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Abstract

Integrated Circuits for Programming Flash Memories in Portable Applications

Mir Mohammad Navidi

Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect
the world around us more than before. These devices can communicate with each other and help us
manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes
exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to
create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly
used in digital applications like Flash memories. However, FG transistors can be used in analog
applications, too. Unfortunately, due to the expensive infrastructure required for programming
these transistors, they have not been economical to be used in portable applications. In this
work, we present low-power approaches to programming FG transistors which make them a good
candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on
the design of low-power circuits which can be used in programming the FG transistors such as high-
voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal
of reducing the power consumption in programmable sensor nodes and reducing the programming
infrastructure, we present a method to program FG transistors using negative voltages. We also
present charge-pump structures to generate the necessary negative voltages for programming in
this new configuration.
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Chapter 1

Introduction

Smart devices such as smart grids, smart homes, etc. are infrastructure systems that connect

the world around us more than before. A common concept of such systems is that all the smart

devices are able to communicate and transmit their information using smart sensors. This concept

is called the Internet of Things (IoT). In these systems, monitoring of the system is possible using

a network of embedded devices. However, not many smart nodes exist that are both low-power

and programmable. Analog memories like Floating-gate (FG) transistors are good candidates to

create low-power and programmable nodes.

FG transistors are mostly used in digital applications like Flash memories. However, FG tran-

sistors can be used in analog applications, too. For example, FG transistors have already been

used to provide programmable currents for adaptive filters in analog signal processing applications.

Unfortunately, due to the expensive infrastructure required for programming FG transistors, they

have not been economical to be used in portable applications. In this work, we present low-power

circuits for programming FG transistors which make them a good candidate to be employed in

future wireless sensor nodes and portable systems.

In order to make large-scale programmable systems using FG transistors, low-power program-

ming circuits are required. We will show that to change the stored analog data, Fowler-Nordheim

tunneling and hot-electron injection are used. Both of these techniques require high DC voltages

with very small ripple. Step-up voltage converters can be used for these two procedures. Thus,

we present the design procedure and experimental results of two charge pump circuits for FG

programming applications. First, we focus on the design of a high-voltage charge pump for the

tunneling process. In order to reduce the power consumption of the proposed charge pump for

battery-operated applications, a variable-frequency regulation technique is used. A new method
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for reducing start-up power consumption in a previously reported charge-transfer stage is presented.

Additionally, a new circuit is presented to minimize the short-circuit current of the clock circuitry.

A second charge-pump is used for injection of FG transistors. The injection accuracy of the FG

transistors is directly related to the characteristics of the high voltage signal used in the injection

process. Thus a low-ripple and high-voltage signal must be employed for this process. A new

low-dropout regulator (LDO) is used inside the tunneling charge-pump loop to reduce the output

ripple for the injection process. A cascode structure is used to improve the PSRR of the LDO

regulator. This technique relaxes the stability requirements of the LDO because a smaller pass

transistor can be used in this new structure. Thus, a smaller parasitic capacitance is created at the

gate of the pass transistor. One challenge of this design is to provide a bias voltage at the gate of

the cascode transistor. We use the feedback resistive divider to provide a bias voltage to bias the

cascode transistor in the above-threshold saturation region. To reduce the voltage overshoot in the

output of the injection charge-pump, a feed-forward compensation technique is used. The resulting

charge pump generates high voltages for the injection process under different load currents with a

critically damped behavior. These two charge pumps can be used in other applications like MEMS

applications, electret earphones, etc.

Any System-on-Chip (SoC) will require supporting circuits to provide stable DC voltages.

Voltage reference cells are used to provide a stable voltage across a wide range of temperature

and supply variations. We present the design procedure and experimental results of two voltage

reference cells which can be used in SoC applications. First, we present a voltage reference for

low-power applications with an above-1V output. Thick oxide transistors are used to generate a

complementary to absolute temperature (CTAT) voltage in this circuit. We employ a new curvature

compensation technique in the second voltage reference cell to achieve a low temperature coefficient

(TC) output voltage. Finally, we present the experimental results of two voltage regulators which

generate VDD and Vmid for analog and digital circuits. The fast transient voltage regulator is used to

generate a stable supply voltage (VDD) across a wide range of load currents. The push-pull voltage

regulator is used to generate a stable mid-rail voltage (Vmid) which can provide a few microamps

of sink/source load currents.

Finally, a new programming technique for analog applications is presented. We call this tech-

nique below-ground programming of FG transistors. Using negative voltages to program digital

flash memories is widely used. To the best of our knowledge, storing analog data onto an array
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of FG transistors in a standard CMOS process using negative voltages was not possible before.

This technique will improve the FG programming accuracy and circumvents the requirement of the

multiplexing circuits (e.g. high side switches). The main obstacle to this technique is to select a

target FG transistor among an array of FG transistors. Since this technique requires digital circuits

operating below ground. Operating digital logic below ground is not possible in a standard CMOS

process because the parasitic PN junctions of the NMOS transistors are forward biased when a neg-

ative voltage is applied to the input terminals of the logic circuits. A new technique is presented to

select a target FG transistor in an array of FG transistors for large-scale applications (e.g. FPAAs).

Another challenge of the below-ground programming technique is designing a charge-pump that

can generate a negative voltage in a standard CMOS process. The main challenge is to provide the

appropriate well voltage for charge-transfer switches. These negative charge pumps can be used in

other applications like TFT display drivers, etc.

This dissertation is organized into six chapters. In Chapter 2, I discuss the background of FG

transistors first; then I review the conventional methods of programming the FG transistors. In

Chapter 3, I explain the charge pumps required for tunneling and injection of the FG transistors.

Measurement results of these charge pumps are presented too. In Chapter 4, the background

of low-power voltage reference cells will be discussed first. Then, I present a low-power voltage

reference cell suitable for portable applications. In Chapter 5, basic characteristics of the voltage

regulators are covered first. Then, design, simulations, and measurements of two voltage regulators

are presented. In Chapter 6, a below-ground charge pump is presented first. Then, a programmer

circuit that uses this negative charge pump is discussed. Then, below-ground programming of

the FG transistors is presented. In Appendix A, a low power voltage reference cell using a new

curvature compensation technique is presented. Finally, in Appendix B a very simple subthreshold

voltage reference cell is presented.
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Chapter 2

Overview of Floating-Gate Transistors

Floating gate (FG) transistors have a wide range of applications from digital flash memories

to programmable analog bias current generators. Different methods are used to modify the charge

stored on the FG transistor. In this chapter, we will focus on the background of the FG transistors

and their wide range of applications.

2.1 Flash Memory

There are two major types of CMOS memories available. First, volatile memories like random

access memories (RAMs like SRAM or DRAM) lose stored information when the power supply is

turned off, although they are very fast in writing and reading (SRAM) or very dense (DRAM).

Second, non-volatile memories (NVM) can keep the data stored when the power supply is turned

off (ROMs like EPROM, EEPROM, and Flash). There has always been a continuous growth of

nonvolatile memories in the past few years, especially for Flash-memory applications.

Flash-memories have two major applications [7]. The first application is mainly integrating

NVM in logic systems (e.g. microprocessors) to allow software updates, store identification codes,

or reconfigure the system in the field. The second application is to create storage devices, like

solid-state hard drives, composed of Flash memory arrays which are arranged to make large-size

memories to replace miniaturized hard disks. Solid-state disks made by Flash-memories are suitable

for portable applications because they have small dimensions and very low power consumption. A

good point about Flash memories is that they combine the capability of NVM storage with an

access time comparable to DRAM’s. These two properties allow direct execution of microcodes in

Flash-memories.
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In order to have a memory cell that can switch between one state to other states and that can

store the information independent of external conditions, the storing element must be a device whose

conductivity changes in a non-destructive way [7]. One possible solution is to have a transistor with

an adaptive threshold voltage based on the two states of the memory cell (e.g. binary value “1”

and “0”). Reading a single bit is performed by applying a gate voltage that is between the values

of the thresholds of the erased and programmed cells and measuring the current going through the

transistor. The threshold voltage of a transistor can be expressed as:

VT = K −Q/Cox (2.1)

where K is a technology-dependent parameter, Q is the charge weighted with respect to its position

in the gate oxide, and Cox is the gate oxide capacitance. Therefore, the threshold voltage of the

memory cell can be changed by modifying the amount of charge present between the gate and

channel (e.g. Q/Cox). The two common ways of shifting the threshold voltage are:

1. Storing the charge in traps that are present in the oxide, or more precisely at the interface be-

tween two dielectric materials. The most commonly used interface is the silicon oxide/nitride

interface. Any device that is fabricated in this way is called Metal-Nitride-Oxide-Silicon

(MNOS) cells [8, 9].

2. Storing the charge in a conductive material layer between the gate and the channel which is

completely surrounded by an insulator. This device is called a floating-gate (FG) transistor.

MNOS devices are not attractive in consumer electronics due to their low endurance (capability

of maintaining the stored information after erase/program/read cycling) and retention (capability

of keeping the stored information in time). FG devices are still the basis of every modern NVM,

especially for Flash memories. In the following sections, a detailed discussion of FG-based Flash

memories is presented.

2.2 Floating-Gate Transistors

The cross-section of a typical CMOS transistor and an FG transistor are shown in Fig. 2.1

and 2.2. A typical transistor (MOSFET) uses a Metal connection to change the potential at the

gate of the CMOS transistor to open or close the connection between two other electrodes, called
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Figure 2.1: Cross section view of a typical CMOS transistor
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Figure 2.2: Cross section view of an FG-transistor

the source and drain, allowing the device to function as an on/off switch. When enough charge is

placed onto the gate electrode, the semiconducting region becomes more conductive, and a channel

will be created between the source and drain. When the charge is removed from the gate electrode,

this channel becomes insulating, and the source and drain are disconnected. We must note that

when the input to the gate of the MOSFET is turned off, charge drains from the gate through the

circuit it is connected to, and the MOSFET transistor turns off.

An FG-transistor is a MOSFET transistor that has no resistive connection to its gate. However,

a control gate couples capacitively onto the transistor′s floating gate. In other words, an FG

transistor has an additional electrode between the gate and the semiconductor. Unlike the other

electrodes, however, the FG is not connected to anything. The cross section view of an FG-

transistor is shown in Fig. 2.2. The channel current (id) of an FG transistor is a function of the

voltage applied to the control gate (Vcg) and the amount of charge stored on the floating-gate node

of the transistor. Schematic symbols of a typical MOSFET and an FG transistor are shown in Fig.

2.3 (a) and Fig. 2.3 (b), respectively. Fig. 2.4 shows the cross section view of the FG transistor

including all parasitic capacitors. Assuming that no charge is stored in the FG:

Q = 0 = CFC(VFG − VCG) + CS(VFG − VS) + CD(VFG − VD) + CB(VFG − VB) (2.2)

where VFG, VCG, VS , VD, and VB are the potential of floating gate, control gate, source, drain, and

bulk respectively. We assume that CT = CFC + CD + CS + CB is the total capacitance of FG.
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We call αj = CJ/CT , the coupling coefficient relative to the electrode J . The FG voltage can be

expressed as:

VFG = αGVGS + αDVDS + αSVS + αBVB (2.3)

This equation shows that VFG is a function of many node potentials. If the source and bulk are

both grounded, VFG can be expressed as:

VFG = αG(VGS +
αD

αG
VDS) = αG(VGS + fVDS) (2.4)

where

f =
αD

αG
=

CD

CFC
(2.5)

We can translate device equations from a conventional transistor to an FG transistor. For example,

the threshold voltage VT and conductivity factor β, can be transformed to values measured with

respect to the control gate.

VT
FG = VT (Floating Gate) = αGVT (Control Gate) = αGVT

CG (2.6)
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1
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2.2.1 Structure of the FG transistors in this report

The cross-section view of the FG transistors used in our work is presented in Fig. 2.5. An FG

transistor is a MOS gate surrounded by silicon-dioxide with no dc path to ground. The charge on

the floating gate is stored permanently, providing a long-term memory cell since it is completely

surrounded by a high-quality insulator. The control gate input of the FG transistor is created with

polysilicon-2, and the floating gate of the FG transistor is created with the polysilicon-1. The actual

FG transistor (Mfg in Fig. 2.6) is the left hand side pMOS in Fig. 2.5. Erasure and often writing

is done by tunneling electrons through the tunneling junction, Ctun. The structure of this junction

has a significant effect on the speed, efficiency, and long-term reliability of writing and erasure [10].

A thin oxide helps to reduce the tunneling voltage. In standard CMOS processes, the gate oxide of

a CMOS transistor is preferred because it is thin and also of high quality, which benefits reliability

and predictability. In Fig. 2.5 this tunneling junction is the right hand side transistor inside the

substrate (Mtun in Fig. 2.6) with drain and source connected to each other. To remove electrons

from the FG, Vtun is increased to a high voltage, usually higher than the reverse breakdown of

the source/drain diffusions, but less than the breakdown voltage of the well-to-substrate junction.

In order to avoid reverse breakdown, tunneling junctions are generally placed inside a well. The

tunneling MOSCAP can have two basic types: a p+ MOS capacitor formed as a standard pFET

or a n+ MOS capacitor formed with n+ diffusion along the gate. In a 0.35µm CMOS process, we

use pMOS transistors in an N-well to act as a tunneling junction because p+ junctions are more

consistent from process to process and the p+ tunneling current is significantly higher [10].
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Figure 2.6: Schematic of the FG-transistors used in this work

2.2.2 Above threshold operation

The current to voltage relationship of the FG transistor in the above-threshold region can be

expressed as follows. The condition to be in triode region is |VDS |< αG|VGS + fVDS − VT |, and the

equation for drain current is:

IDS = β[(VGS − VT )VDS − (f −
1

2αG
)VDS

2] (2.8)

The condition for the saturation region is |VDS |≥ αG|VGS + fVDS − VT |, and the drain current is:

IDS =
β

2
αG(VGS + fVDS − VT )

2 (2.9)

where β and VT of these two equations are measured with respect to control gate (βCG, VT
CG).

There are some effects related due to the capacitive coupling effect, which modifies the FG I-V

characteristics.

1. The FG transistor can go to the depletion mode even when |VGS |< |VT |. This is because of

the effect of fVDS . This effect is usually reffered to as “drain turn-out”.

2. In conventional transistors IDS is independent of the drain voltage in the saturation region.

However, in FG transistors, IDS will increase as the drain voltage increases and saturation

does not happen.

3. The boundary between the triode and saturation regions for the FG transistor is expressed

by

|VDS |= αG|VGS + fVDS − VT | (2.10)
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4. Unlike conventional transistors, gm depends on VDS in FG transistors.

gm = αGβ(VGS + fVDS − VT ) (2.11)

5. The capacitive coupling factor depends on CD and CFC only. And its value can be verified

by the following equation in the saturation region.

f = −
∂VGS

∂VDS
(2.12)

2.2.3 Subthreshold operation

The following equation presents a quantified relationship for the channel current of the FG

transistor in the subthreshold region.

Id = I0
W

L
exp

(

κ(Qfg + CgVcg + CdVd + CsVs + CtunVtun)

CtotalUT

)[

exp

(

−
Vs

UT

)

− exp

(

−
Vd

UT

)]

(2.13)

where I0 is the pre-exponential current scaler, κ is the subthreshold slope, UT is the thermal voltage,

Cg, Cd, Cs, Ctun, and Cw are the node capacitors, Ctotal is the total capacitance present on floating

node, Vfg, Vcg, Vd, Vs, Vtun, and Vw are the node voltages, and finally, Qfg is the charge stored on

the floating node of the FG transistor. Cg is usually drawn such that it dominates Ctotal in order

to make Vcg dominate the coupling term [10]. This will simplify Vfg to the following expression:

Vfg ≈
Qfg + CgVcg

Ctotal
(2.14)

Accordingly, the channel current expression will be simplified to the following expression:

Id = I0
W

L
exp

(

κ(Qfg + CgVcg)

CtotalUT

)[

exp

(

−
Vs

UT

)

− exp

(

−
Vd

UT

)]

(2.15)

The Vd term is negligible, because the drain is typically connected to a low voltage. We can simplify

the expression even more, resulting in:

Id = I0
W

L
exp

(

κ(Qfg + CgVcg)

CtotalUT

)

exp

(

−
Vs

UT

)

(2.16)

Therefore, a small change in the Qfg results in some change in the effective threshold voltage of

the FG transistor from the prospective of the control gate. This effect is illustrated in Fig. 2.3 (c).
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This figure is a gate sweep on an FG transistor which is fabricated in 0.5µm CMOS process. In

this experiment the FG transistor is programmed to three different values for Qfg.

2.3 Reading Operation

Reading the stored charge (QFG) is done through applying a voltage to the control gate of the

FG transistor and reading the current going through the channel. We will assume that there is

some charge stored on the floating gate of the FG transistor. Therefore, we can say:

VFG = αGVGS + αDVDS +
Q

CT
(2.17)

VT
CG =

1

αG
VT

FG −
Q

CTαG
(2.18)

IDS = β[(VGS − VT − (1−
1

αG
)
Q

CT
)VDS + (f −

1

2αG
)VDS

2] (2.19)

Equation 2.19 shows how the injected charge can move the I-V curve of the FG transistor. Assume

that the reading biases are fixed (VGS ≃ 5V , VDS ≃ 1V ). Presence of the charge will greatly affect

the level of the current that is sensed in the drain of the FG transistor. Fig. 2.7 shows two possible

states that are used in Flash memories to demonstrate “0” or “1” cases. Curve A represents the

“1” state and curve B is the same cell in the “0” state obtained with a 3-V threshold shift. In

the defined reading condition ID(“1”) is approximately 100µA and ID(“0”) is around zero. Read

operation is almost the same in analog applications. A fixed voltage is applied to the control-gate

of the FG transistor and the current flowing through the channel of the FG transistor is measured

using a measurement device.

2.4 Programming of FG Transistors

Many solutions are used to transfer electric charge (Q) from and into the FG. In both erasing and

programming processes, we have to pass charge through a layer of insulating material. The charge

stored on the floating node of the FG transistor can be modified using two famous phenomena,

Fowler-Nordheim (FN) tunneling and hot-election injection. In FG transistors, these effects are

used as efficient program/erase mechanisms.
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Figure 2.7: IV curves of an FG device when there is no charge stored in the FG (curve A) and when
a negative charge Q is stored in the FG (curve B)

2.4.1 Tunneling Processes

In Fowler-Nordheim (FN) tunneling, a high positive voltage is applied to the tunneling junction

of the transistor [11]. In this process, a large electric field is applied to electrons, allowing them to

tunnel through an oxide [11]. The high voltage across the capacitor reduces the oxide thickness.

With a relatively thick oxide (20 ∼ 30nm), we must apply a high voltage 20 ∼ 30V to have an

appreciable tunnel current. With thin oxides, the same current can be obtained by applying a much

lower voltage [7]. When the voltage across the tunneling junction is high, electrons are able to pass

the barrier and tunnel through the oxide. Ctun shown in Fig. 2.3 (b) is the tunneling capacitor.

The tunneling current is approximated by

Jtun ≈ αexp(−βtox/Vox) (2.20)

where tox is the oxide thickness, Vox is the voltage across the oxide, and α=185.5A/µm2 and

β=32.8V/nm are fits that we have extracted across multiple processes and device sizes [10]. The

tunneling capacitor that is used in this report is implemented using a simple MOS capacitor because

the oxide in this capacitor is thinner than a typical poly-insulated-poly capacitor. This will reduce

the voltage required to achieve FN tunneling. As an example, the voltages required for tunneling

in 0.35µm is Vox > 8V . Assuming that we have an array of FG transistors, to avoid write disturbs

during the tunneling process, unselected FG transistors must either be disconnected from the

tunneling input source using special high-voltage switches or the FGs of the unselected devices

must be raised to a sufficient high-voltage that tunneling does not affect them. Since isolation of
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Figure 2.8: Scaling of write/erase voltages in standard CMOS. (a) Scaling of critical programming
voltages: the Fowler-Nordheim tunneling voltage (Vtun) and the core supply voltage (Vdd). (b) Ratio
of the tunneling voltage to the core supply voltage.

the FG transistors is a difficult task, tunneling is always a global process in analog memory arrays.

As (2.20) illustrates, the Fowler-Nordheim tunneling current depends on the oxide thickness,

which decreases with CMOS process scaling, resulting in lower tunneling voltages in smaller tech-

nology nodes. However, charge retention in FG transistors is compromised by direct tunneling

when tox < 5nm [12], which gives rise to the continued use of 5–7nm gate oxides in the newest

NAND Flash processes while logic processes have continued scaling to a 2.5nm physical gate ox-

ide thickness [13, 14]. Consequently, floating-gates that are built in standard processes below the

250nm node should use thick-oxide I/O devices that are rated for operation at 2.5V or greater so

that oxide thicknesses are large enough to provide good charge retention.

Figure 2.8(a) shows the scaling of FG tunneling voltages in standard CMOS due to reducing

the oxide thickness. The tunneling voltage (Vtun) was calculated for 1ms erase times using (2.14)

and typical trends in oxide-thickness scaling (e.g. [15, 16]). Noting that the voltage required for

generating a tunneling current is much higher than the rated supply voltage for each process, a

step-up voltage converter, such as a charge pump, must be used. A charge pump typically multiplies

the chip Vdd by a certain value, which is expressed by the step-up ratio (Vtun/Vdd). The necessary

step-up ratios to achieve tunneling in each technology node are shown in Fig. 2.8(b). The step-up

ratio is lowest for the 250nm through 600nm nodes because 1) below the 250nm node, higher-

voltage I/O devices are used to make low-leakage floating gates and 2) above the 600nm node,

devices are operated at 5V even though they can accommodate much higher voltages. However,
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the rated Vdd of the 250nm through 600nm nodes produces noticeable hot-electron injection which

can cause unwanted changes to the stored charge on an FG; consequently, these technology nodes

must use lower supply voltages in practice, so the ratios for these nodes are essentially one integer

value higher (see “Vtun/Vdd (practical)”).

2.4.2 Injection Process

Channel hot-electron injection is used to insert electrons on the floating node of the FG tran-

sistors in many programmable analog systems [17]-[18]. Unlike the tunneling process, the injection

process is only used to write to individual elements. Two main conditions must be met for injection

to occur, a high current flowing through the transistor and a high electric-field between the gate

and drain of the FG transistor. This high electric-field causes high-energy carriers to impact-ionize

at the drain. A fraction of these ionized electrons distributes over the surface with high-enough

energy to pass the oxide barrier and inject onto the floating gate.

As mentioned, to perform injection of an FG transistor, Vdd is increased to high voltages. All

other voltages are also increased with respect to Vdd. This process is called “ramping up”, in

the remainder of this document. Obviously, the counterpart of this process will be referred to as

“ramping down”. [19] shows that the injection efficiency is better for subthreshold currents and

it starts to drop in above VT region. Hence for injection, the FG transistor is typically in the

subthreshold region, and the injection current from the FG to the drain can be approximated as

Iinj ≈ βIαs e
(Vsd/Vinj) (2.21)

where β, α, and Vinj are device-dependent fits [20]. Thus, programming speed is a function of Vsd

and Id, as well as Vgd, which is lumped into the fit parameters of (2.21). This current can also be

expressed using the second equation as follows. The injection currents are functions of both the

process parameters and the voltages applied to the FG transistor [11]-[21], as given by [22]:

Iinj = γId
Vgd + VTP

0.22t
1/3
ox x

1/2
j

exp

(

−
δ0.22t

1/3
ox x

1/2
j

Vgd + VTP

)

(2.22)

where γ = 3 and δ = 4.9× 108 are fits that we have extracted across multiple processes and device

sizes. Figure 2.9 shows how the voltages needed for injection (Vsd,inj) scale with technology nodes.

