
IET Generation, Transmission & Distribution

Research Article

Integrated database approach in multi-
objective network reconfiguration for
distribution system using discrete
optimisation techniques

ISSN 1751-8687
Received on 17th July 2017
Revised 19th September 2017
Accepted on 21st October 2017
E-First on 19th January 2018
doi: 10.1049/iet-gtd.2017.1134
www.ietdl.org

Munir Azam Muhammad1, Hazlie Mokhlis1 , Kanendra Naidu2, John Fredy Franco3, Hazlee Azil Illias1, Li
Wang4

1Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Electrical Technology Section, Universiti Kuala Lumpur, British Malaysian Institute, Bt. 8, Jalan Sungai Pusu, 53100 Gombak, Selangor Darul
Ehsan, Malaysia
3School of Energy Engineering, São Paulo State University, 19274-000 Rosana, SP, Brazil
4Department of Electrical Engineering, College of Electrical Engineering & Computer Science, National Cheng Kung University, Tainan City
70101, Taiwan

 E-mail: hazli@um.edu.my

Abstract: Reconfiguring the link between buses is a crucial task to enhance the distribution system performance.
Reconfiguration is a complex combinatorial process due to numerous feasible solutions. Therefore, to consistently find global
optimum solutions within a short span of time is a challenging task. One of the factors that cause time consumption in finding
optimal network configurations is the elimination of non-radiality network solutions during the optimisation process. To address
this issue, this work proposes to store pre-determined network radiality solutions in a database. These sets of solutions are
used in the network reconfiguration optimisation by a discrete evolutionary programming and a discrete evolutionary particle
swarm optimisation techniques. These optimisation methods are based on a multi-objective problem which minimises power
loss, voltage deviation, and a number of switching actions. Moreover, the quality of the solutions is measured in terms of
computational time and consistency. To demonstrate the efficiency of the proposed technique, a comparative assessment is
carried out on 33-bus and 118-bus distribution systems. It is found that the proposed technique outperforms other existing
methods in terms of quality of the solutions.

1 Introduction
Existing power distribution systems are in the process of
transforming from passive to an active network. This opens up new
challenges and approaches, especially for power system operation.
‘Reconfiguration’ of electrical distribution system has been the
primary solution to improve the operational performance of
distribution networks. Finding an optimal reconfiguration solution
is a complex optimisation task, which is required in a smart grid
distribution system for specific strategies [1]. In a smart grid
environment, optimal reconfiguration is vital for self-healing. After
fault detection and isolation, it is imperative to restore the
maximum number of customers with the minimum number of
switching actions. Optimal switch configuration for the network
reconfiguration has to be obtained from a large number of
combinatorial search spaces. Network reconfiguration involves the
process of opening normally closed sectionalising switches or
closing normally open tie switches. During the reconfiguration
process, distribution network has to maintain radiality with the
maximum number of loads to be energised [2]. Furthermore,
switching sequence in the reconfiguration operation has key
importance as it leads to an optimal configuration. It also directly
affects reliability indices including the restoration time, energy not
supplied and power loss. Therefore, switching sequence
consideration is equally important for optimal configuration and
reliability improvement [3].

In a literature, reconfiguration has been proposed with mainly
three categories of optimisation techniques, which are
mathematical optimisation, heuristics, and meta-heuristics.
Mathematical optimisation commonly uses the linear model with
the combination of branch and bound algorithm to obtain the
mixed-integer linear programming problem for distribution
network reconfiguration. Heuristics and meta-heuristics

optimisation techniques, on the other hand, consider the non-linear
model of distribution network reconfiguration, thus making them a
popular choice of optimisation technique in the last decade [4].

Merlin and Back [5] were among the first few researchers to
implement the network reconfiguration in a distribution network
for the minimisation of power loss using mixed-integer non-linear
optimisation with branch and bound method. In [4], the network
reconfiguration problem was solved using non-linear programming
(NLP) due to non-convexity of NLP, which will not ensure the
global optimum solution. In [6], mixed-integer quadratic
programming is used to solve the network reconfiguration, which
avoids the use of a binary variable for the linearisation process. In
[7], a heuristic approach based on circular-updating-mechanism
was used to obtain the optimal network configuration for minimum
power loss and proposed two different methods for it. In the first
method, the radial configuration was used for initialisation and
subsequently on the basis of heuristic rule, the status of the
switches was updated whereas, in the second method, switches
were opened one by one until the radial solution was obtained.

Fireworks algorithm was used in [8], the optimal ordering of
node during the power flow was required to solve the network
reconfiguration under normal and abnormal conditions. In [9],
bacterial foraging optimisation algorithm was used to solve
network reconfiguration under abnormal state. However, the
optimal configuration found with this proposed technique is non-
radial in nature and this configuration is not valid for the
distribution system. As in distribution network, the radial
configuration is vital due to the protective reasons [4]. Numerous
other optimisation algorithms such as fuzzy adaption evolutionary
programming (EP) [10], binary particle swarm optimisation (PSO)
[11], tabu search [12], plant growth simulation algorithm [13],
harmonic search [14, 15], discrete artificial bee colony [16] and
PSO with graph theory [17] have been proposed for network
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reconfiguration of a distribution network. In [18], the optimisation
problem was studied as a multi-objective function and aggregation
function was used to convert into the single objective function. The
incompatibility of different criteria makes it difficult to find the
global optima.

