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ABSTRACT

Background. Current environmental pollution factors, particularly the distribution
and diffusion of heavy metals in soil and water, are a high risk to local environments
and humans. Despite striking advances in methods to detect contaminants by a variety
of chemical and physical solutions, these methods have inherent limitations such as
small dimensions and very low coverage. Therefore, identifying novel contaminant
biomarkers are urgently needed.
Methods. To better track heavy metal contaminations in soil and water, integrated
bioinformatics analysis to identify biomarkers of relevant heavy metal, such as As, Cd,
Pb and Cu, is a suitable method for long-term and large-scale surveys of such heavy
metal pollutants. Subsequently, the accuracy and stability of the results screened were
experimentally validated by quantitative PCR experiment.
Results. We obtained 168 differentially expressed genes (DEGs) which contained 59
up-regulated genes and 109 down-regulated genes through comparative bioinformatics
analyses. Subsequently, the gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichments of these DEGs were performed, respectively.
GO analyses found that these DEGs were mainly related to responses to chemicals,
responses to stimulus, responses to stress, responses to abiotic stimulus, and so on.
KEGG pathway analyses of DEGs were mainly involved in the protein degradation
process and other biologic process, such as the phenylpropanoid biosynthesis pathways
and nitrogen metabolism. Moreover, we also speculated that nine candidate core
biomarker genes (namely, NILR1, PGPS1, WRKY33, BCS1, AR781, CYP81D8, NR1,
EAP1 andMYB15) might be tightly correlated with the response or transport of heavy
metals. Finally, experimental results displayed that these genes had the same expression
trend response to different stresses as mentioned above (Cd, Pb and Cu) and no
mentioned above (Zn and Cr).
Conclusion. In general, the identified biomarker genes could help us understand the
potential molecular mechanisms or signaling pathways responsive to heavy metal stress

How to cite this article Niu C, Jiang M, Li N, Cao J, Hou M, Ni D, Chu Z. 2019. Integrated bioinformatics analysis of As, Au, Cd, Pb and
Cu heavy metal responsive marker genes through Arabidopsis thaliana GEO datasets. PeerJ 7:e6495 http://doi.org/10.7717/peerj.6495

https://peerj.com
mailto:dani@sit.edu.cn
mailto:zqchu@sibs.ac.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.6495
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.6495


in plants, and could be applied as marker genes to track heavy metal pollution in soil
and water through detecting their expression in plants growing in those environments.

Subjects Molecular Biology, Plant Science, Data Mining and Machine Learning, Environmental
Contamination and Remediation
Keywords GEO data, Biomarker, Differentially expressed genes, Integrated bioinformatics
analysis, Heavy metal

INTRODUCTION

There are naturally low concentrations of heavy metals in soil, but human activities such as

mining, agriculture, sewage treatment and the metal industry have caused a sharp growth

in their concentration in the environment, resulting in toxic effects on animals and plants

(Socha et al., 2015). Therefore, heavy metal pollution is considered a source of significant

environmental damage and a cause of increasing concern by the public and researchers.

Many heavy metals are essential micronutrients for normal plant growth in trace amounts,

such as iron (Fe), manganese (Mn), molybdenum (Mo), copper (Cu), zinc (Zn) and so on.

However, excessive amounts can be toxic to plants, subsequently, the rest of the food chain.

In addition, the accumulation of other heavy metals, such as cadmium (Cd), chromium

(Cr), mercury (Hg), plumbum (Pb), aluminium (Al) etc., in plants can induce damage

and toxicity (Peralta-Videa et al., 2009). The heavy metal is absorbed by the plant from

the soil solution and transported to above-ground edible parts. It afterwards enters the

animal or human body through the food chain, becoming a health threat (Khan et al.,

2013). The key to controlling and repairing heavy metal pollution is the rapid and accurate

detection of ones in order to determine the nature and extent of pollution. Many physical

and chemical methods have been applied to estimate the concentration of heavy metals.

For example, the prompt gamma ray neutron activation analysis (PGNAA) detection

system has a minimum detectable concentration widely used for the determination of

heavy metals by using a 241Am-Be neutron source and BGO detector (Hei et al., 2016).

However, these solutions are not convenient nor efficient (Bounakhla et al., 2012). In

addition, although optical and electrochemical detection are the two most widely used

inspection methods in different fields, the accuracy of the former is lower than that of the

traditional laboratory method, and the instrument is costly. The latter has more obvious

inferiority on complicated sample pretreatment which may cause secondary pollution,

overlapping interference of various heavy metals detection. Hence, our research’s intention

is to improve the techniques using higher sensitivity, a wider range of application and

stronger specificity.

