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The manner in which humans learn, plan, and decide actions is a very compelling

subject. Moreover, the mechanism behind high-level cognitive functions, such as

action planning, language understanding, and logical thinking, has not yet been fully

implemented in robotics. In this paper, we propose a framework for the simultaneously

comprehension of concepts, actions, and language as a first step toward this goal.

This can be achieved by integrating various cognitive modules and leveraging mainly

multimodal categorization by using multilayered multimodal latent Dirichlet allocation

(mMLDA). The integration of reinforcement learning and mMLDA enables actions based

on understanding. Furthermore, the mMLDA, in conjunction with grammar learning and

based on the Bayesian hidden Markov model (BHMM), allows the robot to verbalize its

own actions and understand user utterances. We verify the potential of the proposed

architecture through experiments using a real robot.

Keywords: cognitive architecture, generativemodel, concept formation, multimodal categorization, reinforcement

learning, language learning, system integration

1. INTRODUCTION

The technology of artificial intelligence (AI) in recent years has developed rapidly, exceeding
human ability in specific tasks (Russakovsky et al., 2015). Meanwhile, research on artificial general
intelligence (AGI) has attracted significant attention (Goertzel, 2014). However, the realization of
flexible and versatile intelligence, such as that evident in humans, remains a difficult problem. In
particular, it is fair to say that robots that can use language and appropriately plan and perform
various actions is not yet a reality. One reason seems to be the lack of physical body in AI. We
reason that the physical body is very important in the development of human-like intelligence
(Cangelosi and Schlesinger, 2015). This fact is a strong motivation for the premise of using robots
in this research.

Another and more important problem is the integration of multiple cognitive modules, which
has not been sufficiently studied up to now. Basically, various functions are required for human-like
flexible intelligence. Several cognitive functionalities, such as perception, language, and decision
making, are intertwined in a complex manner to realize such intelligence. Each of these is often
studied independently as a function or algorithmic realization. However, it is important to consider
simultaneous learning, involving the overall structure rather than individual elements. Based on
such a premise, the research questions seem to be two-fold; how do individual cognitive models
relate each to other, and how do they develop each other? In other words, the appropriate
connection of all modules should be studied, observing how each module learns in the entire
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structure. By challenging these questions, we believe we canmake
a step forward toward realizing AGI by robots. Moreover, from
the constructive approach, it is also important to elucidate this
core mechanism of human intelligence (Asada et al., 2009).

To pursue the above questions, we first propose a general
structure of human-like intelligence at the computational level
of the three levels of Marr (1982). The idea of the general
structure of human-like intelligence in this study is based
on the global network, which has been proposed by Doya
(1999). According to Doya (1999), the cerebral cortex utilizes
unsupervised learning, and reinforcement learning is carried
out in the basal ganglia. Considering the anatomical connection
between the cortex and the basal ganglia, our model connects the
multi-layered multimodal latent Dirichlet allocation (mMLDA),
which implements unsupervised learning, and a reinforcement
learning module as the basal ganglia. Multimodal latent Dirichlet
allocation (MLDA) is a probabilistic generative model in which
LDA is extended to multimodal data, and it is shown that concept
learning is possible by applying MLDA to robots (Nakamura
et al., 2009; Araki et al., 2012). mMLDA is a model that realizes
representation learning ofmultimodal data and further integrates
them hierarchically (Fadlil et al., 2013).

In the proposed model, we combine the Bayesian hidden
Markov model (BHMM) with mMLDA. Language learning is
realized by combining BHMM, which learns grammar, with
mMLDA. This is because the language area corresponds to a
module of temporal learning, and the BHMM is used to replicate
this functionality. Then, we implement the entire structure and
test it using a real robot to reveal the learning process inside.
The experiment carried out in this study is based on a scenario
of infant-mother interaction. The robot, in which our proposed
integrated cognitive model is implemented, interacts with a
human partner using some toys. Through the interaction the
robot learns object concepts, appropriate actions, and language
simultaneously. After the interaction, the model is analyzed to
reveal the learning process of the proposed integrated model.

The remainder of this paper is organized as follows. In section
2, we propose the general entire structure of the integrated
cognitive model followed by details of each cognitive module in
section 3. Section 4 describes the experimental settings and the
results of the experiments are explained in section 5. Section 6
discusses the results and section 7 summarizes this paper.

1.1. Related Works
Related works include many studies on deep learning. Recent
natural language processing has been successful in integrating
visual information with natural language. In fact, the system can
verbally describe what is contained in the pictures (Arandjelovic
and Zisserman, 2017). However, such systems do not address
the acquisition of language. Since a supervised learning method
is utilized, huge pairs of images and sentences are required to
train the system. Furthermore, the language is not grounded to
physical real objects nor to actions, since the physical body is
not involved. Hill et al. (2017) proposed a neural network-based
language learning agent. Although they show promising results,
the study was carried out in a simulated 3D world. Hence, it

is not clear whether language acquisition can be realized by the
interaction between a real robot and a human partner.

The reinforcement learning framework has attracted much
attention in recent years, owing to the success of deep Q-
networks (DQN) (Mnih et al., 2015). For robotics applications,
direct policy search has been used (Levine et al., 2016). Levine
et al. (2016) showed the usefulness of reinforcement learning,
based on deep learning, in various robotic tasks. Moreover,
DQN is also used for manipulation learning (Gu et al., 2017).
These studies use real robots to carry out real physical tasks.
However, language is not taken into consideration. Although
the development of deep learning techniques is remarkable in
this way, it focuses on a specific function, and it is difficult to
fully understand the inside of the learning process. Furthermore,
simulation environments are often used in deep learning research
in general.

On the other hand, developmental robotics is a research area
that emphasizes the physical body (Cangelosi and Schlesinger,
2015). In the context of developmental robotics, various
aspects of development, such as language learning (Morse and
Cangelosi, 2017), motor learning (Billard, 2000; Demiris and
Khadhouri, 2006), and affordance learning (Stoytchev, 2008;
Jamone et al., 2018) are realized using robots. However, there
are many studies focusing on individual functions, and few have
dealt with concepts, and action learning, and language in an
integrative manner.

Tani and Ogata used recurrent neural networks (RNNs)
to develop human-like intelligent robots (Ogata et al., 2005;
Tani, 2016). Although they showed many interesting results
using real robots, it is still an open problem to implement
an integrated cognitive model covering areas from the sensor-
motor loop to language learning and decision making. In
(Heinrich and Wermter, 2018), a cognitive model that is
capable of learning language production grounded in both
temporal dynamic somatosensation and vision has been
proposed. The model is based on multi-timescale RNNs and
has properties of hierarchical concept abstraction, concept
decomposition, multi-modal integration, and self-organization
of latent representations. They also showed some interesting
results using a real robot; however, the framework regarding
decision making is not involved in the model. Moreover, the
RNNs have a common difficulty in the analysis of the model
inside, in general.

From the viewpoint of “cognitive architecture,” there are
several well-known architectures such as SOAR (Laird, 2012)
and ACT-R (Anderson, 2009). In particular, ACT-R is a very
famous framework based on cognitive science. There are several
cognitive architectures other than SOAR and ACT-R (Kotseruba
and Tsotsos, 2018). We consider our proposed model from
four viewpoints, which have been mentioned in the study of
Kotseruba and Tsotsos (2018). (1) Classification of the cognitive
architecture type: our proposedmodel is classified as an emergent
approach because the concepts emerge from our model using
sensorimotor information. (2) Types of input modality: our
model uses four modalities, namely image, action, language, and
reward. (3) Types of cognitive function: we focus on concept
formation, decision making, language learning, and integration
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of each cognitive function. Our model does not consider
attention, planning, memory, reasoning, and metacognition,
which are often treated in cognitive architectures. (4) Structure
of cognitive architecture: our proposed model mainly consists
of a combination of probabilistic generative models. The most
important point of our model is that it is based on the
generative model. The importance of the generative model
in intelligence has long been recognized; nevertheless, such
cognitive architecture has not been developed. We attribute
this to the historical fact that the development of a large-
scale probabilistic generative model is complex and technically
difficult. Researchers have enabled the development of a large-
scale probabilistic generative model by building a distributed
learning framework, referred to as SERKET (Nakamura et al.,
2018). In addition, a probabilistic programming language has
started gaining popularity (Tran et al., 2016); there is a possibility
that these aforementioned ideas will be further developed in the
future. On the other hand, regarding cognitive architectures for
robotics, iCub (Vernon et al., 2011) and ISAC (Gordon et al.,
2010) exist. However, the structure of each of these architectures
is different from that of our proposed model. Essentially, they
follow the structure of conventional cognitive architectures.