Most of the existing methods discussed in the literature have
two major shortcomings, which are large computation time and
inconsistency in providing an optimal solution [1]. Moreover, most
of these methods only considered healthy conditions for
reconfiguration of the distribution system in which all branches can
be considered. In addition, unlike the mathematical optimisation,
meta-heuristic optimisation uses an implicit radiality constraint.
During this verification process, it allows the optimisation
technique to generate many non-feasible solutions from 2n
combinatorial search space (‘n’ number of switches for
reconfiguration). These non-feasible solutions are required to be re-
adjusted on a randomised basis [4, 19]. The re-adjustment during
the searching process is a computational burden and it requires a
new particle value to be generated until it obtains a feasible
solution.

In this work, to reduce the computational burden of these non-
feasible solutions, only the explicit radiality constraint, which
obtains the feasible solution, is considered. This was carried out
using ‘All possible spanning tree (APSPT).’ APSPT finds the
radial solution and avoids all combinations which are disconnected
sub-graphs. Thus, this algorithm generates a limited dataset with
only feasible solutions. These solutions are stored in a database. By
this approach, the computational burden can be reduced. Besides,
two different algorithms have been proposed to find the optimal
reconfiguration of the distribution network; they are discrete
evolutional programming (DEP) and discrete evolutionary PSO
(DEPSO) algorithms. In these optimisation techniques, the multi-
objective function has been considered. The aims are to minimise
the total power loss, voltage deviation and a number of switching
actions for the distribution network. The proposed algorithm
provides an optimal solution consistently in a short span of time. In
order to consider a real-world scenario, the proposed methodology
considers uniform and stochastic load patterns which are solved for
each load level. Moreover, the investigation also considers the
healthy and faulted condition of the distribution network. In case of
healthy condition, optimal configuration is required to improve the
system performance. In the event of the faulted condition, network
configuration is used to provide power to the non-faulted area. In
addition to that, this paper also provides the switching sequence for
healthy and faulted distribution system. The switching sequence
can be found after the optimal configuration has been identified.
The proposed method is tested on the 33-bus and the 118-bus
distribution systems. The performance of the proposed method is
compared with recent methods available in the literature.

2 Problem formulation
Network reconfiguration changes the direction of power flow in a
distribution system. The reconfiguration should significantly
decrease the power loss and improve the voltage profile by
minimising the voltage deviation at all buses. In this work, the
main goal is to achieve the optimal configuration by minimising
power loss, voltage deviation and a number of switching actions.
Therefore, the objective function of this investigation is

Obj = Min w1 ∗ Ploss + w2 ∗ ΔVt + w3 ∗ Nsw (1)

where Ploss is the total active power loss, ΔVt is the voltage
deviation index, Nsw is the total number of switching actions
performed to reach the optimal solution, w1, w2, and w3 are
weighted sum coefficients and their values lies between zero and
one,w1, w2, w3 ≥ 0. The parameters are also normalised in the range
of zero to one [0, 1].

2.1 Total active power loss

The total active power loss is calculated using as

Ploss = ∑
i j = 1

Nb
Pi j

2 + Qi j
2

V j
2 ∗ Ri j ∗ γi j (2)

where Pi j and Qi j are the active and reactive power flows in the
branches i–j, Ri j is the resistance of branch, V j

2 is the voltage of
receiving bus, γi j is a binary variable, which defines the state of the
branch and Nb is the total number of branches in a distribution
system.

2.2 Voltage deviation index

Voltage deviation index is the difference between the nominal
voltage and actual voltage at bus, where i = 1, 2, 3,…, total number
of buses

max {ΔVt}i < j = γi jVn

− Vi
2 − 2 ∗ (Ri j ∗ Pi j + Xi j ∗ Qi j) − Ii j

2
Zi j

2 − βi j

(3)

βi j =
0 if γi j = 1

Vi
2 − V j

2 if γi j = 0
(4)

where Vn is the nominal voltage; Vi is the sending bus voltage; V j

is the receiving bus voltage; Ri j, Xi jand Zi j are the resistance,
reactance and the impedance of the branches i, j, respectively, and
Ii j is the current flowing in branches i, j.

2.3 Number of switching actions

The quality of a solution can be assessed in terms of the required
number of switching actions Nsw , which is calculated on the
account of initial and final states of the branches. Nsw is calculated
using as

Nsw = ∑
i j = 1

Nb

xi j
ini − xi j

rec (5)

where xi j
ini is the initial switching state of the branches i, j; and xi j

rec

is the switching state after reconfiguration.

