjected to the well‑established ComBat procedures to 
remove study‑specific batch effects, which uses the Emperical 
Bayes method to adjust the extreme expression ratios, alleviate 
gene variances across all other genes, and possibly removing 
their inference without compromising the biological covari-
ates (12). The sample clustering patterns with and without 
batch effect adjustment were visualized and compared by 
principal component analysis (PCA) to assess the efficiency of 
batch effect removal.

Meta‑analysis. We conducted the meta‑analysis using 
NetworkAnalyst, a web interface for integrative statistical and 
visualizing tool. In the option of ‘multiple gene expression 
data’ for the web interface, All datasets were uploaded to the 
‘multiple gene expression data’ input area and analyzed in a 
streamlined manner, including data processing for Entrez ID, 
annotation check, view by both Boxplot and PCA plot, confir-
mation of normalization, individual DEGs analysis and data 
summary. For the DEGs discrimination, the cut‑off of P‑value 
was adjusted to 0.05, using the false discovery rate (FDR) 
based on Benjamini‑Hochberg procedure and moderated t‑test 
based on the Limma algorithm. Furthermore, all datasets were 
subjected to integrity check to ensure that the merged data could 
be carried out by ES combination, which allowed the generation 
of more biologically consistent meta‑based DEGs by incorpora-

tion of both the magnitude and direction of gene fold change. 
Between the two popular methods: Fixed (FEM) and random 
effects models, REM was used in the current study. REM model 
assumes that each study contains a random ES that incorpo-

rates unknown cross‑study heterogeneities, as demonstrated 
by Cochran's Q tests. ‘Define custom signature’ tool from 
NetworkAnalyst was used to produce the heatmap visualization 

for both top 25 up‑ and downregulated genes.

PPI Network analysis. PPI Network‑based analysis was 
performed using NetworkAnalyst (10). In PPI networks, 
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nodes stand for proteins, while edges represent known 
interactions between the linked proteins. Topology and 
subnetwork analyses were performed in this study, in purpose 
to demonstrate its overall structural properties and highlight 
part of the network that had shown significant changes. In 
short, the subnetwork analysis was executed in three steps: 
i) obtaining the list of DEGs by meta‑analysis; ii) proceeding 
the list to the IMEx interactom‑based PPI network analysis; 
and iii) choosing zero‑order and minimum network to avoid 

‘hairball effect’ and overall presentation of the structure. In 
addition, there are two kinds of complementary measure-

ments in NetworkAnalyst to reveal the most important nodes, 
also called hub genes: Degree and betweenness centrality. 
Degree centrality is the number of connections that a node 
has to other nodes, whereas betweenness centrality corre-

sponds to the number of shortest paths passing through the 
node. From the parent network, the most significant modules 
of hub genes were extracted for both up‑ and downregulated 

Table I. Summary of individual studies included in the meta‑analysis.

 GEO

Author, year accession no. Disease Sample source Platform (Refs.)

Del Rey GSE41130 MDS Bone marrow Affymetrix Human Genome (8)