One of the promising research directions toward AGI is
the use of generative probabilistic modeling (Taniguchi et al.,
2016b). In fact, some studies have shown the usefulness of the
probabilistic models to acquire knowledge by self-organizing
multimodal information that the robot obtains through its own
experience. Because such knowledge is abstracted and linked
to language, it can be reused for various tasks. Until now,
there have been few cases in which action learning through
reinforcement learning, concept acquisition, and language
learning have been handled in a unified manner. In the
previous models including (Nishihara et al., 2017), probabilistic
representations of knowledge has been proposed; however,
the mechanisms of decision making have not been involved.
It is important to reveal how robots experience and collect
multimodal data in the first place. Furthermore, how do the
robots use the acquired knowledge to decide their own actions?
Answering these questions is necessary for the integration of
the frameworks of concept formation, language acquisition, real-
world understanding, and action planning from motion learning
by trial and error.

By contrast, to create complex human-like intelligence that
operates in the real world, it is necessary to consider complex
cognitive functional units that work together. Thus, in our
recent research, we proposed a framework to integrate multiple
modules (Miyazawa et al., 2017). However, we were limited
to the integration of concept formation and reinforcement
learning. Therefore, in this study, we further develop and
propose a model to simultaneously learn concepts, language, and
actions. We propose a framework to realize concept learning,
knowledge acquisition, language learning, and decision making
by integrating various modules, mainly the mMLDA. We verify
the potential of this proposed framework through experiments
in a real environment using a real robot.Themain contribution of
this research is that a unified framework for realizing such actions
and language acquisition loop is assembled around the mMLDA.

Decision making, and language understanding, using abstracted
concepts, are verified using a real robot.

2. INTEGRATED COGNITIVE
ARCHITECTURE

In this section, we propose a general framework of integrated
cognitive architecture.

2.1. Framework
The idea behind our proposed integrated architecture is based
on the hypotheses in Doya (1999), which claim that the cerebral
cortex is used for unsupervised learning, the basal ganglia is
for reinforcement learning, and the cerebellum is for supervised
learning. This hypothesis implies that the unsupervised learning
module is a core for the entire system to integrate multimodal
sensor motor signals. In other words, the unsupervised learning
module works as a learning representation of hierarchically
integrated multimodal sensor-motor signals, which generates a
latent space.

The temporal learning module is connected to the central
unsupervised learning module through the latent space. The
temporal module correspond to the grammar learning module
that encodes and decodes utterances. In the brain, this
module corresponds to the language area. From the anatomical
viewpoint, the basal ganglia forms some loops with the
cortex. This motivates us to connect the unsupervised learning
module to a reinforcement learning module through the
latent space.

Figure 1 illustrates the idea of our proposed integrated
cognitive model. The hypothesis in (Doya, 1999) is depicted
in Figure 1A. Figure 1B represents the corresponding model of
Figure 1A. The important point of this model is that it exhibits
a hub-like structure based on probabilistic generative models.In
other words, it is a framework in which various modules can
be connected via latent variables. In Figure 1B, the algorithms
that were used to implement the modules in this study are
indicated with yellow characters. The MLDA is used for multi-
modal categorization, the BHMM is used for time-series learning
in the language area, and the REINFORCE algorithm is used
for reinforcement learning. These are the main modules in the
proposed model and their details will be described in section 3.
The remaining modules, which mainly perform data acquisition
and preprocessing, will be described in section 3.1.1.

In this study, the minimum modules necessary for
autonomous learning of robots are integrated; however,
many other modules can be connected in the same manner.
Another important point to note is that with the proposed
structure, the entire model can be optimized using the SERKET
framework (Nakamura et al., 2018) described later.

2.2. mMLDA as Unsupervised Learning
Module
According to the above discussion, first, an actual algorithm
is selected for the unsupervised learning module. We select
MLDA as it has been proven that the real robots can form
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FIGURE 1 | An overview of the proposed integrated model; (A) illustration of the hypothesis in Doya (1999), and (B) the proposed architecture corresponding to (A).

Please refer to Figure 3 for notation. Figure 3 is a proposed implementation of (B) using probabilistic generative models.

abstract concepts through unsupervised learning by usingMLDA
(Nakamura et al., 2009). Since a hierarchical structure is required
in the integration, we use hierarchical version of MLDA, which
is called multi-layered MLDA (mMLDA) (Fadlil et al., 2013;
Attamimi et al., 2016). The mMLDA routine stochastically
expresses multiple concepts and their relationships as shown
in Figure 2.

Now, validity of the choice of mMLDA in this study is
discussed. There are three good reasons for the use of mMLDA
in this task. First of all, as mentioned above, there are some
successful robotics applications of MLDA (Araki et al., 2013).
The second reason is the hypothesis that, as shown in (Tomasello
et al., 2017), the integration of multimodal information in the
cortex is achieved by the bidirectional connection of each area.
Of course, we are not claiming that the mMLDA expresses
the structure of the brain as it is, but it is suggested that it
imitates the functional aspect of the brain in the integration of
multimodal information. The last reason is the hub structure
revealed by Connectome (Hagmann et al., 2008). The mMLDA
part in Figure 2 has a hub structure centered on latent variables,
and functional similarity with the brain is seen in this respect.

2.3. Whole Structure
The proposed model consists mainly of mMLDA and a
combination of several modules. The central role of mMLDA
is to form concepts by categorizing sensorimotor information,
as discussed above. The modules, which utilize formed
concepts, consist of the BHMM, which deals with language,
and reinforcement learning for decision making. Again, the
important idea behind our proposed model is the use of latent
variables as the connectors of several modules. It is worth
noting that mMLDA shown in Figure 2 has a structure based
on concepts such as objects, motions, and reward rather than
the input modalities directory. These concepts are the minimum
necessary concepts when the robot acts on its own and learns
language through trial and error, and through interaction with

human partners. Of course, there are other concepts as well.
For example, spatial concepts (Taniguchi et al., 2016a) can be
considered; however, to realize such a concept, the robot is
required to have a mobile base.

2.4. Language Module
In this model, word information is grounded in real-world
information through mMLDA. The lexicon is represented by
the word nodes in Figure 2, which corresponds to the audio
processing part in Figure 1B. By applying syntactic information
encoded in the BHMM to this word information, this model can
generate sentences. Conversely, by decomposing sentences using
the syntax encoded in the BHMM, followed by the prediction of
real-world information, the robot can understand the meaning
of sentences. The BHMM is used for the implementation, since
the BHMM has been shown to be capable of learning linguistic
structures in an unsupervised manner (Goldwater and Griffiths,
2007).

2.5. Decision Making/Action Module
Regarding decision making, we consider instantaneous decision
making using a learned policy function. Therefore, the proposed
model integrates a reinforcement learning algorithm. The most
important aspect of this learning action is that the latent variable
defined in the mMLDA is used as the state space for the
reinforcement learning. Since the learning of the model is carried
out simultaneously, the representation of the mMLDA is affected
by both sensorimotor signals and the policy function learned by
the reinforcement learning module. Furthermore, language also
affects the learning of actions.

In the proposed model, discrete actions are assumed, which
are encoded in the motor processing in Figure 1B. This indicates
that the reinforcement learning module learns to select an
appropriate discrete action to maximize the total reward.
Although the discrete actions are assumed to be fixed throughout
the learning in this study, an action learning method can be
involved in the motor processing. The reward can be the primary
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FIGURE 2 | The graphical model of the mMLDA used in this paper for formed concepts. Please refer to Figure 3 for notation.

reward and/or secondary one; however, the mechanism must be
designed some way. Moreover, reward signals are input to the
mMLDA to categorize and connect to the word information. This
makes it possible for the robot to ground the meaning of words
such as “good” and “bad.”

2.6. Limitations
A limitation of this architecture is the lack of a temporal learning
module. Without the temporal learning module, it is impossible
for the robot to plan long-term behavior. In fact, the learning
of temporal patterns in PFC is an important functionality of
the cortex (Shima et al., 2007). Although the current model
does not have a temporal learning module, it is possible for the
model to add another BHMM as a temporal learning module. By
using time series information expressed in the BHMM, dynamic
programming such as the Viterbi algorithm, makes it possible to
plan long-term action sequences toward a specified goal state.
Furthermore, by combining immediate and long-term actions
through the subsumption architecture (Brooks, 1991), the model
enables a wide variety of behavior for the robot.