Indeed, many studies have reported that special genes can respond or transport to

one or more heavy metals. For instance, it has been reported that six genes from three

gene clusters czcCBA1, cadA2R and colRS, were involved with cadmium resistance in

Pseudomonas putida CD2 (Hu & Zhao, 2007). While metal-responsive transcription factor

1 (MTF1) over-expression cells showed significantly delayed apoptosis, MTF1 null cells

were susceptible to apoptosis in the presence of Zn2+ or Cd2+, which was augmented after

Niu et al. (2019), PeerJ, DOI 10.7717/peerj.6495 2/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.6495


exposure to Cr6+ (Majumder et al., 2003). OsNramp5 that belongs to natural resistance-

associated macrophage protein (Nramp) families of metal transporters was a transporter

for Mn acquisition and was the major pathway for Cd entry into rice roots (Sasaki et al.,

2012). Another study for rice response to Cd stress using quantitative phosphoproteome

yielded 2,454 phosphosites, associated with 1,244 proteins involved with signaling, stress

tolerance, the neutralization of reactive oxygen species (ROS) and transcription factors

(TFs) (Zhong et al., 2017). Over-expression of ThWRKY7 can improve plant tolerance in

Tamarix hispida (Yang et al., 2016) and ZmWRKY4 plays a vital role in regulating maize

antioxidant defense under Cd stress (Hong et al., 2017). In addition, rice ASR1 and ASR5

act as transcription factors in concert and complementarily to regulate Al responsive genes

(Arenhart et al., 2016). Moreover, co-application of 24-epibrassinolide (EBL) and salicylic

acid (SA) resulted in the improvement of root and shoot lengths and chlorophyll content,

which can regulate anti-oxidative defense responses and gene expression in Brassica

juncea L. seedlings under Pb stress (Kohli et al., 2018). Metallothioneins (MTs) that are

cysteine-rich, of low molecular weight, metal-binding proteins can enhance tolerance to

heavy metals through differential responses in sweet potato (Kim et al., 2014), which may

be strongly associated with Cd uptake, but not related to Cd transport from root to leaf,

nor Cd enrichment in shoots (Li et al., 2018). Despite striking advances in gene function

research involved with response or transport heavy metals, identifying novel accurate

biomarkers to detect environmental pollutants is urgently needed.

The development of microarrays and high-throughput sequencing technologies has

provided an integrated bioinformatics analysis method which could overcome the

disadvantages of single traditional studies in deciphering critical genetic or physiological

alternations and discovering promising biomarkers in screening for DEGs (Vogelstein et

al., 2013). This approach would make it possible to analyze the associated pathways and

interaction networks of the identified DEGs which have applied to predict the adverse

drug reactions (ADRs) with the Library of Integrated Network-based Cellular Signatures

(LINCS ) L1000 data (Duan et al., 2014; Wang, Clark & Ma’ayan, 2016; Subramanian et

al., 2017). Therefore, this approach has been applied extensively to the diagnosis and

treatment of human cancers. For example, researchers believed that GNAI1, NCAPH,

MMP9, AURKA and EZH2I were identified as the key molecules in patients with serous

ovarian cancer resistant to carboplatin using integrated bioinformatics analysis (Zhan,

Liu & Hua, 2018). COL1A2 as a diagnostic biomarker was highly tissue specific and was

expressed in human gastric cancer by integrating bioinformatics andmeta-analysis (Rong et

al., 2018). In addition, a recent study has reported that 20 candidates were identified from

658 potential dehalogenases for exploration of protein functional diversity by integrating

bioinformatics with expression analysis and biochemical characterization (Vanacek et al.,

2018).

The identification of novel biomarkers is currently an efficient approach for large-scale

screening and diagnosis (Liu et al., 2018; Zhan, Liu & Hua, 2018). Therefore, we performed

analysis of 11 original microarray data to identify DEG response to different heavy metals

in the present study. Additionally, functional enrichment analysis was further proposed

to analyze the main biological functions and protein–protein interaction (PPI) networks
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that were constructed to screen the crucial genes in response or transport heavy metals. At

last, the expression trend between experimental validation and the microarray mentioned

abovewas surveyed.Overall, these results suggested that highlighted key genes and pathways

might be used as a biomarker to detect and further reduce heavy metal pollutants.

MATERIAL AND METHODS

Retrieval of gene expression profile data

Microarray data about heavy metal stresses on gene expression (GSE49037, GSE31977,

GSE46958, GSE55436, GSE94314, GSE19245, GSE90701, GSE22114, GSE13114,

GSE104916 and GSE65333) were downloaded from the Gene Expression Omnibus (GEO)

(https://www.ncbi.nlm.nih.gov/geo/). It is reported that the size of the sample determines

the reliability of the DEGs in microarray analysis and recent comprehensive bioinformatics

research (Moradifard et al., 2018). Therefore, in order to obtain more complete available

data, we have only chosen five kinds of heavymetal experiments which contained at least six

samples, including arsenic (As), aurum (Au), Cd, Cu and Pb. The specific information of

these experiment methods was explained in Table S1. For example, 8-days-old A. thaliana

Col-0 plants were treated in 10 µM Cu and then harvested for further analyses after for

treatment 24 h (Table S1). There are a total of 139 samples in present study, including

65 control samples and 74 heavy metal treatment samples (Table S1). Platform and series

matrix file(s) were downloaded as TXT files. The dataset detailed information is shown in

Table S1. The R software package (R Core Team, 2018) was used to process the downloaded

files and to convert and reject the unqualified data. The data was calibrated, standardized,

and log2 transformed.

Identification of DEGs

The downloaded platform and series of matrix file(s) were converted using the R software

package. The ID corresponding to the probe name was converted into the standard name

as a gene symbol and saved in a TXT file. The limma package (Ritchie et al., 2015) in the

bio-conductor package (http://www.bioconductor.org/) was performed to screen DEGs.