et al, 2013   mononuclear cells U133 Plus 2.0 Array

Pellagatti GSE19429 MDS Bone marrow Affymetrix human genome (13)
et al, 2010   CD34+ cells U133 plus 2.0 array
Sternberg GSE2779 MDS Bone marrow Affymetrix human genome (14)
et al, 2005   CD34+ cells U133A array
Graubert GSE30195 MDS Bone marrow Affymetrix human genome (15)
et al, 2011   CD34+ cells U133 plus 2.0 array
Pellagatti GSE4619 MDS Bone marrow Affymetrix human genome (16)
et al, 2006   CD34+ cells U133 plus 2.0 array
Wang GSE51757 MDS Bone marrow Agilent‑028004 surePrint Unpublished
et al, 2013    G3 human GE 8x60K microarray
Gerstung GSE58831 MDS Bone marrow Affymetrix human genome (17)
et al, 2015   CD34+ cells U133 plus 2.0 srray 
Xu GSE81173 MDS Bone marrow Affymetrix human gene Unpublished
et al, 2016   CD34+ cells expression array
Kikushige GSE24395 AML Bone marrow Sentrix human‑6 v2 expression (18)
et al, 2010   CD34+CD38- cells beadchip
de Jonge GSE30029 AML Bone marrow Illumina human HT‑12 V3.0 (19)
et al, 2011   CD34+ cells expression beadchip
Bacher GSE33223 AML Bone marrow Affymetrix human genome (20)
et al, 2012   CD34+ cells U133 plus 2.0 array
Stirewalt GSE37307 AML Bone marrow CD34+  Affymetrix human genome Unpublished
et al, 2012   and peripheral blood cells U133A array
Schneider GSE68172 AML Bone marrow Affymetrix human genome (21)
et al, 2015    U133 plus 2.0 array
Virtaneva GSE70284 AML Bone marrow Affymetrix human full length (22)
et al, 2001    HuGeneFL array
Zheng GSE79605 AML Bone marrow Agilent‑014850 whole Unpublished
et al, 2016   mononuclear cells Human genome microarray 

von der Heide GSE84881 AML Bone marrow mesenchymal Affymetrix human genome (23)
et al, 2016   stromal cells U133 plus 2.0 array
Stirewalt GSE9476 AML Bone marrow CD34+ and Affymetrix human genome (24)
et al, 2008   peripheral blood cells U133A array
Stegmaier GSE983 AML Primary patient AML cells Affymetrix human full length (25)
et al, 2004    HuGeneFL array

MDS, myelodysplastic syndrome; AML, acute myeloid leukemia; NA, not available.
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DEGs using the ‘module explorer tool’, based on the random 
walks‑dependent Walktrap algorithm.

Functional gene set enrichment analysis of shared DEGs. 

To demonstrate the implication of shared DEGs in MDS and 
AML, we conducted an enriched pathway group analysis by 
ClueGO of Cytoscape, a software with significantly expanded 
annotated gene sets of Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Reactome pathway databases. The 
processes were submitted to the followed settings and param-

eters: enrichment (right‑sided) hyper‑geometric distribution 
tests, with a P‑value ≤0.05; Benjamini and Hochberg adjust-
ment for the terms and the groups with Kappa‑statistics score 
threshold set to 0.4; leading term groups were selected based 
on the highest significance. The gene ontology (GO) terms 
enrichment analysis was conducted by topGO of Bioconductor 
version 2.14, R 3.1.1, and summarized by REVIGO. The 
enriched GO terms or pathways were considered to be signifi-

cant with adjusted P‑value <0.05.

Statistical analysis. The web‑server NetworkAnalyst analyzed 
the data and performed meta‑analysis by REM‑based 
combined ES statistics. DEGs were selected by FDR guided 
Benjamini‑Hochberg procedure with adjusted P‑value <0.05. 
Hypergeometric test (right‑sided) and Benjamini & Hochberg 
FDR correction were used to identify significantly enriched 
biological pathways in DEGs by ClueGO of Cytoscape. 
Significantly enriched biological processes were monitored 
using top GO and REVIGO analysis and P<0.05 was 
considered to indicate a statistically significant difference.

Results

Selection of eligible microarray datasets. 2012 and 476 

literatures were retrieved from Pubmed for AML and 
MDS, respectively, according to our search strategy. And 
after a series of inclusion and exclusion screening, a total 
of 8 and 10 microarray datasets were selected for MDS 
(GSE19429, GSE2779, GSE30195, GSE41130, GSE4619, 
GSE51757, GSE58831 and GSE81173) (8,13-17) and 