2.4 Electrical constraints

During the network reconfiguration, electrical and thermal
constraints have to be fulfilled according to

Pgi
− Pdi

− ∑
i j

Plossi j
= ∑

ki

Pki − ∑
i j

Pi j i ∈ Ωb, i j ∈ Ωl (6)

Qgi
− Qdi

− ∑
i j

Qloss = ∑
ki

Qki − ∑
i j

Qi j i ∈ Ωb, i j ∈ Ωl (7)

Vmin ≤ Vi ≤ Vmax i ∈ Ωb (8)

Ii j ≤ Imax i j ∈ Ωl (9)

where Ωb is the set of buses and Ωl is the set of branches.

3 Dataset development
In a distribution network, radiality of the network is considered as
an important constraint. Hence during the reconfiguration of the
distribution network, this constraint has to be adhered to. It also
prevents it from generating unconnected or mesh graphs (in which
either all nodes are not connected to a sub-graph or the nodes are
connected in a mesh structure). Due to this, the meta-heuristic
technique uses implicit radiality constraint, which adjusts the non-
feasible solution generated during the initialisation or updating
process to feasible ones (i.e. connected network). To avoid these
non-feasible solutions generated by the particle during the
optimisation process, dataset approach based on APSPT has been
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adopted. This will only generate all the possible radial
combinations and subsequently, the optimisation technique will
find the best combination amongst them.

3.1 Distribution network graph structure

Radial structure in a power distribution network originates from the
source node. In terms of graph theory, nodes in an acyclic graph
(spanning tree) will have only one path between two vertices and
all nodes in a graph (G) will be connected to a single root node. A
forest contains multiple disjoint trees. Tree in a forest have a
disjoint set of vertices and no edge exists between the vertices of a
tree.

In case of a single substation in a distribution network, APSPT
algorithm can be used directly to generate all the possible trees in
G. Each tree in G satisfies two conditions: (i) contains N−1 edges
(N is the total number of nodes in a graph) and (ii) all nodes are
connected. In the case in the event of multiple substations (S is the
number of substations) in the distribution graph, the forest will
have an S number of trees in G. To apply APSPT algorithm, G has
to be modified as shown in Fig. 1. The multiple stations refer to the
multiple root nodes of a tree in the forest. These root nodes are
combined and replaced it with a single fictitious node [20]. This
transformation of forest allows the APSPT algorithm to determine
all the possible tree of transformed graph G′. Once the spanning
tree determines all the feasible solutions, then these solutions are
retransformed into the primary configuration by replacing the
fictitious node G′ with a node in G. This transformation generates

all the possible forest which contains S disjoint trees. All these
possible solutions are termed as ‘Dataset.’ 

3.2 All possible spanning tree

G is a distribution network graph, which contains an N number of
vertices (bus) and M number of edges (branches). Each subgraph G
′ contains N−1 edge and graph G contains M−(N−1) number of
independent loops ‘c’. If c = 0 for graph G than graph has only one
spanning tree.

Let T0 ⊂ G is initial tree, and using elementary transformation
new T′ has been formed T′ ⊂ G, it can be achieved by removing
the edge ei from T0 and adding in ej, as shown in

T′ = T0 − ei − ej (10)

The number of transformations required to transform from any tree
T ⊂ G to T′ is at most ‘c’. In this way, all trees can be generated
from T0 [21].

As shown in Fig. 2, initial tree and set of unconnected edges L
of G L = G − T0  is required to generate APSPT. Each edge ei ∈ T0

will be replaced with ej ∈ L if it creates a new tree. Here, when ei

has been subtracted from the T, this will produce two sub-
independent trees, which no vertices of sub-tree T1 and T2 have any
common edges. Vertices of T1 and T2 may have a common edge
from set L ej  which reconvened both independent tree and create
new T. This process will replace with all the element of set L and
this process will repeat for all ei in T0. The amortise time constant
of this algorithm is O(mn) [21]. 

3.3 Dataset grouping approach

The database contains the feasible solution with respect to radiality
constraints. In earlier research, radiality constraints are implicitly
verified. However, in this investigation, an explicit approach is
utilised which allows the optimisation technique to search for the
optimum solution.

During the minimisation process, the particles are frequently
trapped in their local minima. In order to avoid this problem and
increase the probability to achieve the global minima, the dataset is
divided into overlapping sub-dataset as shown in Fig. 3. Each
element in a dataset is represented twice in different groups of sub-
datasets. This is done to ensure that the global optima are not
missed during the search process. Another important characteristic
of the dataset approach is that it is flexible towards integration of
parallel processing. Since the dataset is divided into four sub-sets,
the parallel search can be implemented in order to obtain an
optimum solution in short span of time. 

4 Optimisation technique
In this investigation, two different optimisation techniques are
presented based on the discrete nature of the network
reconfiguration process. They are the DEP optimisation technique
and the DEPSO techniques. Both these optimisation techniques are
used to solve the network reconfiguration problem in this
investigation.