The related operating instruction codes were put into R, and the DEGs in heavy metal

treatment and control samples of every GEO datasets were analyzed. Genes with a corrected

P-value < 0.05 and |log2fold change (FC)|> 1 were considered DEGs. The results were

preserved as TXT files for subsequent analysis.

Integration of data from different experiments

The list of DEGs from all series of heavy metal experiments was obtained by different

expression gene analysis. Gene integration for the DEGs identified from the eleven datasets

was executed using a robust rank aggregation (RRA) software package (Kolde et al., 2012).

Based on the null hypothesis of irrelevant inputs, the RRA method filters out genes that

are better aligned than expected. A list of genes obtained from the RRA approach that

were up-or down-regulated in 20 raw data which were downloaded from GEO datasets

as unqualified data that was usually used as source for Quantile normalization in R for

subsequent analysis. The RRA algorithm detects genes that are ranked consistently better
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than expected under null hypothesis of uncorrelated inputs and assigns a significance score

for each gene. The RRA method is based on the hypothesis that each gene is randomly

ordered in each experiment. If a gene ranked high in all experiments, then the smaller its

P-value is, the greater the likelihood of differential gene expression. The RRA approach is

openly available in the comprehensive R Network (http://cran.r.project.org/).

Functional enrichment analyses of DEGs

In order to expound the underlying biological processes, molecular functions and

cellular components connected with the overlapping DEGs identified above, GO

enrichment analysis was executed using the GOATOOLS database for annotation

(https://github.com/tanghaibao/goatools) (Klopfenstein et al., 2018). GOATOOLS was

performed on the integrated DEGs using Fisher’s accurate test. To ensure the minimum

false positive rate, multiplex test methods such as Holm, Sidak and false discovery rate

were used to correct the P-value. Once the corrected P-value < 0.05, the GO function

was considered to have significant enrichment. Moreover, the KEGG pathway enrichment

analysis of the overlapping DEGs was performed using the KOBAS online analysis database

(http://kobas.cbi.pku.edu.cn) (Xie et al., 2011). The KOBAS analysis was based on the

hypergeometric test/Fisher’s exact test. Likewise, the corrected P-value < 0.05 was regarded

as a statistically significant difference.

PPI network integration based on STRING database

In order to better explore the physical contacts among protein molecules, the potential

interactions among the overlapping DEGs were performed to identify the PPI network

using the STRING database (http://string.db.org/) (Szklarczyk et al., 2017). PPIs were

further imported to Cytoscape software for constructing the PPI network of overlapping

DEGs (Shannon et al., 2003). Each node is a gene, protein, ormolecule, and the connections

between nodes represent the interaction of these biological molecules, which can be used for

identifying interactions and pathway relationships between the DEGs about heavy metals.

The corresponding proteins in the central node may be core proteins or key candidate

genes which likely have vital physiological functions.

Experimental validation

To better assess the veracity for the results identified above, we performed quantitative

expression analysis of 20 candidate genes under different heavy metal stresses mentioned

above (Cd, Pb and Cu) and not mentioned above (Zn and Cr) which can better explain the

results’ reliability. The real time quantitative PCR (RT-qPCR) experiments on RNA were

collected from different time points (6 h, 12 h and 24 h) of 2 week-old A. thaliana Col-0

plants under 100 µM ZnSO4, 100 µM PbCl2, 100 µM CrCl3, 100 µM CuSO4 and 100 µM

CdCl2 treatments, respectively. The primer-sets were listed in Table S2.

RESULTS

GEO data information and identification of DEGs

The detailed information for the eleven GEO datasets contained in the current study

is shown (Table 1, Table S1). In order to integrate different experiments and different
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Table 1 Detailed information about GEO data were showed in this study.

Dataset Heavy

metals

Platform Number of

samples

(Treatment/

Control)

Ecotype Tissue

GSE49037 As GPL198,
GPL13970

15(9/6) Col-0 Roots

GSE31977 As GPL198 15(9/6) Col-0, Ws-2 Roots

GSE46958 Au GPL198 6(3/3) Col-0 Roots

GSE55436 Au GPL17416,
GPL18349

12(6/6) Col-0 Roots

GSE94314 Cd GPL198 8(4/4) Col-0, Bur-0 Roots

GSE19245 Cd GPL198 24(12/12) Col-0 Roots, Shoots

GSE90701 Cd GPL14727 8(4/4) Col-0 Seedings

GSE22114 Cd GPL198 6(3/3) Col-0 Roots

GSE13114 Cu GPL1775 12(6/6) Col-0 Seedings

GSE104916 Cu GPL13222 21(12/9) Col-0 Roots, Rosettes

GSE65333 Pb GPL12621 12(6/6) Col-0 Roots, Shoots

sequencing platforms, the data need to be processed and standardized. Therefore, the

eleven GEO datasets were standardized (Fig. 1, Fig. S1). Then, these datasets were screened

by the limma package with the condition, including the corrected P-value < 0.05 and

|log2FC| > 1. The results showed that there are 1,916, 2,555 and 1,147 DEGs identified

from different As content treatments of GSE31977, respectively (Fig. 2A). While 2,030

and 776 DEGs were obtained from GSE49037 which contains As treatment with different

content as well, respectively (Fig. S2). In addition, we screened 3,166 DEGs in GSE46958

with Au treatments (Fig. 2B), while 592 and 726 DEGs were obtained from different Au

content treatments in GSE55436 (Fig. S2). As for the Cd treatments, we also obtained