AML (GSE24395, GSE30029, GSE33223, GSE37307, 
GSE68172, GSE70284, GSE79605, GSE84881, GSE9476 and 

GSE983) (18-25) respectively, as indicated in Materials and 
methods (Fig. 1A). All the 18 datasets were carefully screened 
to meet the inclusion and exclusion criteria for meta‑anal-
ysis. Collectively, a total of 106/281 and 75/465 (healthy 
control/patient) samples were included for MDS and AML, 
respectively. There are 8 different microarray platforms applied 
in the selected datasets, which include Affymetrix Human 
Genome U133 Plus 2.0 Array, Affymetrix Human Genome 
U133A Array, Affymetrix Human Full Length HuGeneFL 
Array, Affymetrix Human Gene Expression Array, Illumina 
HumanHT‑12 v.3.0 expression beadchip, Sentrix Human‑6 v2 
Expression BeadChip, Agilent‑014850 Whole Human Genome 
Microarray, and Agilent‑028004 SurePrint G3 Human GE 
8x60 K Microarray. In addition, various tissues, such as total 
BM cells, FACS‑sorted CD34+ hematopoietic progenitors, and 
peripheral blood cells, were used for the microarray analysis. 
In the process of data integration, patient samples of MDS 
and AML were not distinguished, for the purpose to uncover 

the common gene signature shared between MDS and AML. 
Table I presents the detailed information for each dataset, 
including GEO accession number, type of disease, sample 
composition, sample source, and the corresponding references.

Identification of common differentially expressed genes (DEGs) 
between MDS and AML. The workflow for meta‑analysis 

used in the present study was illustrated in Fig. 1B. To iden-

tify the shared transcriptional signatures between MDS and 
AML, the total of 18 datasets were simultaneously analyzed 
by NetworkAnalyst. When the 18 microarray datasets were 
analyzed individually, a total of 7579 DEGs were revealed. For 
meta‑analysis, we uploaded the 18 datasets in succession, and 
each dataset was processed by Entrez ID matching, sample 
(control/patient) annotation and individual DEGs identifica-

tion. To remove batch effects among different datasets, we 
performed ‘ComBat’‑based batch effect adjustment (12), and the 
sample clustering patterns with or without batch effect adjust-
ment were visualized by PCA plots (Fig. 2A and B). All the 18 
gene expressional microarray data were then integrated and 
merged. Meta‑analysis was conducted following the Cochran's 
Q test, REM and ES statistical methods, which facilitated to 
reveal the DEGs between healthy donors and patients across 
different microarray datasets by permitting variable true ES 
and integrating unknown cross‑study heterogeneities. Finally, 
we found a total of 330 DEGs, including 191 up‑ and 139 
downregulated genes across the 18 datasets with significance 
threshold of adjusted P‑value <0.05. By comparing the list of 
individually identified DEGs with meta‑analysis based DEGs, 
211 DEGs were revealed by both analyses. Of note, 119 DEGs 

were uniquely discovered by meta‑analysis, which were 
referred as gained genes, and 7378 DEGs were only found in 
individual analysis, which were defined as lost genes (Fig. 2C). 
Expression profile of the top 25 up‑ and downregulated genes 
among the 330 identified DEGs was visualized by heatmap 
(Fig. 2D). Due to the large number of healthy donor and 
patient samples, the heatmap was divided into 3 parts by GEO 
datasets. The gene expressional profiles of the top 25 up- and 

downregulated genes could be easily visualized to be consis-

tent across different datasets, except those with small sample 
numbers, including GSE33223, GSE79605, GSE41130 and 
GSE84881. The Parathyroid hormone 2 receptor (PTH2R), 

Tec protein tyrosine kinase (TEC), and Glutathione peroxi‑

dase 1 (GPX1) were among the most significantly upregulated 
genes, and PTH2R had the highest combined ES of 1.0994, 
which was upregulated consistently with ES ranging from 
0.47068 to 2.8508 across all the 18 datasets (data not shown), 
while Matrix metalloproteinase 12 (MME), Recombination 

activating 1 (RAG1), and CD79b molecule (CD79B) were 
among the most significantly downregulated genes, and MME 

had the relatively highest combined ES of ‑1.29, which was 
consistent in 15 out of 18 datasets with ER ranging from 
‑3.7844 to ‑0.33961 (data not shown). Additionally, top 10 up‑ 
and downregulated DEGs were listed in Table II.

Hub genes identification by network based meta‑analysis. 