4.1 DEP optimisation technique

EP is a stochastic optimisation technique which belongs to the
class of evolutionary algorithm. These algorithms inherit the
characteristics of the biological process. In this process, population
characteristic will change after each successive generation. For
successive generation in EP, the Gaussian mutation has been used
as

xi
new = xi

old + N μ, γ
2 (11)

γ
2 = β xmax − xmin

yi

ymax

(12)

Fig. 1  Conversion of multiple substations into single fictitious substation
 

Fig. 2  Flowchart of APSPT algorithm
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where xi
old is the parent, xi

new is the off spring, i denotes the ith
particle of the population, N is the Gaussian random variable,
which is a function of mean μ and variance γ2, β is the search step,
xmax is the maximum value and xmin is the minimum value of the
population, yi is the fitness of ith particle and ymax is the maximum
fitness of the population.

In the proposed DEP algorithm, ‘L’ number of dataset groups
from all feasible solutions will be generated and these feasible
solutions have been filtered on the basis of line conditions as
discussed in Section 3.3. Equal number of parallel instances (PIs)
will be generated. Each of the PI will have a unique dataset
containing ‘p’ number of particles. All particles randomly select
their value from PI dataset. Thereafter, their fitness will be
calculated and the offspring will be generated using Gaussian
formulation. These offspring can only attain a discrete value.
Fitness of these offspring has been evaluated and they are
combined with the initial population. Subsequently, this new
combined population has been ranked on the basis of their fitness
value. Only ‘p’ number of particles will survive and rest of the
particles will be discarded from the PI dataset. This will ensure the
rejected particle will not be selected again. In each of the iteration,
there will be a higher probability to achieve better off spring
values. In this way, it allows the DEP to acquire the local optimal
solution of that PI in short span of time. Once all PIs have
converged or reached to the maximum iteration, then the best value
among all the PI's will be considered as a global optimal solution.

4.2 DEPSO optimisation technique

In this investigation, a group-based DEPSO optimises the network
reconfiguration for the distribution system. The DEPSO is a hybrid
optimisation technique obtained from EP and PSO. In this
algorithm, combination, ranking and selection process of EP has
been used with this PSO as shown in Fig. 4. Initial and updated
particles are combined during the combination process and they are
ranked on the basis of their objective value. During the selection
process, only ‘p’ (number of particles) best solution will remain for
the next iteration. This allows the algorithm to attain an optimal
solution faster compared with conventional PSO. 

The conventional PSO consists of two acceleration constants,
cognitive parameter (c1) and social parameter (c2) which are
calculated by

c1 = cmax − cmin ∗
iter

itermax
+ cmin (13)

c2 = 2 − c1 (14)

In DEPSO, ‘void spaces’ in front of the particle are filled with
other particles. The filling of void spaces is due to the EP's
combination, rank and selection process. During this process, only
high potential candidates have survived and these candidates
remain in the new population, which move towards the optimal
solution.

The new velocity and position of each particle are calculated
using

νi
new = ωνi

old + c1r1 Pi
best − xi

old + c2r2 G
best − xi

old (15)

xi
new = xi

old + νi
new (16)

where xi
old is a previous particle value, xi

new is the updated particle
value, i denotes the ith particle of the population, r1 and r2 are the
random values of normal distribution function, Pi

best is the particle
local best value and Gbest is the population global best value.

5 Application of the DEPSO methodology to the
reconfiguration of distribution systems
Step 1: In the proposed DEPSO algorithm, initially ‘L’ number of
sub-dataset groups is generated and feasible solution is filtered on
the basis of line conditions, as discussed in Section 3.3.
Step 2: PI of the DEPSO is created for each sub-dataset Li. i
denotes the PI number.
Step 3: Every instance PIi contains ‘p’ number of particles, as
shown in Fig. 4. Each xl, m

old is initialised with the random
combination of switches selected from the dataset Li of instance PIi

X11
old

X21
old ⋯ Xm1

old

X12
old

X22
old ⋯ Xm2

old

X13
old

X23
old ⋯ Xm3

old

⋮ ⋮ ⋯ ⋮

X1l
old

X2l
old ⋯ Xml

old

Step 4: Fitness of xl, ∗
old is calculated using (1). On the basis of these

fitness values, global (Gbest) is selected.

F X11
old

F X21
old ⋯ F Xm1

old

F X12
old

F X22
old ⋯ F Xm2

old

F X13
old

F X23
old ⋯ F Xm3

old

⋮ ⋮ ⋯ ⋮

F X1l
old

F X2l
old ⋯ F Xml

old

Step 5: By using (15) and (16), new combination of switches is
selected from dataset Li

X11
new

X21
new ⋯ Xm1

new

X12
new

X22
new ⋯ Xm2

new

X13
new

X23
new ⋯ Xm3

new

⋮ ⋮ ⋯ ⋮

X1l
new

X2l
new ⋯ Xml

new

Step 6: Fitness of xl, ∗
new is calculated using (1)

F X11
new

F X21
new ⋯ F Xm1

new

F X12
new

F X22
new ⋯ F Xm2

new

F X13
new

F X23
new ⋯ F Xm3

new

⋮ ⋮ ⋯ ⋮

F X1l
new

F X2l
new ⋯ F Xml

new

Fig. 3  Distribution of dataset for the parallel optimisation algorithm
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Step 7: By using evolutionary process, it will select the best
particle from the previous and updated population. Both of these
population are combined to generate a new population, Q of length.
Step 8: Ranking of the particle is performed for elements in Q
based on their fitness value.
Step 9: From the ranked population, ‘p’ number of particles is
selected for the next iteration.
Step 10: All the particles which are rejected during the selection
process are removed from the dataset Li . This will ensure that these
particles will not be selected for a future iteration.
Step 11: If all the particles of the instance PIi have converged or
reached the max iteration limit, PIi will return the Gbest. If in case
both of the conditions have not been satisfied, the algorithm will go
to step 6 for further searching.