Despite the stagnant oxide thickness, Vdd,prog continues to scale because of Xj becomes smaller for
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Figure 2.9: (Top) Scaling of critical programming voltages: the core supply voltage (Vdd), the write
(i.e. injection) voltage (Vdd,prog), (Bottom) Ratio of the write (Vdd,prog) voltage to the core supply
voltage.

smaller technologies.

Charge pump circuits are used to multiply the chip supply voltage by a constant and generate

the voltage required for programming. A charge pump used for programming is enabled for a

short period of time to minimize the energy consumption. The input to the charge pump is the

chip supply voltage. The step-up ratio of the charge pump that is required for injection is a

technology-dependent parameter and is shown in Fig. 2.9 (bottom). The step-up ratio is lowest for

the 250nm through 600nm nodes because below the 250nm node, higher-voltage I/O devices are

used to make low-leakage floating gates. However, the rated Vdd of a technology node causes too

much hot-electron injection in standard thin-oxide transistors for stable floating-gate operation.

Consequently, the 250nm through 600nm nodes must use lower supply voltages in practice, so the

ratios for these nodes are essentially one integer value higher than shown in the figure. Since the

programming infrastructure [2] requires an additional overhead of several hundred millivolts beyond

the necessary Vsd for injection, a charge pump for injection must be able to provide (2 ∼ 3)×Vdd. In

addition, in order to have a suitable charge pump for the injection process, we must have a circuit

that has low output ripple. Some other aspects of a good charge pump are fast start-up time and

small die area. A charge pump proposed for injection will be presented in the next Chapter.
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2.4.3 Injection Methodologies

There is no standard way of performing FG injection. However, there are two major injection

techniques that some research groups employ: Pulsed-Programming and Continuous-Programming.

Pulsed-Programming

In pulsed-programming, a short programming pulse is applied first and then the programmed

charge is measured in the next phase. Fig. 2.10-(a) shows the pulsed-programming technique. This

process continues until the target current is reached. This approach requires a lot of programming

circuit overhead for reading and programming modes. Also, it takes longer to program higher target

currents. Therefore, programming time is a function of target current. This will be a serious issue

when high programming accuracy is required. Because in each programming pulse, a finer amount of

charge must be added to the FG node, which will increase the number of programming pulses. This

limitation will be more problematic when a large array of FG transistors must be programmed. In

order to mitigate this issue, a few approaches have been presented before [23, 20, 19]. For example,

the approach presented in [19] was tried in 0.25µm and 0.5µm n-well CMOS processes and can be

used to program a large FG array with more than 0.2% of accuracy over a wide range of currents

(more than 3.5 decades). In this approach, programming time is minimized by choosing an optimal

injection rate for a specific target current. Thus, a characterization of the injection rate is done first

in calibration mode, and then the developed mathematical model summarizes the characterization

data into a few parameters which simplify the process. Accordingly, run-to-run and chip-to-chip

mismatch of different injection rates for different FG transistors are taken into account.

The pulsed-programming proceeds as follows. The initial current flowing through each target

FG transistor is measured first. Then, for each initial current and the target current, the optimal

Vds is calculated using the data produced in the calibration process. Next, the chip is ramped up

and each target FG transistor is programmed using the calculated Vds voltage. Then, the chip is

ramped down and the currents are measured. If the measured current is less than the expected

value, the previous steps will be repeated until each FG transistor is injected to the desired value.

In this scheme, the target current is reached in a maximum of ten steps [19]. The required Vds

for each element for each step of the injection process is calculated using the data achieved in

the calibration process. [19] shows that the programming process was successful for both deep

subthreshold and above threshold target currents.
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Figure 2.10: Comparison of pulsed and continuous programming techniques. (a) Pulsed programming
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All the pulsed-based programming techniques presented in [23, 20, 19], will reduce the program-

ming time; however, they still suffer from some drawbacks. For example, in [23] a high accuracy

voltage source is required (> 12-bit precision). In addition, [19] requires a calibration phase to

extract a few parameters that are required in the programming phase to choose the correct Vsd

for programming pulses. This makes the programming process complicated and makes it difficult

to be used in a large array of FG transistors. In addition, this technique requires high-precision

data converters, and wide-range current measurements, which complicate the system and make it

not suitable for portable applications. One advantage of pulsed-programming is that the FG is

measured in a state similar to run-mode; with no high program voltages applied to the FG cell and

with the same current levels that will be used in run mode. This will improve the accuracy of the

programming.

Continuous Programming

Continuous methods of programming are faster than pulsed-programming techniques and re-

quire less peripheral circuits to program an entire array of FG transistors. In continuous methods of

programming, a high voltage is applied to the FG transistor continuously and a negative feedback

is used to make the programmed voltage converge to the target voltage. In this technique, the

FG transistor is usually used in a source-follower configuration and the injection is linearized via

negative feedback to the control gate. Fig. 2.10-(b) shows an example of a continuous programming

method. Fig. 2.11 shows the schematic of the amplifier that is used in the negative feedback path

of [1]. In [2], the same characteristics are achieved using a single transistor in the feedback path

as shown in 2.12. This structure is smaller and gives more flexible control over the injection rate
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Figure 2.11: Schematic of the FG transistor structure used in [1] to linearize the programming process

since Vs can be modified using either a voltage or a current input.

There are a variety of continuous-time programming structures available in the literature. A

single-transistor circuit [20] is an example, which self-converges due to the negative feedback of

injection current from the FG to the drain. The memory cell presented in Fig. 2.12 does not

converge on its own, and it needs some external programming circuit. In [2] a feedback structure

is used to stop the continuous-time FG programming.

2.5 Standard Flash Memories

In general, Flash memories used for digital applications are subdivided into two major cate-

gories: NAND and NOR. Based on how the FG transistors are organized in an array, it is possible

to distinguish between NAND flash memories and NOR flash memories. NOR flash emerged in

1978 by Intel and changed the market which was dominated by EPROM and EEPROM devices.

NAND Flash architecture was presented by Toshiba in 1984. Many traditional embedded systems

have used NOR flash for Non-volatile memory. Most of the current designs are moving to NAND

flash from NOR flash, because of its higher density and lower price for high-performance applica-
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Figure 2.12: The floating Gate memory cell used in [2]

tions. In the next few subsections, I try to cover the differences between NAND and NOR flash

memories and pros and cons of each memory type.

2.5.1 NAND Flash Memories

In the NAND flash architecture, the FG transistors are connected in a series combination, in

a group of 16 or 32. Two selection transistors are located at each end of the string, to ensure

connection to ground through MSSL and to the bitline through MDSL. Fig. 2.13 shows a basic

structure of the NAND memory cell. While reading a cell, its gate voltage must be at 0V, and

other gates of the string are biased with a high voltage (usually 4-5V). In this way, they work as

a pass-transistor, regardless of their threshold voltage. The threshold voltage of an erased NAND

Flash Cell is a negative voltage. A programmed cell has a positive threshold voltage, which is

typically less than 4V. Basically, if the addressed cell is erased, driving the selected gate with 0V

causes a sink current in the transistor. On the other hand, if the addressed cell is programmed, no

current is sunk [24].

The NAND Flash array can be grouped into a series of blocks, which are the smallest erasable

cells is NAND Flash devices. When erasing a block, all bits become 1 and all bytes become hex

“FF”. By programming, each bit changes from 1 to 0. The smallest programmable cell is a byte.

Usually, each NAND block can survive 100,000 programming/erasing cycles. NOR flash has 10

times less life span.

2.5.2 NOR Flash Memories

A NOR flash memory is basically an FG transistor, programmed by channel hot-electron (CHE)

injection and erased by Fowler-Nordheim tunneling. In this type of memory cell, the neutral

(or positively charge) state resembles logical state “1” and the negatively charged state with the
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negative charge stored in the FG, resembles “0” state. The name “NOR” comes from the structure

that is used to arrange the cells inside an array, through rows and columns in a NOR-like structure.

The gate connections shared between the Flash cells is called a wordline (WL), while the drain

terminals shared between Flash cells form the bitline (BL). In this structure, the source terminal

is common to all of the cells. A NOR Flash array is shown in Fig. 2.15. Programming of the NOR

memory cells is done through channel hot electron (CHE) injection in the FG at the drain side.

This process for a single cell is shown in Fig. 2.16. In this process, electrons gain high energy to

pass the oxide-silicon energy barrier, due to the electric field in the channel between the source

and drain terminals. The Fowler-Nordheim electron mechanism is a quantum mechanical tunnel

produced by an electric field. Applying a strong electric field (around 8 ∼ 10MV/cm) across a

thin oxide, it is possible to force a large electron tunneling current through it without destroying

its dielectric properties. This process is used to remove electrons from the FG to silicon surface as

shown in Fig. 2.17.
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2.5.3 NAND Flash vs. NOR Flash

Fig. 2.18 shows a brief comparison between NAND flash and NOR flash cells. The size of

a NAND flash cell (4F 2) is smaller than a NOR flash cell (10F 2) because a NOR flash needs a

separate metal contact for every single cell. This will provide higher densities for low-cost consumer

devices in a significantly reduced die area i.e. removable cards, including USB drives, secure digital

cards (SD), memory stick cards, and multimedia cards (MMCs). However, NOR flash memories

are typically used for code storage and execution, like simple consumer appliances, and low-end

cell phones, and embedded applications.

Basically, NOR flash is a random access memory device, because it has enough address pins to

map its entire media which allows for easy access to every single bit of its bytes. NAND devices

are interfaced serially via a complicated I/O interface, which varies from one device to another.

Also, the access time of the NAND flash memories is much higher than the NOR flash memories.

The reason behind the slower access time of NAND flash memories is that the sense amplifier of a
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Table 2.1: NAND Flash vs. NOR Flash

NAND NOR

Advantages
Fast Program Random Access
Fast Erase Byte Programs possible

Disadvantages
Slow random access Slow Programs

Byte Programs Difficult Slow Erase

Applications
File (disk) applications Replacement of EPROM

Voice, data, video recorder Execute directly from Non-Volatile Memory
Any large sequential data

NAND configuration sees a signal weaker than for a NOR configuration. This is because multiple

transistors are in series. This weak signal slows down the speed of the reading process. This can be

overcome by operating in serial access mode. NAND flash is suitable for a file or sequential data

applications. NOR flash is appropriate for random access applications. Random access time on

NOR flash is around 0.075µs and on NAND flash (for the first byte only) is 25µs [25]. However,

after initial access has been made, the rest of 2111 bytes are shifted out of memory at speed of

0.025µs per byte. NAND flash has faster “Programming” and “Erasing” operations. Random-

Access and Byte-write capabilities are the main advantages of the NOR flash memories [25]. Table

2.1 summarizes the pros and cons and applications of both types.

2.6 Analog Applications of FG transistors

Other than Flash-memories, which is a digital application of FG transistors, FG transistors

have been used in a wide variety of analog applications, too. For example, [26] is a programmable

analog filter bank that is realized with FG transistors. Analog filter banks are used in audio and

vibration-sensing applications. In these applications, frequency analysis must be performed. The

system that performs this analysis must be low power and have moderate to high precision. FG

transistors are used as bias current circuits in [26]. [18] also presents a field-programmable-analog-

array (FPAA) for wireless sensor hardware applications. In [18], FG transistors are also used to

provide accurate bias currents for the circuits with programmable parameters. These parameters
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include the gain of OTAs, the bandwidth of a filter, etc.

[27] uses FG transistors as analog memory cells to monitor the bone healing process. In this

work, the possibility of self-powered monitoring of the bone healing process using piezo-floating-

gate (PFG) sensor is investigated. The data that was recorded by the sensors includes the statistics

of the strain evolution during the healing process and is stored in an array of FG transistors for

offline retrieval and analysis. [28] also uses FG transistors as analog storage. In this work, the data

related to the estimated center of mass (centroid mean) and spread (centroid variance) are stored

in the FG transistors.

FG transistors are also used in analog to digital converters (ADCs), too. The resistive divider

used in flash ADCs have some limitations. The mismatch between different resistors in the resistive
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Figure 2.19: Two possible reconfigurable systems using FG transistors.

divider results in incorrect and non-linear voltage division. [29] presents an array of adaptive FG

comparators. In this structure, each reference voltage is stored and programmed separately using

FG technology. The quantizer made of this structure is called the Adaptive FG Quantizer (AFGQ).

The same research group presents an adaptive FG comparator with 13-bit resolution in a different

work [30]. The comparator presented in [30] uses non-volatile charge storage for either offset nulling

or automatic programming of the desired offset voltage. The negative feedback functionality of

pFET hot-electron injection is used to achieve fully automatic offset cancellation.

2.7 Objective of the proposed research

The main objective of this work is to use FG transistors and make a low-power reconfigurable

system for portable applications. An FPAA is used to make a reconfigurable system. An FPAA is

an integrated circuit including configurable blocks (CAB) and interconnects between these blocks.

The circuits used inside the CABs can be either voltage mode or current mode devices. The

bias current required for these devices are provided with FG transistors. The reason that we do

not use on-chip current sources instead of FG transistors is that the FG transistors provide more

flexibility in the bias current generation. Some infrastructure circuits are required to program the

FG transistor. These circuits include charge pump circuits to generate high voltages required for

tunneling and injection, a voltage reference cell to generate the bias voltage required for the rest

of the circuits, voltage regulators to generate low noise supply voltages with high current driving

capability, and the programming circuits to control the injection rate and accuracy of programming

the FG transistors. Two possible block diagram of the programming infrastructure are shown in
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Fig. 2.19. In Fig. 2.19(a) a positive charge pump is used to perform the injection of the FG

transistors. This charge pump is replaced with a below ground charge pump in Fig. 2.19(b) to

improve the accuracy of programming. In the next few Chapters the design procedure of most of

these blocks used in Fig. 2.19 will be covered.
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Chapter 3

High Voltage Charge Pumps for

Tunneling and Injection of

Floating-Gate Transistors

Tunneling and injection of FG transistors require high voltages. The high voltage required for a

specific programming process can be generated on-chip or off-chip. A high voltage can be generated

using off-chip boost converters [18]. In this chapter, we discuss how we generate the high voltages

required for programming using high voltage charge pumps. These charge pumps do not require

bulky on-chip inductors. In the rest of this chapter, three on-chip charge pumps are presented,

which are designed in 0.35µm CMOS technology for tunneling and injection, respectively.

3.1 A Regulated Charge Pump for Tunneling Floating-Gate Tran-

sistors

In this section, we present a charge-pump topology fabricated in a standard 0.35µm CMOS

process that is capable of providing the high voltages required for programming floating-gate tran-

sistors. We focus primarily on a charge pump for the tunneling operation since tunneling requires a

high step-up ratio. Because the voltage across any single device in this charge pump never exceeds

Vdd, this topology can easily be scaled for higher or lower output voltages, hence providing a means

to produce the voltages required by other high-voltage on-chip applications, such as injection of

floating-gate transistors or for MEMS devices. We also provide insight into the voltages that are

required to generate tunneling conditions in floating-gate devices fabricated in standard CMOS

processes as these processes scale to newer technology nodes.
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Additionally, this charge pump has been designed for use in battery-powered applications in

which power consumption must be minimized and the charge pump should be robust to noisy

and/or drooping battery supplies. To meet these needs, we describe several circuit techniques,

including 1) a simple method for reducing start-up energy in a previously reported charge-transfer

stage, 2) a method for regulating the charge pump via frequency modulation, and 3) a new circuit

to minimize the short-circuit current of the clock circuitry. The topology we present can be easily

designed to achieve a specific, and low, output ripple that is independent of the clock frequency

and load current—low output ripple is crucial to precisely programming floating-gate transistors

for applications in non-volatile analog memory and programmable analog biases. The resulting

charge pump is able to provide a low-ripple output up to 16V from a 2.5V supply while expending

only 1.45µJ to erase floating-gate transistors.

3.1.1 Considerations Regarding Tunneling Voltages

Fowler-Nordheim tunneling is the process of moving electrons through an oxide using a large

electric field [11]. This process is often used in floating-gate transistors to modify the charge stored

on the floating gate and, accordingly, change the memory value. In many floating-gate applications

in standard CMOS processes, tunneling is used for memory erasure [31, 19].

As we discussed in the previous Chapter, Fig. 2.8 provides insight into the voltages that need to

be generated by the charge pump for the tunneling voltage. The amount of load current required

to tunnel a single FG transistor is exponentially related to the inverse of the voltage across the

tunneling oxide. Since the starting charge on the floating gate may be unknown and different for

each tunneling operation, the current required to tunnel a device can vary greatly for each tunneling

operation. Additionally, since tunneling is often used as a global erasure [19], many floating-gate

transistors will likely be tunneled simultaneously by the same charge pump. With each floating-gate

charge starting at different values, the load current of the charge pump cannot be known ahead of

time and can vary by several orders of magnitude. Consequently, the charge pump providing the

tunneling voltage must be able to provide a consistent voltage for a wide range of load currents.

Additional constraints on the charge pump that are specific to embedded analog applications

include small size with minimal external components, reasonably fast start-up, and shut-down,

and consistent voltage generation in the presence of potentially noisy supply voltages; voltage

consistency is especially important since it affects the programming accuracy. For generating
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Figure 3.1: (a) Ideal charge pump. (b) Operation of the ideal charge pump.

tunneling voltages, which exceed the breakdown voltage of the devices, care must be taken in

the design of the charge pump so that no individual device undergoes breakdown. Furthermore,

for battery-powered applications, energy consumption should be minimized; therefore, the charge

pump should only be enabled when it is needed to provide the high tunneling voltage. Finally,

this charge-pump technology should be scalable to the tunneling-voltage requirements of other

technology nodes. We demonstrate a charge pump in a standard 0.35µm CMOS process because of

our existing applications of programmable and reconfigurable analog systems in this process [32, 18],

and this same topology can be scaled to meet the needs of tunneling voltages in other processes, as

well. In the remainder of this section, we describe our design of an integrated high-voltage charge

pump that is capable of meeting all these requirements.

3.1.2 Brief Overview of Charge Pumps

A charge pump, which is sometimes referred to as a voltage multiplier, is a switched-capacitor

voltage converter that is often used to create voltages outside of the typical voltage rails (e.g. above

Vdd). Figure 3.1 shows an idealized Dickson charge pump[33], which is a standard charge-pump

topology for integrated circuits because of its linear voltage growth and its insensitivity to stray

bottom-plate capacitance. This charge pump has two stages that are clocked by alternating clock

phases (φ1 and φ2). When φ1 is low (φ2 is high), node V1 and capacitor Cp1 are charged to Vdd. On

the subsequent clock phase, φ1 transitions high, which raises the bottom terminal of Cp1 to Vdd,

thereby “pumping” V1 to 2Vdd; this resulting voltage at node V1 is sampled at node V2. When φ2

goes high again, node V2 is raised to 3Vdd. The final output voltage is obtained by sampling the

last stage onto the load capacitor, CL. Higher voltages can be generated by cascading more stages,

N . Each stage adds Vdd to obtain a total output voltage of Vout = (N + 1)Vdd.

However, when a load current, IL, is drawn from the charge pump, Vout is reduced. In equilib-
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rium, the load draws a charge of ILT during each cycle of duration T which results in a voltage

loss of ILT/Cp for each pumping capacitor. The resulting output voltage is

Vout = (N + 1)Vdd −N
IL
Cpf

(3.1)

where f = 1/T is the pumping frequency[34].

3.1.3 Charge-Transfer Switches

The primary challenge when designing a charge pump that approaches the ideal characteristics

in (3.1) is the design of the charge-transfer switches (CTS), which are illustrated as ideal switches

in Fig. 3.1. Early integrated charge pump designs used diodes or diode-connected transistors to

implement the CTS[33]. Such designs rely upon the uni-directional current flow of diodes to only

allow charge transfer onto a pumping capacitor when its voltage is exceeded by the voltage of the

preceding stage. These designs suffer from poor voltage gain and poor efficiency because of the

accumulation of diode voltage drops. As a result, several charge-pump circuits have been developed

to dynamically control the on/off state of the CTS and, thus, improve performance.

As described in section 3.1.1, Fowler-Nordheim tunneling requires voltages so large that the

drain-to-body junction will break down. To avoid break down, transistors in the CTS must inhabit

isolated wells so that all voltage differentials in the CTS are at safe values. Since it is not always

possible to isolate nFETs in standard CMOS processes, it is best for high-voltage charge pumps to

use pFETs exclusively.

The all-pFET CTS that we use is based upon the circuits presented in [35, 36], and we have

modified them to improve performance—particularly in reducing start-up power consumption. Our

resulting charge-pump stage is shown in Fig. 3.2(a). Each stage has two parallel paths—a top path

through Msw1 and Msw3, and a bottom path through Msw2 and Msw4. The parallel paths conduct

in opposite phases, which helps to reduce the output ripple. Furthermore, the opposing phases of

the parallel paths offer a low-complexity means for clocking the second set of switches (Msw3 and

Msw4). This second set of switches reduces the voltage stress on the transistors in the off-phase.

In a CTS with a single series switch, the voltage across an off switch is 2Vdd. By adding the extra

series switches, the off voltage is divided across the series switches so that no pair of terminals on

the transistors is exposed to a voltage higher than Vdd[35, 36].

To provide the correct voltage for the transistor wells, the active well-biasing technique is used
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Figure 3.2: (a) The open-loop charge pump consists of a cascade of charge-pump stages. (b) The
all-pFET charge pump stage that is used throughout this work. (c) Non-overlapping clock signals
necessary for the charge pump stages.

[37]. This technique is implemented by the “bulk-biasing” transistors Mbb∗. Each pair of Mbb∗

transistors connects the well to the higher voltage terminal of the source or the drain. The system

that was simulated in [36] extended the CTS of [35] by including active well biasing for switches

Msw1 and Msw2 but not for Msw3 and Msw4; instead, the wells of Msw3 and Msw4 were connected

to Vstage,out. In steady-state, this was acceptable because they included a grounded capacitor at

Vstage,out to hold the higher of Vm1 and Vm2. However, we have removed this capacitor and added

well-biasing on these switches to avoid charging extra capacitance and activating parasitic vertical

BJTs during startup, both of which unnecessarily consume power. Reducing the startup power is
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Table 3.1: Charge Pump Specifications

Technology 0.35µm CMOS

Vdd 2.5V

# Stages 6

Cbt 110fF

Cp 1.5pF

Mbb 3µm x 0.35µm

Mbt 3µm x 0.35µm

Msw 5µm x 0.35µm

important for charge pumps that are used for tunneling floating-gate transistors; startup energy

dominates the overall energy of the charge pump, particularly since the charge pump is turned on

for relatively short periods of time while tunneling.