Another important limitation to note is that of the structure
of the model. Since parametric Bayesian models are involved in
the proposed model, the number of classes must be defined in
advance. This causes a serious problem when aiming for open-
ended learning by the robot. However, this can be overcome
by applying Bayesian non-parametric models. Furthermore,
what type of modules are required for achieving human-like
intelligence is an important question that should be pursued in
the future.

From the viewpoint of constructive approach, the proposed
model also has a limitation, that it cannot be directly compared
with human cognitive functions because it has not been designed
to verify them. More specifically, each sensor input has been
simplified and is likely to deviate from human perception. For
example, information regarding motion is used as input in a
discrete manner; thus, the learning of motion concepts is a simple
task compared with human learning. This approach does not
reflect the difficulties that humans face with regard to language
learning, such as difficulties in learning nouns and verbs.

3. IMPLEMENTATION OF MODULES

Figure 3 shows the overall structure of the proposed integrated
cognitive model, which is realized by combining each module.
We describe the details of concept formation, language learning,
and policy learning in the next section. Then, we describe the
learning method of the entire model.

3.1. Concept Formation (Unsupervised
Representation Learning)
The concept formation uses mMLDA, which stochastically
expressesmultiple concepts and their relationships. ThemMLDA
framework exhibits a hierarchical structure withmultipleMLDAs
that express subordinate concepts, such as objects, and motion,
in the lower layer, and an MLDA that integrates them in the
upper layer. In this study, we use mMLDAwhich contains object,
motion, and reward concepts. mMLDA allows the categorization
of each sensor-motor signal, and also includes simultaneous
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FIGURE 3 | An overview of the proposed integrated cognitive model. Notations are listed in the right table. It should be noted that time index t is omitted in this figure

for simplicity. The top-level concept at time t is fully represented as zt instead of z for example.

unsupervised learning of the relationship between these concepts
(Attamimi et al., 2016).

The graphical model of the mMLDA used in the experiment
is illustrated in Figure 2, in which z is a category representing
an integrated concept, and zO, zM , and zR are objects, motion,
and reward concepts, respectively, corresponding to subordinate
concepts. The top-level concept z captures the relationship
between lower-level categories and expresses the state of
the robot. Variables wO, wM , wR, and ww∗ are observations
representing object (visual) information, robot motion, reward,
and word information, respectively. φ∗ and θ∗ are parameters of
multinomial distributions. β∗ and α∗ are parameters of Dirichlet
distributions. We briefly explain each observation as follows.

3.1.1. Observed Information
The robot observes multimodal information through various
sensors by acting in a real environment. We will explain in
detail how the robot acquires information by interacting with the
environment in the experiment section.

Object information wO is extracted from the image captured
by the RGBD camera attached to the robot. The object region
is segmented out from the acquired image containing multiple
objects. From the object region image, feature extraction is
performed using AlexNet, which is a convolutional neural
network (CNN) pre-trained with ImageNet. Specifically, we use
the 4,096-dimensional activation vector of the layer just before
AlexNet’s final layer when inputting an object image. Since the
input of MLDA needs to be a histogram, the obtained 4096-
dimensional vector is rounded off, and negative values are
replaced with zero.

Next, motion information is explained. In this experiment,
the robot motion is performed by selecting one of four
manually designed motions. Therefore, motion information
wM is a discrete value, and the 4-dimensional one-of-k
representation, corresponding to the selected robot motion, is
used. Details of each motion of the robot are described in the
experiment section.

Reward information wR uses the reward value obtained
according to the robot’s action. The reward value is given to the
robot’s action using direct key input by a person based on the
reward function. Since reward information wR also needs to be
expressed as a histogram, reward value r is divided into three
cases according to r < 0, r = 0, r > 0, and the one-of-k
representation is used.

Linguistic information ww∗ is obtained from human
utterances captured by microphone. A speech recognizer
converts the acquired speech waveform into sequences of text.
Each sentence is divided into words by a morphological analyzer,
and the occurrence frequency of each word is calculated to
transform the sentence into a bag-of-words representation.
Then, for the acquired word information, linguistic information
ww∗ corresponding to each concept (e.g., object, motion,
and reward) is estimated by weighting the word information
described later.

3.1.2. Parameter Estimation and Prediction
In this research, inference of mMLDA is realized by inference
of multiple MLDAs and message passing in the framework
of SERKET (Nakamura et al., 2018) described later. Since the
inference is based on the technique for single MLDA, the update
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rule of MLDA (Nakamura et al., 2009) is briefly explained in
Appendix A, and in section 3.4.1, the learning of the entire
mMLDA in the SERKET framework is described. It is also
possible to estimate concepts (categories) for new data using
learned models. Appendix B summarizes the prediction method
using the leaned MLDA model.

3.2. Language Learning
In language learning, robots learn concepts, grammar, and
words mutually through mMLDA and BHMM using the method
proposed by Attamimi et al. (2016). In this method, the grammar
represents information on the part-of-speech (POS) of each word
and syntax. The POS is represented by concept classes, and
the syntax expresses the order in which these concept classes
are arranged to construct a sentence using the Markov model.
Therefore, the problem of POS-tagging comprises the estimation
of a conceptual class to express each extracted word. The detailed
formulation of language learning is shown in Appendix C.

In contrast, the mMLDA is trained using the provided POS
information as the weights for corresponding concepts. Thus, to
form concepts by mMLDA, it is important to estimate the POS of
each word, which is a part of syntax.

3.3. Policy Learning
For policy learning, the REINFORCE algorithm, which is a policy
gradient method (Williams, 1992), is utilized. In this study,
decision making corresponds to two selections. One is the choice
of the motion that the robot should take, and the second is
the choice of the object that the robot should handle. Because
the top-level concept zt generates the motion concept zMt and
the object concept zOt in the proposed generative model, the
action selection is realized by estimating the top-level concept
zt+1 at the next time step so that the accumulated reward is
maximized (please note that the subscript “t” is used as the time
index in this section). In other words, integration of mMLDA
and reinforcement learning is performed by setting the top-
level concept, which is formed by mMLDA, as the state space
and actions of reinforcement learning. The actual algorithm of
the proposed reinforcement learning using observed multimodal
information is described below.

First, the proposed motion and object selection method is
explained. The motion selection is performed by sampling the
following equation using the top-level concept:

ŵM
t ∼ P(wM

t |z̄t) =
∑

zMt

P(wM
t |z

M
t )P(zMt |z̄t), (1)

where z̄t represents the top-level concept, which is predicted
using the policy described later. Here let the vector z be vector
representation of the probability distribution P(z). The object
selection is performed by measuring the difference between each
object concept of candidate objects and the object concept ẑOt ,
which is estimated from z̄t :

ẑ
O
t =

[

P(zOt = 1|z̄t)P(z
O
t = 2|z̄t) · · · P(z

O
t = No|z̄t)

]T
, (2)

where ẑOt andNo denote vector representation of the distribution
P(zOt |z̄t) and the number of object categories, respectively. Robots

acquire multimodal information wobs,t = [wO
t w

M
t wR

t ww∗
t ]

through multiple sensors by performing the selected motion with
the selected object. In section 4, information acquisition will be
described in detail.

Now, we will describe the calculation of the policy, that is,
the estimation of the top-level concept z̄t+1 at time t + 1 from
ẑt . The distribution of the top-level concept at time t, i.e., ẑt ,
can be estimated from the observed information wobs,t using
Gibbs sampling:

ẑt =
[

P(zt = 1|wobs,t) P(zt = 2|wobs,t) · · · P(zt = K|wobs,t)
]T

. (3)

ẑt inferred from observations at time t is used as the state space
for the reinforcement learning. In the proposed method, decision
making is to predict the top-level concept z̄t+1 at the next time
step t + 1, since the robot motion and the target object can be
calculated based on Equations (1) and (2) once z̄t+1 has been
obtained. Therefore, categories k of the top-level concept z̄t+1
can be seen as actions in the reinforcement learning. As Equation
(4) shows, we calculate the policy using the estimated top-level
concept ẑt and softmax function:

πλ(z̄t+1 = k|ẑt) =
exp{λTψ(z̄t+1,k, ẑt)}

∑

k exp{λ
Tψ(z̄t+1,k, ẑt)}

, (4)

where λ and z̄t+1,k denote the parameter vector of the policy
function and the one-hot vector whose k-th component is one
assuming z̄t+1 = k, respectively. ψ(·) calculates the feature
vector of size K2 using Kronecker product of z̄t+1,k and ẑt ,
where K represents the number of top-level categories. Then,
the distribution of z̄t+1 can be obtained by calculating the policy
function for all k:

z̄t+1 =
[

πλ(z̄t+1 = 1|ẑt),πλ(z̄t+1 = 2|ẑt), · · · ,

πλ(z̄t+1 = K|ẑt)
]T

. (5)

At time t+1, new observationswobs,t+1 are acquired by acting on
the basis of the above-mentioned policy. P(zt+1|wobs,t+1) can be
calculated by mMLDA from the acquired observations wobs,t+1,
and this provides the state ẑt+1 at time t+1. Hence, at time t+1,
the policy is calculated by πλ(z̄t+2 = k|ẑt+1).