Many studies have shown that ‘hub’ proteins are more likely to 

be encoded by pleiotropic genes or genes that are related to 
certain diseases (26). Hub nodes are potentially key molecules 
in signaling, as they are highly interconnected with dysregulated 



ONCOLOGY LETTERS  16:  5147-5159,  2018 5151

genes and they often receive and integrate multiple signals and 
pass them onto downstream nodes (27). In order to identify the 
key hub genes among the common DEGs shared by MDS and 
AML, we intentionally performed a network based meta‑anal-
ysis. NetworkAnalyst provided us with a protein‑protein 
interaction (PPI) network analysis tool by integrating the IMEx 
(International Molecular Exchange Consortium) interactome 
with the original seed of 330 DEGs. The NetworkAnalyst‑based 
PPI network analysis generated first‑order, minimum‑order 
and zero‑order networks with (4507 nodes, 9421 edges), (873 
nodes, 3510 edges), and (123 nodes, 157 edges), respectively. The 
minimum‑order network shows the overall structure (Fig. 3A), 

while the zero‑order network helps to visualize the detailed 
interactions between different seeds (Fig. 3B). HSP90AA1 

(combined ES: 0.36197, adjusted P‑value: 0.0026418) and CUL1 

(combined ES: ‑0.54806, adjusted P‑value: 0.002118) were 
found to be the top ranked hub genes by degree and betweenness 
centrality analysis among the up‑ and downregulated DEGs. We 
also listed the top 10 ranked hub genes with detailed information 
in Table III. Additionally, we used the ‘module explorer’ tool 
to highlight two most significant modules as two sub‑networks 
composed of HSP90AA1 (19 nodes and 23 edges) and CUL1 
(20 nodes and 25 edges), respectively (Fig. 3C and D).

Gene set enrichment analysis for identification of overrepre‑

sented biological pathways. In order to thoroughly understand 
the pathways involved in MDS and AML development, the 
enriched biological pathways for up‑ and downregulated DEGs 
were functionally grouped with the threshold of P‑value <0.05 
by the ClueGO plugin of Cytoscape v.3.4.0, and only KEGG 

and Reactome pathway databases were selected. For upregulated 
DEGs, we found 88 enriched biological pathways, which can be 
divided into 16 groups, mainly involved in ‘Signaling by fibroblast 
growth factor receptor (FGFR) in disease’, ‘EPH‑ephrin medi-
ated repulsion of cells’, ‘Histidine, lysine, phenylalanine, tyrosine, 
proline and tryptophan catabolism’, ‘Positive epigenetic regulation 
of rRNA expression’, and ‘Neurophilin interactions with VEGF 
and VEGFR’ (Fig. 4A). For downregulated DEGs, we found 
37 enriched biological pathways, which can be divided into 17 
groups, mainly involved in ‘Interleukine‑6 signaling’, ‘Integration 
of provirus’, ‘Graft‑versus‑host disease’, ‘B cell receptor signaling 
pathway’, and ‘Effects of PIP2 hydrolysis’ (Fig. 4B).

Gene set enrichment analysis for identif ication of 

overrepresented GO terms. Gene set enrichment analyses were 
conducted for the analysis of overrepresented gene ontology 
(GO) terms, which were enriched by topGO package of R for 
the 191 up‑ and 139 downregulated DEGs with the threshold 
of P‑value <0.05. REVIGO is a web server that summarizes 
long, unintelligible lists of GO terms by finding a representa-

tive subset of the terms using a simple clustering algorithm that 
relies on semantic similarity measures (28). Using REVIGO, the 
top 200 enriched GO terms for upregulated DEGs were shown 
in 20 subsets, including ‘positive regulation of tyrosine phos-

phorylation of Stat4 protein’ (comprised by 58 terms), ‘adrenal 
cortex formation’ (comprised by 33 terms), ‘establishment 
or maintenance of transmembrane electrochemical gradient’ 
(comprised by 20 terms), ‘heart contraction’ (comprised by 10 
terms), etc, which were visualized by treemap generated by 
R (Fig. 5A). Similarly, 13 subsets were shown for downregulated 

Figure 1. Flowcharts for microarray datasets selection and meta‑analysis. (A) Selection process of microarray datasets for meta‑analysis of shared gene expres-

sional signature between MDS and AML. (B) Process of meta‑analysis based data exploration. MDS, myelodysplastic syndrome; AML, acute myeloid leukemia.
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DEGs, including ‘B cell receptor signaling pathway’ (comprised 
by 75 terms), ‘embryo implantation’ (comprised by 24 terms), 
‘fructose metabolism’ (comprised by 23 terms), ‘response to 
lipopolysaccharide’ (comprised by 18 terms), etc, which were 
also visualized by treemap (Fig. 5B).