The operation of this charge-pump stage is as follows, where the phases of the 4-phase non-

overlapping clock are depicted in Fig. 3.2(c). Focusing only on the top half of the circuit and noting

that the bottom half is identical (and out of phase), we can see that charge is transferred from

Vstage,in to Vm1 when Msw1 is turned on (φ1b is low). When φ2 goes high, node Vm1 is increased

by Vdd. This charge is then transferred to Vstage,out when Msw3 is on (φ1 is low). Mbt1 is used to

ensure that the correct voltage is at the gate of Msw1 at all times so that Msw1 is either fully on or

fully off.

3.1.4 Complete Open-Loop Charge Pump

The complete, open-loop charge pump consists of six identical stages in series [Fig. 3.2(a) Top].

Although each charge-pump stage contains many devices, its size is dominated by the pumping

capacitors Cp∗. Each Cp is only half of the value needed for a charge pump with one capacitor per

stage[34], so the size is similar to other charge pumps with commensurate performance. The design

specifications are summarized in Table 3.1.

Figure 3.3(a) shows the output voltage of the six-stage open-loop charge pump for varying clock

frequencies and load currents, and Fig. 3.3(b) shows the output resistance (which will be discussed

in more detail in section 3.1.7). As can be seen from Fig. 3.3(a), this charge pump is able to

achieve the necessary voltages for tunneling a floating-gate transistor (approximately 10V-12.5V in

this 0.35µm CMOS process).
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3.1.5 Regulation Through Frequency Variation

When a charge pump is used to generate tunneling voltages, Vout must be steady and consistent

to facilitate accurate floating-gate programming. However, referring back to the idealized charge

pump of Fig. 3.1, it is evident from (3.1) that Vout has an amplified dependence on the supply

voltage, Vdd, which may be inconsistent and noisy in a battery-powered application. Vout also has a

dependence on the load current IL, which will vary as memory cells begin and finish programming;

this dependence on the load current is clearly evident from the results of the open-loop charge

pump [Fig. 3.3(a)] and can significantly vary the output voltage. Furthermore, in an open-loop

charge pump, Vout is set to integer multiples of Vdd, which is a limitation for setting the sensitive

program voltages to optimal values. To achieve reliable and accurate tunneling programming, the
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pump. (c) Small-signal model of a regulated charge pump.

charge pump should be regulated to a constant output voltage.

Examining (3.1), only two quantities can be adjusted at runtime to regulate the output voltage:

Vdd and f . Regulation using Vdd is typically accomplished by modulating the clocking voltages φ1

and φ2[38, 39]. These clocking voltages contribute the NVdd term of Vout in (3.1). These variable-

pump-voltage regulators have the advantage of reducing the level of clock-feedthrough ripple on

Vout, which must otherwise be removed with a large load capacitor. However, variable-pump-voltage

regulators have the disadvantage that they constantly operate at their maximum frequency, which

results in wasted power from unnecessarily charging and discharging all parasitic capacitances.

Variable-frequency regulators are thus a more efficient alternative. The simplest type of variable-

frequency regulator is the “skip” regulator, which turns on a constant-frequency oscillator when

Vout is less than the desired voltage and otherwise turns the oscillator off[40]. Some regulators

have used a combination of variable-voltage and skip-mode [41, 42]. Skip regulators exhibit spo-

radic bursts of pumping which create a large ripple on the output. A better alternative is a true

“variable-frequency” regulator that linearly increases or decreases the frequency to regulate Vout.

This form of regulation has been previously used in [43, 44], and we have used the same basic

method. In contrast to the voltage-doubler charge pump of [43] that used very-large external ca-

pacitors, we designed for small size and efficient operation at the high voltages/low load currents

typical of tunneling. Furthermore, our charge pump achieves higher efficiency, smaller size, and

better load regulation than the charge pump with a high step-up ratio in [44].

A generic block diagram for a variable-frequency regulated charge pump is shown in Fig. 3.4(a).

A voltage-divider (R1,2) reduces the output voltage to within the chip’s rated voltage range. The

difference between this reduced voltage and the desired voltage, Vtarg, is used to modulate the

pumping frequency until the output voltage locks onto the desired value. In addition to setting

the output voltage, the regulation also reduces the output resistance, increases the power-supply
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Table 3.2: Charge Pump Performance

Open loop Closed loop

Output
resistance

ROL = N/(Cpf) RCL = ROL/K

Power supply
rejection

PSRROL = 1/(N + 1) PSRRCL = KPSRROL

Start-up
time constant

τOL = ROLCtot τCL = τOL/K

rejection, and decreases the start-up time compared to an open-loop charge pump.

The performance of an open-loop charge pump can be obtained by modeling it as the RC circuit

shown in Fig. 3.4(b). From (3.1), the open-circuit voltage is (N + 1)Vdd and the open-loop output

resistance is ROL = N/(Cpf). The total capacitance at the output, Ctot, combines the true load

capacitance, CL, with the distributed charge pump capacitance, Ceq = NCp/3[34]. The open-loop

performance parameters are summarized in Table 3.2.

Table 3.3: Charge Pump Variables

N Number of stages

Vtarg Target voltage

IL Load current

ROL Output resistance of open-loop charge pump

RF Resistance of voltage divider

Ctot = CL + Ceq Total output capacitance

CL Load capacitance

Ceq = NCp/3 Distributed charge pump capacitance

K = KFKCP /r Loop gain

KF
Voltage-to-frequency gain
of the error amplifier and oscillator

KCP = ILN/(f2Cp)
Frequency-to-voltage gain
of the charge pump

r Value of voltage division

It is more difficult to determine the closed-loop regulation performance because of ROL’s depen-

dence on the operating point (i.e. ROL depends upon f , which is a function of Vout and IL), which

makes the regulation loop nonlinear. To simplify the analysis, the small-signal model from [44] is

adapted and shown in Fig. 3.4(c). The variables are all defined in Table 3.3. Sensitivity to Vdd has

also been included in our model using the lower controlled voltage source of value (N +1)Vdd. The

upper controlled source models the effect of the frequency-modulating feedback. The loop gain, K,
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is the product of 1) the attenuation due to the voltage divider (1/r), 2) the combined voltage-to-

frequency conversion gain, KF , of the error amplifier and oscillator, and 3) the frequency-to-voltage

conversion gain of the charge pump

KCP =
dVout

df
=

ILN

f2Cp
(3.2)

To solve for the regulation performance, first equate the currents at Vout

1

ROL
[(N + 1)Vdd +K (rVtarg − Vout)− Vout] =

= Vout

(

sCtot +
1

RF

)

+ IL (3.3)

Then, solve for Vout, noting that by design K
ROL

≫ 1
ROL

+ 1
RF

Vout =
rVtarg +

N+1
K Vdd −

ROL

K IL

sCtotROL

K + 1

=
rVtarg +

1
PSRRCL

Vdd −RCLIL

sτCL + 1
(3.4)

The output consists of a superposition of three components: the scaled-up target voltage, which is

the desired output, as well as unwanted contributions from the supply voltage and the load current,

which are both suppressed by the loop gain. The closed-loop performance parameters, which are

summarized in Table 3.2, are all improved by a factor of the loop gain compared to the open-loop

performance. It should be noted that the regulation circuitry adds little area and power compared

to the rest of the charge pump. In section 3.1.7, we will connect these performance parameters to

actual circuit parameters.

3.1.6 Current-Controlled Oscillator and Edgifier

To modulate the frequency in our variable-frequency regulator, we have used a current-controlled

oscillator. In comparison to voltage-controlled oscillators, current-controlled oscillators naturally

offer linear input-to-frequency gain over a wide operating range and are also easily limited so

that the maximum frequency of the charge pump is not exceeded during transients. Our current-

controlled oscillator, shown in Fig. 3.5, is based upon a three-stage current-starved ring oscillator.

The frequency increases linearly with Iin. The current-to-frequency gain has been measured to be

approximately 2kHz/nA over a range of 100Hz to 10MHz.
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diagram. (b) Schematic.

A major attraction of variable-frequency regulation is that under light load conditions, the

clock frequency reduces so that power consumption is minimized. However, the clock signals that

are generated by low-frequency oscillators have a long rise and fall times. These slow-moving edges

create excessive short-circuit current when they are connected directly to a subsequent logic gate.

Unlike the dynamic current that charges fan-out gates, this short-circuit current performs no useful

function and should not be allowed to dominate the power consumption.

To minimize short-circuit power dissipation, we control the “push” and “pull” branches of an

inverter with separate non-overlapping signals. This technique is most commonly used when driving

large loads—such as in clock buffers[45] or in buck converters[46]—for which it is difficult to equalize

the input and output rise/fall times, and for which the consequences of short-circuit current are

dire because large transistors with large current-sourcing capabilities are used. Our contribution is

to adapt this concept for use with slowly-varying input signals. We call this the “edgifier” concept

because it transforms slow rise and fall times into sharp edges.

Our edgifier circuit, which is shown in Fig. 3.6(a), is based upon the CMOS buffer with non-

overlapping gate drive presented by Yoo[45]. Yoo’s circuit consists of a push/pull buffer (M8T,B),
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the gates of which are driven by the logical AND of a) the input and b) the delayed and inverted

version of the complementary gate signal. As a result, one transistor is always “turned off” before

the other is “turned on.” This technique reduces the short-circuit current of a buffer for which

the load is not pre-determined[45]. However, the non-overlapping gate drive circuitry in [45] is still

subject to short-circuit current from the slow rise and fall times of an input.

To minimize the short-circuit current that is caused by the slow rise and fall times of an input, we

have added current-starving transistors M3T,B and M7T,B to the circuit’s gate-drive front-end. The

current-starving transistors limit the short-circuit current in the front-end while allowing inverter

M8T,B to be driven with non-overlapping signals. To enable transistors M8T,B to be strongly turned

off, the current-starving transistors have only been used on one side of the logic ladder.

An additional benefit of asymmetric current starving is that it varies the trip point of the

respective inverter. For example, the “top” inverters (M1−7,T ) have their trip points shifted toward
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higher voltages, and the “bottom” inverters (M1−7,B) have their trip points shifted to lower voltages.

The exact location of the trip point of the inverter can be tuned via the current-starving bias. For

example, biasing M3T,B and M7T,B in the subthreshold domain significantly separates the “top”

and “bottom” trip points while also limiting the switching current in those inverters.

As a result, our edgifier leverages the different trip points for the “top” and “bottom” paths

caused by current starving to ensure that only one of M8T,B is turned on at any given time, as

opposed to utilizing the delay properties of inverters as in [45]. The trip points of the “top”

and “bottom” paths have been indicated in Fig. 3.6(b). The resulting operation of this circuit is

analogous to a Schmitt trigger insofar as the output of the edgifier transitions from low-to-high at a

different input voltage than it trips from high-to-low. However, the edgifier consumes significantly

less power than a Schmitt trigger in this scenario of working with slow-transitioning clock signals.

Figure 3.6(b–e) compares simulation results between our edgifier and a CMOS inverter (which

also consumes less power than a Schmitt trigger for this scenario) for an input signal with slow

rise/fall times. In this example, the current-starving bias in the edgifier is a subthreshold current

of 1nA and the outputs are unloaded. For the system-level implementation, this current-starving

bias is derived as an “error signal” from a transconductor that measures the difference between the

charge pump’s desired and actual output voltage. The simulated output of the ring oscillator is
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used as a realistic input to the circuits [Fig. 3.6(b)]. The output of the edgifier is shown in Fig.

3.6(d), and is compared to the output of an inverter in response to the same input. This inverter

has the same dimensions as M9T,B. Figure 3.6(e) shows that the inverter draws supply current

over a long duration on each transition. In comparison, the edgifier’s supply current is only a short

impulse.

The edgifier’s reduction in the short-circuit current of subsequent logic gates can significantly

reduce the overall power consumption of a circuit that contains a low-frequency oscillator. This

power reduction is shown in Fig. 3.7. Measured and simulated power consumption values are shown

over a wide range of frequencies. The power consumption “w/ edgifier” includes the oscillator, edg-

ifier, and one subsequent logic gate. The power consumption “w/o edgifier” includes the oscillator

and one subsequent logic gate. Because of the current-starved delay elements in the oscillator, the

rise and fall times of the oscillator are a constant percentage of the clock period, which results in

constant short-circuit power consumption for the logic gate “w/o edgifier” below 1MHz. In con-

trast, the power consumption of the oscillator “w/ edgifier” continues to reduce by almost three

decades, enabling the total power of the charge pump to reduce further at low load currents.

3.1.7 The Complete Charge Pump

Figure 3.8(a) shows the schematic of our complete regulated charge pump. This charge pump

was fabricated in a standard n-well 0.35µm CMOS process, and the die photograph of the 230µm ×

300µm charge pump is shown in Fig. 3.9. Instead of using linear resistors in the voltage divider, we

used eight diode-connected pFETs, each in their own well, to reduce the overall size [Fig. 3.8(b)].

Figure 3.8(d) shows measurements of the current draw of the divider branch at different voltages.

The divider branch was designed to draw 100nA–1µA over the typical operating range (Vout = 10V–

12.5V), which is a sufficient minimum load current to prevent the clock frequency from dropping

below 10kHz. This minimum clock frequency maintains stable regulation when the target load is

primarily capacitive (e.g. an array of tunneling junctions) without unnecessarily wasting power.

By dividing Vout by a factor of eight in Fig. 3.8(a), Vout is thus regulated to 8Vtarg. The

measured transfer curve from Vtarg to Vout is shown in Fig. 3.8(c). From 7.5V to 16V, the average

steady-state output voltage is regulated to within 1% of 8Vtarg (with a small ripple voltage, which

will be discussed shortly). Deviation at the high voltages is caused by the open-loop charge pump’s

maximum voltage (N + 1)Vdd = 17.5V . In Fig. 3.8(a), error amplification is achieved by using an
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Measured dc-dependence of the charge-pump output on Vtarg for a purely capacitive load. (d) Mea-
sured current–voltage sweep of the pFET-divider circuit. The well-to-substrate breakdown current
can be seen in the top-right. This breakdown is not a concern because it occurs at a much higher volt-
age than the circuit’s operating voltage. This result also indicates that well-to-substrate breakdown
voltage is not an issue for the operating range of voltages for this charge pump.

operational transconductance amplifier (OTA) to convert the error into a current, as opposed to

using the voltage output of an operational amplifier or comparator which is typically used in “skip”

regulators. Deviation at the low voltages in Fig. 3.8(c) is caused by the error-amplification OTA’s

bias transistor being pushed out of the saturation region.

Now that the complete details of the regulated charge pump have been elaborated, we can

calculate the loop gain K that was described in section 3.1.5. Starting from Vout: Vout is divided

by r = 8, then it is converted to a current with transconductance Gm, a current mirror scales this

current by a factor of 4, the current-controlled oscillator then converts this current to a frequency

with a gain of KRO = 2kHz/nA, and finally, the charge pump converts this frequency to the output
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Figure 3.9: Die photograph of the complete regulated charge pump circuit. The size is 230µm ×

300µm.

voltage with a gain of KCP . The total loop gain is the product of all of these components

K =
4GmKROKCP

r
(3.5)

The transconductance provides a way to tune the charge pump for the desired loop gain, which

changes the load-regulation characteristics and the start-up time. Using (3.1), the dependence of

the clock frequency on the load current is given by

f =
NIL

Cp [(N + 1)Vdd − Vout]
(3.6)

where Cp is the pumping capacitance per stage. By combining (3.2), (3.5), and (3.6), the loop gain

can be expressed as

K =
4CpGmKRO

rNIL
((N + 1)Vdd − Vout)

2 (3.7)

In addition to dependence upon Gm, the loop gain is also dependent upon IL and the desired Vout.

Of note, the loop gain increases with decreasing IL; however, the loop gain remains finite due to the

effective load current through the resistive divider in the feedback loop, thereby keeping the system

stable for capacitive loads. While loop gain decreases with increasing Vout, it maintains a value

> 100 even for an output of 16V with a purely capacitive load. Performance with capacitive loads

and small IL is an important consideration when tunneling floating-gate transistors; this charge

pump is able to set Vout = 8Vtarg to within 1%, as was shown in Fig. 3.8(c).
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Figure 3.10: (a) Measured load regulation characteristics of the closed-loop charge pump. Vtarg was
varied from 7V to 16V in increments of 1V. (b) Measured DC output impedance of our charge pump as
a function of Gm (which was varied by modifying the bias current of the OTA). To validate reliability,
the measurement was performed with a fresh charge pump, as well with a charge pump that had
previously generated 106 12.5V-pulses.

Using K and (3.1), we can obtain the closed-loop output resistance from Table 3.2

RCL =
ROL

K
=

r

4CpGmKRO

N

(N + 1)Vdd − Vout
(3.8)

To verify this expression, we have measured the open-loop and closed-loop load regulation in Figs.

3.3(a) & 3.10(a). The improvement afforded by regulation is clearly evident. Indeed, it would

be very difficult to precisely generate an arbitrary high voltage without regulation. The output

impedance is extracted from these data and is shown in Figs. 3.3(b) & 3.10(b). Good agreement is

found between the measured results and the theoretical values for ROL and RCL. This agreement

confirms that, when the charge pump is designed to sufficiently approach ideal characteristics, this
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Figure 3.11: Measured transient characteristics of our closed-loop charge pump. (Top) Output voltage
with an inset of the ripple voltage, ∆V . (Middle) Instantaneous power consumption. (Bottom) Closed-
loop adapted clock frequency.

simple analysis can be used to confidently design a high-voltage charge pump.

Additionally, (3.8) helps provide insights into the stability of this system. Since RCL has no

dependence on the load current, the corner frequency of this system only depends on Gm (which

is generally set to a fixed value) and the desired Vout. Decreasing Vout increases the bandwidth of

the system by modifying the output pole, which is the dominant pole of the charge pump. For Vout

within typical values for generating tunneling voltages (e.g. > 7.5V), all non-dominant poles are

at sufficiently high frequencies so as to not cause any stability issues, whatsoever. For values of

Vout < 7.5V where instability could become an issue, stability can be maintained with this topology

by increasing CL to keep the dominant pole sufficiently low, or by reducing the number of stages.

In a circuit that operates beyond the rated voltage of the process, the designer should ensure

that the local voltage differentials for each device are within the rated voltage range. A beneficial

feature of the charge pump stage [Fig. 3.2(a)] is that the use of two series switches in each stage

protects the devices from any voltage stress greater than Vdd[36]. To verify that this protection
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ensures reliable performance under typical operating conditions, we measured the charge pump’s

output resistance before and after the charge pump had generated 106 12.5V-pulses of 1ms duration.

These pulses are typical of the way the charge pump is used to program floating-gate transistors.

The before-and-after measured output resistance is shown in Fig. 3.10(b). The “burned in” charge

pump consistently has a slightly higher output resistance. However, the variation is small, and

the number of cycles is greater than the typical rating for Flash memory, which confirms that this

charge pump has sufficient long-term reliability for our application.

The prominent characteristic of a frequency-regulated charge pump is that the frequency varies,

which helps to minimize the power consumption once the target output voltage is reached. Figure

3.11 shows a measurement of the charge pump generating a 1ms, 12.5V tunneling pulse. The

measured frequency of the clock over time is shown in Fig. 3.11(c). During startup, the OTA is

saturated and the clock pumps at a maximum frequency of ∼30MHz. Once the target voltage is

reached, the clock is relaxed to ∼300kHz. The resulting mitigation in supply current while the

voltage is held is seen in Fig. 3.11(b) which is especially pronounced because the clock frequency is

slow enough that the edgifier produces additional power savings (see Fig. 3.7). The overall energy

that was used to generate this pulse was 1.45µJ.

Figure 3.11(a) also shows the output voltage ripple, ∆V , for the charge pump in steady-state.

The standard expression for output ripple in charge pumps is given by

∆V =
IL∆t

CL
(3.9)

where CL is the capacitance loading the output node, IL is the load current that discharges CL,

and ∆t is the period of the ripple which is established by the clock frequency; for our charge pump

that uses a parallel structure, ∆t is half the clock period (i.e. twice the clock frequency). Since our

charge pump leverages variable-frequency regulation, the frequency of the clock depends on IL as

given by (3.6). Therefore, the total output ripple voltage for our charge pump is

∆V =
Cp

2NCL
[(N + 1)Vdd − Vout] (3.10)

Of note, the ripple voltage of our charge pump has no dependence on the load current or the

clock frequency, whereas a charge pump that does not employ variable-frequency regulation has

these dependencies (see (3.9)). Instead, the ripple voltage can be designed to have a specific value
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Figure 3.12: Measured efficiency of the charge pump. (a) Measured open-loop and closed-loop effi-
ciency for varying load currents. The closed-loop charge pump was measured with Vout = 12V. (b)
Measured efficiency for varying step-up factors and multiple load-current conditions.

by setting appropriate values for the pumping capacitance and the load capacitance. Our charge

pump had a measured ripple of < 18mV when driving a load capacitance of approximately 80pF ,

which was created primarily from parasitic capacitances from the pads, board-level connections,

and oscilloscope probes (i.e. no explicit load capacitor was used).

The efficiency of a charge pump is the power delivered at the output of the charge pump divided

by the total power going into the circuit, given by

γ =
VoutIL
VddIvdd

(3.11)

For our regulated charge pump, this input power includes the power consumed by all components,
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Table 3.4: Comparison of Regulated High-Voltage Charge Pumps

This Work Aaltonen [44] Barnett [47] Kang [40] Kim [48] Tsai [49] Tsai [50] Tseng [51]

Process 0.35µm 0.35µm HV 0.35µm 63nm 0.13µm 0.18µm 0.18µm 0.18µm

Vin (V) 2.5 2.5 2–3 1.8 1.2 1.8 1 1.2

Vout (V) 7.5–16 10 13.2–14.1 1–18 3 ±6 3–6 6

Max Step-Up 6.4 4 7.05 10 2.5 3.33 6 5

N 6 9 8 45 3 3
6 stages by

9 interleaved cells
3

Effective

Step-Up per Stage
1.07 0.44 0.88 0.22 0.83 1.11 1 1.67

Total

Cpump (pF)
18 14.4 – 225 240 – – –

Size (mm2) 0.069 0.14 0.092 >2.56 0.6 4.94 0.5 4

Efficiency 34% @ 25µA 18% @ 29µA – – 12.5% @2mA –
48–58%

52% @ 240µA
–

Maximum

Load Current
40µA @10V – <5µA 150µA 2mA 400µA 240µA 700µA

Ripple (mV) 18 – – 200 – – 39 30

Tunneling Possible? Yes Yes Yes Yes No No No No

not just the charge pump. We have not emphasized efficiency because it is not a crucial specification

when generating short tunneling pulses for tunneling junctions that draw a very small load current.

As can be seen in Fig. 3.11, most of the energy is consumed while starting up the charge pump.

However, we will briefly discuss efficiency because it is a standard comparison point for voltage

converters and because it will be of interest for modifying this charge pump for other applications,

such as for injection-level supply voltages for floating-gate programming and also for various MEMS

applications.