1,832 and 972 DEGs in GSE94314; 486, 176, 410 and 377 DEGs in GSE19245; 124 and

154 DEGs in GSE90701, and 158 DEGs in GSE22114, respectively (Fig. 2C, Fig. S2). For

Cu treatments, there were 110 and 91 DEGs in GSE13114; and 691, 495 and 485 DEGs in

GSE104916 were obtained, respectively (Fig. 2D, Fig. S2). We also acquired 3,453 and 23

DEGs from GSE65333 with different Pb content treatments (Fig. 2E). Then, the cluster

heat-map figure of the top 200 DEGs identified from each experiment was displayed by

Multi-Experiment Viewer (MEV), respectively (Fig. 3, Fig. S3). Many gene expression

levels showed significant difference in each treatment verse control (Fig. 3, Fig. S3).

Identification of DEGs using integrated bioinformatics

The DEGs mentioned above have been screened by the limma package, and then

were analyzed and extracted by RRA method according to the standard with the

corrected P-value < 0.05 and |log2FC| > 1. It is noteworthy that the RRA method

is based on the hypothesis that each gene is randomly ordered in each experiment.

That is, if a gene ranked high in all experiments, then the smaller its P-value was, and

the greater the likelihood of differential gene expression. Our rank analysis results

showed that a total of 168 DEGs comprising 109 down-regulated and 59 up-regulated
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Figure 1 Standardization for all samples included GEO datasets. (A–B) The standardization of
GSE31977 data; (C–D) The standardization of GSE46958 data; (E–F) The standardization of GSE19245
data; (G–H) The standardization of GSE104916 data; (I–J) The standardization of GSE65333 data. The
blue bar represents the data before normalization, and the red bar represents the normalized data.

Full-size DOI: 10.7717/peerj.6495/fig-1
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Figure 2 Differential expression analysis of datasets of samples. (A) GSE31977 data; (B) GSE46958
data; (C) GSE19245 data; (D) GSE104916 data; (E) GSE65333 data. The red points represent up-regulated
genes screened on the basis of |fold change | > 2.0, P-value < 0.05. The green points represent down-
regulated genes screened on the basis of |fold change | > 2.0, P-value < 0.05. The black points represent
genes with no significant difference. FC is the fold change.

Full-size DOI: 10.7717/peerj.6495/fig-2

genes were obtained (Table 2, Tables S3 and S4). The top 20 most significantly

up-regulated genes were AT3G46270, ATCSLB05, AT3G19030, COL9, BCAT4, ELF4,

CYP83A1, AT1G76800, AT1G61740, CLE6, AT4G01440, AT1G72200, MOT1, AT5G52790,

AT4G40070, AT4G25250, EXGE-A1, NR1, AT5G19970 and CYP735A2 (Table 2).

Additionally, the top 20 most significantly down-regulated genes were DIN2, WRKY75,

AT4G15120, CYP81F2, AT1G73480, AT1G72900, PGPS1, AT5G06730, AT1G35910,

CYP81D8, AT3G12320, ATERF6, AT1G12200, AT5G25450, AT4G28460, NILR1, HSP70,

APRR9, Fes1A and AT3G02800 (Table 2). Moreover, the heatmap figure of the top 20 up-

and down-regulated genes was performed using R-heatmap software (Fig. 4). For instance,

PGPS1 and WRKY75 were all down-regulated in five treatments, while CYP83A1 and NR1

showed up expression trend in several conditions (Fig. 4).

GO term enrichment analysis of DEGs

To illuminate the potential biological functions of DEGs, GO annotation of the integrated

DEGs mentioned above was executed by the GOATOOLS and GO functional enrichments

of up- and down-regulated genes with the standard of corrected P-value < 0.05 (Table S5).

These results exhibited that theywere significantly enriched inmultiple biological processes:

physiological process (GO: 0008150), cellular physiological process (GO: 0009987),

physiological response to stimulus (GO: 0050896), response to biotic/abiotic stress

(GO: 0006950) and so on (Fig. 5A). Meanwhile, the cellular component exhibited a

close correlation with the cellular (GO: 0005575) and extracellular components (GO:

Niu et al. (2019), PeerJ, DOI 10.7717/peerj.6495 8/25

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31977
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46958
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19245
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104916
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65333
https://doi.org/10.7717/peerj.6495/fig-2
http://dx.doi.org/10.7717/peerj.6495#supp-3
http://dx.doi.org/10.7717/peerj.6495#supp-4
http://dx.doi.org/10.7717/peerj.6495#supp-5
http://dx.doi.org/10.7717/peerj.6495


Figure 3 Hierarchial clustering heatmap image of DEGs screened on the basis of |fold change | > 2.0, P-value< 0.05. (A) GSE31977 data (As
treatment), (B) GSE46958 data (Au treatment), (C) GSE19245 data (Cd treatment), (D) GSE13114 data (Cu treatment), (E) GSE65333 data (Pb
treatment).