The parameter λ is updated by

λτ+1 = λτ + η∇λJ(λ), (6)

∇λJ(λ) ≈

E
∑

e=1

T
∑

t=1

(Ret − b)∇λ logπλ(ẑ
e
t = ket |ẑ

e
t−1), (7)

where η represents the learning rate, Ret is the reward at t-th step

in e-th episode, and b denotes mean reward. ket is the category
of the top-level concept obtained by ket = argmaxk ẑ

e
t . E and T

represent respectively the total number of episodes and the total
number of steps at each episode for calculating∇λJ(λ) during the
parameter update process.
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FIGURE 4 | An overview of the proposed integrated model implemented using SERKET framework (Nakamura et al., 2018): (A) connection of the modules, and

(B) messages passed through the connections.

Algorithm 1 Learning algorithm of the integrated cognitive
model. Please refer to Appendix for Equations A-1 and A-11.

observe wO,wM ,wR,ww

set initial random value to z,zO,zM ,zR,s,λ
set wwC ← ww

for i← 0 to n− 1 do
update parameter of lower MLDA zO,zM ,zR (See Equation
10)
send P1C to top MLDA
send P3C to BHMM
update parameter of top MLDA z (See Equation A-1)
send P2C to lower MLDA
update parameter of BHMM s by using P3C as an initial value
(See Equation A-11)
send P4C to lower MLDA
update word information wwC (See Equation 11)

end for

send P5 to REINFORCE
update parameter of REINFORCE λ (See Equations 6 and 7)

3.4. Learning and Recognition of Whole
Integrated Model

The integration of the models is realized by message passing
in the SERKET framework proposed by Nakamura et al. (2018)
The proposed integrated cognitive architecture in Figure 3

is implemented as a combination of modules as shown in
Figure 4A. Then, the modules are communicated to each other
by passing the messages, which are shown in Figure 4B. Please
note that Figure 4A omits the description except for important

variables. Implementing the entire model through module
integration makes it easy to implement and add modules.

3.4.1. Learning of the Whole Model
Here, we describe how to combine each module and the learning
method to update the entire model. First, realization of mMLDA
by integrating multiple MLDAs is described followed by the
integration of mMLDA and BHMM. Finally, the integration of
mMLDA and reinforcement learning is described.

mMLDA is realized by integrating multiple MLDAs. This
means that P(zC|wwC,wC) estimated by the lower layers (concept
C ∈ {Object,Motion,Reward}) and P(zC|z) estimated by the top
layer are exchanged with each other. First, each low-level concept
zC is estimated by MLDA:

ẑ
C
j =

[

P(zCj = 1|wC
j ,w

wC
j )P(zCj = 2|wC

j ,w
wC
j ) · · ·

P(zCj = NC|w
C
j ,w

wC
j )

]T
, (8)

where w∗j , ẑ
C
j , and NC denotes the j-th observation of each

modality, each concept allocated to all the j-th observation, and
the number of each concepts categories. Then, the ẑC is sent to the
top layer. The parameters of the top layer (MLDA) are updated
by sampling the sent low-level concepts as observations using the
method in Appendix A (see Equation A-1). Then, the low-level
concept is inferred using the top-level concept in the top layer.

P(zC|ẑOj , ẑ
M
j , ẑRj ) =

∑

z

P(zC|z)P(z|ẑOj , ẑ
M
j , ẑRj ). (9)

These estimated values are sent to each lower layer. The lower
layer uses Gibbs sampling to update parameters using the
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received message by the following equation:

zCmij ∼ P(zCmij = k|W,Z\mij,α,βm)P(zC|ẑOj , ẑ
M
j , ẑRj ), (10)

where W denotes the observed multimodal information. Z\mij

is the remainder set of concepts after removing category zmij

assigned to the i-th information of the modality m of the j-th
data. Equation (10) is obtained by multiplying Equation (A-1)
in Appendix A by each lower-level concept P(zC|ẑOj , ẑ

M
j , ẑRj )

estimated in the top layer. As a result, the lower-level concept and
the upper-level concept are updated mutually.

The integration of mMLDA and BHMM is realized by passing
the mutual information I(w; k|C) of word w and category k in
concept C, and the output probability P(ww|s) of the word ww

output from the POS s obtained by the BHMM. The integration
of mMLDA and reinforcement learning is realized by passing
the concept z, which is inferred in the top layer, to use it as
the state-space for the reinforcement learning. As a result, the
entire model is integrated, and each module performs learning
while affecting each other. The procedure for updating and
message passing for each of these modules is shown in the
Algorithm 1. The entire model is updated according to this
update rule.

In addition, in the proposedmodel, learning can be performed
online from data acquired by the framework of reinforcement
learning. This can be done by updating each module for each
set of data acquired in a certain episode. The latent variables
inferred from data acquired before an episode are fixed, and
Gibbs sampling are applied only to new data. This enables online
model updating.

3.4.2. Various Recognition Using the Model
By using the learned model, various cognitive functions such
as decision making, language understanding, and sentence
generation can be realized. Recognition using the integrated
cognitive model is performed by predicting unobserved
information. Various recognition tasks using the learned model
are shown in Figure 5. The estimation of the category of
each concept is equivalent to inferring concepts z, zO, zM , zR

from the observations wO,wM ,wR,ww as shown in Figure 5A.
The recognition in the mMDLA is performed by fixing the
learned parameters and Gibbs sampling only on the observed
information to be recognized, as shown in Appendix B.
The estimation of wwC at recognition is first performed by
following equation:

wwC ∝ wwP(ww|s), (11)

where P(ww|s) represents the output probability of BHMM.
For details on P(ww|s), please refer to Equation (A-10) in
Appendix C. Then, using wO,wwO,wM ,wwM ,wR, and wwR as
observations, the concepts z, zO, zM , and zR are estimated by
updating the low-level concepts and the top-level concept
mutually. Because the concept is represented by a mixture of
categories, the category k of the concept is obtained by selecting
the category with the highest probability.

In the action selection, the action of the next step is
determined from the observations wO,wM ,wR,ww, as shown in

Figure 5B. This is done by passing the ẑt , which is estimated by
the language weighting, using BHMM and the mutual updating
of each MLAD described above in the estimation of the category,
to the reinforcement learning module. By using the passed ẑt ,
the reinforcement learning module can estimate the top-level
concept z̄t+1 of the next time step using Equations (4) and (5). By
passing the estimated top-level concept z̄t+1 to the object concept
module and the motion concept module, Equations(1) and (2)
can be calculated. This makes it possible for the robot to select an
object and action to take.

Here, language understanding is defined as the prediction
of real-world information wO,wM ,wR for given linguistic
information ww, as shown in Figure 5C. This can be
done by weighting the linguistic information based on
the BHMM in Equation (11) and predicting unobserved
information by MLDA. In other words, the linguistic
information corresponding to each concept wwO,wwM ,wwR

is determined using Equation (11). With this as observation,
unobserved real-world information wO,wM ,wR can be
obtained by MLDA.

As shown in Figure 5D, the generation of sentence is
equivalent to generating a word sequence S that is suitable for
the observed real-world information wO,wM ,wR. This can be
done as shown in Appendix D. The important aspect in this
sentence generation is that the inference of mMLDA is realized
by message passing.

4. EXPERIMENT

An experiment involving the interaction with the environment
and a human partner using a real robot is conducted. In this
experiment, the robot learns concepts, language, and actions
through trial and error from the state in which the robot has no
knowledge of the environment. The purpose of the experiment
is to verify the validity of the model by analyzing the results
of learning.