From [34], the supply current of an ideal charge pump with bottom-plate stray capacitance is

Ivdd =

[

(N + 1) + α
N2

(N + 1)Vdd − Vout
Vdd

]

IL (3.12)

where α is the ratio of the bottom-plate stray capacitance to the pumping capacitance, which is

fixed for a given CMOS process and is typically in the range of 0.1–0.2. The first additive term

accounts for the current that is pumped toward the load. The second term accounts for the current

that charges and discharges the stray capacitance. The theoretical maximum efficiency is

γ =
Vout

Vdd

[

(N + 1) + α N2

(N+1)Vdd−Vout
Vdd

] (3.13)

For Vout = 12V, N = 6, and Vdd = 2.5V, the maximum theoretical efficiency is approximately

52%. Figure 3.12(a) shows the measured efficiency of the open-loop and closed-loop charge pump
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for varying load currents. Figure 3.12(b) also shows how the efficiency changes according to the

step-up factor (for multiple values of IL). The charge pump achieves approximately 65% of the

theoretical efficiency. Furthermore, the overhead of regulation has not significantly decreased the

efficiency of the unregulated charge pump. In fact, variable-frequency regulation is able to achieve

better regulation across a wider range of load currents.

Since the charge pump was designed for use in ultra-low-power systems where the supply voltage

is provided by batteries or energy harvesting and may vary significantly over time, power-supply

rejection is an important concern. The use of regulation improves the power-supply rejection by

68dB over an open-loop charge pump. The measured power-supply rejection ratio (PSRR) for the

regulated charge pump was 52dB at 1kHz with Vout = 12V.

Table 3.4 compares our charge pump to others—specifically, we compare our charge pump to

other regulated charge pumps that have been fabricated and are capable of producing voltages that

are twice the rated voltage of the core devices (i.e. Vout > 2Vdd). The last row of this Table indicates

whether or not the particular charge pump can achieve large-enough voltages for tunneling floating-

gate transistors in their respective process. Even though a constant and predictable charge-pump

output voltage is critical for many memory applications (e.g. multi-level Flash [52] and analog non-

volatile memory [31]), very few regulated high-voltage charge pumps have been reported. As can

be seen from this Table, our charge pump is able to provide good performance while maintaining a

small size. Additionally, our charge pump is able to provide a high voltage with very little ripple,

and (3.10) describes how this ripple can be improved even further.

3.2 A Regulated Charge Pump for Injecting Floating-Gate Tran-

sistors

In the previous section, we presented a charge pump capable of generating the voltages required

for programming, and we focused on tunneling which is the larger voltage that must be generated.

We were able to show that the charge pump was able to produce high voltages with relatively low

ripple in the output voltage. Tunneling is reserved for global erasure in many analog FG applications

[53], and so a moderate amount of ripple on the tunneling voltage is acceptable. However, injection

is often used for precise programming, and thus the output ripple should be very small (on the

order of 1mV or less).

In this section, we extend our previous results in [3] to achieve extremely low ripple in the
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Figure 3.13: Block diagram of tunneling charge pump we presented in [3].

output voltage to provide voltages for injection. We present a method to reduce output ripple

in high-voltage charge pumps by adding a high power-supply-rejection-ratio (PSRR) low drop-out

regulator (LDO) in the regulation loop of the charge pump. This 260µm×460µm charge pump was

fabricated in a standard 0.35µm CMOS process. While operating from a 2.5V supply, the charge

pump generates regulated voltages from 3V to 10V. The maximum efficiency of the charge pump is

23% for 25µA of load current. The output ripple is less than 1mV for a wide range of load currents

and output voltages. We describe the development of this regulated charge pump in the remainder

of this Chapter.

3.2.1 Considerations Regarding Injection Voltages and Scaling

Channel hot-electron injection is used to precisely set a specific charge on an FG in many

programmable analog systems [17]-[18]. In Chapter 2 considerations regarding injection voltages

and scaling were discussed. We showed how the voltages needed for injection (Vsd,inj) scale with

technology nodes. Charge pump circuits are used to multiply the chip supply voltage by a constant

and generate the voltage required for programming. A charge pump used for programming is

enabled for a short period of time to minimize the energy consumption. The input to the charge

pump is the chip supply voltage. Since the programming infrastructure [2] requires an additional

overhead of several hundred millivolts beyond the necessary Vsd for injection, a charge pump for

injection must be able to provide (2 ∼ 3) × Vdd. In addition, in order to have a suitable charge

pump for the injection process, we must have a circuit that has low output ripple. Some other

aspects of a good charge pump are fast start-up time and small die area.
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Figure 3.14: (a) Block diagram of the proposed injection charge pump. (b) Transistor-level details of
the resistor cell to implement the resistive divider.

Table 3.5: Charge pump specifications.

# stages 6

Cbt 110fF

Cp 3pF

Mbb 3µm x 0.35µm

Mbt 3µm x 0.35µm

Msw 5µm x 0.35µm

3.2.2 Proposed High Voltage Charge Pump

Figure 3.13 shows the block diagram of the charge pump we presented in [3]. A voltage divider

shifts the output voltage to a voltage between ground and Vdd. The difference between this feedback

voltage (Vfb) and the target voltage (Vtarg) is converted into a current. This current modulates the

frequency of the current-controlled ring oscillator. The open-loop charge pump used in this work

includes 6 stages which generate a high-voltage that is related to the oscillation frequency of the

oscillator. The circuit schematic of the charge transfer stage (CTS) is shown in Fig. 3.15(a) [3].

Figure 3.14(a) shows the circuit diagram of the proposed high-voltage charge pump. The charge

pump presented in [3] has a small ripple (around 20mV) which is adjustable with the load capacitor.

In this work, we used an LDO inside the loop of [3] to make the ripple smaller. We did not place

the LDO outside the charge pump loop because that resulted in larger ripple and longer settling

time.

The operation of the closed-loop system of Fig. 3.14(a) is as follows. Starting from Vout: Vout

is divided by r = 5, then it is converted to a current with transconductance Gm, a current mirror

scales this current by a factor of 8, the current-controlled oscillator then converts this current to a
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Figure 3.15: (a) Circuit diagram of the charge transfer switch (CTS). (b) Non-overlapping clock
signals necessary for the CTS.

frequency with a gain of KRO = 2kHz/nA, and finally, the charge pump converts this frequency

to the output voltage of the charge pump (VCP ). The design specifications of the charge transfer

switches used in this work are provided in Table 3.5. VCP has big ripple which makes it unsuitable

for precise programming; however it is used as the supply voltage of the low drop-out regulator

(LDO). The sizes of the resistors in the LDO voltage divider are set to: R1 = R2/3 = R3. Since

the voltage at the negative input of the operational transconductance amplifier (OTA) inside the

LDO loop is at Vtarg, the LDO will regulate the output voltage to be 5Vtarg.

The pass transistor used in this charge pump is a series connection of two pMOS transistors.

This structure is similar to the high-PSRR LDO presented by [54]. This cascode structure improves

the output impedance of the pass transistor, which leads to an improved supply rejection. As

mentioned in [54], this structure will reduce the gate capacitance associated with the pass transistor

and will make compensation of the LDO easier. Thick-oxide devices are used for Mpass and Mcasc,

since the voltage across these transistors can be large and may damage the devices. Using the

saturation region condition for pMOS transistors and knowing that the voltage at the gate of the

Mcasc is at Vcasc = 4Vout/5, the maximum voltage allowed at the output to keep Mcasc in saturation

region is:

5|VTh,thick|> Vout (3.14)

where VTh,thick refers to the threshold voltage of the thick-oxide transistors. Since the body of
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Figure 3.16: (a) Measured DC dependence of the charge-pump output on Vtarg for a purely capacitive
load. (b) Measured load regulation of the closed-loop charge pump for various output voltages (c)
Measured transient response of the closed-loop charge pump for a 20µA load current.

Mcasc is connected to VCP , the voltage difference between the body and source of this transistor

(Vbs) will increase the threshold voltage of Mcasc. Hence, the upper limit (5VTh,thick) on the output

voltage increases, too. The range of voltages used for the injection process in 0.35µm CMOS is

between 5V and 6.5V; this upper limit (5VTh,thick) is high enough to cover the injection voltage

range. The saturation region condition for the pass transistor (Mpass) can be expressed by:

VCP >
4Vout

5
+ VTh,casc +

√

2Iload
Kpass

+

√

2Iload
Kcasc

(3.15)

where Ki = µCox(W/L)i is the aspect ratio of Mi, VTh,casc is the threshold voltage of the cascode

transistor, and Iload is the load current.

According to (3.15), for a specific output voltage (Vout) and load current (Iload), Mpass can

be biased in the saturation region by correct selection of Kpass, Kcasc, and the open-loop charge-

pump parameters to set VCP . The output voltage of the open-loop charge pump can be set by the

following equation [34]:

VCP = (N + 1)Vdd −N
Iload
CP f

(3.16)
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To make VCP satisfy (3.15), the number of charge transfer stages (N) and the size of the pumping

capacitors (Cp) must be adjusted correctly. The operational frequency of the charge pump (f) is a

function of Iload and Vout and will be adjusted by the regulating operation of the charge pump.

Figure 3.14(b) shows a single resistive cell used in the voltage divider branch of the LDO. Each

cell includes a resistor (98kΩ) in series with a pFET, all in a single well, to reduce the overall size

of the resistor divider circuitry. R1 and R3 are each a single resistive element, and R2 is a series of

three of the resistive elements as shown in Fig. 3.14(b). The resistance seen between the top and

bottom terminals of this resistive cell can be expressed as:

Ro =
(gm + gmb)R+ R

ro
+ 1

gm + 1
ro

(3.17)

3.2.3 PSRR of LDO

In this section, we establish a frequency-domain equation for the PSRR of the proposed LDO

based on [55]. When analyzing only the LDO of Fig. 3.14(a), a small-signal input voltage, Vi, will

induce an output voltage, Vo. The ratio between Vo and Vi simply represents the LDO PSRR. The

PSRR of the proposed LDO can be expressed as:

Vo

Vi
=

5(gm2gds1 + gm2gm1 + gmbgm1 + gds2gds1 + gm1gds1)(1 +RaCas)

(gm2 + gmb + gds2)gm1Aota +
5(gm2+gmb+gds2)(1+RaCas)

zL
+ (4gm2gds1 + 5gds2gds1)(1 +RaCas)

(3.18)

where ZL can be expressed as the parallel combination of load capacitance (CL) and the total

resistance of the resistor divider (5Ro):

ZL =
5Ro

1 + 5RoCLs
(3.19)

Assuming that (gm1, gm2, gmb) ≪ (gds1, gds2) and that the resistance seen by the resistor divider

(5Ro) is high, the PSRR at DC can be approximated as:

Vo

Vi
|DC=

1
gm1Aota

5gds1
+ 1

(3.20)

Hence, by having a high-gain OTA (AOTA) and keeping Mpass in saturation, the denominator of

(3.20) will have a large value, thus significantly improving the PSRR.

3.2.4 Experimental Results

This charge pump was fabricated in a standard n-well 0.35µm CMOS process, and the die

area of the charge pump is 260µm× 460µm. A conventional 5 transistor differential amplifier was

employed for both error amplifiers. The OTA used inside the charge-pump loop has a pFET input

structure, and the OTA used inside the LDO loop has a nFET input structure. The bias currents
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of the OTAs inside the charge-pump loop and the LDO loop are 270nA and 4µA, respectively.

The measured transfer curve from Vtarg to Vout is shown in Fig. 3.16(a). Deviation at the high

voltages is caused by the maximum limit that is provided by (3.14) and (3.15). Deviation at the low

voltages in Fig. 3.16(a) is caused by the error-amplification OTA’s input transistors in the LDO

being pushed out of the saturation region. The closed-loop load regulation of the charge pump is

shown in Fig. 3.16(b). The injection process requires that the output impedance is designed such

that the output of the charge pump stays constant in a wide range of load currents. Hot-electron

injection requires voltages higher than Vdd to make electrons pass through the gate oxide. For our

application, we will mostly use 6.5V as the elevated supply voltage in the injection process.

Figure 3.16(c) shows the measurement results of the charge pump generating a 6.5V injection

pulse with 20µA of load current for a load capacitance of 0.47µF. This plot shows that the output

voltage ramps up to the target voltage in less than 0.2ms.

The efficiency of a charge pump can be expressed by:

γ =
VoutIload
VddIvdd

(3.21)

which is the power delivered to the load divided by the total power going into the charge-pump

circuit. Figure 3.17(a) shows the efficiency measurement of this charge pump for 6.5V output.

The maximum efficiency is around 23%, and it starts to drop for load currents greater than 25µA

because the loop gain is not high enough to hold the output voltage at 6.5V. Figure 3.17(b) shows

the efficiency measurement of this charge pump for different step-up ratios (Vout/Vdd) for 20µA of

load current. This plot shows that this charge pump is able to provide higher voltages with better

efficiency.

The accuracy of the injection process is a function of the accuracy of the elevated injection

voltage (e.g. 6.5V in our application). The required accuracy for programming will set a maximum

limit on the ripple voltage (on the order of 1mV or less). Because the ripple was very small and

within the limits of our measurement equipment, we used RC extracted simulations to report the

ripple amplitude. Figure 3.18 shows the RC-extracted simulation results when the charge pump

was set to 6.5V output. The load current was set to 0µA and 20µA in these simulations, and the

simulated peak-to-peak output ripple is approximately 0.4mV and 0.6mV, respectively.

3.3 A high voltage charge pump using a feed-forward compensa-

tion technique

In this section, we present a charge-pump for injecting FG transistors. A few modifications are

made to the injection charge-pump presented in section 3.2. I will explain these modifications in

the remainder of this section.
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Figure 3.17: (a) Measured efficiency of the charge pump versus load current when Vout = 6.5V (b)
Measured efficiency of the charge pump versus Vout/Vdd for 20µA of load current.

First, a higher number of charge-transfer stages (e.g. 7) are used in this structure to improve

the DC level at the input of the LDO. This will allow the pass transistor and the cascode transistor

operate in the above threshold saturation region.

Second, since the OTA inside the LDO loop consumes a portion of the current provided by

the open loop charge-pump, we must make sure that enough current will be provided by this open

loop charge-pump. Thus, two different sizes for pumping capacitors are tried on the fabricated chip

(3.14pF and 4.72pF). I use bigger pumping capacitors to improve the current provided by the open

loop charge-pump.

Third, the body of the cascode transistor is tied to the source of the same transistor. According

to (3.15), this allows the pass transistor to operate in the above threshold saturation region.

Finally, a feed-forward compensation capacitor is used in parallel with the resistor divider of the

LDO to improve the phase margin of the LDO. Thus the output voltage will settle down to 5∗Vtarg
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Figure 3.18: Simulated ripple for an output voltage of 6.5V with (a) 0µA load current and (b) 20µA
load current.

with an over-damped behavior. This is very important for the injection of the FG transistors. The

amount of injection current in a PMOS device can be represented by the following equation:

Iinj ≈ βIs
αeVsd/Vinj (3.22)

where α, β, and Vinj are fit parameters. This equation covers the subthreshold operating range,

which is where the injection operation is most efficient. Of note, the channel current (Is) and the

source-to-drain voltage (Vsd) determine the injection rate. As was mentioned earlier, significant

injection only occurs for Vsd > Vdd. According to (3.22), the injection current of an FG transistor is

exponentially related to the drain-source voltage of the FG transistor. Thus, any overshoot at the

injection voltage provided by the charge-pump during injection can cause a spike in the injection

current. Therefore, that can cause inaccuracy in the programmed charge on the floating node. The

details of the proposed injection charge-pump circuit will be presented in the rest of this section.

3.3.1 Low ripple charge-pumps

There are two available approaches to generate a high DC voltage using a closed loop charge-

pump and an LDO. First, using a closed loop charge-pump in series with a closed-loop LDO.

Second, using a closed loop LDO inside a closed loop charge-pump. The first circuit is presented

in Fig. 3.19. The closed loop charge-pump uses 7 charge-transfer stages. The ratio of R3/R4 is

set to 7 in this closed loop charge-pump. The LDO uses the same exact structure as the injection

charge-pump proposed in section 3.2. Fig. 3.20 shows the simulation results of the charge-pump

under a 50µA of load current. The output voltage of the LDO is shown in Fig. 3.21. The output
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voltage of the charge-pump in this case overshoots to a very large value (approximately 8V) and

settles down to the target voltage (6.5V). This behavior is not desirable in FG programming, since

the FG transistor will be over injected during the large overshoots. I would like to get an over-

damped output voltage for FG programming. In the next section, I will show that using an LDO

inside a charge-pump loop will provide an over-damped behavior.

3.3.2 Using LDO inside the charge-pump loop

In order to have an accurate FG injection, It is required to generate a low noise high-voltage

signal using the proposed charge pump. The high voltage DC signal generated from the open loop

charge pump has a considerable ripple. According to equation (3.10), the amplitude of this signal

(VCP ) is controllable with CCP . Thus, we will need to integrate a big capacitor on the chip (CCP )

or use an external pin to tie an off-chip capacitor to the output of this charge-pump to generate a

low ripple output voltage. By using an LDO inside the charge-pump loop we can reduce the size of

this capacitor (CCP ). Thus, all elements of this charge-pump can be integrated on the same chip.

The circuit diagram of the proposed LDO is shown in Fig. 3.22-(a). The condition to keep the

pass transistor inside the saturation region is:

VCP >
4Vout

5
+ VTh,casc +

√

2Iload
Kpass

+

√

2Iload
Kcasc

(3.23)

Using a body to source connected cascode transistor (Mcasc), the threshold voltage of the cascode

transistor will be at the lowest possible value. Thus compared to the charge-pump presented in

section 3.2, the load current (Iload) on the right side of (3.23) can be at a higher level and still keep

the pass transistor inside the above threshold saturation region. This means that the charge-pump
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Figure 3.20: Output of the charge-pump (VCP ) presented in Fig. 3.19

can handle higher load currents compared to the injection charge pump presented in section 3.2.

Another important structural change to the proposed circuit is using a feed-forward capacitor

inside the LDO loop to improve the loop stability of the LDO [56]. A capacitor can be added to

the original LDO configuration, to provide a high-frequency bypass path for the loop gain. This

capacitor generates a pole-zero pair in the open-loop transfer function as follows [56]:

H(s) =
A0(1 +

s
wz1

)

(1 + s
wp1

)(1 + s
wp2

)(1 + s
wp3

)
(3.24)

where wz1 = 1
R2C1

and wp3 =
1+

R2
R1

R2C1
. In our design, wp3 is 4 times bigger than the zero, since

the resistive ratio is 4. This extra zero will improve the phase margin of the LDO.

3.3.3 Experimental Results

The proposed circuit was fabricated in a standard 0.35µm CMOS process. The supply voltage

of the proposed circuit is 2.5V . The measurement results of both versions of this charge-pump will

be presented in the rest of this section. In this section, the first version charge pump refers to the

charge pump with a 3.14pF pumping capacitor and the second version charge pump refers to the

charge pump with a 4.72pF pumping capacitor.

The measured transfer curves from Vtarg to Vout is shown in Fig. 3.24. The steady-state output

voltage is regulated to 5Vtarg. Deviation at the low voltages in Fig. 3.24(a) and 3.24(b) is caused

by the error-amplification OTAs input transistors in the LDO being pushed out of the saturation

region. Deviation at the high voltages is caused by the limited output voltage of the open loop

charge-pump. The second version can provide higher output voltage because the term N IL
CP f in
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Figure 3.21: Output of the LDO (Vout) presented in Fig. 3.19

equation (3.1) is a smaller term in the second version.

The load-regulation measurements of the proposed circuit are shown in Fig. 3.25. These plots

show that the second version of this charge-pump handles higher load currents. Fig. 3.26 shows

the measured output resistance of this charge-pump for both versions. To measure these two plots

the slope of the curves between 40µA and 50µA in Fig. 3.25 was calculated. These two plots

show that the output resistances of both versions are close. This is because both structures use the

same exact LDO structures with exact same transistor sizes. However, the loop gain of these two

structures are slightly different due to the different pumping capacitor sizes. Thus, there is a slight

difference between the closed-loop output impedance of these two charge-pumps. Fig. 3.27 shows

the measured output resistance of the proposed charge pump as a function of Gm. In order to take

this measurement, the bias current of the OTA inside the charge-pump loop was set to 2µA, 4µA,

and 5µA.

Fig. 3.28 shows the transient response of both charge pumps under 40µA of load current with

no load capacitor in the output. The Enable signal activates the charge pump for 3.5ms. The rise

times of the charge pumps are less than 0.5ms which are fast enough for the injection procedure.

The efficiency of a charge pump can be calculated by:

γ =
VoutIload
VddIvdd

(3.25)

which is the power delivered to the load divided by the total power going into the charge-pump

circuit. Fig. 3.29 and 3.30 show the measured efficiency of the proposed charge pump. A 6.5V

pulse is typically used to inject the FG transistors. Fig. 3.29 shows that the maximum efficiency

for a 6.5V output occurs at 70µA of load current. The maximum efficiency at 6.5V is around 20%.
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Since the charge-pump is activated in a short period of time, a low-efficiency number is not a severe

issue in FG programming.

3.4 Conclusion

In this Chapter, three high-voltage charge pumps are presented that are suitable for tunneling

and injection of FG transistors. We have presented the design and results of a regulated high-voltage

charge pump for generating tunneling voltages to program FG transistors. This compact charge

pump leverages variable-frequency regulation and a new circuit for minimizing short-circuit current

to provide reliable tunneling voltages while consuming very little power. Because of its compact

size and low-power operation, this charge pump is ideally suited for battery-powered applications.
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Figure 3.24: Measured transfer curve (a) first version charge-pump (b) second version charge-pump.
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Figure 3.25: Measured load regulation of (a) first version charge-pump (b) second version charge-
pump.

Additionally, it can easily be adapted to provide higher or lower voltages for programming FG

transistors in scaling CMOS processes and also for other applications, such as MEMS devices.

Additionally, the design of two regulated charge pumps for injection of FG transistors are

presented. A high PSRR LDO is used inside the charge pump loops to reduce the ripple. A feed-

forward compensation technique is used in the LDO to improve the phase margin of the LDO. This

is very critical in FG injection because an under-damped voltage is not suitable for FG injection.

The proposed charge pumps have compact sizes and consume low power which makes them suitable

for battery-powered applications.
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Figure 3.28: Measured transient response of the proposed closed loop charge-pump under 40µA load
and no load capacitance for (a) first version charge-pump (b) second version charge-pump.
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Chapter 4

A Low-Power Voltage Reference Cell

with Above-1V Output

A low-power voltage reference cell for system-on-a-chip applications is presented in this chapter.

The proposed cell uses a combination of standard transistors and thick-oxide transistors to generate

a voltage above 1V. A design procedure is also presented for minimizing the temperature coefficient

(TC) of the reference voltage. This circuit was fabricated in a standard 0.35µm CMOS process.

It generates a 1.52V output with a TC of 42ppm/◦C from −70◦C to 85◦C while consuming only

1.11µW.

4.1 Background of the voltage reference cells

Voltage reference circuits are critical building blocks that are used to generate a stable volt-

age across a wide range of temperatures. As newer CMOS technology nodes are providing lower

threshold voltages and reduced supply voltages, the main emphasis of recent designs has been to

generate a low reference voltage (especially less than 1V) using a low supply voltage. Many good

designs have been developed that provide these sub-1V reference voltages using very low power.

However, many applications still exist that require reference voltages greater than 1V, but

also consume very little power. While a number of good above-1V designs have been presented,

there has been a severe tradeoff between having a low temperature coefficient (TC) and low power

consumption.