Discussion

Myeloid disorders, including MDS and AML, represent a group 

of hematopoietic malignancies with monoclonal expansion of 
immature myeloid lineages. Both MDS and AML are character-
ized by abnormal accumulation of defective or immature blasts 
in the BM, and MDS patients with 10‑19% blasts are considered 
as high‑risk of progressing to AML (>20% blasts) (29). The 
transformed immature cells in both diseases are biologically, 
genetically, and molecularly similar, thus identification of 
common molecular markers may best indicate the appropriate 
risk factors, as well as preventive, diagnostic and therapeutic 
decisions for these patients. Despite significant amounts of 
studies have used microarray‑based technology to identify 
molecular markers in MDS and AML, inconsistent results have 

been reported due to diversity in patient selection, tissue source 
and study designs. Therefore, in the present study, we attempted 
to identify the common gene signature underlying MDS and 
AML by a comprehensive meta‑analysis of 18 publically avail-
able microarray datasets. We found that there were 330 DEGs of 
P‑value <0.05 in total shared by both MDS and AML, with 191 
up‑ and 139 down‑regulated. Importantly, 119 out of 330 DEGs 
were identified uniquely by meta‑analysis, not individual studies. 
By uncovering shared gene expressional profiles, this study high-

light potential diagnostic and prognostic biomarkers in MDS and 
AML, and may aid in understanding the molecular mechanisms 
of their development and progression.

Among the top ten upregulated DEGs, PTH2R encodes 

a receptor for parathyroid hormone (PTH), which belongs 
to the G‑protein coupled receptor 2 families, and has been 
previously suggested as novel marker for AML (30). TEC, 
a non‑receptor type protein‑tyrosine kinase, was revealed 
to be highly expressed in MDS patients (31). GPX1, which 
encodes a glutathione peroxidase and helps to reduce organic 
hydroperoxides and hydrogen peroxide (H2O2) by gluta-

thione, has been reported to be dramatically upregulated in 

Figure 2. Meta‑analysis based DEGs and gene expression profiles. (A) PCA‑3D plot for sample clustering of microarray datasets without batch effect adjust-
ment. (B) PCA‑3D plot for sample clustering of microarray datasets with batch effect adjustment. (C) Venn diagram of DEGs by meta‑analysis (meta DEGs) 
and individual microarray dataset analysis (individual DEGs). (D) Heat‑map visualization of expressional profiles for top 25 up‑ and downregulated DEGs 
identified by meta‑analysis. Genes were ranked by combined ES value. DEGs, DEGs, differentially expressed genes; Var1: variate 1, represents different 
datasets by colors; Var2: variate 2, represents control and patient samples by colors.
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AML and relate with MDS by SNPs assay and DNA meth-

ylation (32,33). ASS1 (Argininosuccinate synthetase 1) gene 
product is responsible for the process of arginine biosynthesis; 
however, Miraki‑Moud et al (34), reported that most AML 
lacked ASS1 expression, which may be due to small sample 
size and the different detection methods. Other genes, such 
as HSF1 (Heat‑shock transcription factor 1), WT1 (Wilms 
tumor 1), ACTA2 (Actin, alpha 2), SLC15A2 (Solute carrier 
family 15 member 2), PDLIM1 (C terminal LIM domain 
protein 1), and CTSA (Cathepsin A) were revealed by our 
meta‑analysis, and even some of them have been reported previ-
ously with increased expression in AML and MDS (35,36), 

their potential as diagnostic or prognostic markers in MDS 
and AML needs further exploration. Among the top ten down-