Full-size DOI: 10.7717/peerj.6495/fig-3

0005576) (Fig. 5A). As for the 59 up-regulated genes, they showed a close correlation

with membrane, such as the membrane part (GO: 0044425), intrinsic component of

membrane (GO: 0031224), membrane (GO: 0016020), integral component of membrane

(GO: 0016021) and so on (Table 3). In terms of the 109 down-regulated genes, they were

significantly enriched in multiple biological processes related to environment stress; for

example, in response to stimulus (GO: 0050896), in response to stress (GO: 0006950),

in response to chemicals (GO: 0042221) and so on (Table 3). Moreover, the GO term

enrichments of integrated DEGs were mainly enriched in response to chemicals, abiotic

stimulus, oxygen-containing compounds, organic substances, external stimulus and so on,

all of which are involved with plant functions in response to stress (Fig. 5B).

KEGG pathway analysis of DEGs

To better understand the function enrichment of the identified DEGs, the KOBAS

online analysis database was used. The results exhibited that the most significantly

enriched pathways of the DEGs are mainly involved with protein degradation, such as

bisphenol degradation, polycyclic aromatic hydrocarbon degradation, limonene and pinene
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Table 2 Screening DEGs in A. thaliana treated with heavy metal by integrated GEO data.

DEGs Gene names

Up-regulated AT3G46270 ATCSLB05 AT3G19030 COL9 BCAT4 ELF4
CYP83A1 AT1G76800 AT1G61740 CLE6 AT4G01440
AT1G72200 MOT1 AT5G52790 AT4G40070 AT4G25250
EXGT-A1 NR1 AT5G19970 CYP735A2 AT3G59370
AT3G25790 PIP2;4 AT4G16447 AT1G22500 NIR1
AT5G06610 CER4 AT1G12080 AT4G31910 LAX3
AT1G33340 LCR69 UCC1 ENODL8 GA3OX1 AT4G39070
CYP93D1 AT1G21440 AT4G01140 CKX4 AT3G12900
RVE2 AT3G20015 AT1G09750 AT2G40900 AT3G23880
PIP1;5 AGP4 AT3G32040 AT2G01900 AT1G51820 AIR1
AT5G04730 AT5G42860 BT2 CYP71B2 AT5G26280
AT1G24800 AT1G24881 AT1G25055 AT1G25150
AT1G25211

Down-regulated DIN2 WRKY75 AT4G15120 CYP81F2 AT1G73480
AT1G72900 PGPS1 AT5G06730 AT1G35910 CYP81D8
AT3G12320 ATERF6 AT1G12200 AT5G25450 AT4G28460
NILR1 HSP70 APRR9 Fes1A AT3G02800 AT2G23270
CRK11 AT3G07090 AT5G26220 AT5G05220 ATSDI1
ATGSTU4 AT1G61340 ERF2 AT5G64510 ATHSP23.6-
MITO BCS1 MBF1C ATGSTF6 AT3G62550 AT3G09440
ZIFL1 AT1G12030 AT5G05340 PXMT1 AT5G02230
AT5G02490 ACS6 GLIP1 AT4G16260 AT5G13200
AT2G18670 AT2G18680 AT5G39110 AT5G39120
AT5G39150 AT5G39180 AT5G20820 AT5G64170
AT4G28350 AT3G47540 AT2G19310 CSLE1 CYP710A1
WRKY45 AT3G59080 CYP706A2 AT4G19810 AT4G04330
AT2G21640 ATHSFA2 AT1G72940 AT2G35730
AT4G37290 MYB51 AT1G60750 AT5G20910 AT1G72060
AR781 ATBCB ABA1 ORG1 YLS9 AT4G15420 AT3G09405
AT5G06760 AT5G53970 ICL AT5G51440 BCA3 SBT3.5
AT4G39830 MYB15 AT5G52750 AAC3 AT3G48510
HSP17.4 AT5G42830 AT5G48000 AT1G71140 AtPP2-
A11 WRKY33 SULTR1;1 AT3G50910 AT2G36460
AT2G48090 CEJ1 CHI AT1G14550 PAP20 AT5G14730
NAPRT2 CRK10 GRX480 AT5G39580 DMP1 AT3G12510
AT3G48450

degradation, aminobenzoate degradation and so on (Table S6 and Fig. 6). Moreover, KEGG

pathway analysis demonstrated that the DEGs were significantly enriched in the estrogen

signaling pathway, zeatin biosynthesis, measles, antigen processing and presentation,

MAPK signaling pathway and nitrogen metabolism (Table S6 and Fig. 6).

PPI network and modules analysis

In order to further investigate the interactions and networks of these DEGs, the PPI

network was identified using the STRING database and constructed using Cytoscape

software, which consisted of 111 nodes and 402 interactions (Fig. 7, Tables S7 and S8).

Identification of candidate hub nodes generally are needed to calculate the topological

features, including degree (Williams & Del Genio, 2014) and betweenness (Agryzkov et al.,

2014). The importance degree of a gene is proportional to the size of the two quantitative
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Figure 4 The LogFC heatmap image of each kind of treatment. The abscissa is the GEO ID and Low-
ercase letters represent one kind of content heavy metal treatment included, and the ordinate is the gene
name. The value in the box is the logFC value, and ‘‘NA’’ represent the P-value >= 0.05.