4.1. Experimental Setup
The experimental setup is shown in Figure 6. A dual-arm robot
(Baxter) shown in Figure 6A is used for the experiment. The
robot learns to select one of four types of motions shown
in Figure 6C for four types of objects, shown in Figure 6B.
A total of 24 objects are used in the experiment, and six
sets of stuffed animals, balls, maracas, and spray cans are
included in the object set. These objects are divided into three
groups as shown in Figure 6B. We use Data 1 and Data 2
for learning and test data for evaluation. The motions shown
in Figure 6C is designed in advance by hand. The observed
information acquired by the robot and the preprocessing of
each piece of information have been described in section 3.1.1.
The hyperparameters of each module were set as follows. The
number of categories for each concept of the mMLDA was 4 for
object concepts, 4 for motion concepts, 3 for reward concepts,
and 24 for integrated concepts. The number of dimensions
in the state space and the action space for reinforcement
learning was 24, and the number of hidden states in the
BHMM was 24. Each module was updated 100 times during

Frontiers in Robotics and AI | www.frontiersin.org 9 November 2019 | Volume 6 | Article 131

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Miyazawa et al. Integrated Cognitive Architecture for Robot

FIGURE 5 | Various recognition tasks using the model: (A) category recognition, (B) Decision making, (C) language understanding, and (D) sentence generation.

Please note that the random valuables in gray and white nodes represent the observation and the task to be predicted, respectively.

learning and 20 times during recognition. The number of
updates for the entire model, including message passing, was
set to 5.

Figure 7 shows the overall flow of the experiment, and the
action selection and information acquisition by the robot. Now,
the outline of the experiment is explained. The robot learns

to select an object from the desk and select an appropriate
motion, as shown in Figure 7A. When the robot cleans up
an object, the objects on the desk are reduced by one. When

all the objects are put away, the other object set (Data 1 or
2) is placed on the desk. When the robot acts, the human

partner gives verbal information and rewards corresponding
to the object and the motion. In this setting, the highest

reward can be obtained by repeating a set of motions of
grasping an object (“pick-up”), performing the appropriate
motion (“grasp” or “shake”), and putting it in the box (“clean-
up”). Through this experience, the robot learns concepts, actions,
and languages simultaneously.

Next, we will describe the details of decision making
and information acquisition. The robot performs action
selection and information acquisition according to the
flow shown in Figure 7B. The action selection by the
robot is classified into two types: object selection and
motion selection, depending on whether or not an object
is held.

If the robot does not hold an object, object selection is
performed. Object selection is performed using the object
concept estimated for the object on the desk and that calculated
based on its own policy. The robot extracts the planar region
of the tabletop using the point cloud acquired by the RGB-D
sensor installed on the head and detects objects on the plane as
candidates. For each detected object region, feature extraction
using convolutional neural network (CNN) is performed to
obtain the feature wO

ID for each object ID. The object concept

ẑ
O
ID is estimated using MLDA for each wO

ID. From the top-level

concept, z̄t is calculated by the policy explained earlier, and ẑ
O
t is

calculated using Equation (2). The cosine similarities between ẑOt
obtained from the top-level concept z̄t and ẑOID are calculated for
all the estimated objects. Then, the object with the highest cosine
similarity is selected. The object is chosen in this way, and then,
the robot acquires wO

t and wM
t .

If the robot is holding an object, it performs motion selection.
The motion selection is performed by predicting the motion
information wM

t from the top-level concept z̄t given by the
reinforcement learning module according to the Equation (1)
When “pick-up” is selected, no motion is undertaken because
the object is already held. When “clean-up” is selected, the
object is put in a box, and the state is transitioned to the non-
grasping state. When “grasp” or “shake” is selected, the motion
is conducted, but the object is maintained. Because wO

t uses

Frontiers in Robotics and AI | www.frontiersin.org 10 November 2019 | Volume 6 | Article 131

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Miyazawa et al. Integrated Cognitive Architecture for Robot

FIGURE 6 | Experimental settings: (A) the robot, (B) objects, (C) designed motions, and (D) reward.

the information of the object being held, we set the object
information to wO

t−1, which is the information one step earlier.

This process yields wO
t and wM

t .
When the robot performs the above action selection, the

human partner gives the verbal information and reward
corresponding to the motion and the object. The reward
Rt is given directly by key input as shown in Figure 6D

for the object and motion. For verbal information, when
the robot holds the ball and gets a positive reward, the
human partner makes an utterance, such as “It’s good to
hold the ball, it’s a soft ball.” Speech recognition is performed
on these utterances to acquire sentences. We obtain ww

t by
performing morphological analysis on these sentences with
“MeCab,” which is a Japanese morphological analyzer. This yields
ww
t and wR

t .
By the above action, the robot gets multimodal information

wO
t , wM

t , wR
t , ww

t . Based on this observed information, we
calculate the top-level concept z̄t+1 of the next time step by policy
function. This was done based on the Equations (3), (4), and (5).
Depending on whether or not the object is held, either the object
selection of the next state or the motion selection is performed by
using the obtained top-level concept z̄t+1.

The experiment was performed with the above flow as one
step and consisted of 50 steps per episode and 10 episodes,
for a total of 500 steps. The parameters of the integrated
cognitive architecture were updated online using multimodal
information w∗ obtained for each episode. The aforementioned
learned model parameters were stored as robot knowledge, and
the robot used them to make action decisions and perform
language understanding. The time required for the robot to make
decisions at each step was 1 s. Therefore, the interaction between
the robot and the user was sufficiently smooth. However, the
learning process at each episode required 10 min; therefore,
the user was required to wait for the robot to complete the
learning process.

By repeating this, the robot learns concepts, actions,

and language. At the 11th episode, action selection was
performed using test data to verify the generalization of

the model. Furthermore, using the data of 10 episodes
and 500 steps acquired by the robot, two models with
different structures are learned off-line. By analyzing the
learned results off-line, we evaluate each module and verify
the influence of the predictability by the integration of
model modules.
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FIGURE 7 | Flow of the experiment: (A) procedural overview of the experiment, and (B) action selection and acquisition of information by the robot.

5. RESULTS

The integrated cognitive architecture was evaluated by analyzing
the learning results. First, we show the results of concept
formation and action learning. We then show the results of
language learning. Finally, the influence of module integration
is shown.

5.1. Concept Formation
Table 1 shows the accuracy of concept formation
(categorization). The classification accuracy of Data 1 and
2 at training, and the classification accuracy for episode 11 using
test data are shown for each low-level concept. Classification
accuracy is calculated from the degree of agreement between
the concept class estimated by the model and the ground truth
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shown in Figure 6. From this table, it is clear that all information
can be classified correctly for the motion concept and the reward
concept. As for the object concept, the classification accuracy is
about 82% for the training data and 70% for the test data.

5.2. Action Learning
The result of action learning is shown in Figure 8. This shows
the accumulated reward for each episode. From this figure, it
can be seen that the accumulated reward value increases as the
number of episodes increases. In addition, the cumulative reward
value similar to the learning data is obtained for the test data,
which is a novel object, suggesting that the action selection with
generalization is obtained.

5.3. Language Learning
To analyze language learning, three tasks were performed:
visualization of internal representation of the language model
(BHMM), language understanding, and sentence generation.
First, the internal representation of the learned language
module is shown in Figure 9. Each node in Figure 9 represents
a hidden state (POS) of BHMM, and an edge represents
transition probability. The words in the node represent words
corresponding to the POS. The bar graph in Figure 9 shows
the output probability of the word corresponding to each low-
level concept for the top 10 words. It is desirable that the
nodes corresponding to each concept have a higher word output
probability corresponding to each concept. From this figure,
it can be seen that the words corresponding to each concept
are connected to the correct concept. Moreover, the transition
of each POS is nearly correct in terms of Japanese grammar.
However, certain linguistic errors occurred. For example, the

TABLE 1 | Results of concept formation (accuracy).

Object Motion Reward

Data1,2 0.818 1.00 1.00

Test data 0.700 1.00 1.00

FIGURE 8 | Accumulated reward for each episode. “x” represents the result

for the test data, which is unknown for the robot.

output probability of “sore”, which was not related to the
motion, was the highest in the motion node. To verify language
comprehension, we perform the task of predicting real-world
information from linguistic information. Real-world information
wO, wM , wR was predicted from the 24 input sentences shown
in Table 2. We calculated the degree of agreement between
the predicted information and the information represented by
the sentence. As a result, correct predictions were made for
all sentences.