regulated DEGs, although MME encoded protein MMP12 
was believed to be related with acute lymphocytic leukemia 
(ALL) diagnosis (37), its role in MDS and AML remains to 

be demonstrated. AKAP12 encodes a kinase, which is a part 
of the holoenzyme of PKA and serves as a scaffold protein 
for signaling transduction. The low expression of AKAP12 

had been reported in both MDS and AML (38), which was 
consistent with our results. MMP9 encodes a matrix metal-
loproteinase protein, and has been shown to express at reduced 
levels in AML. LTB (Lymphotoxin beta) gene expression has 
been reported to decrease in malignant myeloid cells, and is 
potentially involved in AML (39). FOXO1 (Forkhead box O1) 
is a tumor suppressor gene and its low expression level was 
shown to correlate with AML with FLT3 internal tandem 
duplication mutation (Flt3‑ITD) (40). ALDH1A1 (Aldehyde 
dehydrogenase 1 family member A1) was also found to be 
minimally expressed or undetectable in about 25% AML 
patients (41). In addition, our meta analysis also revealed a 
number of novel genes, such as RAG1 (Recombination acti-
vating 1); CD79B; VPREB1 (V‑set pre‑B cell surrogate light 
chain 1) and C18orf1 (Low density lipoprotein receptor class 
A domain containing 4), which have not been previously 
reported in MDS and AML. These candidate genes require 
further studies to evaluate their biological functions and 
biomarker potentials in both MDS and AML.

The network biology analysis is an efficient way for 
systematically investigating the molecular complexity of a 
particular disease, facilitating the discovery of biomarker and 
drug targets (42). Integrating the list of DEGs by meta‑analysis 
with IMEx interactome‑based PPI network, we identified 
HSP90AA1 and CUL1 as the most important hub genes among 
up‑ and downregulated DEGs, respectively, based on network 
centrality scoring across the 18 datasets. HSP90AA1, also 

known as LAP2/ HSPC1, encodes a product that serves as 
protein chaperone with major functions in protein folding and 
stabilization as a homodimer, and by regulating a number of 
cancer related proteins such as AKT, CDK4, HIF‑1, VEGFR, 
ERBB2 and MMPs, HSP90AA1 largely dictates tumor prolif-
eration, survival, invasion, metastasis and angiogenesis (43). 
Consistent with our meta‑based DEGs analysis, increased 
expression of HSP90AA1 has been well stated in both MDS 
and AML (44,45). The protein level of HSP90AA1 was higher 
in patients with higher grade MDS, which is associated with 
short survival and increased risk of progression into AML (44). 
Similarly, AML patient with higher HSP90AA1 level showed 
lower remission rates, and was correlated with poorer AML 
prognosis (46). The network‑based hub analyses also revealed 
that HSP90AA1 served as the central upregulated protein, 
which may coordinate a cohort of signaling pathways mediated 
by LTK, MAP3K3, MAP2 K, etc, and promote MDS and AML 
formation. Our results validated and supported the importance 
of targeting of HSP90AA1 for MDS and AML therapy in the 
clinic (47,48). The downregulatedhub gene, CUL1, encodes an 

essential component of the SCF (SKP1‑CUL1‑F‑box protein) 
E3 ubiquitin ligase complex, in which it serves as the scaffold 
protein to organize SKP‑1‑F‑box protein and RBX1 subunit (49). 
The complex mediates the ubiquitination involved in cell 
cycle progression, signal transduction and transcription (50). 
Thus, loss of CUL1 expression may impair signaling cascades 
involved cell cycle, signaling pathways and protein expression, 
which may lead to the development of MDS and AML.

In order to decipher the enriched biological pathways 
participating in MDS and AML, we submitted the up‑ 
and downregulated DEGs separately to Clue GO plugin 
of Cytoscape to group functionally related pathways. 
Interestingly, we found that ‘Signaling by FGFR in disease’ 

Table II. Top 20 DEGs shared by MDS and AML.