Step 12: All the instances of which return their local best and the
minimum fitness value found by them is considered as an optimum
solution (global best) for the network reconfiguration.

In the DEPSO technique, by using evolutionary process
(combination, ranking, and selection) along with variable
acceleration, it will boost the search process and obtain the optimal
solution in short span of time.

6 Results and discussion
In this investigation, medium and large-scale distribution systems
have been used to evaluate the performance of the proposed
approach. These distribution systems consist of sectionalising and
tie switches, which are the candidates for network reconfiguration.
Furthermore, network reconfiguration is evaluated on healthy and
faulted conditions over these distribution systems. In the proposed
technique, DEP search step has been initialised with a constant
value of 0.85 and in the DEPSO the cognitive and social parameter
values have been initialised with 0.1 and 1.9, respectively. These
parameter values are selected on a trial basis. Moreover, a
computer with an Intel core i7 4th Gen processor and 8 GB RAM
has been used for this investigation.

6.1 Medium-scale distribution system

The 33-bus distribution system shown in Fig. 5 is a medium-scale
distribution system which is connected to a 12.66 kV substation
with active and reactive load demands of 3750 kW and 2300 kVAr,
respectively [24]. It consists of 32 normally closed sectionalising
switches and 5 normally open tie switches. The power loss in the
system is 208.459 kW based on the initial tie switches (33–37).
The minimum voltage magnitude and maximum voltage deviation
occur at bus 18 which are 0.9108 and 0.0892 p.u., respectively. 

The optimal configuration obtained from the proposed
technique is 7, 9, 14, 32, 37, which has an active power loss of
138.928 kW. This reduces the total power loss by 33.35%. After
the reconfiguration, the minimum voltage magnitude and
maximum voltage deviation have been improved to 0.9423 and
0.0577 p.u., respectively.

Fig. 6a shows the voltage profile of the distribution system
before and after the reconfigurations. The minimum voltage of the
system has been improved by 3.46%. It can be observed that the
voltage of buses 19–22 decreases after the reconfiguration. This is
due to the load is transferred from the middle of the main feeder to
the sub-branches. 

Active power flows before and after the reconfiguration of the
system is shown in Fig. 6. It can be observed that the active power
flow in most of the lines of the network has been reduced after the
reconfiguration.

This happens since power has been redistributed to all lines in
the network. With this reduction, system loadability has been also
improved. The active power flows in the lines 18, 19, 20, 21, 33,
34, and 35 increase because the network reconfiguration raises the
load in the sub-lateral, which proportionally increases the power
flow in the lines.

In order to evaluate the performance of the proposed technique,
the power loss value is compared with other techniques from the
literature, as shown in Tables 1 and 2. The optimal combination
found by other approaches has been re-evaluated with the power
flow used in this investigation to make the results comparable.
Statistical analysis is performed on the power loss to obtain the
best, worst, average and standard deviation values after 200
iterations. The effectiveness of the proposed algorithm can be seen
based on the optimal configuration, computational time and
consistency of the results. 

Table 1 shows the global optimal configuration is obtained by
GA, DEP, and DEPSO while HSA (harmony search algorithm),
ITS (improved tabu search), FWA (fireworks algorithm) are only
able to find near optimal configuration. The worst power loss is
found by GA, which is 208.456 kW. This shows that the solution
using GA is trapped inside the local optima. Furthermore,
compared to other methods, FWA is more consistent in obtaining
the configuration over 200 trials within a short span time. The

Fig. 4  Flowchart for single parallel instance of DEPSO
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average power loss, standard deviation and average time of FWA
are 145.63 kW, 5.49 kW, and 6.4 s, respectively. In comparison
with FWA, the proposed DEP and DEPSO methods are more
consistent in finding the global optimal in a short span of time.

Results for the reconfiguration problem solved with the EP and
PSO methods are shown in Table 2. Both algorithms obtain
optimum solutions, although not in a consistent way. The average
power losses obtained by the EP and the PSO are 150.36 and
146.46 kW, respectively. The average times of the EP and the PSO
in obtaining optimum solution are 16.19 and 8.36 s. On the other
hand, the average times of the DEP and the DEPSO are 4.7 and
6.07 s, which are better than the one required by the classical
methodology. Furthermore, standard deviations of the proposed
algorithm are 0.136 and 0.051, which are comparatively smaller
than the values of the EP and the PSO methods (5.68 and 5.78).
Therefore, the DEP and the DEPSO have obtained the optimum
solution consistently within a short span of time as compared to
previously proposed methodologies.