Sentences were generated using real-world information
observed by the robot as input. By this evaluation, we verified that
the robot could generate appropriate sentences. The sentences
were generated by the method shown in Figure 5D. Input
data was generated for the input of each step, using real-
world data wO, wM , wR for 50 steps of episode 11, which is
the test data. The result is shown in Figure 10. Figure 10A
shows the result of 6 steps out of 50 steps. The input values
are the real-world information observed by the robot at each
step. The evaluation of the sentence is performed to determine
if the generated sentence is grammatically correct (© or ×)
or whether the explanation in the language is correct (© or
×) for the information of the object, action, and reward. In
addition, the case in which the information is not explained is
marked as (△).

For example, because correct sentences are generated for
each observed information from the top three in Figure 10A, all
evaluations are all correct (©). The fourth result is a mistake
(×) for the object information, because the sentence of “pick

TABLE 2 | Sentences used as inputs for the evaluation.

“Nuigurumi wo tsukame” “marakasu wo tsukame”

(Pick up a stuffed toy) (Pick up a maraca)

“Nuigurumi wo katazukeru no ha ii ne” “marakasu wo katazukeru no ha ii ne”

(It is good to clean up stuffed toy) (It is good to clean up maraca)

“Nuigurumi wo nigiru no ha ii ne” “marakasu wo nigiru no ha ii ne”

(It is good to grasp stuffed toy) (It is good to grasp maraca)

“nuigurumi wo nigiru no ha dame desu” “marakasu wo nigiru no ha dame desu”

(It is not good to grasp stuffed toy) (It is not good to grasp maraca)

“nuigurumi wo huru no ha ii ne” “marakasu wo huru no ha ii ne”

(It is good to shake stuffed toy) (It is good to shake maraca)

“nuigurumi wo huru no ha dame desu” “marakasu wo huru no ha dame desu”

(It is not good to shake stuffed toy) (It is not good to shake maraca)

“boru wo tsukame” “supure kan wo tsukame”

(Pick up a ball) (Pick up a spray can)

“boru wo katazukeru no ha ii ne” “supure kan wo katazukeru no ha ii ne”

(It is good to clean up ball) (It is good to clean up spray can)

“boru wo nigiru no ha ii ne” “supure kan wo nigiru no ha ii ne”

(It is good to grasp ball) (It is good to grasp spray can)

“boru wo nigiru no ha dame desu” “supure kan wo nigiru no ha dame desu”

(It is not good to grasp ball) (It is not good to grasp spray can)

“boru wo huru no ha ii ne” “supure kan wo huru no ha ii ne”

(It is good to shake ball) (It is good to shake spray can)

“boru wo huru no ha dame desu” “supure kan wo huru no ha dame desu”

(It is not good to shake ball) (It is not good to shake spray can)
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FIGURE 9 | Visualization of learned language models. Each node represents a hidden state of BHMM, and an edge represents a transition probability. The words in the

nodes represent the words corresponding to the hidden state. The red, green, and blue nodes are POS linked to the object, action and reward concepts, respectively.

The bold colored characters represent words corresponding to the concepts annotated by humans. The * indicates that it can not be translated into English.
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up maraca” is generated, although the observed object is a ball.
The fifth result is an evaluation of no explanation (△), because
the object is not explained in sentences. The final result is
that the explanation is correct, but because it is incorrect in
terms of Japanese grammar, it is evaluated that the grammar is
incorrect (×).

A summary of these results for all generated sentences
(50 sentences) is shown in Figure 10B. It can be seen from
this figure that, except for the object, nearly correct sentences
are generated.

5.4. Effects on Integration of Modules
Two models were compared to verify the impact of module
integration. One is the proposed integrated model using
the module shown in Figure 4. The second is a model
obtained by removing the language module (BHMM) from
the first model. In other words, the second model is a
model in which a lexicon exists but a syntax module does
not exist. We label these model 1 and model 2, respectively.
In model 2, because BHMM is missing, word information
wC for each concept is not weighted by the language
model, and all wwC is treated as ww at the learning and
recognition stages.

First, we show changes in log-likelihood during the training
of model 1 and model 2. Figure 11 shows the change in the
log-likelihood of each module during learning. The vertical
axis indicates the log-likelihood, and the horizontal axis is
the number of learning iterations of the model. From these
figures, it can be seen that the log-likelihood of the low-
level concept is increased in model 1, including the language
module. Also, with regard to the top-level concept, the
log-likelihood is increased as mutual learning progresses in
both models.

To verify the change in predictability due to the presence or
absence of the language module, the task of predicting real-world
information from language information was also performed for
model 2. The result is shown in Figure 12. From this result, as
described above, model 1 can make correct predictions for all
sentences. The model 2 shows a drop in prediction accuracy for
objects and motions.

The concept space z∗ estimated from each sentence was
compressed and visualized in three-dimensional space using
principal component analysis (PCA) to analyze the details
of the above results. Figure 13 shows the result for each
conceptual space of each model. In model 1, with high
prediction accuracy of real-world information, sentences are
well-categorized according to the type of each concept. On
the other hand, the result of model 2 shows that confusion
occurs in the conceptual space with respect to the information
pointed by the sentence in the object concept and the
motion concept.

6. DISCUSSIONS

The purpose of this study is to examine the acquisition of
multiple cognitive functions such as concept formation, decision
making, and language learning by robots through the integration

of multiple cognitive modules, centered onmMLDA, as well as to
verify the effect on integration of multiple modules.

First, we discuss the decision making. Figure 8 shows
the increase in the accumulated reward value, and it is
suggested that appropriate action learning is possible by trial
and error in the real environment. The action selection
is performed by using the formed concept as a state-
action space, as shown in Figure 5B. In other words, it is
possible to compress information by structuring multimodal
information with mMDLA and use it for decision making.
Furthermore, since the object concept and the motion concept
can be generated from the top-level concept, the object
and action selection can be made by determining the top-
level concept.

Next, we will describe the internal representation of the
language model. In Figure 9, certain linguistic errors occur.
In the motion node, the word “sore” (“it” in English), which
does not relate to the motion concept directly, has the highest
output probability. We hypothesize that this error occurred
owing to the effect of word order. It was observed that the
input sentences contained sentences with similar structure, such
as “sore ha ii ne” and “(Japanese verb) no ha ii ne” (“it
is good” and “(verb) is good” in English, respectively) with
high frequency. It may be observed that in these patterns,
there is a strong connection between the verb and “sore”
(“it”), which resulted in the assignment of the word “sore”
(“it”) to the motion node. In the reward node, the Japanese
particles “da”, “yo”, and “ne” were incorrectly connected to
the reward concept. We assume that this occurred because
these particles often co-occurred with reward words, such
as “good” or “bad”. We also presume that these errors can
be corrected gradually by learning continuously using more
diverse data.

Next, language understanding is described. In language
understanding by robots, it is important to determine how
accurately real-world information can be recalled from linguistic
information. Figure 12 shows that high prediction accuracy
is achieved in the prediction task from input sentences. It
is also interesting that language learning makes it possible
to account in unseen situations. For example, the sentence
“good to shake stuffed animal” is not actually observed because
it violates the experimental setting. However, even for such
sentences, information on each object, action, and reward
can be correctly predicted. This is one of the important
features of the language that one can recall what has never
been observed.

Then, we will describe sentence generation. Figure 10

shows that most of the generated sentences are grammatically
correct and can handle syntactic information correctly.
As for object information, 25 out of 50 sentences were
correct, and 10 sentences were incorrect. Ten sentences that
have been mistaken are generated as sentences in which
the ball category is confused with maracas and stuffed
animals. These are the results that appeared in the sentence
generation demonstrating the effect of being unable to form
the object concept well. In terms of motion information, 43
sentences out of 50 showed correct language information.
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FIGURE 10 | Results of sentence generation; (A) some examples and evaluations of generated sentences, and (B) evaluation results of generated sentences from

four different criteria.

In the seven sentences that did not show correct linguistic
information, the action of grasping was selected while the
object being held. In this case, because the robot does not move
(because it cannot hold the object from the object-holding
state), the user did not give verbal information for such a
situation during the experiment. For this reason, it is thought
that a sentence that explains motion information has not
been generated.

These cognitive functions are realized by the integration
of models, which form appropriate concepts (latent space). In
other words, by integrating modules through hidden variables,
multiple cognitive functions can share knowledge and realize
various tasks.