Full-size DOI: 10.7717/peerj.6495/fig-4

values in this network. Therefore, 9 candidate hub nodes were preliminary selected,

namely nematode-induced LRR-RLK 1 (NILR1), 3-phosphatidyl-1′-glycerol-3′-phosphate

synthase 1 (PGPS1), WRKYDNA-binding protein 33 (WRKY33), cytochrome bc1 synthase

1 (BCS1), pheromone receptor-like protein (AR781), ‘‘cytochrome P450, family 81,

subfamily D, polypeptide 8’’ (CYP81D8), nitrate reductase 1 (NR1), eukaryotic aspartyl

protease 1 (EAP1) and MYB domain protein 15 (MYB15) (Fig. 7 and Table S8).

Expression analysis of screened key genes under Cd, Pb, Cu, Zn and
Cr heavy metal stresses

In order to better calculate the reliability of the preliminary selected results, the RT-qPCR

analysis of 20 candidate genes under different heavy metal stresses containing those

mentioned above (Cd, Pb and Cu) and not mentioned above (Zn and Cr) was performed.

As expected, these genes showed up- or down-regulated trends in one or several heavymetal

treatments (Fig. 8). Specially, most genes have obvious high expression levels under Cu

condition, while moderate down-regulated under Pb and Cr treatments (Fig. 8). Moreover,

several genes exhibited distinct down-regulated under most situation, for example, HSP70,

AT5G52750, BCS1 and MYB15 (Fig. 8). Our results indicated that these genes selected

above should respond to heavy metal stress in plants and it is possible to use them as

biomarker.

DISCUSSION

Uptake and analyses of DEGs from GEO datasets

Microarray analysis of gene expression profiles is widely used in distinguishing disease-

related genes and biological pathways. However, such studies on heavy metal stresses
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Figure 5 GO enrichment analysis of the screened DEGs. (A) GO enrichment divided DEGs into three
functional group: molecular function, biological processes, and cell composition. (B) GO enrichment sig-
nificance items of DEGs in different functional groups.

Full-size DOI: 10.7717/peerj.6495/fig-5

have been scarce to date. Thus, in the present study, we identified 168 overlapping DEGs,

including 109 down-regulated and 59 up-regulated genes, in the eleven microarray datasets

involving heavy metal stresses (Table 2). Moreover, the GO analysis results suggested

that the overlapping genes were mostly involved in the physiological process, cellular

physiological process, response to biotic/abiotic stress and physiological response to

stimulus at the levels of biological processes (Fig. 5A). For the up-regulated genes, their

functions aremainly associated with themembrane, including themembrane part, intrinsic

component of membrane, membrane, integral component of membrane and so on (Table

3). In terms of the down-regulated genes, they mainly play important roles in various

responses to environmental stresses, including response to stimulus, response to stress,

and response to chemicals (Table 3). Furthermore, KEGG pathway enrichment analysis

showed that the overlapping DEGs were enriched significantly within protein degradation,

including bisphenol degradation, polycyclic aromatic hydrocarbon degradation, limonene
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Table 3 GO analysis of DEGs associated with A. thaliana treated by heavy metal.

DEGs Term Description Count P-value

Up-regulated GO:0044425 membrane part 23 1.58E-05

GO:0031224 intrinsic component of membrane 22 9.67E-06

GO:0050896 response to stimulus 22 0.00316

GO:0016020 membrane 19 0.0367

GO:0016021 integral component of membrane 17 0.00135

GO:0046872 metal ion binding 17 0.00487

GO:0043169 cation binding 17 0.00499

GO:0042221 response to chemical 15 0.000519

GO:0046914 transition metal ion binding 14 9.27E-05

GO:0016491 oxidoreductase activity 12 0.000621

GO:1901700 response to oxygen-containing compound 11 0.000636

GO:0010033 response to organic substance 11 0.00147

GO:0009628 response to abiotic stimulus 11 0.0153

GO:0009725 response to hormone 10 0.000345

GO:0009719 response to endogenous stimulus 10 0.000398

GO:0065008 regulation of biological quality 10 0.000906

GO:0009605 response to external stimulus 9 0.00866

Down-regulated GO:0009987 cellular process 69 0.00696

GO:0008152 metabolic process 68 0.00512

GO:0050896 response to stimulus 67 1.03E-06

GO:0044237 cellular metabolic process 55 0.024

GO:0006950 response to stress 54 7.77E-07

GO:0042221 response to chemical 48 6.03E-07

GO:0043231 intracellular membrane-bounded organelle 45 0.0385

GO:0065007 biological regulation 38 0.0279

GO:1901363 heterocyclic compound binding 38 0.0493

GO:0097159 organic cyclic compound binding 38 0.0495

GO:0009628 response to abiotic stimulus 37 1.04E-06

GO:0050789 regulation of biological process 35 0.0207

GO:1901700 response to oxygen-containing compound 34 3.87E-07

GO:0050794 regulation of cellular process 32 0.0234

GO:0009058 biosynthetic process 32 0.0316

GO:0010033 response to organic substance 31 5.54E-07

GO:0009605 response to external stimulus 30 5.16E-07

GO:1901576 organic substance biosynthetic process 30 0.0398

GO:0009607 response to biotic stimulus 24 3.55E-07

GO:0043207 response to external biotic stimulus 24 9.29E-07

and pinene degradation, and aminobenzoate degradation, which indicated these gene

might be important in detoxication and transport of heavy metals (Table S6 and Fig. 6).