A, Top 10 upregulated genes

 Gene  Adjusted
Entrez ID symbol Combined ES P‑value

5746 PTH2R 1.0994 P<0.001
7006 TEC 0.8975 1.3x10-06

2876 GPX1 0.8564 3.2x10‑03

445 ASS1 0.8543 1.2x10-06

59 ACTA2 0.7831 7.8x10-04

6565 SLC15A2 0.7372 2.2x10‑03

9124 PDLIM1 0.7348 1.4x10-04

3297 HSF1 0.7343 8.0x10-04

7490 WT1 0.7320 3.3x10‑03

5476 CTSA 0.7271 1.3x10-04

B, Top 10 downregulated genes

 Gene  Adjusted
Entrez ID symbol Combined ES P‑value

4311 MME ‑1.2867 2.9x10-06

5896 RAG1 ‑1.1663 2.2x10‑03

974 CD79B ‑1.1597 2.0x10-05

9590 AKAP12 ‑1.1201 1.9x10‑03

4318 MMP9 ‑1.1189 2.9x10-02

4050 LTB ‑1.0662 1.9x10-06

2308 FOXO1 ‑1.0603 6.1x10-12

7441 VPREB1 ‑1.0197 1.7x10-02

753 C18orf1 ‑1.0169 1.5x10‑03

216 ALDH1A1 ‑0.9986 3.7x10-04

DEGs, differentially expressed genes; ES, effect size.
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Table III. Top 10 shared hub genes identified by network based meta‑analysis.

Gene symbol Regulation Degree Betweenness Combined ES

HSP90AA1 Up 722 2416884.66 0.3620
CUL1 Down 603 1592425.89 ‑0.5481
CUL5 Up 366 700674.50 0.3516
IL7R Down 199 349830.53 ‑0.7247
MAP3K3 Down 176 304739.58 ‑0.4870
XRCC5 Down 169 372212.88 ‑0.4065
CDKN2A Up 148 316047.11 0.5783
RPL11 Up 134 157024.97 0.4898
SP3 Down 132 376542.88 ‑0.5418
TLE1 Down 108 302176.33 ‑0.6311 

ES, effect size.

Figure 3. PPI network based hub gene analysis. (A) Minimum order of PPI network structure of DEGs identified by meta‑analysis with Fruchterman‑Rengold 
layout. Red nodes represent upregulated and green nodes represent downregulated DEGs. (B) Zero order PPI network of shared DEGs by meta‑analysis. 
(C and D) PPI subnetworks representative of up‑ and downregulated DEGs. WalkTrap algorithm based ‘module explorer’ of NetworkAnalyst extracted the 
module. PPI, protein‑protein interaction; DEGs, DEGs, differentially expressed genes.
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related pathways group was top enriched. The FGFR family is 
composed of four kinase receptor members: FGFR1‑4, which 
are universally expressed and the FGFR signaling activation 
had been demonstrated to promote survival, migration of 
AML cells, and their resistance to chemotherapy. In the DEGs 

of our meta‑analysis, FGF7 and FGFR3 gene expression 
were both upregulated. FGF7 is a ligand of FGFR2b with 
high affinity, which have been recently reported to serve as a 
potentially niche factor for hematopoietic stem and progenitor 
cells (HSPCs) support and leukemic growth by activating 

Figure 4. Over representation of enriched pathways for DEGs. (A) Enriched pathway groups were generated with Cytoscape plug‑in (ClueGO) by integrating 
the upregulated genes with KEGG and Reactome pathways. (B) Enriched pathway groups were generated by integrating the downregulated genes with KEGG 
and Reactome pathways. The node size indicates greater significance of enrichment, and the colors represent different groups. The pathways with adjusted 
P‑value <0.05 are shown in the network. DEGs, DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FGFR2b signaling pathway (51). Besides, the truncated 
recombinant human FGF7, palifermin, which compete for 
binding of FGFR2b, has been FDA‑approved for the treatment 
of patients with oral mucositis (52). It is meaningful to explore 
the potential application of palifermin in MDS and AML 
intervention or even therapy according to our meta analysis. 
FGFR3 belongs to a family of receptor tyrosine kinases 
(RTKs) responding to FGF, and will stimulate the downstream 
signaling modules, including the phosphatidylinositol 
3‑kinase (PI3K)/AKT and phospholipase C‑γ (PLC‑γ) 