In this chapter, we present a voltage reference cell that is able to simultaneously achieve a low

TC and low power consumption over a large range of temperatures. Our voltage reference cell has

been fabricated in a standard 0.35µm CMOS process and is capable of generating a reference voltage

greater than 1V with a TC<110ppm/◦C and single µW power consumption over a wide range of

temperatures. To achieve this performance, we use the difference between the threshold voltages of

standard (thin-oxide) transistors and I/O thick-oxide transistors to provide both elevated voltages
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and also the temperature characteristics needed to minimize the TC. The generated reference

voltage is a function of the ratio of resistors, and thus, the temperature-dependent terms due to

the resistors largely cancel out.

4.2 Proposed Voltage Reference Cell

Figure 4.1 illustrates the proposed voltage reference cell. All the transistors used in this circuit

are standard (thin-oxide) transistors except for Mt1 and Mt2 which are thick-oxide transistors (5V

I/O devices). Two resistors are used in this circuit—one to generate the reference current (RC)

and the other to generate the final reference voltage (Rout).

This circuit has three main blocks, as shown in Fig. 4.1. A current reference cell is used to

generate a current that is proportional to absolute temperature (PTAT). A start-up circuit is used

to initialize the current reference cell and stabilize its current at a nonzero value. Finally, the third

block generates the temperature-independent voltage by first creating a voltage at node Vx that

is complementary to absolute temperature (CTAT). Resistor Rout then combines the PTAT and

CTAT signals into an overall output voltage that has very low temperature dependence.

To achieve low power consumption, our circuit was designed to operate in the subthreshold

region with very low bias currents. The drain current of a transistor biased in subthreshold can be

expressed as [57]:

Id = I ′0Se
κ(Vg−VT )

UT

(

e
−Vs
UT − e

−Vd
UT

)

(4.1)

where I ′0 = 2ηµCoxU
2
T , S is the aspect ratio (W/L) of the transistor, UT = kT/q is the thermal

voltage, k is the Boltzmann constant, q is the elementary charge, T is the absolute temperature

in kelvins, VT is the MOSFET threshold voltage, and η = 1/κ is the subthreshold slope. Voltages
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Vg, Vs, and Vd are the gate, source, and drain voltages, respectively, referenced to the substrate.

When the transistor operates in the saturation region, exp(−Vd

UT
) approaches zero and is, therefore,

negligible. We also assume that the transistors have been designed with large-enough channel

lengths that the channel-length modulation effect can be safely neglected.

The detailed operation of each block will be explained in the remainder of this section.

4.2.1 Reference Current Generator

We use a standard PTAT current generation block which includes a current source and a current

mirror. The difference between the Vgs values of M10 and M11 establishes a voltage across RC . By

proper sizing of RC , M10, and M11 (S11 > S10), all the transistors in the PTAT current generator

can be biased to be in the subthreshold region. By setting S6 = S7, the PMOS current mirror

provides unity gain. Using (4.1) to define expressions for the currents in M10 and M11, the current

generated by RC is

IRC
=

Vs

RC
= UT

(

1

RC

)

ln

(

S11

S10

)

(4.2)

which linearly increases with temperature. The off-chip capacitor (CC) is used to serve as a low-

pass filter to stabilize the gate voltage of M10 and M11. IRC
is mirrored to M12 and M13 with

ratios of x and y. Thus, we have

Ix = I12 = I14 = xIRC
(4.3)

Iy = I13 = It2 = yIRC
(4.4)

Accordingly, the voltage drop across Rout caused by the PTAT current source can be expressed as

VPTAT = y

(

kT

q

)(

Rout

RC

)

ln

(

S11

S10

)

(4.5)

This voltage is PTAT and can be set by Rout/RC and the aspect ratios for M10 and M11
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4.2.2 Start-Up Circuit

A start-up circuit is used to initialize the current reference cell and stabilize its current at a

nonzero value (IRC
6= 0). We use the start-up circuit presented by [58]. The start-up circuit turns

on M6, M7, M10, and M11 at power-up to initialize a nonzero IRC
. Afterwards, M4 and M5 turn

off and the entire start-up circuit no longer draws current.

4.2.3 Temperature-Independent Voltage Reference Cell

The temperature-independent voltage reference cell is based upon a modified version of the

building block shown in Fig. 4.3(a) that is commonly used as a PTAT voltage generator (e.g. [59]).

The currents through Mb and Ma are Ix and Ix + Iy, respectively. These two currents can be

expressed using (4.1) as

Mb : Ix = I ′0Sbe
κ(Vg−VT )

UT e
−

Vy

UT (4.6)

Ma : Ix + Iy = I ′0Sae
κ(Vg−VT )

UT

(

1− e
−

Vy

UT

)

(4.7)

By dividing (4.7) by (4.6) and solving for Vy, we find that

Vy = UT ln

(

1 +

(

Sb

Sa

)(

Ix + Iy
Ix

))

(4.8)

The resulting voltage is PTAT and can be set by proper sizing of Ma and Mb and the bias currents

(Ix and Iy). However, the value of Vy cannot be made large because of the log compression working

on the ratio of the transistor sizes and currents. Some designs stack this circuit repeatedly to

generate a higher reference voltage, as shown in Fig. 4.3(b), but they still struggle to achieve a high

voltage [60].

Figure 4.3(c) shows a modification to Fig. 4.3(a) that replaces the bottom transistor with a

thick-oxide device. This configuration has been used previously to provide a low voltage at Vy that

is CTAT [58, 61, 62]. We, instead, use this configuration to help us achieve a much higher voltage
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at another node that is also CTAT.

The currents through Mb and Mat follow the forms of (4.6) and (4.7), with the only differences

being the various process-dependent parameters for the thick-oxide device, Mat,

Mat : Ix + Iy = I ′0tSate
κt(Vg−VTt)

UT

(

1− e
−

Vy

UT

)

(4.9)

where the extra ‘t’ in the subscript represents the value for the thick-oxide device. By dividing

(4.9) by (4.6) and solving for Vy, we obtain

Vy = UT ln

(

1 +
Ix + Iy

Ix

I ′0Sb

I ′0tSat
e

κT VTt−κVT
UT e

κVg−κtVg

UT

)

(4.10)

Noting that VTt > VT and that κVg − κTVg ≈ 0, (4.10) can be approximated as

Vy ≈ κtVTt − κVT + UT ln

[(

Ix + Iy
Ix

)(

I ′0Sb

I ′0tSat

)]

(4.11)

with proper sizing of the transistors. VTt is typically several hundred mV greater than VT , which

means that using a thick-oxide transistor for Mat can produce a voltage at Vy that is much larger

that can be produced by Fig. 4.3(a). Additionally, Vy is dominated by the first two terms of (4.11),

and since threshold voltages are widely known to be CTAT [63], Vy is also a CTAT voltage.

Next, we show that we can use Fig. 4.3(c) to create a CTAT voltage at the bottom of Rout

(Vx) in Fig. 4.1. The current through Mt1 can be expressed as

It1 =
(

1 +
y

x

)

I14 (4.12)

Using (4.11) and (4.12), the following equation can be achieved

Vy ≈ κtVTt − κVT + UT ln

[

(

1 +
y

x

)

(

I ′0S14

I ′0tSt1

)]

(4.13)

Using (4.13) and the equation for the current through Mt2, the voltage at node Vx can be expressed

as

Vx = 2VTt −
ηt
η
VT + ηtUT ln

[

ξ

RcT

]

(4.14)

where

ξ =

(

y +
y2

x

)

S14

St1St2
ln

(

S11

S10

)

q

k

ηCox

2η2t µC
2
oxt

(4.15)

Vx is dominated by the first two terms of (4.14), and since threshold voltages are widely known to

be CTAT [63], Vx is a CTAT voltage.

Finally, Vout is the summation of the PTAT voltage given by (4.5) and the CTAT voltage given
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by (4.14).

Vout = yRoutIRC
+ Vx (4.16)

Vout = y
Rout

RC
UT ln

(

S11

S10

)

+ 2VTt −
ηt
η
VT + ηtUT ln

[

ξ

RcT

]

(4.17)

The goal of this voltage reference cell is to generate an above-1V output using thick-oxide

transistors. The execution of idea is visible in equation (4.17) where 2VTt is a considerable portion

of the output voltage. Additionally, the voltage drop across Rout further increases Vout. Thus, using

the proposed structure, a higher voltage can be achieved by using small number of transistors and

taking advantage of the thick-oxide transistor’s larger threshold voltage.

4.3 Design procedure for low TC Vout

In this section, we discuss how to design this voltage reference circuit to have a low temperature

coefficient. By taking the derivative of (4.17) with respect to T, we arrive at an equation for the

TC at Vout.

TC =
∂Vout

∂T
= y

k

q

Rout

RC
ln

(

S11

S10

)

+ 2αt −
ηt
η
α+

ηtk

q

[

ln

(

ξ

RcT

)

− 1

]

(4.18)

The α terms, which have a negative value, come from the commonly used expression for the

temperature effects on the threshold voltage [63] given by

VT (T ) = VT (T0) + α(T − T0) (4.19)

where T0 is a reference temperature, and T is the temperature of interest.

Analyzing (4.18), we can see that the temperature dependence of the resistors has little impact

on the TC; assuming both resistors are made from the same material, their temperature dependen-

cies cancel in the first term. RC is also contained within the ln term, but its temperature effects

have little impact since they are compressed by the logarithmic function; hence, the temperature

effects of RC are neglected in this analysis (and they are far less significant than the T term in

the same ln function). The ξ term also contains the temperature-dependent items µ, η, and ηt;

again, since they are logarithmically compressed, they have little impact on the overall TC, and

their temperature effects can be safely neglected.

The only other remaining temperature-dependent term in (4.18) is T within ln (ξ/RCT ). Since

T is within an ln function, its affect on the TC is significantly compressed, meaning that it is

possible to achieve a low overall TC. To achieve a low TC over a temperature range of interest, a

reference temperature in the middle of the range should be chosen; then, the TC can be minimized



Mir Mohammad Navidi Chapter 4. A Subthreshold Voltage Reference Cell 69

by setting (4.18) equal to zero at that reference temperature, T0. By then solving for ln (ξ/RCT )

and plugging in that expression into (4.17), we find the optimal value for Vout.

Vout = 2VTt −
ηt
η
VT − 2αt(T0) +

ηt
η
α(T0) + ηtUT (4.20)

≈ 2VTt − VT − 2αt(T0) + α(T0) + ηtUT (4.21)

Noting that the α terms have negative values (i.e. VT is CTAT) and are typically in the mV/K

range [63], the optimal Vout at room temperature will be greater than 1V, particularly because of

the reasonably high VT of 5V I/O devices.

Once again, we note that the transistor aspect ratios in (4.17) are primarily within ln functions,

so the ratio of Rout/RC plays an important factor in establishing the correct Vout. To determine

the best ratio for Rout/RC to minimize the TC, (4.17) and (4.20) can be equated, and the best

resistor ratio can be found to be

y
Rout

RC
=

ηt

[

1− ln
(

ξ
RCT0

)]

− q
k (2αt − α)

ln
(

S11
S10

) (4.22)

In our design, a ratio of Rout/RC ≈ 6 is needed to achieve a good TC. Additionally, by changing

the resistive ratio slightly, the temperature at which the TC is minimized can be shifted to a higher

or lower value while still maintaining a good TC; varying the resistor ratio is explored further in

section 4.4.

Next, we present a design procedure to obtain a low-TC, above-1V voltage reference cell using

the circuit of Fig. 4.1.

1. Set S11
S10

≫ 1, and choose a proper size for RC to bias the current reference cell in subthreshold.

Note that choosing a large S11
S10

will result in a larger RC to bias the circuit in subthreshold,

so S11
S10

must not be too large.

2. Choose appropriate transistor aspect ratios such that S14
St1St2

≥ 1 and also that x and y keep

all transistors in subthreshold. These design choices make it possible to approximate (4.10)

with (4.11).

3. Ensure that all transistor lengths are large enough to neglect the effects of channel-length

modulation.

4. Choose the midpoint, T0, of the desired temperature range, and use (4.22) to solve for the

ratio yRout

RC
.

5. If the midpoint of the Vout vs. T curve is not at the desired location, then according to (4.22),

we can adjust RC to move T0 to higher or lower temperatures. Also, Rout must be adjusted,
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Figure 4.4: Measured TC of the proposed circuit under three different supply values for Rout/RC =
3MΩ/500kΩ (top and middle) and Rout/RC = 2MΩ/400kΩ (bottom).

accordingly, to keep the resistive ratio at a reasonable value, based on (4.22).

4.4 Experimental Results

The voltage reference circuit of Fig. 4.1 was fabricated using a standard 0.35µm CMOS tech-

nology. The die area of the active portion of this circuit was 0.033mm2, and the supply voltage

of this circuit was 3.3V. The resistors (RC and Rout) used in this circuit were off-chip resistors to

allow for variety of Rout/RC combinations. Using the design procedure of section 4.3, we found

that Rout/RC ≈ 6 for a low TC output. Rout and RC were set to 3MΩ and 500kΩ, respectively, to

achieve this ratio and to ensure subthreshold operation. These values were also chosen to minimize

the TC around room temperature.

Figure 4.4(a)&(b) shows the measured Vout over temperature for multiple values of VDD. Figure

4.4(b) shows that this circuit is able to achieve a low TC of 42ppm/◦C over the temperature range

of interest (-70 to +85◦C). Even extending this temperature range significantly to cover from -

70 to +125◦C, this circuit can still achieve a TC of 110ppm/◦C at the nominal VDD=3.3V (see

Fig. 4.4(a)). By reducing VDD to 1.7V, the TC is 48ppm/◦C over this extended temperature range.

As discussed in the previous section, this circuit can be optimized to achieve a good TC for
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Table 4.1: Comparison of the proposed work with other works

Process
TC

(ppm/◦C)
T-range VREF

LR

(mV/V)

PSRR

(dB)
VDD Power

Area

(mm2)
Comments

[59] 0.35µm 215-394 [-20 80] 1.18V 4.5 - 1.3∼3.3 0.108µW 0.21 -

[64] 0.18µm 73 [0 100] 1.25V 0.31 -41dB@100Hz 1.4∼3.6 35pW 0.0025 Native NFETs

[65] 0.18µm 4.1 [-55 125] 1.1402V 0.3 -54dB@100Hz 1.3∼2.6 11.18µW 0.05 NPN BJTs

[66] 0.6µm 14.36 [0 100] 1.2525V 5.5 -42dB@10MHz 1.5∼2 40µW 0.11 -

[67] 0.25µm 627 [20 50] 1.03V 0.2 -51dB@100Hz 1.5∼3.5 0.12µW 0.011 -

[68] 0.18µm 147 [-40 120] 1.09V - -62dB@100Hz 1.2∼1.8 0.1µW 0.0294 -

[69] 0.18µm 4 [0 100] 1.012V 0.5 -66dB@1kHz 1.1∼1.8 21µW - -

[70] 0.35µm 12.85 [5 95] 1.2V 28 -26.2dB@100Hz 1.75∼3.5 35.7µW 0.0206 -

This work #1 0.35µm 110@3.3V [-70 125] 1.52V 10 -44dB@10kHz 1.7∼3.3 1.11µW 0.033 -

This work #1 0.35µm 42@3.3V [-70 85] 1.52V 10 -44dB@10kHz 1.7∼3.3 1.11µW 0.033 -

This work #2 0.35µm 70@3.3V [10 160] 1.395V 9.33 -44.8dB@10kHz 1.6∼3.3 1.34µW 0.033 -

different temperature ranges. Figure 4.4(c) shows an example of shifting the midpoint of the

temperature range to a higher value. This midpoint reference temperature can be increased by

setting Rout/RC to a smaller value and by also reducing the value of RC , as is evidenced by (4.18).

In this example, RC was reduced to 400kΩ which increases the temperature midpoint, T0, due to

the ln (ξ/RCT ) term. Rout was also decreased to 2MΩ to keep the resistor ratio similar (but slightly

smaller). The result is that the same circuit, with different resistor values, can be used to provide

a low TC (70ppm/◦C at VDD=3.3V) at higher temperatures (+10 to +155◦C).

The measured supply current versus temperature for these two reference voltages (Vout=1.52V,

1.395V) under a 3.3V supply is shown in Fig. 4.5. The power consumption of this circuit at room

temperature for the twoRout/RC conditions were 1.11µW (Vout=1.52V) and 1.34µW (Vout=1.395V).

Thus, this circuit is an appropriate choice for low-power applications.

The line regulation of the circuit was measured at room temperature by sweeping the supply

voltage from 0V to 3.3V, as shown in Fig. 4.6. The line regulation for the two Rout/RC conditions

of Fig. 4.4 were 10mV/V (Vout=1.52V) and 9.3mV/V (Vout=1.395V). The line regulation can be

significantly improved by cascoding the PMOS transistors M6, M7, M12, and M13. The limited

VDD,min in these two cases was due to the high output voltage of the circuit. In both cases, VDD,min

was approximately VDD,min ≈ Vout + 200mV. Additionally, the measured power supply rejection

ratios (PSRR) at 100Hz were -35dB (Vout=1.52V) and -37.9dB (Vout=1.395V). The PSRR values

at 1MHz were -44dB (Vout=1.52V) and -44.8dB (Vout=1.395V).

The die-to-die distribution of the DC output voltage was found at room temperature by mea-

suring the average reference voltage (µ) and the standard deviation (σ) for 17 available chips. The

coefficient of variation (σ/µ) for the 1.52V and 1.395V outputs were 2% and 1.76%, respectively.

Table 4.1 compares the three cases of our voltage reference circuit shown in Fig. 4.4 to other

similar circuits. Specifically, we compared our work to other circuits that 1) were fabricated, 2)

were in a CMOS process, 3) have Vout≥1V, and 4) have power consumption ≤50µW. As can be

seen from this Table, our voltage reference circuit is able to provide a good balance of a low TC, low
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power consumption, and a large range of temperatures. Additionally, our circuit only uses devices

available in standard CMOS processes (thicker-oxide I/O devices are now widely available), whereas

some of the listed designs require non-standard devices [64, 65]. Improving the line regulation of

our circuit can easily be accomplished by cascoded structures at the expense of a higher minimum

supply voltage.

4.5 Conclusion

A low power voltage reference cell for system-on-a-chip applications has been presented in this

chapter. This proposed cell uses a combination of thin-oxide and thick-oxide transistors to generate

a reference voltage greater than 1V with a low TC. We also presented a design methodology for

how to translate this circuit to other processes and to provide a low-power and low-TC reference

voltage.
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Chapter 5

On-chip Voltage Regulators for

Supply and Mid-Rail Voltage

References

Every electronic circuit includes reference voltages (e.g. analog/digital supply voltage, mid-rail

voltage). These reference voltages must be constant over a wide range of load currents. Also, they

must have low sensitivity to the input battery voltage drop or fluctuations (e.g. battery droop,

environmental noises). A voltage regulator is used to provide this constant DC output voltage and

to continuously keep the output voltage at the desired value regardless of changes in load current or

supply voltage. In this work, we need a voltage regulator for both the analog supply voltage (AVdd)

and the digital supply voltage (DVdd). Also, in some cases, the supply voltage must be able to

provide both sinking and sourcing load currents. As an example, the mid-rail voltage regulator is

a voltage regulator that must provide a voltage that is half the supply voltage (Vdd/2). In addition

to its sourcing capability, this mid-rail voltage regulator must be able to sink some load current

and hold the output voltage constant at Vdd/2. In the remainder of this Chapter, I will discuss

the voltage regulators that I have designed to be used for the on-chip programming of the FG

transistors and the systems using these FG transistors.

5.1 Quick Review of Voltage Regulators

A simple linear voltage regulator is a voltage-controlled current source used to force a fixed

voltage to the output terminal of the voltage regulator. The control circuit senses the fluctuation

at the output terminal and adjusts the current source based on the load current to hold the output

voltage at the desired value. Fig. 5.1 shows a simplified model of a typical voltage regulator. The

design limit of the current source defines the maximum load current that the voltage regulator can

provide and still maintain the regulation. In general, a simple CMOS voltage-controlled current
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Figure 5.1: A simplified model of a voltage regulator.
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Figure 5.2: Two conventional voltage regulators.

source is realized using either a pMOS transistor or a nMOS transistor. These two structures are

shown in Fig. 5.2. The pass device (Mp or Mn) in this voltage regulator is realized by a pMOS

or an nMOS transistor. A regulator using an nMOS transistor is a standard voltage regulator. A

regulator using a pMOS transistor is called a low drop-out regulator (LDO). The current flowing out

of the drain terminal of the pass transistor is controlled byMp orMn and the voltage amplifier. This

current is largely the load current. The current through the resistive voltage divider is assumed

to be negligible (R1 and R2) compared to the load current. The feedback loop, which controls

the output voltage, is obtained by using R1 and R2 to “sense” the output voltage and applying

the sensed voltage to the inverting input of the voltage amplifier. The non-inverting input of the

amplifier is tied to a voltage reference. The output voltage of the amplifier is connected to the gate

of the pass transistors, which means the circuit is continuously providing an output voltage and a

constant load current through the pass transistor to force the voltages at its inputs to be equal.

The feedback loop acts continuously and holds the regulated output at (1 + R2
R1

)Vout regardless of

the changes in the load current. A sudden increase or decrease in the load current will cause the

output voltage to change until the loop can correct and stabilize to the new level, which is called

the transient response. The increase or decrease in the output voltage is sensed through R1 and

R2 and appears at the output of the error amplifier, which results in the correction of the output

voltage through IMp or IMn . In the next few sections, I will review some basic characteristics of

voltage regulators.

A. Dropout Voltage
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Figure 5.3: Dropout region of an LDO regulator

The input-to-output differential voltage at which the voltage regulator stops to regulate against

the further reduction in input voltage is called the dropout voltage. This happens when the input

voltage gets close to the output voltage. The voltage regulator operation can be explained by using

the nMOS pass transistor I-V characteristics. There are two common operational regions for a

CMOS transistor operating in the above threshold region: the linear region and the saturation

region. In the linear region, the pass transistor acts like a tunable series resistor. In the saturation

region, the pass transistor becomes a voltage-controlled current source. Voltage regulators are

designed to work in the saturation region. When the series pass transistor is in the saturation

region, it acts as a current source as a function of Vgs. Under different load conditions, Vgs of the

pass transistor controls the regulator to supply the demand output load current. Fig. 5.3 shows the

input-output characteristics of an LDO regulator. In this figure, the LDO regulaor begins dropping

at 3.65V input voltage. The range of the dropout region is between 2V and 3.65V . Below this, the

circuit is not functional. Low dropout voltage is necessary to maximize the regulator efficiency.

B. Quiescent Current or Ground Current

The difference between the input and output currents is called the quiescent current, or ground

current. In order to have maximum efficiency, the quiescent current must be minimized. Quiescent

current is defined by

Iq = II − IO (5.1)

Quiescent current includes all bias currents (e.g. band-gap reference, the resistor divider, and error

amplifier) and drive current of the series pass transistor, which does not contribute to the output

power. In CMOS voltage regulators, this drive current is zero.
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Figure 5.4: A PMOS Voltage Regulator

C. Efficiency

The efficiency of an LDO regulator is limited by the quiescent current and input/output voltages,

and it can be expressed as:

η =
Iovo

(IO + Iq)vI
× 100% (5.2)

In order to increase the efficiency of the LDO, the drop-out voltage (Vdo) and the quiescent current

must be minimized.