Additionally, the estrogen signaling pathway, zeatin biosynthesis,MAPK signaling pathway,

nitrogen metabolism, phenylpropanoid biosynthesis were analyzed as the major pathways

of the important modules of overlapping DEGs. A recent study has shown that proteins
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Figure 6 KEGG enrichment analysis of the screened DEGs. The abscissa is the Rich Factor, and the or-
dinate is the KEGG pathways ID. Circle size represents the number of genes, and circle color represents
the P-value.

Full-size DOI: 10.7717/peerj.6495/fig-6

associatedwith oxygenmetabolism, phenylpropanoid biosynthesis, and redox reactionwere

resistant to stresses such as high temperature, chilling, light and wounding (Vogt, 2010).

Likewise, many plant MKK genes are induced by abiotic stresses, including wounding,

drought, genotoxicity, cold, osmosis, high salinity, heat, and oxidative and UV-B treatment

(Jiang & Chu, 2018). Another study has shown that plants can respond to heavy metal

stress by induction of several different MAPK pathways, and that excessive copper and

cadmium ions lead to distinct cellular signaling mechanisms in roots (Jonak, Nakagami &

Hirt, 2004). These enriched pathways provide insights into the molecular mechanism of

heavy metal uptake, transport and metabolism. Therefore, it can help in the development

of new biological detection strategies.

Identification of candidate core genes under heavy metal stresses

We also identified ninemajor hub genes according to the PPI network and our experimental

validation, namely NILR1, PGPS1, WRKY33, BCS1, AR781, CYP81D8, NR1, EAP1 and

MYB15 (Figs. 7 and 8). As is all known, plant activators are chemicals that induce

plant defense responses to a broad spectrum of pathogens. NILR1, a new potential

plant activator (PPA) with high expression levels after PPA treatment, enhanced plant

defense ability against pathogen invasion through the plant redox system (Matsushima &

Miyashita, 2012). Moreover, NILR1, a Leu-rich repeat transmembrane receptor protein

kinase (LRR-RLK), was found recently in human mitochondria (Heazlewood et al., 2004).

Furthermore, over-expression of PGPS1 can enhance tolerance to oxidative stress in
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Figure 7 PPI network of identified DEGs constructed by the STRING database. Circles represent genes,
lines represent the interaction of proteins between genes, and the results within the circle represent the
structure of proteins. Line thickness and circle color represents the degree of significance between the pro-
teins.

Full-size DOI: 10.7717/peerj.6495/fig-7

transgenic Arabidopsis plants (Luhua et al., 2008) and plays a role in early transcriptional

defense responses and reactive oxygen species (ROS) production in Arabidopsis cell

suspension culture under high-light conditions (Gonzalez-Perez et al., 2011). While ROS

function as signal transduction molecules in the acclimation process of plants when

exposed to abiotic stress factors, such as drought, heat, salinity and high light (Choudhury

et al., 2017). It is known to all that LRR-RLK genes are often the first to perceive external

environmental changes through general ROS production, Ca2+ signature, etc., while the

toxic effects of heavy metals usually cause ROS production. Hence, it could be understood

that NILR1 and PGPS1 responds to environmental stress, especially heavy metal stresses.

Over-expression of WRKY33 can increase tolerance to NaCl in Arabidopsis, while

increasing sensitivity to ABA (Jiang & Deyholos, 2009). In addition, WRKY33 negatively

regulated ABA signaling in response to pathogenic bacteria (Liu et al., 2015). Furthermore,

WRKY33 that is induced by pathogen infection, salicylate signaling or the paraquat

herbicide that generates activated oxygen species in exposed cells, is an important

transcription factor that plays a critical role in response to necrotrophic pathogens through
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Figure 8 Experimental validation of selected candidate key genes.

Full-size DOI: 10.7717/peerj.6495/fig-8

interaction with ATG18a (Zheng et al., 2006; Lai et al., 2011). BCS1 is re-annotated as

ATPase OM66 (Outer Mitochondrial membrane protein of 66 kDa) because it harbors the

outer mitochondrial membrane and lacks the BCS1 domain. AtOM66 over-expression in

transgenetic plants leads to more tolerance to drought stress, accelerated cell death rates,

increased SA content and more susceptibility to the necrotrophic fungus (Zhang et al.,

2014). It is interesting that AtOM66 and AtWRKY33 are involved with the transcriptional

response to MV (methyl viologen) which is triggered by chloroplast-generated superoxide

signaling (Van Aken et al., 2016), and had an interaction in the PPI network (Fig. 7).