pathways (53,54). And in murine model of leukemia, it 
has been revealed that FGFR‑3 activity is important for 
hematopoietic transformation (55). For the downregulated 
genes, ‘Interleukine‑6 signaling’ related pathways were the 
top enriched, which were well represented by immune related 
genes: IL12RB2, IRF4 and IRF8 down‑regulation. IL12RB2 

encodes a type I transmembrane protein identified as a subunit 
of the interleukin 12, which interacts with IL12RB1 and form 

the high‑affinity binding site for IL12 to reconstitute IL12 
dependent signaling. Although IL12RB2 down regulation have 
not yet been reported in MDS or AML, its silencing in B cell 
malignant tumors illustrated that neoplastic B cells would 
escape the IL‑12‑mediated apoptosis and growth inhibition 
in the absence of IL12RB2 (56). From this point of view, 
the down regulation of IL12RB2 in myeloid cells might help 
them to evade the anti‑tumor activity of IL‑12. Besides, IRF4 

and IRF8 gene products belong to IRF (interferon regulatory 
factor) family of transcription factors. It has been reported that 
the Irf4-/- Irf8-/- double knockout mice can develop aggressive 
myeloid disorders rather like CML (57). Furthermore, IRF4 
induction by the long non‑coding RNA linc‑223 would inhibit 
cell proliferation and stimulate AML cell differentiation (58). 
The promoter of IRF8 was found to be hypermethylated in 
MDS and AML patients (59), which might associate with 
its transcriptional repression revealed by our meta analysis. 
In addition, IRF8 expression level was potential prognostic 

Figure 5. Over representation of enriched biological processes for DEGs. (A) REVIGO gene ontology treemap for upregulated DEGs by meta‑analysis. 
(B) REVIGO gene ontology treemap for downregulated DEGs by meta‑analysis. DEGs, DEGs, differentially expressed genes.
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biomarkers for adult patients with AML (60). Similar results 
were also observed by REVIGO analysis, that ‘FGFR 
signaling pathway’ was highly enriched, whereas a series 
of immune related pathways were downregulated including 
‘B cell receptor signaling pathway’, ‘positive regulation of 
interferon‑gamma production’, ‘adaptive immune response’, 
etc, which further highlighted the significance of immune 
responses down‑regulation in MDS and AML development.

Our meta‑analysis is based on gene expressional 
microarray, which has become a principle technology for 
transcriptome analysis to support drug screening and health 
evaluation. With the development of genetic detecting tech-

nology, next‑generation sequencing technologies present new 
ways of genetic mutation analysis, especially for whole genome 
sequencing. Currently, there was no comparable research 
focusing on common gene expressional profiles of MDS and 
AML by transcriptome or genomic sequencing; therefore, 
we compared the DEGs of MDS or AML uncovered by our 
meta‑analysis with that of whole genome sequencing individu-

ally. We found that 4 (ZFHX2, PTPRD, STAG2 and ALAS2) 

out of 105 somatic mutated genes for MDS, and 2 (FLT3 and 

WT1) out of 23 significantly mutated genes for AML were 
covered by DEGs of our meta‑analysis respectively (data not 
shown) (61,62). The finding indicated that the potential diag-

nostic or prognostic biomarkers obtained by our meta‑analysis 
are more likely to undergo transcriptional regulations instead 

of genetic mutations.
In summary, our meta‑analysis revealed 330 DEGs, some 

of which have been proved critical for MDS or AML progress, 
and some others deserve further exploration for their potential 
as biomarkers for both MDS and AML. Functional enrich-

ment analysis demonstrated that tumor related processes or 
pathways were upregulated, such as ‘Signaling by FGFR in 
disease’; however, the immune response related pathway, such 
as ‘Interleukine‑6 signaling’ was downregulated in both MDS 
and AML, which may predict to the common events during 
MDS or AML development.
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