D. Load Regulation

Load regulation is the circuit’s ability to keep the output voltage at a specific value under different

load currents. The following expression defines the load regulation of a regulator:

LoadRegulation =
∆Vo

∆Io
(5.3)

Fig. 5.4 shows a PMOS voltage regulator. The output voltage change (∆Vo) for a given load current

change (∆IO) can be calculated as follows. Assume that M1 is the series pass transistor, and gm is

the current gain of M1, A is the voltage gain of the amplifier at its operating point. Assume that

there is a small output current change (∆Io). The output voltage change can be expressed as

∆Vo = ∆IoReq (5.4)

where Req is the equivalent output resistance at the output terminal:

Req = (R1 +R2)||RL ≈ RL (5.5)

The change of sensed voltage multiplied by the gain of the feedback path must be high enough to
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Figure 5.5: Load Transient Response of a Voltage Regulator.

achieve the specified change at the output current. Thus,

∆IO = gmA
R2

R2 +R1
∆VO (5.6)

The load regulation can be obtained from the following expression:

∆VO

∆IO
=

1

gmA

(

R1 +R2

R2

)

(5.7)

Therefore, increasing dc open-loop current gain improves load regulation. The worst case of the

output voltage variations occurs as the load current changes from zero to maximum allowable Id

or vice versa. Fig. 5.5 shows a load transient response of a voltage regulator. The load current

starts at zero and it suddenly jumps up to 100mA. The voltage drop (∆VLDR) visible in the output

determines the load regulation of the regulator.

E. Line Regulation

Line regulation is a measure of the circuit's ability to keep the specified output voltage with varying

input voltage and is expressed as:

LineRegulation =
∆VO

∆VI
(5.8)

The output voltage variations for a given input voltage change can be calculated from Fig. 5.4 as
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follows

VO =
VIReq

Rds +Req
−∆VO =

VIReq

Rds +Req
−∆IOReq =

VIReq

Rds
−G(Vs − Vr)Req (5.9)

Where the open loop current gain G = β × ga, and Rds is the equivalent resistor between drain

and source of the series pass element, and Req is the equivalent output resistance at the output

terminal:

Req = (R1 +R2)||RL ≈ RL (5.10)

And, the sensed output voltage is given by

Vs =
R2

R2 +R1
VO (5.11)

Now, substituting (5.11) in (5.9), and assuming that GVs ≫ 1, we have:

VO =
R1 +R2

GR2(Rds +Req)
VI +

R1 +R2

R2
Vr (5.12)

This equation has two parts, the first one is the steady-state average output voltage, and the other

one is a function of the input voltage. Therefore, the line regulation can be expressed as:

∆VO

∆VI
=

1

(Rds +RLβga)

R1 +R2

R2
(5.13)

This equation shows that increasing the dc loop current gain improves the line regulation.

F. Transient Response

The transient response is the maximum allowable output voltage variation for a step change in

the load current. The transient response is a function of the output capacitor value (CO), the

equivalent series resistance (ESR) of the capacitor, the bypass capacitor (Cb) (Fig. 5.6), and the

maximum load-current (IO−Max). The maximum transient voltage variation is defined as [71]:

∆Vtr,max =
IO,max

CO + Cb
∆t1 +∆VESR (5.14)

where ∆t1 corresponds to the closed loop bandwidth. ∆VESR is the voltage variation resulting

from the presence of the ESR (RESR) of the output capacitor. ∆VESR is proportional to RESR.

G. Frequency Response

Fig. 5.7 shows a small-signal model of the linear regulator. The transconductance is modeled by ga

with a load comprised of capacitor Cpar and Rpar. The series pass element is modeled by a small-

signal model with transconductance gp. An output capacitor (CO) is shown with an equivalent
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Figure 5.6: A PMOS Voltage Regulator

series resistor (RESR). The bypass capacitor is Cb. The output impedance of this structure is:

ZO = R12p||(RESR +
1

SCO
)||

1

SCb
=

R12p(1 + SRESRCO)

S2R12pRESRCOCb + S[(R12p +RESR)CO +R12pCb] + 1
(5.15)

where R12p = Rds||(R1 + R2) ≈ Rds. The output load capacitor is usually much bigger than the

bypass capacitor. Thus, the output impedance ZO can be approximated as

ZO ≈
Rds(1 + SRESRCO)

[1 + S(Rds +RESR)CO]× [1 + S(Rds||RESR)Cb]
(5.16)

From this equation, some poles and zeros of the regulator are obtained. The first pole is obtained

from this equation:

Po =
1

2π(Rds +RESR)CO
≈

1

2πRdsCO
(5.17)

The second pole is obtained from 5.16 again:

Pb =
1

2π(Rds||RESR)Cb
≈

1

2πRESRCb
(5.18)

and the zero is:

ZESR =
1

2πRESRCO
(5.19)

In addition, another pole exists from the output impedance of the amplifier:

Pa ≈
1

2πRparCpar
(5.20)

Fig. 5.8 shows a possible frequency response of the LDO voltage regulator.
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5.2 Analog/Digital LDO regulator

A portable system is usually powered by a battery. However, the supply voltage that is provided

through the battery is noisy and will drop over long-term use. In this work, we use a 3.3V battery

(input to the LDO regulator), and the reference voltage to the regulator is a 0.9V reference voltage.

We use the voltage regulator presented in [72]. This LDO regulator includes a current-boosting

circuit with fast on/off features. Therefore, it can momentarily provide an extra current to charge

and discharge the parasitic capacitor at the gate of MP . Thus, the voltage buffer provides a fast

slew rate at the gate of the power transistor while the quiescent current of the LDO remains always

low. The circuit diagram of the voltage regulator is shown in Fig. 5.9.

The operation of this circuit is explained in the remainder of this section. When IO is suddenly
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Figure 5.9: Schematic of the LDO regulator

reduced, an overshoot at VO is generated. The amplifier detects this overshoot through the resistor

divider and generates a voltage (VEA). When VEA increases, V1 is decreased with a very large am-

plitude due to the high-gain common-source amplifier. Cc1 couples this voltage change to decrease

the gate voltage of Mvb2. Thus, Mvb2 will conduct more current to charge the parasitic capacitor

at the gate of MP . During this time, Mvb3 remains OFF and it doesn’t affect the regulation.

When IO is suddenly increased, it causes an undershoot in VO. VEA will decrease and V1

increases. CC2 couples the voltage change of V1 to the gate of Mvb3. Thus, this transistor turns on

and provide an extra current to discharge the parasitic capacitor at the gate of MP . The change of

V1 is also coupled through the capacitor, CC2, to the gate ofMvb2, which turns offMvb2 momentarily

because the gate-source voltage of this transistor starts to reduce.

5.2.1 Experimental results

This LDO regulator was designed and fabricated in a 0.35µm standard CMOS process. The

supply voltage of this LDO regulator is at 3.3V . The bias current (IB) and the bias current for the

amplifier are provided from an off-chip source. The load regulation plot of this regulator is shown

in Fig. 5.10. A 10.5µF tantalum capacitor was used for this measurement. According to this plot,

the voltage change from 0 to 10mA of the load current is 25mV .

5.3 Mid-rail Regulator

A mid-rail regulator is a regulator that is used to make a clean AC ground or a mid-rail voltage

[73, 74]. This voltage is half the supply voltage, which is 1.25V in our system. This voltage is

usually used as a reference voltage to be compared with analog signals and create digital signals.

Unlike a typical voltage regulator, this regulator must support both sink and source load currents.
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Figure 5.10: Load regulation plot of the voltage regulator

The load current is in the range of few microamps. Fig. 5.11 shows the circuit diagram of this

regulator. This regulator includes two identical OTAs shown in Fig. 5.12. The supply voltage of

this circuit is a 3.3V battery. This OTA is biased in the subthreshold region. The bias current

(Ibias) of this OTA is 120nA. The transistor sizes of this OTA are as follows:

(W/L)Mb1 = (W/L)Mb2 =
20µm

5µm
(5.21)

(W/L)M1 = (W/L)M2 =
10µm

5µm
(5.22)

(W/L)M3 = (W/L)M4 = (W/L)M5 = (W/L)M2 = (W/L)M6 = (W/L)M7 =
10µm

5µm
(5.23)

Therefore, each OTA consumes 360nA in total and the regulator consumes 720nA in total. To

make two separate control loops, the positive (negative) input of the OP1 and OP2 are tied together.

Also, both OP1 and OP2 see the gate of the pass transistors (M1 and M2) as their load. Therefore,

Vx and Vy have almost the same voltage. The source terminals of M1 and M2 are tied to Vout.

Thus, only one transistor is on and the other transistor is in the cut-off region. This will prevent

the short current which is the result of having both of these transistors “on” at the same time.

Now, assume that we have a sink load current and Vout is initially greater than 1.25V. Therefore,

both OP1 and OP2 are saturated to the low level. Thus, M2 is on and M1 is in the cut-off region.

In this state, the upper loop is open and the bottom loop adds some more current to the sink load

current. This will discharge the parasitic capacitors connected to the Vout. The discharging process

continues until Vout gets below 1.25V. At this point, Vx = Vy switches to a higher voltage because

the positive input of the amplifier is higher than the negative input of the amplifier. At this point
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OP1 and M1 make a regulation loop and will make Vout close to 1.25V. If Vout is initially less than

1.25V, then M2 will be in the cut-off and M1 charges Vout and makes it closer to 1.25V. The same

analysis can be applied to a situation with a source load current.

Fig. 5.13 (top) shows the measured line regulation of this regulator when the supply voltage

sweeps from 2.5V to 3.3V. Fig. 5.13 (bottom) shows the measured current that is consumed by

the circuit. The difference between the predicted value and measured result is around 30nA, which

is due to the accuracy of the bias current and mismatch of the current mirrors. The maximum

voltage change in the output is around 1.5mV. Therefore, the line regulation can be expressed as:

LineRegulation =
∆VO

∆VI
=

1.5mV

0.8V
= 1.8mV/V (5.24)

The same measurement was done for −10µA and 10µA of load current. Fig. 5.14 and 5.15 show

the measurement results of this regulator for −10µA and 10µA of load current. The LR is around

1.6mV/V and 3.1mV/V for 10µA and −10µA of load current, respectively.

Fig. 5.16 shows a load sweep measurement on the mid-rail regulator. The load current range

of this regulator is −10µA ∼ 10µA. The output voltage difference between positive Iload > 0µA

and negative load currents Iload < 0µA is due to the difference that exists between the loop gain

of the top and bottom loops. At first, it seems that these two voltages must be the same because

we are using the same OTAs with matched layouts. However, the difference between the gains of

common-drain structures created with M1 and M2 generates a voltage difference between these two

cases.

Finally, the PSRR of the mid-rail regulator is measured and shown in Fig. 5.17 and 5.18. For

this measurement, a dynamic signal analyzer (DSA) was used. A 100mV Sine wave was applied
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Figure 5.12: Circuit Schematic of the OTAs used in the mid-rail regulator.

to the supply voltage and the frequency of the signal was swept from DC to 100KHz. Finally,

the amplitude of the Vout was measured through the DSA. To measure the PSRR, the following

equation is used:

PSRR = dB(100mV )− dB(Vout) (5.25)

These figures show that the minimum PSRR is around 30dB.

5.4 Conclusion

In this chapter, two types of voltage regulators are presented using a 0.35µm CMOS process.

The first voltage regulator is designed for analog/digital power supplies. This circuit is supposed

to receive a DC voltage at the input and generate a low-noise DC signal for analog/digital supplies.

The experimental results of this voltage regulator are also presented. The second voltage regulator

is presented for the mid-rail voltage (1.25V ) of our system. This voltage regulator must provide

both source and sink load currents.
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Figure 5.17: PSRR of the mid-rail regulator under 2.5V supply for (top) 0 load current (middle) 10µA
load current (bottom) −10µA load current
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Chapter 6

Below-Ground Injection of FG

Transistors for Programmable Analog

Circuits

FG transistors have been used in many systems to add non-volatile memory to the system. By

storing a precise amount of charge on the electrically isolated floating gate, these devices can be

used in analog applications as programmable current sources. However, as we have seen in previous

chapters, the process of selecting an individual FG and precisely programming it requires significant

infrastructural overhead, especially when considering that both tunneling and injection require the

on-demand generation of voltage drops greater than Vdd. In this chapter, a novel technique for

simplifying the programming of floating gate transistors is presented. Specifically, we present a

technique to use “below-ground injection” that permits injection of individual FG transistors in a

large array but does not require any isolation switches to operate below the substrate voltage. The

need to have selection circuitry operating at negative voltages is circumvented by using indirectly

programmed FG transistors and a circuit that linearizes the programming currents. Consequently,

this technique can be used in any standard single-well CMOS process to accurately program analog

values on FG transistors. Also, two charge pumps that can produce the negative voltages are

presented here. The end result permits an overall system that requires far less infrastructure and

power consumption than a more conventional system using voltages above Vdd to create injection

conditions. All results were measured from an integrated circuit fabricated in a standard 0.5µm

CMOS process.

6.1 Below Ground Programming

Hot-electron injection can be used to add electrons to the floating gate. The voltages required

for injection typically exceed the rated Vdd of the process but are generally lower than junction
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breakdown voltages. Consequently, standard transistors can be used to isolate/multiplex a specific

FG for injection. Because of the ability to select a specific FG for injection, injection has become

the preferred method for programming large arrays of FGs in analog applications [53]. PMOS

devices have dominated analog floating gate circuits because the injection currents necessary for

programming can be created much more efficiently in PMOS devices than NMOS devices. The

amount of injection current in a PMOS device can be represented by the simplified equation:

Iinj ≈ βIs
αeVsd/Vinj (6.1)

where α, β, and Vinj are fit parameters. This equation covers the subthreshold operating range,

which is where the injection operation is most efficient. Of note, the channel current (Is) and the

source-to-drain voltage (Vsd) determine the injection rate. As was mentioned earlier, significant

injection only occurs for Vsd > Vdd.

When injecting a floating-gate transistor to a specific analog value, the channel current and Vsd

must be precisely controlled. The technique of simply raising the source voltage to initiate injection

is not ideal; this would alter Vsg, thereby changing the channel current to an unknown value. This

simple technique makes it hard to achieve precise programming results.

Instead, the more conventional approach is to lower the drain potential. Because Vsg stays

constant and because the drain has little influence on the channel current (due to its output

resistance), the channel current remains at a known value. Lowering the drain potential below

ground seems to be an obvious choice to generate the large Vsd required for injection; however, this

has long been difficult to implement in the most conventional system. For example, when working

with arrays of FG transistors, a multiplexer at the drain of the FG transistor is needed to connect

the drain to a negative voltage in “program mode” but then connect the drain to its circuit during

a “run mode” [2]-[53]. In a single-well process, making selection circuitry operate below ground

is not easily achieved, since the NMOS devices in a standard transmission gate would have their

diffusion areas forward biased.

Instead of using negative voltages for injection, the common procedure for injecting FGs for

analog applications is to raise the source and gate voltage up well above Vdd in a fashion that

permits the channel current to be known. Then, the drain can be at a positive voltage and still

provide a Vsd that is large enough to invoke injection. This process of “ramping up” all voltages

associated with the floating gate transistors and then lowering the drain to start injection, requires

significant infrastructure. Particularly if all of the programming infrastructures is to be included

on-chip, the infrastructure should be made to be compact, low-power, and easy-to-use.

In the next section, we present a simple circuit that permits below-ground injection, thereby

greatly simplifying the necessary infrastructure. This circuit also eliminates the need for mul-

tiplexers at the drain of the FG transistor undergoing injection. In section 6.1.2, we discuss a
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charge-pump circuit that can be used to generate the negative voltages on-chip, and in section

6.1.3, we show the results of this circuit and describe how it can be used in a large array.

6.1.1 Floating-Gate Memory Cell

In [2], we described an FG memory cell that can be used to linearize the injection process,

and a simplified version of this technique is illustrated in Fig. 6.1(a). An amplifier is used to

modulate the control gate voltage, Vcg, of the FG transistor so that the floating node maintains

at a constant voltage during injection and/or tunneling—this negative feedback ensures that the

source-to-floating-gate voltage remains constant so that Iref continually flows through the device. In

[2], I used “above-ground” injection to program the FG transistor, by raising Vdd and then lowering

the drain of the FG transistor toward the ground. However, this technique still suffers from needing

to first “ramp up” the FG transistor before programming, and the associated infrastructure to do

so.

Fig. 6.1(b) illustrates a simplified version of the memory cell proposed in this work. This new

memory cell is an extension of [2] with the addition of a second transistor connected to the FG

node. The current flowing through Mcircuit is directly set by the stored charge on the FG, and

it is connected directly to a circuit to provide a bias current. All injection current goes through

Minj , so Mcircuit never needs to experience large Vsd values. Instead, the drain of Minj is lowered

below ground to induce injection. A multiplexer at the source of Minj is used to disconnect Minj

from the feedback amplifier when the transistor is not actively being programmed. As a result,

many FG transistors can all be connected to a single drain node that is lowered below ground, and

injection can be prevented in a non-selected FG by connecting its source to ground. This technique

permits the selection of an individual FG transistor for programming, and no selection switch needs

to operate below the substrate potential.

Fig. 6.2 shows a block diagram of an FG array when a specific memory cell is being programmed.

In this method, the drain connection of all Minj transistors in all memory cells will be connected

to the output of a negative charge pump. The charge pump is designed such that the output

voltage is either at Vdd when disabled or a negative value when enabled. When a specific memory

cell requires injection, the multiplexer inside the target memory cell will be configured such that

the memory loop is closed. At the same time, the source connection of all other Minj transistors

in the rest of the array will have their source connected to ground by the correctly set-up of the

multiplexers inside the memory cells. Therefore, when a negative voltage is applied to Vnegative

only one transistor has a Vsd large enough to generate injection.
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6.1.2 Negative Charge Pump

As I mentioned in Chapter 2, hot-electron injection is a conventional method to program the

conventional flash memory cells (e.g. NOR Flash). In this approach, a high voltage (∼ 6.5V ) is

applied to drain, while a high voltage is applied to the gate (∼ 10.5V ) and the source terminal is

grounded. For the erasure, a high positive voltage (∼ 10.5V ) is applied to the source while its gate

is grounded [75]. Applying a very high voltage to the source for erasure may cause reliability issues

because this high voltage will reverse-bias the source-to-bulk PN junction close to the breakdown

region. Also, the band-to-band tunneling and the high electric field between source and substrate

can create hot holes and trap them in the gate oxide leading to degrading cell endurance [75].

A more reliable approach to create the electric field across the gate oxide is to apply a high

negative voltage to the gate (-8V to -12V), while keeping the source typically at VDD. For many
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Figure 6.3: A Dickson charge pump used for negative voltage generation

portable applications such as RFID tags, mobile phones, and digital cameras which use non-volatile

memories, high voltages are necessary for program and erase operations. For these applications,

it is useful to be able to generate all these voltages inside the chip from the power supply of the

portable system [76, 4]. The outputs of these circuits must be handled with the read voltage to

feed the memory Word Line (WL) with the required level under any operating conditions (reading,

erasing, programming) [75].

Traditionally, two types of charge pumps (negative and positive) are realized on a chip. However,

only one was active at a time due to the timing of the program and erase operations [77, 78, 75, 5].

In some other designs, a single charge pump is used as a switched polarity charge pump. [79]

presents an example of a switched polarity charge pump.

In Chapter 3, three positive charge pumps were presented for tunneling and injection of the FG

transistors. In this section, a negative charge pump is presented which is suitable for the injection

process. A review of the available negative charge pumps is presented in the remainder of this

section. Then, the proposed negative charge pump is discussed.

Many charge pump circuits are based on a well-known structure called the Dickson charge pump

[33, 80]. In these charge pumps, MOS transistors are connected like a diode, so the charge can

travel in just one direction. Fig. 6.3 shows a Dickson charge pump to generate negative voltages.

Unlike positive charge pumps which use VDD as the input signal, the input of the negative charge

pump is connected to ground. C1 to CN are coupling capacitors with the same value. Two opposite

phase pumping clocks with the same amplitude (VDD) are used to control the operation. When a

transistor turns on, it will enter saturation region. In Fig. 6.3, the first transistor is always on, which

makes N1 to be at ground. When φ is low and φ is high, the second transfer transistor is turned on

which makes N2 be 0V. When φ is high and φ is low, the second transistor turns off and the bottom

plate of C2 goes to ground. This will shift N2 to −VDD. The same procedure makes the output

of the next stage to be −2VDD. Ideally, the output of a N stage negative Dickson charge pump

is −NVDD in steady state. In this analysis, we ignored the threshold voltage of the transistors.

However, in reality, when a diode-connected transistor turns on, it goes into saturation region and

the voltage drop across the transistor is Vth. The threshold voltage of the PMOS transistors across

the diode-connected transistor chain increases from the input to the output due to the body effect.

This is because the body of PMOS transistors are connected to VDD and the body-source voltage
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Figure 6.4: Circuit structure of the boosting charge pump [4]

of the transistors keep increasing as it gets closer to the final stages. The voltage gain at each stage

is reduced by this voltage drop across the switch transfer transistors.

[4] uses a charge transfer gate with threshold voltage cancellation. This structure fixes the

threshold voltage loss of the transfer gates and increases the efficiency at the expense of a more

complex clocking structure. This structure was used for positive output voltages, but it is applicable

to negative charge pumps too. The circuit diagram of this structure is shown in Fig. 6.4. In this

new architecture, boosting capacitors (Cb1 ∼ Cb4) and boosting transistors (Mb1 ∼ Mb4) are added.

Using this method, the gate potential of the charge transfer transistors (M1 ∼ M4) can raise to a

higher level than the drain terminal. This makes the transistor fully open by biasing the transistor in

the linear region. Therefore, the drain and source voltages can reach the same level. This approach

is called threshold voltage cancellation scheme [79]. The negative four-phase charge pump improves

the voltage gain of the charge pump; however, because of the fixed body potential (e.g. ground in

[79]) of the transistors, this structure still suffers from threshold rising problem. Both the substrate

leakage current issue and the body-effect can be handled in positive charge pumps by using either

both P-type and N-type CTSs in a triple well process, or only using P-type CTSs in an N-well

process [5]. The issue of implementing a negative charge pump in N-well and triple well processes

are shown in Fig. 6.5 (a) and (b), respectively. According to this figure, a negative charge pump

can only get rid of both body-effect and substrate leakage current problems by adopting N-type

CTSs in a triple-well process. For example, [81] is a negative charge pump generating -9.5V for the

wordline of a NOR flash memory which uses intrinsic n-channel transistors in a triple well. In [81]

during first pumping cycle, φ2 brings N1 to low level. At the same time, φ1 is high, which makes Tb1

and T2 turn off. Since N2 is coupled high, transistor Tb2 turns on and node M2 is precharged. Now,

during the boost cycle, the boost clock (φb2) goes to a high level. This will couple the precharge

node (M2) to a higher voltage level, and T1 passes the negative charge from node N1 to node N2.