However, the average time of the DEP to obtain an optimal
solution is 4.7 s, which is better than the DEPSO. The DEPSO
obtains the optimal solution in 6.07 s. In spite of that, the DEPSO
outperforms the DEP and other methodologies in terms of
consistency.

To evaluate the performance of the proposed model under the
load variation, it was assumed that the load varies uniformly or
stochastically. As shown in Fig. 7, all the loads in the distribution
system have uniform variation. In this scenario, the optimum
solution obtained by the proposed model is that the branches 7, 9,
14, 32, and 37 should be opened. This solution is similar to the
optimum solution in normal scenario. On the other hand, when
loads are varying stochastically, as shown in Fig. 8, the
configuration of the tie switches also varies. It can be observed
from Table 3 that the configurations 7, 9, 14, 28, and 32 have a
high frequency of occurrence in obtaining optimal solution, which
means that this is a dominant configuration with respect to other
configurations in a dataset. 

Fig. 5  Topology of the 33-bus distribution system
 

Fig. 6  Profile of 33-bus distribution system
(a) Voltage profile of 33-bus distribution system, (b) Active power profile of 33-bus
distribution system

 

Table 1 Comparative analysis of reconfiguration methods for the 33-bus distribution system
Tie line configuration Power loss, kW Average loss

reduction, %
Maximum loss
reduction, %

Vmin, p.u. ΔV, p.u.
Best Worst Average Standard

deviation
Initial configuration 33, 34, 35, 36, 37 208.459 — — 0.9108 0.0892
Final configuration
GA [22] 7, 9, 14, 32, 37 138.928 208.459 166.2 14.53 20.27 33.35 0.9423 0.0577
ITS [23] 7, 9, 14, 36, 37 141.431 198.4 164.9 13.34 20.9 32.15 0.9383 0.0617
HSA [14] 7, 10, 14, 36, 37 141.944 195.1 152.33 11.28 26.93 31.91 0.9383 0.0617
FWA [8] 7, 9, 14, 28, 32 139.98 155.75 145.63 5.49 30.14 32.85 0.9413 0.0587
Proposed method
DEP 7, 9, 14, 32, 37 138.928 139.981 139.15 0.136 33.24 33.35 0.9423 0.0577
DEPSO 7, 9, 14, 32, 37 138.928 139.655 138.931 0.051 33.35 33.35 0.9423 0.0577
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To evaluate the proposed methodology in faulted condition,
different cases are considered. In this investigation, the fault cases
which the downstream node cannot be restored are not considered
during this evaluation

i. Case I: Fault in line 17 where this fault is randomly selected in
a distribution system.

ii. Case II: Fault in lines 7 and 34 where these lines have the
longest line length in this distribution system.

iii. Case III: Fault in lines 3, 14 and 33 is selected on the basis that
they have the combination of smallest, medium and longest
line lengths for this distribution system.

As shown in Table 4, voltage deviation in each of the faulted
cases is within an acceptable range. In [8], a fault at branch 17 has
been analysed and tie switches 7, 9, 14, 17, 28 are found as the
optimal configuration for the restoration. From Table 5, it can be
observed that weightage in the objective function has prioritised
individual parameters. When w1 = 1, the optimal configuration is
found only on the basis of power loss. While considering this
objective function, the power loss, voltage deviation, and a number
of switching actions attained by the proposed technique are
146.293 kW, 0.0673 p.u., and four switching actions, respectively. 

Fig. 9 shows the interpolated weighted sum graph for case II
when the fault occurs at bus 17. From this figure, it can be
observed that the objective function has different values when
different weighting coefficients are considered. Minimum objective
value of 0.140 is obtained when w1 = 0.05, w2 = 0.931, and w3 = 
0.019. The optimal configuration for the minimum objective
function of 0.140 is 7, 9, 14, 17, and 28. The power loss, voltage

deviation, and a number of switching actions are 146.293 kW,
0.0673, and 4, respectively. 

Table 6 shows the optimal switching sequence for the 33-bus
distribution system. Eight switching actions are required when
branches 3, 14, and 33 are unavailable due to a fault and the total
power loss is 672.64 kW. The sequence of the switching operation
should maintain the radiality of the network, e.g. switch 9 has to be
opened before the closing switch 35. Furthermore, in case of the
fault at branch 17 or 7 and 34, it requires four switching operations.
The total power loss during their switching process is 286.27 and
282.71 kW, respectively. 

6.2 Large-scale distribution system

The proposed technique is further tested on the 118-bus test system
to investigate its efficiency (see Fig. 10). The 118-bus distribution
system is a large-scale distribution system, which is connected to
an 11 kV substation with active and reactive load demands of
22.709 MW and 17.041 MVAr, respectively [23]. It consists of 117
normally closed sectionalising switches and 15 normally open tie
switches. The power loss in the system is 1.298 MW for the initial
tie switches (118–132). The minimum voltage magnitude and the
maximum voltage deviation occur at bus 77, which are 0.869 and
0.131 p.u., respectively. 