Next, the influence of module integration is discussed.
Figure 11 shows the log likelihood during model learning. From
this figure, it can be seen that the log likelihood increases
with model 1 in which the language modules are integrated,
rather than model 2 in which language modules are missing,

as the update of the entire model proceeds. In addition,
in the task of language understanding to predict real-world
information from input sentences, model 1 with integrated
language modules showed higher prediction performance than
model 2. This is considered to be the optimization of the
model as a whole and the improvement of the prediction
performance because the word information is updated to one
suitable for each concept by the integration of modules. There
are three main modules in the proposed architecture, namely
the language, action, and concept-formation modules. However,
in this study, we verified the relationship between language and
concept formation by removing the language module. We only
verified the effect of the integration of the language module
because it was relatively easy to make a fair comparison. For
example, if the action module would be removed from the
proposed model, it would be difficult to compare with- and
without-action modules because of the acquired data changes.
In addition, if the mMLDA was missing, the core module
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FIGURE 11 | Graphs of log-likelihood change in each module. The horizontal axis shows the number of updates of the whole model, and the vertical axis shows the

log-likelihood of each module. (A) MLDA-object, (B) MLDA-motion, (C) MLDA-reward, (D) MLDA-top, (E) BHMM, (F) All-module.

would no longer exist. In this case, the updating rule of the
proposed model cannot be applied. Owing to these issues,
we examined the effect of integration regarding the language
module only.

Finally, we will describe the reasons for the selection
of each module. As a major premise, we considered the
candidate model that would be able to connect other modules
through the SERKET framework to render the entire model
tractable. Within this constraint, we selected each module.
The purpose of selecting the mMLDA as a concept-formation
(unsupervised learning) algorithm has been described in section
2.2. The BHMM was selected for language learning because
our previous work revealed the advantages of the mMLDA

and the BHMM in simultaneous learning in terms of language
and concepts. Regarding reinforcement learning, in this study,
the module must be able to operate in the continuous
state space. Hence, we selected the REINFORCE algorithm,
which is one of the simplest algorithms that operates in
the continuous state space. In this study, we selected the
aforementioned algorithms; however, the proposed framework
allows the substitution of current modules with other modules
that have similar functionalities. For example, the mMLDA
can be replaced with a neural topic model based on the
variational autoencoder (Miao et al., 2016; Srivastava and Sutton,
2017). In language learning, long-term and short-term memory
(LSTM) (Zaheer et al., 2017), as well as the bidirectional

Frontiers in Robotics and AI | www.frontiersin.org 17 November 2019 | Volume 6 | Article 131

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Miyazawa et al. Integrated Cognitive Architecture for Robot

FIGURE 12 | Prediction accuracy of real-world information from linguistic information.

FIGURE 13 | Visualization of conceptual space of each MLDA inferred from sentences; (A) object concept of model 1, (B) motion concept of model 1, (C) reward

concept of model 1, (D) integrated concept of model 1, (E) object concept of model 2, (F) motion concept of model 2, (G) reward concept of model 2, and

(H) integrated concept of model 2. The legend indicates the category of each concept corresponding to the input sentence.

encoder representations from transformers (BERT) (Devlin
et al., 2018), may be used. In reinforcement learning, several
models exist, such as the soft actor critic (SAC) (Haarnoja
et al., 2018), that could replace REINFORCE algorithms. In
our future work, we consider employing the aforementioned
models because the performance of the cognitive architecture can
be improved.

7. CONCLUSIONS

In this paper, we realized an integrated cognitive architecture
for learning concepts, actions, and language by integrating
multiple probabilistic generative models. To verify the validity
of the proposed model, an experiment involving the interaction
between a real robot and a human partner in a real physical
environment was conducted. Through the experiment, the
robot acquired multimodal information and learned actions
and language. The effectiveness of the proposed model was

verified by analyzing the learned model by the robot. As a
result, the robot learned concepts, actions, and language based
on its own experiences. By using the learned model, various
cognitive functions such as action selection through latent
variables, prediction of real-world information from language,
and generation of sentences become possible. In addition,
we examined the change in the prediction performance by
having integrated several modules. Specifically, we confirmed
that the performance of the prediction improves when language
modules are integrated. A framework in which a robot learns
by integrating multiple cognitive modules is important for the
construction of human-like intelligence. It is fair to say that
this research, in which concepts, actions, and language are
simultaneously learned by robots, has provided insight toward
the achievement of that ultimate goal. In the future, enabling
higher-level inference, e.g., planning, will be addressed by explicit
modeling of temporal information. In addition, it is necessary
to further verify the integrated model by performing a task that
drives a plurality of modules simultaneously.

Frontiers in Robotics and AI | www.frontiersin.org 18 November 2019 | Volume 6 | Article 131

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Miyazawa et al. Integrated Cognitive Architecture for Robot

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

KM, TH, TA, and TN conceived of the presented idea. KM
and TN developed the theory. KM implemented the system
and conducted the experiment. KM wrote the manuscript with
support from TN, TH, and TA. All authors discussed the results
and contributed to the final manuscript.

FUNDING

This research was supported by JST CREST (JPMJCR15E3),
Grant-in-Aid for Scientific Research on Innovative Areas
(26118001) and JSPS KAKENHI Grant Number JP19J23364.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.
2019.00131/full#supplementary-material

REFERENCES

Anderson, J. R. (2009). How Can the Human Mind Occur in the Physical Universe?

Oxford, NY: Oxford University Press.

Araki, T., Nakamura, T., and Nagai, T. (2013). “Long-term learning of concept

and word by robots: Interactive learning framework and preliminary results,”

in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems

(Tokyo: IEEE), 2280–2287.

Araki, T., Nakamura, T., Nagai, T., Nagasaka, S., Taniguchi, T., and Iwahashi,

N. (2012). “Online learning of concepts and words using multimodal lda

and hierarchical pitman-yor language model,” in 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems (Algarve: IEEE), 1623–1630.

Arandjelovic, R., and Zisserman, A. (2017). “Look, listen and learn,” in Proceedings

of the IEEE International Conference on Computer Vision (Venice), 609–617.

Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., et al.

(2009). Cognitive developmental robotics: a survey. IEEE Trans. Auton. Mental

Dev. 1, 12–34. doi: 10.1109/TAMD.2009.2021702

Attamimi, M., Ando, Y., Nakamura, T., Nagai, T., Mochihashi, D., Kobayashi,

I., et al. (2016a). Learning word meanings and grammar for verbalization

of daily life activities using multilayered multimodal latent dirichlet

allocation and bayesian hidden markov models. Adv. Robot. 30, 806–824.

doi: 10.1080/01691864.2016.1172507

Billard, A. (2000). Learning motor skills by imitation: a biologically inspired

robotic model. Cybernet. Syst. 32 155–193. doi: 10.1080/019697201300001849

Brooks, R. A. (1991). Intelligence without representation. Artif. Intell. 47, 139–159.

doi: 10.1016/0004-3702(91)90053-M

Cangelosi, A., and Schlesinger, M. (2015). Developmental Robotics: From Babies to

Robots. Cambridge, MA: MIT Press.

Demiris, Y., and Khadhouri, B. (2006). Hierarchical attentive multiple models

for execution and recognition of actions. Robot. Auton. Syst. J. 54, 361–369.

doi: 10.1016/j.robot.2006.02.003

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

Doya, K. (1999). What are the computations of the cerebellum, the

basal ganglia and the cerebral cortex? Neural Netw. 12, 961–974.

doi: 10.1016/S0893-6080(99)00046-5

Fadlil, M., Ikeda, K., Abe, K., Nakamura, T., and Nagai, T. (2013). “Integrated

concept of objects and human motions based on multi-layered multimodal

LDA,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems (Tokyo: IEEE), 2256–2263.

Goertzel, B. (2014). Artificial general intelligence : concept, state of the art, and

future prospects. J. Artif. Gen. Intell. 5, 1–46. doi: 10.2478/jagi-2014-0001

Goldwater, S., and Griffiths, T. (2007). “A fully bayesian approach to unsupervised

part-of-speech tagging,” in Proceedings of the 45th Annual Meeting of the

Association of Computational Linguistics (Association for Computational

Linguistics), 744–751.

Gordon, S. M., Kawamura, K., and Wilkes, D. M. (2010). Neuromorphically

inspired appraisal-based decision making in a cognitive robot. IEEE Trans.