In the next pumping cycle, φ1 couples node N2 to a lower level. This makes the precharge

transistor (Tb2) and transistor (T1) off, while transistor Tb1 is turned on and precharges M1. The

boost clock (φb2) increases the precharged node (M2) to a higher voltage. Therefore, transistor T2

passes the negative charge from N2 to the next stage. Simultaneously to this cycle, φ2 couples node



Mir Mohammad Navidi Chapter 6. Below Ground Programming 94

P+ P+

P-substrate

Substrate leakage 
current

-ve

N-well

0V

P+ P+

P-substrate

Body effect

-ve

N-well

0V

0V or Vdd 

P-type CTS N-type CTS

N+ N+

P-substrate

-ve

0V

Substrate leakage 
current

(a)

P+ P+

P-substrate

Body effect

-ve

N-well

0V

0V or Vdd 

P+ P+

P-substrate

Substrate leakage 
current

-ve

N-well

0V

N+ N+

P-substrate

-ve

N-well

0V

0V or Vdd 

P-well

(b)
-ve is the negative high voltage.

Figure 6.5: Implementation of a P-type and N-type transistor in a negative charge pump and their
issues in (a) N-well process (b) Triple-well process [5].
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Figure 6.6: Circuit diagram of the negative charge pump presented in 6.5

N1 to a higher level and causes a forward bias VBE of the emitter base diode of the parasitic n+pn

bipolar transistor within the triple well [6].

Due to all of the issues mentioned above, some special circuits must be used to properly bias

the P/N-well of the transistors in a negative charge pump. Fig. 6.7 shows the circuit diagram of

the charge pump presented in [6]. The charge transfer transistors (T1 and T2) and boost transistors

(Tb1 and Tb2) function the same as Fig. 6.6, and the same clock scheme is used. The n-well of the

charge pump is connected to 0V. The NMOS transistors Tc1 and Tw1 are used for keeping the p-well

at the lowest voltage level within the charge pump stages. The drain of Tw1 and Tc1 are connected

to N2 and N1, respectively. The source terminals of both of these transistors are connected to the

common p-well of the pump stages. The gates of Tc1 and Tw1 are crosswise connected to N2 and

N1, respectively. When N1 is coupled high, Tw1 turns on. This happens when φ1 and φ2 are both

high. When in charge pumping phase, Tc1 does not contribute to the charge transfer to and from
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the p-well. However, it reduces the p-well voltage below the voltage at the nodes N1 or N2 just

by capacitive coupling.

There are some other negative charge pumps designed to avoid the increment of voltage drop

between source and substrate in the PMOS charge transfer transistors [82, 78].

A generic block diagram of the regulated charge pump that generates the negative voltage for

our programmer is shown in Fig. 6.8. This charge pump is based on [3] which uses a variable-

frequency regulation technique to provide a low-ripple output voltage. Our charge pump uses 4

charge transfer switch stages as shown in Fig. 6.9. A 0.5µm n-well process is used for this circuit,

and charge transfer switches are realized with PMOS transistors. In this charge pump, the enable

input of the oscillator and Pull-up node are tied together. This will set the charge pump output to

the chip supply voltage (3.3V) when the charge pump is disabled.

The n-well voltage (well) is controlled by the output of an inverter from which its input is
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coming from an external pin (Pull − up). When charge pump is enabled, Pull − up is set to the

higher logic level (3.3V). This will make the n-well voltage ground through “well”. When the

charge pump is enabled, the negative voltages at source and drain terminals of the PMOS charge

transfer switches make the PN junction reverse biased. When charge pump is enabled, Pull−up is

pulled low, which makes the charge pump output a positive voltage. “well” is pulled high, which

makes the PN junction reverse biased again. To close the regulation loop in regulated negative

charge pumps, [14] and [83] use a resistive divider to shift the negative voltage up to positive volt-

ages. [84] uses a special type of comparator which compares the absolute value of the negative

voltage with a positive voltage. In this work, we use the voltage divider approach to shift the

output voltage up to positive values, and the difference between this voltage and target voltage

(Vtarg) is converted to a current. This current modulates the frequency of the current-controlled

ring oscillator. The relation between Vtarg and Vout can be derived by writing a KCL at the Vfb node:

Vout =

(

1 +
R2

R1

)

Vtarg −
R2

R1
Vdd (6.2)

In this equation, we assume that the supply voltage is 3.3v and R1 and R2 are 300kΩ and 600kΩ,

respectively. The schematic of the OTA is shown in Fig. 6.10. Ring Oscillator, Edgifier, and

non-overlapping clock generator use the same circuit diagram as the circuits used in the charge

pumps presented in Chapter 3. Fig. 6.11 shows the load regulation measurement results. This

measurement was performed for output voltages from -5V to 1V and the current range of 100nA

to 100µA. The charge pump stages are unable to provide enough negative charge at higher load

currents, especially when output voltage become more negative. This is because the loop gain of

the charge pump drops at higher load currents. Fig. 6.12 shows the transient response of the

charge pump under 1µA, 5µA, 10µA, 15µA, and 25µA load currents. The charge pump is enabled

first at t = 0ms. It takes around 0.5ms in the worst case (e.g. 25µA) to reach the target voltage

(-2.5V). Then, the charge pump is disabled around 1ms and the output capacitor starts to charge

up to 3.3V. Fig. 6.13 shows a zoomed version of this plot. The efficiency plot of the charge pump

is shown in Fig. 6.14. The equation that is used for efficiency is:

Eff =
−Vout × Iload
VDD × IV dd

(6.3)

Fig. 6.14 shows that the maximum efficiency is around 11% and around 20µA of load current.

6.1.3 Programming FG Transistors Using Negative Voltages

Figure 6.15 shows our complete programming circuit that permits using below-ground volt-

ages for inducing injection. The left-hand side of Fig. 6.15 is a compact version of our circuit
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for linearizing injection (Fig. 6.1(b)); a common-source amplifier (M1-I2) replaces the high-gain

inverting amplifier in Fig. 6.1(b), and M2 acts as the current source Iref . Additionally, an oper-

ational transconductance amplifier (OTA) is connected in a feedback loop to stop injection when

Vcg reaches a desired target voltage, Vtarg. Transistors MReset and Mbias are used for initiating

injection, as will be discussed shortly.

To program the FG to a desired target, the circuit is placed in “program mode,” which is done

by setting “disable” to connect the source of Minj to Vs and by setting “select” to connect the

source of Mcircuit to ground. When the negative charge pump is enabled, there will be a large

Vsd across Minj causing injection currents, but the Vsd across Mcircuit will be too small to cause

any injection. Assuming that the FG has been tunneled prior to injecting, node Vcg will ramp

linearly up as electrons are injected onto the FG via injection through Minj . While Vcg is well

below the desired Vtarg, the OTA will supply a constant current equal to its bias current, which is

then rectified and mirrored to Minj through M2-M3. Vfg and Vs stay constant while injecting due

to the feedback structure provided by M1-I2. This process continues until Vcg gets close to Vtarg,

and the output current of the OTA decreases, which decreases the bias current of Minj . As in [2],

this reduction in the current through Minj reduces the programming rate as the target is reached,

thereby resulting in a better tradeoff between programming speed and accuracy. At this point, M1

goes into the deep triode region, Vcg jumps up to the supply voltage, and injection is completely
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Figure 6.10: Circuit diagram of the OTA used in negative charge pump.

shut off.

After being programmed up to the desired target, the circuit can be placed in a “read mode;”

the charge pump is disabled which sends Vnegative to VDD, and the two FG transistors are completely

disconnected from the OTA and the other transistors of Fig. 6.15. A constant voltage is placed on

Vcg, and “select” connects the source of Mcircuit to VDD. The readout current, Icircuit, is connected

to whatever circuit it is biasing, and it provides a constant and precise current source. We also

use the same structure as read mode for the tunneling erasure process, except Vtun is elevated to

approximately 15.5V and Vcg is set to ground.

When first placing a selected FG cell into program mode, Vcg frequently settles to a high

voltage due to pre-existing biasing conditions from a previous read-mode setting or from being a

non-selected device. Consequently, injection will never start because Vcg > Vtarg, thereby shutting

off the current in M2-M3. Transistors MReset and Mbias have been added to provide a short pulse

to “reset” the feedback loop, and cause Vcg to go to its other stable point, which is < Vtarg. Mbias

is optional and can be used to limit the current during this short pulse.

Figure 6.16 shows a timing diagram of the programming process. Before starting injection, the

memory cell is in read mode, so Vcg is at a fixed voltage, and the FG has been tunneled. When the

injection process starts, Vcg starts from ground and ramps up quickly. When injection is finished,

the charge pump is disabled and the memory cell is configured in read mode, again. The charge

pump can remain on after the injection process is finished. This will not cause any further injection

after Vcg has tripped to VDD.

Figure 6.17 shows the performance of the memory cell and programmer combination. We

programmed the memory cell to 21 different target values (Vtarg) spaced evenly from 1.2V to 3.2V,
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Figure 6.11: Measured Vout vs. Iload of the charge-pump for load currents from 100nA to 100µA

and then we read the current through the Mcircuit in read mode. This process was repeated 100

times for each target voltage to check the repeatability of the programming process. Figure 6.17

(top) shows the average measured currents in read mode for different target voltages. Figure 6.17

(bottom) shows that the proposed structure can program currents as low as 1nA with a standard

deviation ≤ 1.3%.

The goal of designing this memory cell is to use it in a large array of FG transistors. Therefore,

we need to ensure that we can select a specific FG transistor when injecting and disable the rest

of the FG transistors. To disable a specific FG transistor, we set “disable” such that the source

terminal of the unselected Minj transistors connects to ground (see Fig. 6.2). Then, even when

the charge pump is enabled, the Vsd of the disabled transistors will be small and will not cause

unwanted injection in the disabled memory cell.

6.2 High-Voltage Negative Charge-Pumps in 0.35µm CMOS pro-

cess

6.2.1 First Negative Charge-Pump

In this section, two negative charge-pumps in a 0.35µm standard CMOS process are presented.

The circuit schematic of the first negative charge pump is presented in Fig. 6.18. A similar design

was presented in section 6.1.2. However, there are a few structural differences between these two

designs. First, the proposed charge-pump in this section is designed in a 0.35µm CMOS process.

Second, the number of charge-transfer switches in this design is 6. This is because the supply
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Figure 6.12: Transient response of the negative charge pump

voltage used in the 0.35µm CMOS process is smaller than the 0.5µm CMOS process. Thus, the

voltage shift created in each stage is lower in 0.35µm CMOS process and therefore we will need a

higher number of stages to generate the same voltage. Third, in this design, the Edgifier circuit is

not used. This is because the operating frequency of the proposed charge-pump is higher than the

operational range of the Edgifier circuit. The same exact charge-transfer switches are used in both

designs (Fig. 6.19).

This operation of this circuit is exactly like the charge pump presented in the previous section.

The charge-pump stages generate a voltage that is close to −NVDD. Due to the effect of the load

current, the generated output voltage would be a few milli-volts above the target negative voltage.

The resistor divider will generate a positive voltage (Vfb). This feedback voltage is compared with

the target voltage (Vtarg) and a proportional current is generated at the output of the OTA. The

generated current will be fed to the ring oscillator and a proportional clock frequency is generated

at the output of the ring oscillator. Finally, the non-overlapping clock generator will generate four

non-overlapped clock signals to drive the charge-transfer switches.

6.2.2 Experimental results

The proposed circuit is fabricated in a 0.35µm standard CMOS technology. The supply voltage

of the proposed circuit is at 2.5V and the bias current of the OTA is 1µA. The measured load

regulation of the proposed charge pump is shown in Fig. 6.20. The target voltage of the proposed

circuit was varied from 0V to 1V and the charge-pump generates negative voltages as low as −5V .
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Figure 6.13: Falling edge of the negative charge pump output

6.2.3 Second Negative Charge-Pump

The charge pump that we presented in the previous section suffers from voltage gain. Ideally,

the output of an N stage negative Dickson charge pump is −NVDD in steady state. However, in

reality, when a diode-connected transistor turns on, it goes into saturation region and the voltage

drop across the transistor is Vth. The threshold voltage of the PMOS transistors across the diode-

connected transistor chain increases from the input to the output due to the body effect. This is

because the body of PMOS transistors are connected to ground and the body-source voltage of

the transistors keep increasing as it gets closer to the final stages. The voltage gain at each stage

is reduced by this voltage drop across the charge transfer transistors. Accordingly, increasing the

number of stages will not help to generate higher output voltages. Simulation results of the first

negative charge pump show that the maximum achievable negative voltage in a 0.35µm CMOS

process is approximately −5V .

In order to improve the output voltage range and the load current range of the charge pump,

a second charge pump is presented in a standard 0.35µm CMOS process. The circuit schematic

of the proposed charge pump is shown in Fig. 6.21(a). There are two major differences between

this charge pump and the charge pump presented in the previous section. First, lower number of

charge transfer switches are used in this design. Second, four clock boosting circuits are added

in between the non-overlapping clock generator and the charge transfer switches. The structure

of the charge transfer switch is shown in Fig. 6.21(c). The clock booster circuits receive four

non-overlapped clocks from the non-overlapping clock generator and generate four non-overlapped

clocks with larger high logic levels. Thus the effective voltage shift per switching stage will be



Mir Mohammad Navidi Chapter 6. Below Ground Programming 102

10
−7

10
−6

10
−5

10
−4

0

5

10

15

I
load

E
ff
ic

ie
n
c
y
 (

%
)

Figure 6.14: Power Efficiency of the negative charge pump

improved. Thus a larger negative voltage is possible using this structure. The circuit schematic of

the clock booster is shown in Fig. 6.21(b). Assuming that Vin is high, the top plate of C1 shifts

up by one VDD and the top plate of C2 stays at the same level. M1 and M2 have a cross-coupled

structure. Thus, M1 turns off and M2 turns on. This will pull the top plate of C2 to a higher level

(HVDD). Since the gate of M4 was high, this transistor will be on and the gate of M3 is at ground

level. Thus M3 is on and Vout is fixed at a higher voltage (HVDD).

6.2.4 Experimental results

The proposed circuit is fabricated in a 0.35µm standard CMOS technology. The supply voltage

of the proposed circuit is at 2.5V and the bias current of the OTA is 10µA. The measured load

regulation of the proposed charge pump is presented in Fig. 6.22. The target voltage of the

proposed structure was swept from 0.5V to 1.5V . This design can generate −5.5V output under

higher load currents.

6.3 Conclusion

We have presented a compact floating-gate memory cell. Indirect programming of the FG

transistors made it possible to use negative voltages to program the FG transistor and circumvent

the issue of using selection circuits operating below ground. Two closed-loop regulating charge

pumps were also presented to generate the negative voltages required for programming.
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Figure 6.20: Measured load regulation of the first negative charge-pump



Mir Mohammad Navidi Chapter 6. Below Ground Programming 106

Charge 
Pump 
Stageclk

3.3V

Iload

Vout

R1

R2

Charge 
Pump 
Stage

Charge 
Pump 
Stage

Pb

Pb well
well

Current-Controlled 
Ring Oscillator

Vtarg

Vfb

2x

Charge 
Pump 
Stage

Clock 
Booster

Clock 
Booster

Clock 
Booster

Clock 
Booster

4-Phase 
Clk Gen

HVdd HVdd

C1 C2

Vin

Vout

M1 M2

M3

M4

Msw1

Mbt1

Cbt1 Cp1

Msw3

Vx1

Vm1

Msw2

Mbt2

Cbt2 Cp2

Msw4

Vx2

Vm2

Vstage,out
Vstage,in

φ1b φ2

φ2b φ1

(c)

well

well

well

well

(a)

(b)

Figure 6.21: Circuit structure of the second proposed charge pump

1 2 3 4 5 6 7

I
load 10-5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

V
o
u
t

(a)

10-9 10-8 10-7 10-6 10-5 10-4

I
load

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

V
o
u
t

(b)

Figure 6.22: Measured load regulation of the second negative charge-pump
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Chapter 7

Conclusions and Future Work

The concept of the Internet of Things (IoT) is currently a highly significant topic. IoT is the

network of devices that we use in our daily life and other devices that include sensors and actuators

which enables these devices to communicate and exchange data. These networks of devices share

data among sensor nodes that are sent to a distributed system for the analysis of the data.

The benefits of reconfigurable analog signal processing make Field Programmable Analog Arrays

(FPAAs) attractive for resource-constrained sensing applications. Unfortunately, the cost of dense

analog data storage, which includes high power consumption to update the stored analog data or

high infrastructure overhead to write nonvolatile storage, limits the use of large-scale FPAAs in

low-power systems.

In order to make large-scale programmable analog systems, low-power programming circuits are

required. We showed that to change the stored analog data, Fowler-Nordheim tunneling and hot-

electron injection are used. Both of these techniques require highly stable and low ripple voltages.

We must use step-up voltage converters for these two procedures. Thus, we presented the design

procedure and experimental results of two charge pump circuits for FG programming applications.

Any System-on-Chip (SoC) will require supporting circuits to provide stable supply and mid-

rail voltages. Voltage reference cells are used to provide a stable voltage across a wide range of

temperature and supply variations. We presented the design procedure and experimental results of

two voltage reference cells that can be used in SoC applications. We also present the experimental

results of two voltage regulators which generate VDD and Vmid for analog and digital circuits in our

system.

The final goal of this work is to present a new programming technique for analog applications

namely below ground programming of FG transistors. Negative voltages are used to program the

FG transistors in digital applications. However, programming analog data in FG transistors using

negative voltages is a challenging task especially in standard CMOS processes. We presented a

technique to program the FG transistor using the indirect method of programming. Also, we

presented a technique to select a target FG transistor in an array of FG transistors for large-scale
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applications. We proved that this technique is possible in standard CMOS processes. Also, two

charge-pump structures are presented which can generate negative voltages and provide enough

load currents for the below ground programming technique.

7.1 Future work

We can make improvements to a few of the proposed designs. Improving the load current range

of the injection charge pump and the negative charge pump will reduce the overall complexity of

the full FPAA system. The FPAA system has other circuits that require high supply voltages

during the programming of a target FG transistor. For example, the injection charge pump can

be used to provide the voltages for other sub-circuits like Digital-to-Analog converters (DACs) and

serial peripheral interfaces (SPIs). These circuits may consume high power in transients to charge

the parasitic capacitors. Thus, improving the load current range of the injection charge pump will

circumvent the requirement of designing multiple high-voltage step-up converters which reduces

both the power consumption and the die area of the overall FPAA system.

The voltage reference cells and the supply voltage regulator presented in this dissertation use

on-chip resistors. These resistors generate thermal noise which degrades the noise performance of

these circuits. Besides, large resistors employed in these designs will occupy big die area which

increases the cost of the presented integrated circuits. Thus, a resistor-less design can reduce the

cost of the design.

The curvature compensation circuit presented in this dissertation can be employed at the output

stage of any voltage reference cell. Besides, improving the process sensitivity of the presented

voltage reference cell makes this design a good candidate for SoC applications. The mid-rail voltage

regulator presented in this dissertation has 8mV offset across −10µA to 10µA of load currents. This

offset can be improved by using high-gain amplifiers inside the regulation loops.

The below-ground programming technique was checked for a two-by-one array of FG transistors.

However, trying this idea for a big array of FG transistors would be beneficial for future large-scale

applications like FPAAs. It must be checked if programming a target FG memory cell would have

any effects on the charge programmed onto the neighbor FG transistors in the array. Shift registers

and other digital circuits are also required in the design of a big array of FG memory cells.

All of the presented circuits must be incorporated into an FPAA system. Employing these

circuits into a larger system helps to understand the requirements of these circuits realistically.

This is particularly challenging for an FPAA using the below-ground programming technique.

All of the circuits presented in this dissertation have other potential applications too. The high-

voltage charge pumps can be used in MEMS devices, electret earphones, and mobiles DRAMs. The

voltage regulators and the voltage reference cells can be used in implantable biomedical microsys-

tems and data converters. The proposed negative charge pumps can be employed in TFT LCD
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display drivers and high impedance microstimulation. These designs can be incorporated into the

mentioned applications.
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Appendix A

A 788mV voltage reference cell

A low-power voltage reference cell for system-on-chip applications is presented in this Ap-

pendix. A combination of thin-oxide transistors and thick-oxide transistors is used to generate

a low temperature-coefficient (TC) reference voltage. We propose a new curvature compensation

circuit to reduce the process variations of the output voltage. The circuit is fabricated in a stan-

dard 0.35µm CMOS process. The proposed circuit generates a 788V output and achieves a TC of

141ppm/◦C from −5◦C to 110◦C. The line regulation is 0.9mV/V from 1.5V to 3.3V supply. The

power consumption of this chip under a 3.3V supply is 0.4µW at room temperature. The die area

of this chip is 0.399mm2 which includes the serial peripheral interface (SPI) circuits and trimming

circuits.

A.1 The proposed circuit

Voltage reference circuits are critical building blocks that are used to generate a stable volt-

age across a wide range of temperatures. A low temperature-coefficient (TC), low power voltage

reference circuit can potentially have many system-on-chip applications.

While good designs have been presented, these designs are not without issues. Some of the volt-

age reference cells are available in standard CMOS processes which consume high power (e.g. [85,

86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 99, 105, 106, 107]). Line

regulation is another important parameter. There are a few published low TC circuits which have

poor line regulation [108, 109, 110, 111, 112, 113, 85, 111, 114, 115, 116, 110, 117, 102, 118]. The

output voltage of a few voltage reference circuits is limited to the threshold voltage [119] of a transis-

tor or is very small [120]. A number of other voltage references with good temperature performance

and low power have been reported, but these circuits require special devices that may not be avail-

able in standard CMOS processes, such as NPN and PNP transistors [121, 122, 123, 124, 125, 126],

DTMOS transistors [127], SG BiCMOS process [128], SOI − FINFET [129], depletion-mode

NMOS transistors [130], anti-doped NMOS devices [131], GaN process [132], anti-doped n-
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Voltage reference 
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Curvature 
compensation circuit

Vref

AVdd AVdd

Figure A.1: Top level block diagram of the proposed voltage reference core

channel MOSFETs [131], and native nMOS devices [64]. [133], [65], and [134] are a few designs

which use triple-well CMOS processes. Other voltage references in standard CMOS processes with

reduced power consumption may have temperature-coefficients that are too large for many applica-

tions [67, 68, 59]. Finally, some of the designs are extremely process-sensitive. For example, [135]

has 100mV die-to-die variations without trimming.

In this Appendix, we focus on the design of a low-power, low-TC voltage reference cell with

small dependency on the process variations in a 0.35µm standard CMOS technology. Many volt-

age reference circuits use curvature compensation circuits to generate a low-TC output voltage.

[136, 137, 126, 138, 139] are a few examples which are not power efficient. Also, a few curvature

compensation circuits are not designed in standard CMOS processes [140, 133, 126, 137, 138].

In this Appendix, we present a low-power curvature-compensation technique to reduce the

TC of the voltage reference cell in a standard CMOS process. The process sensitivity is another

important factor in the design of voltage reference cells. In this Appendix, we present a circuit that

utilizes a process compensation circuit to reduce the sensitivity of the output voltage to process

corners. Our voltage reference cell has been fabricated in a standard 0.35µm CMOS process and is

capable of generating a 788mV reference voltage with a TC of <150ppm/◦C and single µW power

consumption over a wide range of temperatures. To achieve this performance, we use both standard

(thin-oxide) transistors and I/O thick-oxide transistors to provide a low-TC reference voltage.