Moreover, they are also involved in the transcriptional innate immune response to flg22

(Navarro et al., 2004). AR781 is involved in the early elicitor signaling events which occur

within minutes and include ion fluxes across the plasma membrane, activation of MPKs

and the formation of ROS related to PGPS1 and WRKY33 mentioned above (Benschop et

al., 2007). CYP81D8 is located in the ER (Dunkley et al., 2006), which is consistent with the

results of KEGG enriched analysis (Table S6 and Fig. 6). Additionally, CYP81D8, which are

KAR1 (Karrikins) up-regulated genes, are enriched for light-responsive transcripts during

germination and seedling development in A. thaliana (Nelson et al., 2010).
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NR1 (also called NIA1) that mediates NO synthesis in plants are critical to abscisic

acid (ABA)-induced stomatal closure of guard cells (Desikan et al., 2002). Specifically, NR1

and NR2 control stomatal closure by altering genes of core ABA signaling components to

regulate K+ in currents and ABA-enhanced slow anion currents in Arabidopsis (Zhao et al.,

2016). Moreover, the activity of NR1 can be dramatically increased by being sumoylated

by the E3 SUMO ligase AtSIZ1 (Park, Song & Seo, 2011), while its nitrate-responsive

expression was controlled by its regulatory region, including the 3′-untranslated region,

and 5 -and 3′-flanking sequences (Konishi & Yanagisawa, 2011). EAP1 that has aspartic-type

endopeptidase activity evolved in response to their environments and ecosystems through

an investigated proteome-wide binary protein-protein interaction network (Braun et al.,

2011). MYB proteins are a superfamily of transcription factors that play important roles

in many physiological processes and defense responses, such as salt stress, ethylene, auxin,

jasmonic acid, chitin and so on (Chen et al., 2006). MYB15 is phosphorylated by MPK6,

negatively regulating the expression of CBF (C-repeat-binding factor) genes which are

required for freezing tolerance in Arabidopsis (Kim et al., 2017). MYB15, SIZ1, HOS1 (a

RING-type ubiquitin E3 ligase) and ICE1 (MYC-like basic helix-loop-helix transcription

factor) form a dynamic regulation network in response to freezing stress in Arabidopsis

(Miura et al., 2007). In addition, over-expression of MYB15 confers drought and salt

tolerance in Arabidopsis, which is possibly performed by enhancing the expression levels of

the ABA biosynthesis and signaling related genes and those stress-protective proteins (Ding

et al., 2009). Furthermore, MYB15 also controls defense-induced basal immunity and

lignifications that are used in the conserved basal defense mechanism in the plant innate

immune response (Chezem et al., 2017) and regulates stilbene biosynthesis involvement

with MYB14 in grapevines whose key enzymes responsible for resveratrol biosynthesis are

stilbene synthases (STSs) (Holl et al., 2013).

Comparison with other existing related high-throughput methods

To date, a variety of high-throughput methods for identifying key signaling or pathways

have been developed by investigators. They all can accurately detect only based on different

models or systems. For example, drug-induced adverse events prediction combining

chemical structure (CS) and gene expression (GE) features which is from the Library of

Integrated Network-based Cellular Signatures (LINCS) L1000 dataset has been proposed

and validated (Wang, Clark & Ma’ayan, 2016). Such as, WRKY, MYB, NR1 and NILR

have been found in this database, which indicated that the results identified were reliable

(Fig. 7). Quantitative structure activity relationship (QSAR) models together with the

state-of-the-art machine learning techniques is faster and cheaper than large-scale virtual

screening methods to identify the chemical compounds (Soufan et al., 2018). Another

novel multi-label classification (MLC) technique using Bayesian active learning to mine

large high-throughput screening assays has been proposed (Soufan et al., 2016). Moreover,

a reduced transcriptome approach to monitor potential effects by environmental toxicants

at genome-scale using zebrafish embryo test was also developed, whose reliability was

assessed by RNA-ampliseq technology to identify DEGs (Wang et al., 2018). Furthermore,

previous study have usually focused on the aspects of cancer diagnosis and treatment using
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integrated bioinformatics analyses, with only a few other related research studies (Cao et

al., 2018; Zhan, Liu & Hua, 2018), while we also propose a novel computational method

to identify hub genes based on the same DEGs under different status at genome-scale.

Subsequently, we verified the feasibility of our method through quantitative analysis of key

gene expression (Fig. 8). As expected, almost all genes showed differently expression under

one or several heavy metal stresses (Fig. 8). The analysis results indicated that our method

is feasible for screening hub genes, and can be used as an effective supplementary tool for

future ecological restoration research using traditional methods.

CONCLUSION

A total of 168 overlapping DEGs were screened from 11 GEO datasets using integrated

bioinformatics analysis approaches, including 59 up-regulated genes and 109 down-

regulated genes. GO and KEGG pathway enrichment analysis revealed that DEGs were

mainly enriched in nitrogen metabolism, polycyclic aromatic hydrocarbon degradation,

antigen processing and presentation, MAPK signaling pathway and phenylpropanoid

biosynthesis in plant responses to stress, which can provide a theoretical basis for studying

the biological processes of heavy metals. Moreover, we successfully constructed a PPI

network of DEGs underlying heavy metals and identified nine core genes (NILR1, PGPS1,

WRKY33, BCS1, AR781, CYP81D8, NR1, EAP1 and MYB15) which might be involved in

the response to abiotic stress factors, particularly heavy metals and experimental validation

were obtained the similar expression profiles under several heavy metal treatments, even

no mentioned above (Cr and Zn). These findings should provide some clues for the future

detection of heavymetal pollutants in water and soil. However, furthermolecular biological

experimental studies are urgently required to validate the functions of candidate hub genes

associated with heavy metals because our study was only performed based on data analysis.
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