Auton. Mental Dev. 2, 17–39. doi: 10.1109/TAMD.2010.2043530

Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2017). “Deep reinforcement learning

for robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE

International Conference on Robotics and Automation (ICRA) (IEEE), 3389–

3396.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic actor.

arXiv preprint arXiv:1801.01290.

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J.,

et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol.

6:e159. doi: 10.1371/journal.pbio.0060159

Heinrich, S., and Wermter, S. (2018). Interactive natural language acquisition

in a multi-modal recurrent neural architecture. Connect. Sci. 30, 99–133.

doi: 10.1080/09540091.2017.1318357

Hill, F., Hermann, K. M., Blunsom, P., and Clark, S. (2017). Understanding

grounded language learning agents. arXiv preprint arXiv:1710.

09867.

Jamone, L., Ugur, E., Cangelosi, A., Fadiga, L., Bernardino, A., Piater, J., et al.

(2018). Affordances in psychology, neuroscience, and robotics: a survey. IEEE

Trans. Cogn. Dev. Syst. 10, 4–25. doi: 10.1109/TCDS.2016.2594134

Kotseruba, I., and Tsotsos, J. K. (2018). 40 years of cognitive architectures:

core cognitive abilities and practical applications. Artif. Intell. Rev. 1–78.

doi: 10.1007/s10462-018-9646-y

Laird, J. E. (2012). The Soar Cognitive Architecture. Cambridge, MA: MIT Press.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep

visuomotor policies. J. Mach. Learn. Res. 17, 1334–1373.

Marr, D. (1982). Vision: A Computational Approach. San Francisco, CA: Freeman

& Co.

Miao, Y., Yu, L., and Blunsom, P. (2016). “Neural variational inference for text

processing,” in International Conference on Machine Learning (New York, NY),

1727–1736.

Miyazawa, K., Aoki, T., Hieida, C., Iwata, K., Nakamura, T., and Nagai, T. (2017).

“Integration ofmultimodal categorization and reinforcement learning for robot

decision-making,” in IROS2017: Workshop on Machine Learning Methods for

High-Level Cognitive Capabilities in Robotics (Vancouver, BC).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

et al. (2015). Human-level control through deep reinforcement learning.Nature

518:529. doi: 10.1038/nature14236

Morse, F. A., and Cangelosi, A. (2017). Why are there developmental stages in

language learning? a developmental robotics model of language developments.

Cogn. Sci. 41(Suppl. 1):32–51. doi: 10.1111/cogs.12390

Nakamura, T., Nagai, T., and Iwahashi, N. (2009). “Grounding of word meanings

in multimodal concepts using LDA,” in 2009 IEEE/RSJ International Conference

on Intelligent Robots and Systems (St. Louis, MO: IEEE), 3943–3948.

Nakamura, T., Nagai, T., and Taniguchi, T. (2018). Serket: an

architecture for connecting stochastic models to realize a large-scale

cognitive model. Front. Neurorobot. 12:25. doi: 10.3389/fnbot.2018.

00025

Nishihara, J., Nakamura, T., and Nagai, T. (2017). Online algorithm for robots

to learn object concepts and language model. IEEE Trans. Cogn. Dev. Syst. 9,

255–268. doi: 10.1109/TCDS.2016.2552579

Frontiers in Robotics and AI | www.frontiersin.org 19 November 2019 | Volume 6 | Article 131

https://www.frontiersin.org/articles/10.3389/frobt.2019.00131/full#supplementary-material
https://doi.org/10.1109/TAMD.2009.2021702
https://doi.org/10.1080/01691864.2016.1172507
https://doi.org/10.1080/019697201300001849
https://doi.org/10.1016/0004-3702(91)90053-M
https://doi.org/10.1016/j.robot.2006.02.003
https://doi.org/10.1016/S0893-6080(99)00046-5
https://doi.org/10.2478/jagi-2014-0001
https://doi.org/10.1109/TAMD.2010.2043530
https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.1080/09540091.2017.1318357
https://doi.org/10.1109/TCDS.2016.2594134
https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/10.1038/nature14236
https://doi.org/10.1111/cogs.12390
https://doi.org/10.3389/fnbot.2018.00025
https://doi.org/10.1109/TCDS.2016.2552579
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Miyazawa et al. Integrated Cognitive Architecture for Robot

Ogata, T., Sugano, S., and Tani, J. (2005). Open-end human-robot interaction

from the dynamical systems perspective: mutual adaptation and

incremental learning. Adv. Robot. 19, 651–670. doi: 10.1163/15685530542

55655

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).

Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115,

211–252. doi: 10.1007/s11263-015-0816-y

Shima, K., Isoda, M., Mushiake, H., and Tanji, J. (2007). Categorization

of behavioural sequences in the prefrontal cortex. Nature 445:315.

doi: 10.1038/nature05470

Srivastava, A., and Sutton, C. (2017). Autoencoding variational inference for topic

models. arXiv preprint arXiv:1703.01488.

Stoytchev, A. (2008). “Learning the affordances of tools using a behavior-grounded

approach,” in Towards Affordance-Based Robot Control, eds E. Rome, J.

Hertzberg, and G. Dorffner (Berlin; Heidelberg. Springer), 140–158.

Tani, J. (2016). Exploring Robotic Minds: Actions, Symbols, and Consciousness

As Self-Organizing Dynamic Phenomena, 1st Edn. New York, NY: Oxford

University Press, Inc.

Taniguchi, A., Taniguchi, T., and Inamura, T. (2016a). Spatial concept acquisition

for a mobile robot that integrates self-localization and unsupervised word

discovery from spoken sentences. IEEE Trans. Cogn. Dev. Syst. 8, 285–297.

doi: 10.1109/TCDS.2016.2565542

Taniguchi, T., Nagai, T., Nakamura, T., Iwahashi, N., Ogata, T., and Asoh, H.

(2016b). Symbol emergence in robotics: a survey. Adv. Robot. 30, 706–728.

doi: 10.1080/01691864.2016.1164622

Tomasello, R., Garagnani, M., Wennekers, T., and Pulvermller, F. (2017). Brain

connections of words, perceptions and actions: a neurobiological model of

spatio-temporal semantic activation in the human cortex.Neuropsychologia 98,

111–129. doi: 10.1016/j.neuropsychologia.2016.07.004

Tran, D., Kucukelbir, A., Dieng, A. B., Rudolph, M., Liang, D., and Blei, D. M.

(2016). Edward: a library for probabilistic modeling, inference, and criticism.

arXiv preprint arXiv:1610.09787.

Vernon, D., Von Hofsten, C., and Fadiga, L. (2011). A Roadmap for Cognitive

Development in Humanoid Robots, Vol. 11. Berlin: Springer Science & Business

Media.

Williams, R. J. (1992). Simple statistical gradient-following algorithms

for connectionist reinforcement learning. Mach. Learn. 8, 229–256.

doi: 10.1007/BF00992696

Zaheer, M., Ahmed, A., and Smola, A. J. (2017). “Latent lstm allocation joint

clustering and non-linear dynamic modeling of sequential data,” in Proceedings

of the 34th International Conference on Machine Learning (Sydney, NSW),

3967–3976.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Miyazawa, Horii, Aoki and Nagai. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 20 November 2019 | Volume 6 | Article 131

https://doi.org/10.1163/1568553054255655
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1038/nature05470
https://doi.org/10.1109/TCDS.2016.2565542
https://doi.org/10.1080/01691864.2016.1164622
https://doi.org/10.1016/j.neuropsychologia.2016.07.004
https://doi.org/10.1007/BF00992696
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	Integrated Cognitive Architecture for Robot Learning of Action and Language
	1. Introduction
	1.1. Related Works

	2. Integrated Cognitive Architecture
	2.1. Framework
	2.2. mMLDA as Unsupervised Learning Module
	2.3. Whole Structure
	2.4. Language Module
	2.5. Decision Making/Action Module
	2.6. Limitations

	3. Implementation of Modules
	3.1. Concept Formation (Unsupervised Representation Learning)
	3.1.1. Observed Information
	3.1.2. Parameter Estimation and Prediction

	3.2. Language Learning
	3.3. Policy Learning
	3.4. Learning and Recognition of Whole Integrated Model
	3.4.1. Learning of the Whole Model
	3.4.2. Various Recognition Using the Model


	4. Experiment
	4.1. Experimental Setup

	5. Results
	5.1. Concept Formation
	5.2. Action Learning
	5.3. Language Learning
	5.4. Effects on Integration of Modules

	6. Discussions
	7. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