The optimal configurations obtained by the proposed technique
are 23, 25, 34, 39, 42, 50, 58, 71, 74, 95, 97, 109, 121, 129, 130,
which have an active power loss of 854.031 kW. This reduces the
total power loss by 34.21%. After the reconfiguration, the
minimum voltage magnitude and the maximum deviation are
improved to 0.9323 and 0.0677 p.u., respectively.

Similar to the comparative investigation carried out for the
medium scale distribution system, the performance of the proposed
technique for this large-scale distribution system is evaluated by
comparing the power loss values with other techniques from the
literature, as shown in Table 7. It can be observed that the global
optimal configuration for this test system is obtained from the
FWA, the DEP, and the DEPSO methods, while the HSA, the ITS,
the RGA approaches are only able to find near optimal
configuration. The FWA method is more consistent in obtaining the
configuration over 200 trials with a low computational burden. The
average power loss, standard deviation, and average time attained
by the FWA are 887.54, 29.58 kW and 8.61 s, respectively. In
compared with the FWA, the standard deviations of the proposed
DEP and DEPSO methods are 14.97 and 11.20, respectively. These
algorithms attain 49.39 and 65.17% better consistency as compared
to the FWA approach. 

From Table 8, it can be observed that the proposed
methodology not only obtained the optimum solution consistently
but the DEP and the DEPSO attain the optimum solution in a short
span of time. The classical PSO manages to obtain a near optimal
solution which is 854.21 kW and its standard deviation is 44.46.
Moreover, the average time of PSO to reach its optimum solution is
22.65 s. On the other hand, the DEP and DEPSO obtain the
optimum solution in 6.02 and 7.09 s. Similar to the medium-scale
distribution, the DEP and the DEPSO methods outperform
previous methodologies in large-scale distribution system when it
comes to the consistency to obtain an optimum solution.
Furthermore, these algorithms attain the optimum solution in a
short span of time. 

Nevertheless, the average time of DEP to obtain an optimal
solution is 6.02 s, which is better than DEPSO. DEPSO obtains the

Table 2 Comparative analysis of the classical and the proposed reconfiguration methods for the 33 bus distribution system
Tie line configuration Power loss, kW Average loss reduction, % Average time, s

Best Worst Average Standard deviation
Classical method
EP 7, 9, 14, 32, 37 138.928 174.31 150.36 5.68 27.87 16.19
PSO 7, 9, 14, 32, 37 138.928 150.81 146.64 5.78 29.65 8.36
Proposed method
DEP 7, 9, 14, 32, 37 138.928 139.981 139.15 0.136 33.24 4.7
DEPSO 7, 9, 14, 32, 37 138.928 139.655 138.931 0.051 33.35 6.07

 

Fig. 7  Uniform load variation and power loss for the 33-bus distribution
system

 

Fig. 8  Stochastic load variation of 33-bus distribution system
 

982 IET Gener. Transm. Distrib., 2018, Vol. 12 Iss. 4, pp. 976-986
© The Institution of Engineering and Technology 2017



optimal solution in 7.09 s. On the contrary, the average power loss
and standard deviation of DEPSO is 11.20 kW and 855.996,
respectively, which outperforms DEP and other methodologies in
terms of consistency.

Similar to the 33-bus distribution system, the 118-bus
distribution system has been also evaluated with uniform and
stochastic load variation. Fig. 11 shows the power loss of 118-bus
test under uniform load variation. The optimum solutions obtained
by the proposed methodology are 42, 25, 23,121, 50, 58, 39, 95,
71, 74, 97, 129, 130, 109, and 34, which are similar to the normal
case. Likewise in Table 9, reconfiguration also varies with the
stochastic variation of load. Therefore, it can be concluded that if
the load is varying uniformly, then the optimal configuration will
have no effect on it; but if the load varies stochastically, then no
single combination will provide an optimum solution for all
scenarios.

To evaluate the proposed methodology in the faulted
distribution system, different cases have been considered. In this
investigation, the fault cases, which the downstream node cannot
be restored, were not considered during this evaluation:

i. Case I: Fault in line 30 has been considered. This fault is
randomly selected in the distribution system.

ii. Case II: Fault in lines 22 and 41 has been considered. These
lines have longest line length in this distribution system.

iii. Case III: Fault in lines 3, 14 and 33 is selected on the basis that
they have the combination of smallest, medium and longest
line lengths for this distribution system.

As shown in Table 10, after a fault occurs in line 30, in order to
restore the healthy zones, the system configuration is changed to
22, 39, 42,5 3, 70, 73, 75, 95, 109, 129, 130, 122, 132, 119. This
configuration increases the voltage deviation by 13.73% from the
optimal configuration and requires two switching operations to
restore the zones. In case of faults occurring in lines 22, 41, the
voltage deviation increases by 6.35% but in case of faults occurring
on lines 8, 53, 117, the voltage deviation increases by 41.80%.
Moreover, for case III, six operations are required, whereas, for
case II, eight switching operations are required to restore all buses.