A.2 Principle of Operation

A high-level block diagram of the voltage reference cell is shown in Fig. A.1. In this circuit, a

voltage reference core generates the reference DC voltage. Then a curvature compensation circuit

removes the curvature from this voltage and a low TC output voltage is generated at the output of

the circuit (Vref ). One advantage of this technique over other curvature compensation techniques

is that this technique is applicable to other voltage reference cells, too.

To achieve low power consumption, our circuit was designed to operate in the subthreshold

region with a very low bias currents. The drain current of a transistor biased in subthreshold can
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Figure A.2: Top level block diagram of the voltage reference cell

be expressed as [57]:

Id = I ′0Se
κ(Vg−VT )

UT

(

e
−Vs
UT − e

−Vd
UT

)

(A.1)

where I ′0 = 2ηµCoxU
2
T , S is the aspect ratio (W/L) of the transistor, UT = kT/q is the thermal

voltage, k is the Boltzmann constant, q is the elementary charge, T is the absolute temperature

in kelvins, VT is the MOSFET threshold voltage, and η = 1/κ is the subthreshold slope. Voltages

Vg, Vs, and Vd are the gate, source, and drain voltages, respectively, referenced to the substrate.

When the transistor operates in the saturation region, exp(−Vd

UT
) approaches zero and is, therefore,

negligible. We also assume that the transistors have been designed with large-enough channel

lengths that the channel-length modulation effect can be safely dropped.

A.2.1 Voltage reference core

The schematic diagram of the proposed voltage reference core is shown in Fig. A.2. This

circuit consists of a current reference cell and a voltage generator. All transistors are biased in

sub-threshold except for Mres1 and Mres2 which are biased in above threshold linear region. The

gate-to-source voltage of Mres1 and Mres2 is high enough to bias these two in the above-threshold

triode region. The current reference cell includes Mp3, Mp4, Mp5, Mp6 as a one-to-one current

mirror. This circuit also includes Mn1, Mn2, Mn3, and Mn4 which are biased in the sub-threshold

region. The Vgs difference between Mn3 and Mn4 is converted to a current using Mres1 and Mres2

acting as resistors.

The voltage generator circuit includes 4 stages. Two of these stages are CTAT sources and two

of them are PTAT sources. The CTAT voltage generator is shown in Fig. A.3. This circuit has

been used in [61]. Mtk is a thick-oxide 5V transistor and Mtn is a thin-oxide 3.3V transistor. The

difference of the oxide thicknesses of these two transistors causes a threshold voltage difference.
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Figure A.3: Schematic diagram of the type 1 composite circuit

Therefore, the voltage difference produced by this cell between Vx and Vy can be expressed as:

Vyx = Vy − Vx = κ(Vth,thick − Vth,thin) + UT ln
( Sthin

Sthick

I0
I0t

ix + iy
ix

)

(A.2)

The threshold voltage difference of the transistors is a CTAT term. The ln term is a function

of the transistor sizes and the bias current ratio. By proper sizing of the transistors, this block will

become a CTAT voltage generator. κ has high-order temperature dependent terms and will cause

up or down curvature in the output of the voltage generator based on the sign of the ln term.

The PTAT voltage generator is shown in Fig. A.4. This circuit has been used in a few volt-

age reference cells [127]. This circuit includes two thin-oxide transistors. The voltage difference

produced by this cell between Vx and Vy can be expressed as:

Vyx = Vy − Vx = UT ln
(Stn1

Stn2

(ix + iy)

ix

)

(A.3)

By choosing proper transistor sizes, the term inside the ln can be made much greater than 1 and

hence a PTAT voltage will be generated.

The voltage at the intermediate nodes of the voltage generator of Fig. A.2 can be calculated

as follows. The size of all the mirror transistors (Mp7 to Mp16) are the same. The bias currents for

the first CTAT stage are ix and iy = 4ix and the voltage drop across this stage can be expressed

as:

V1 = κ(Vth,tk1 − Vth,tn1) + UT ln
(5Stn1

Stk1

I0
I0t

)

(A.4)

The bias currents for the first PTAT stage are ix and iy = 3ix and the voltage drop across this



Mir Mohammad Navidi Appendix A. A 788mV voltage reference cell 125

Mtn2

Mtn1

Vx

Vy

ix

iy

Figure A.4: Schematic diagram of the type 2 composite circuit

stage can be expressed as (V21):

V21 = V2 − V1 = UT ln
(4Stn2

Stn5

)

(A.5)

The bias currents for the second CTAT stage are ix and iy = 2ix and the voltage drop across this

stage can be expressed as (V32):

V32 = V3 − V2 = κ(Vth,tk3 − Vth,tn3) + UT ln
( 3Stn3

Stk3
I0
I0t

)

(A.6)

Finally, the bias currents for the second PTAT stage are ix and iy = ix and the voltage drop across

this stage can be expressed as (Vout − V3):

Vout − V3 = UT ln
(2Stn4

Stn6

)

(A.7)

Adding all of these equations (A.4, A.5, A.6, and A.7), and assuming almost equal threshold

voltages for the transistors, the output voltage can be expressed as:

Vout = 2κ(Vth,tk − Vth,tn) + UT ln(
120Stn1Stn2Stn3Stn4

Stk1Stk3Stn5Stn6

I20
I20t

) (A.8)

The output voltage Vout with a zero TC can be obtained by adjusting the size of the tran-

sistors. The CTAT part of this voltage is κ(Vth,tk − Vth,tn) and the PTAT part of this volatge is

UT ln(
120Stn1Stn2Stn3Stn4
Stk1Stk3Stn5Stn6

I20
I20t

). The temperature dependence of the threshold voltage can be given by

Vth = Vth0 − αT (A.9)

where Vth0 is the threshold voltage at 0K, and κ is the TC of Vth [141]. Sign of the ln() term can

be set by using proper values for the transistor.
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Again, κ will produce a high order temperature term which creates the up or down curvature.

Using equation A.9, A.8 could be rewritten as:

Vout = 2κ(Vth0,tk − αtkT − Vth0,tn1 + αtnT ) + UT ln(
120Stn1Stn2Stn3Stn4

Stk1Stk3Stn5Stn6

I20
I20t

) (A.10)

The threshold voltage of a transistor is a CTAT term. The slope of the threshold voltage against

temperature is higher for thick oxide transistors. Thus the first term (2κ(Vth0,tk −αtkT −Vth0,tn1+

αtnT )) in (A.10) is a CTAT voltage. The ln term in (A.10) can be set by the aspect ratios of the

transistors and can be a high slope PTAT voltage. Thus, this circuit can generate either a CTAT

or a PTAT output voltage depending on the aspect ratios of the transistors and the bias currents

going through them.

A.2.2 Process compensation circuit

The proposed current reference cell has a similar structure to the conventional current reference

cells except for the resistive element. A transistor biased in the above threshold linear region is

used in [114, 133] instead of a resistor to generate the bias current. In this work, we follow the

same idea, but we try to reduce the process sensitivity of the current reference, too.

Fortunately, unlike [119] both Vout and TCV out are not functions of the bias current. However,

the region of operation for the transistors in the voltage reference generator (Mtn1 Mtn6, Mtk1, and

Mtk3) are a function of their bias currents, and we must make sure that all these transistors are

biased in subthreshold region. Otherwise, we can not use the analysis presented in the previous

section to find Vout. Therefore, we must reduce the process sensitivity of the bias current. The bias

currents of these cells are a function of Ip. Accordingly, we must make sure that this current stays

in an acceptable range. Ip is a function of the voltage difference between Mn3 and Mn4 and the

resistance seen across Mres1. Based on Cadence simulations, a big portion of variations in Ip across

corners is due to the process variations of Mres1. In this section we propose a technique to reduce

the process variations of Ip. The voltage reference core without process compensation circuit is

shown in (A.5). The currents being conducted through two branches of the current reference cell

are equal, because:

(w/l)p3 = (w/l)p4 = (w/l)p5 = (w/l)p6 (A.11)

A KVL equation around VGN1 gives this:

VGS,n3 = VGS,n4 + VDS,res1 (A.12)
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Figure A.5: Schematic diagram of the voltage reference core using conventional MOS resistor.

Since, Mn3 and Mn4 have the same current, we will have:

VDS,res1 = ηUT ln(
(w/l)n4
(w/l)n3

) (A.13)

MOS resistor Mres1 is biased in strong inversion, deep triode region. Therefore, its resistance is

given by:

R1 =
1

2µnCox(w/l)res1(Vout − Vth,res1)
(A.14)

Accordingly, the current generated by the current reference cell could be expressed as:

Ip =
VDS,res1

R1
= 2µnCox(w/l)res1(Vout − Vth,res1)ηUT ln(

(w/l)n4
(w/l)n3

) (A.15)

Equation (A.15) clearly shows that Ip is process dependent. In this equation µ, Cox, Vth, Vout

are process-dependent. We would like to suppress the process dependency of this current. The

process dependence of Ip on the threshold voltage is much higher than other parameters [119].

The compensation circuit includes Mp1, Mp2, Mcomp1, Mcomp2, Mcomp3, and Mres2. The bias

current Icomp was chosen to be much smaller than Ip. Therefore, it will not affect the total power

consumption of the chip. The aspect ratio of Mcomp1, Mcomp2, and Mcomp3 is selected such that

Mres2 is biased in above threshold triode region. Therefore, its resistance is given by:

R2 =
1

2µnCox(w/l)res2(VGS,res2 − Vth,res2)
(A.16)
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The gate-source voltage of Mres2 can be expressed as:

VGS,res2 = VGS,comp1 + VGS,comp2 + VGS,comp3 (A.17)

Therefore,

VGS,res2 = Vth,comp3 + ηUT ln(
Icomp

Scomp3µU2
T

) + Vth,comp2 + ηUT ln(
Icomp

Scomp2µU2
T

) + Vth,comp1+

ηVT ln(
Icomp

Scomp1µV 2
T

) (A.18)

This equation could be simplified to the following:

VGS,res2 = Vth,comp3 + Vth,comp2 + Vth,comp1 + ηUT ln(
I3comp

µ3U6
TScomp1Scomp2Scomp3

) (A.19)

Therefore, the resistance of Mres2 can be expressed as:

R2 =
1

2µnCox(w/l)res2(Vth,comp3 + Vth,comp2 + Vth,comp1 + ηUT ln(
I3comp

µ3U6
T
Scomp1Scomp2Scomp3

)− Vth,res2)

(A.20)

The parallel combination of R1 and R2 can be expressed as:

Req =
1

1
R1 + 1

R2

(A.21)

This equivalent resistance can be expressed as:

Req =

1

2µnCox((w/l)res1(Vout − Vth,res1) + (w/l)res2(ΣVth,comp + ηUT ln(
I3comp

µ3U6
T
Scomp1Scomp2Scomp3

)− Vth,res2)

(A.22)

And can be simplified to the following:

Req =

1

2µnCox(w/l)res1(Vout − Vth,res1 +
(w/l)res2
(w/l)res1

(ΣVth,comp + ηUT ln(
I3comp

µ3U6
T
Scomp1Scomp2Scomp3

)− Vth,res2)

(A.23)

The denominator of (A.14) is a function of Vout−Vth,res1, which is process-sensitive. Process varia-

tions of Vout−Vth,res1 change the absolute value of the resistance. Hence, the current generated by



Mir Mohammad Navidi Appendix A. A 788mV voltage reference cell 129

Mp1

Mp3

Mp2

Mp4

Mp5

Mp6

Mn3

Mn1

R2Mn2

L1

Mn4
VGN2

VGP2
Iptat

L2 L8L7

V1 VX

R1

Mn5 Mnl1 Mnl2 Mnl7 Mnl8

ML1 ML2 ML7 ML8

I

Mp12Mp11

Mp14Mp13

Vout

Vref

Vbuff

R3

Ip

Icc

Output stage

Min1 Min2

Vs

Curvature-Compensation-Circuit

Figure A.6: Schematic diagram of the curvature compensation circuit.

this cell varies among corners. However, in (A.20), the process variations can be compensated by the

second term which is added to the denominator ( (w/l)res2
(w/l)res1

(ΣVth,comp+ηUT ln(
I3comp

µ3U6
T
Scomp1Scomp2Scomp3

)−

Vth,res2). There are enough parameters in this equation, which gives a high level of freedom to

achieve Vth process compensation ((w/l)res1, Scomp1, Scomp2, Scomp3, Icomp). There are some other

process-dependent parameters (µn, Cox) in this equation, too. However, we just focus on Vth pro-

cess variations, because compared to the other parameters mentioned in the past few lines, it has

the highest rate of variations among corners.

A.3 Curvature compensation idea

Many curvature compensation circuits have been proposed in the literature. In this work, a

flexible curvature compensation technique is presented that can be applied to other voltage reference

circuits with high-temperature variations.

A.3.1 Curvature compensation circuit

The circuit diagram of the curvature compensation circuit is shown in Fig. A.6. This circuit

has two main parts. The curvature compensation circuit that generates Icc and the output stage

which receives Vout from A.2 and generates Vref (curvature compensated output).
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Figure A.7: Simulation results for IL current while only one of the switches (L1-L8) is on at a time.

A.3.2 High-temperature non-linear current generation circuit

This circuit generates a nonlinear PTAT current that is close to zero at very low temperatures

and rises to higher currents exponentially in higher temperatures. The current reference cell is a

conventional current reference cell including Mp1, Mp2, Mp3, Mp4, Mn1, Mn2, Mn3, Mn4, and R1.

The current generated by this circuit is a PTAT current (IP ). This current is mirrored through Mp5

and Mp6 and generates another PTAT current called Iptat. Transistors Mnl1 to Mnl8 are all thick-

oxide transistors to make sure that they will be biased in sub threshold region. All other transistors

are thin-oxide transistors. The gate voltage of the thick-oxide transistors can be expressed as:

Vx = R2Iptat + V1 (A.24)

V1, the gate voltage of Mn5, can be expressed as:

V1 = Vth,n5 +
UT

κ
ln(

Iptat
Sn5I0

) (A.25)

Therefore, I (current through ML1) can be expressed as:

I = I0tSnl1exp

(

κ(Vx − Vth,thick)

UT

)

= Snl1I0texp

(

κ(R2Iptat + V1 − Vth,thick)

UT

)

(A.26)
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Figure A.8: Simulation results of log(IL) while only one of the switches (L1-L8) is on at a time.

This equation can be further simplified to the following:

I = Snl1I0texp

(

κ(R2Iptat + Vth,n5 +
UT

κ ln(
Iptat
Sn5I0

)− Vth,thick)

UT

)

(A.27)

Therefore, I can be further simplified to the following:

I = Snl1I0texp

(

κ(Vth,n5 − Vth,thick)

UT

)

exp

(

κR2Iptat
UT

)

exp

(

ln

(

Iptat
Sn5I0

))

(A.28)

Again, this equation can be further simplified to this:

I = (Snl1I0t)

(

Iptat
Sn5I0

)

exp

(

κ(Vth,n5 − Vth,thick)

UT

)

exp

(

κR2Iptat
UT

)

(A.29)

I = Iptat
I0t
I0

Snl1

Sn5
exp

(

κ(Vth,n5 − Vth,thick)

UT

)

exp

(

κR2Iptat
UT

)

(A.30)

This current is very small for low temperatures and rises very fast with temperature. The exp(
κ(Vth,n5−Vth,thick)

UT
)

term is almost independent of temperature since both the nominator and denominator are first-

order functions of temperature. The rest of (A.30) is temperature-dependent. In exp(
RIptat
ηUT

), the

RIptat term has high-order dependence on temperature, and UT is first-order temperature depen-

dent. Therefore, Iptatexp(
κR2Iptat

UT
) grows very fast with temperature. ML1-ML8 are digital switches

to control the amplitude of IL. Mnl1 to Mnl8 are all thick-oxide transistors with different aspect
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Figure A.9: Schematic diagram of the start-up circuit.

ratios. This will scale the current through each one of ML1-ML8 up or down (look at equation

(A.30)).

A.3.3 Output stage

The current through Min1 and Min2 can be expressed as:

Iin1 = I0Sin1exp

(

κ(Vout − VT )

UT

)

exp

(

−VS

UT

)

(A.31)

Iin1 = I0Sin1exp

(

κ(Vbuff − VT )

UT

)

exp

(

−VS

UT

)

(A.32)

The aspect ratios of Mp11, Mp12, Mp13, and Mp14 are all equal. Hence, the current through Min1

and Min2 are equal to Icc/2. Therefore,

Vbuff = Vout (A.33)

Therefore, Vbuff is an exact copy of Vout. The output voltage of this stage can be expressed as:

Vref = Vbuff −
R3Icc
2

= Vout −
R3Icc
2

(A.34)

In order to compensate the curvature in Vout, the high-order terms in R3Icc/2 must cancel the

high-order terms in Vout.

A.3.4 Start-up circuit

The schematic diagram of the start-up circuit is shown in Fig. A.9. When the supply voltage

is turned on, Msp1 starts to charge the capacitor slowly because the gate terminal is at ground.

Therefore, the gate terminals of Msp3, Msp4, and Msp5 start to charge-up slowly. Accordingly,

VGN1, VGN2, and VGN3 start to drop from Vdd to ground and will inject a current onto the shared
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Figure A.10: Trimmed output for (a) TT=1 FF=SS=0 (125 ppm/◦C from -11◦C to 92◦C) (b) TT=1
FF=SS=0 (94 ppm/◦C from -15◦C to 82◦C) (c) TT=FF=SS=0 (125 ppm/◦C from -15◦C to 92◦C)
(d) TT=0 FF=SS=1 (139 ppm/◦C from -5◦C to 120◦C).

gate connections of Mn3, Mn4 (VGN1) in the voltage reference core, the shared gate connection of

Mn3, Mn4 (VGN2) in the curvature-compensation circuit, and the shared gate connection of Mr1,

Mr2 (VGN3) in curvature compensation circuit. At the same time, the shared gate connections of

Msn2, Msn3, and Msn4 start to drop from Vdd to ground. Hence, VGP1, VGP2, and VGP3 start to

rise and Msn2, Msn3, and Msn4 inject some current to the gate connections of PMOS transistors in

the current reference cells. Accordingly, the bias currents will not stabilize in a zero bias state.

A.4 Experimental results

This circuit was fabricated in a standard 0.35µm CMOS process. The circuit uses a shift

register to feed in the digital data serially. This serial data includes L1 − L8, TT, FF, and SS.

Widths of Mp7-Mp16 are controllable with three trimming bits (TT, FF, SS). Basically each one

of these transistors are a parallel combination of three separate transistors which their gates are

controlled with TT, SS, and FF. Setting each one of these bits to zero will increase the W/L ratio

of all Mp7-Mp16.
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Figure A.11: Measured line regulation at room temperature for (a) Fail-Safe case LR=1.3mV/V (b)
Trimmed case LR=0.9mV/V.
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Figure A.12: (a) Measured current vs. supply voltage at room temperature. (b) Measured current
vs. supply voltage at room temperature (Trimmed).

By increasing Icc, the high-order curvature of the output voltage reduces and the operational

temperature range of the circuit reduces too. Figure A.10 shows the output voltage for different

trimming codes. The lowest TC is achievable when TT=1 and SS=FF=0. The temperature

coefficient under this set-up is 94 ppm/◦C. However, the operational temperature range of the

circuit is -15◦C to 82◦C. The widest temperature range is achievable when TT=0 and FF=SS=1.

However, the temperature coefficient of the circuit is 139 ppm/◦C from -5◦C to 120◦C.

The line regulation measurements results of the proposed circuit before trimming and after

trimming is shown in Fig. A.11 (a) and A.11(b), respectively. The supply voltage range of the

proposed circuit is from 1.5V to 3.3V . The measured supply current across the supply voltage is

shown in Fig. A.12(a) and A.12(b), respectively. The current consumed by this chip in steady

state for both cases are around 420nA.

The voltage distribution of the proposed circuit for 10 different samples is shown in Fig. A.13.

The circuit was set to TT=0 and FF=SS=1 and the DC output voltage of the circuit was measured
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Figure A.13: Distribution of the DC output voltage for 10 different samples.

for these 10 samples. The average output voltage for these 10 different samples are 0.788mV and

the σ/µ for these 10 samples is around %0.9.

A.4.1 Down curvature compensation

The curvature compensation idea could be generalized to cancel the down curvature, too. The

same curvature compensation circuit is slightly changed to cancel the down curvature. In this case,

instead of subtracting a voltage from Vout to generate Vref , we add a voltage to Vout and generate

Vref to cancel down curvature. This circuit is shown in figure A.14. Vbuff is an exact copy of Vout

at all temperatures. A voltage drop across R3 with up curvature is added to Vbuff to cancel the

down curvature visible in Vbuff . The curvature compensated voltage is called Vref in this circuit.
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Appendix B

A simple low power voltage reference

cell

In chapter 4, we proposed a low-power voltage reference cell. We described the analysis of the

circuit in broad terms. In this Appendix, we present a simple voltage reference cell which is even

simpler than the voltage reference cell presented in chapter 4 but will provide a lower reference

voltage.

B.1 The voltage reference cell

The schematic diagram of the circuit is presented in Fig. B.1. The operation of the start-up

circuit and the PTAT current generator were explained in chapter 4. The output stage of this

circuit includes a resistor (Rout) and a diode-connected transistor (MZ). The voltage generated

across the resistor is a PTAT voltage. The current (Iy) is a PTAT current, and it can be expressed

as:

Iy = UT

(

1

RC

)(

S13

S7

)

ln

(

S11

S10

)

(B.1)

Thus, the voltage across the resistor can be expressed as follows:

VPTAT = UT

(

Rout

RC

)(

S13

S7

)

ln

(

S11

S10

)

(B.2)

Using (4.1) and assuming that the transistor is biased in the subthreshold region, the voltage

generated by the diode-connected transistor is given by:

Vx = Vth +
UT

κ
ln

(

Id
SZI ′0

)

(B.3)
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Figure B.1: Top level block diagram of the voltage reference cell

The threshold voltage term in this equation is a CTAT term. The second term is a function of UT

which is a PTAT term. This term can be set to be small by choosing a large aspect ratio (SZ).

Thus, the output voltage can be expressed as:

Vout = Vth +
UT

κ
ln

(

Id
SZI ′0

)

+ UT

(

Rout

RC

)(

S13

S7

)

ln

(

S11

S10

)

(B.4)

The threshold voltage of a transistor is a CTAT term and can be expressed as:

Vth = αVth
T + Vth0 (B.5)

where αVth
is a negative term. By taking the derivative of (B.4) with respect to T, we arrive at an

equation for the TC at

TC =
∂Vout

∂T
= αVth

+
K

qκ
ln

(

Id
SZI ′0

)

+
K

q

(

Rout

RC

)(

S13

S7

)

ln

(

S11

S10

)

(B.6)

The temperature coefficient of the output voltage can be set to zero by proper selection of SZ , S7,

S13, S10, S11, Rout, and RC . Thus αVth
can be expressed as:

αVth
= −

K

qκ
ln

(

Id
SZI ′0

)

−
K

q

(

Rout

RC

)(

S13

S7

)

ln

(

S11

S10

)

(B.7)

By using (B.7) in (B.4), the output voltage of this circuit can be simplified to the following:

Vout = Vth0 (B.8)

Therefore this circuit generates a voltage equal to the threshold voltage of a transistor at the

reference temperature.
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