7 Conclusion
In this work, database approach and DEP and DEPSO techniques
have been successfully proposed to optimise the network
reconfiguration of a distribution system. Optimisation of network
reconfiguration is based on the minimisation of power loss, voltage
deviation and number of switchings. Medium- and large-scale
distribution networks were investigated to evaluate the quality of
solution obtained through the proposed technique and further
compared with results published in the recent literature. Multiple
scenarios of network reconfiguration have been considered to
verify the efficiency of the proposed technique in healthy and
faulted distribution system. In case of medium-scale distribution,
the proposed technique obtains the optimal switch configuration of
7, 9, 14, 32, 37 and the power loss is improved by 33.35%.
Furthermore, the proposed the DEP and the DEPSO methods have
the lowest power loss standard deviation of 0.136 and 0.051,
respectively, compared to the GA, ITA, HSA, PSO, and FWA,
which have a higher standard deviation of 5.49. The average time
taken by the DEP to acquire the optimal configuration is 4.7 s,
which is faster than other methodologies as shown in Table 2. In
case of a large-distribution system, the maximum power loss has
been improved by 34.21%. Similar to the medium-scale
distribution system, the DEP manages to acquire the optimal
solution faster than other methodologies. Hence, from this work, it

Table 3 Reconfiguration of the 33-bus distribution system
for stochastic load variation
Time, h Power loss, kW Tie branches
1 59.80 7, 9, 14, 37, 31
2 25.20 7, 9, 14, 37, 32
3 51.09 7, 9, 14, 28, 32
4 31.91 7, 9, 14, 36, 37
5 53.46 7, 9, 14, 37, 31
6 59.15 7, 9, 14, 28, 32
7 35.54 7, 9, 14, 28, 32
8 22.67 7, 9, 14, 28, 31
9 30.44 7, 9, 14, 28, 32
10 57.29 7, 9, 14, 28, 32
11 35.59 7, 9, 14, 28, 32
12 41.51 7, 9, 14, 36, 37
13 33.90 7, 9, 14, 28, 32
14 49.31 7, 9, 14, 28, 32
15 62.14 7, 9, 14, 37, 31
16 51.10 7, 9, 14, 37, 32
17 42.88 7, 9, 14, 37, 32
18 26.04 7, 9, 14, 28, 32
19 51.96 7, 9, 14, 37, 30
20 43.24 7, 9, 14, 28, 32
21 47.20 7, 9, 14, 37, 32
22 30.23 7, 9, 14, 37, 31
23 46.48 7, 9, 14, 28, 32
24 24.96 7, 9, 14, 36, 28

 

Table 4 Fault analysis at different branches of 33-bus distribution system
Case Faulted branch Final configuration Power loss, kW ΔV, p.u. No. of switching actions
I 17 7, 9, 14, 17, 28 146.293 0.0673 4
II 7, 34 7, 11, 32, 34, 37 142.135 0.0602 4
III 3, 14, 33 3, 6, 14, 33, 36 216.533 0.0797 8

 

Table 5 Fault analysis at bus 17 with different weighting values
W1 W2 W3 Power loss, kW ΔV, p.u. No. of switching actions Configuration
1 0 0 146.293 0.0673 4 7, 9, 14, 17, 28
0 1 0 146.603 0.0643 4 6, 9, 14, 17, 37
0 0 1 146.650 0.0676 2 7, 9, 14, 17, 37
0.05 0.931 0.019 146.293 0.0673 4 7, 9, 14, 17, 28

 

Fig. 9  Interpolated weight sum chart for 33 bus distribution system, when
fault occurs at branch 17
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can be concluded that the DEP obtained the optimal configuration
faster but it is not as consistent as the DEPSO. On the contrary, the
results obtained by the proposed the DEP and the DEPSO methods
outperform the GA, RGA, ITS, HSA, PSO, and FWA in terms of
obtaining the optimal solution consistently in a short span of time.
In addition to that, this paper also presents the switching sequence
for healthy and faulted distribution system. Moreover, the proposed
network reconfiguration model has been evaluated with uniform

and stochastic load pattern to show its applicability in practical
scenarios.
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Table 6 Switching sequence of 33-bus distribution system
Initial configuration Final configuration Faulted branch Switching sequence Power loss, kW Total power loss, kW
33, 34, 35, 36, 37 7, 9, 14, 32, 37 9 – open 153.58 579.35

35 – close
7 – open 145.42

33 – close
14 – open 141.43
34 – close
32 – open 138.92
36 – close

7, 9, 14, 32, 37 7, 9, 14, 17, 28 17 17 – open 139.98 286.27
32 – close
28 – open 146.29
37 – close

7, 9, 14, 32, 37 7, 11, 32, 34, 37 7, 34 11 – open 140.58 282.71
9 – close
34 – open 142.13
14 – close

7, 9, 14, 32, 37 3, 6, 14, 33, 36 3, 14, 33 36 – open 141.43 672.64
30 – close
6 – open 143.59
7 – close
33 – open 171.09
9 –close
3 – open 216.53

14 – close
 

Fig. 10  118-Bus distribution system
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Table 7 Comparative analysis of 118-bus distribution system
Tie line configuration Power loss, kW Average

loss
reduction,

%

Maximum
loss

reduction,
%

Vmin,
p.u.

ΔV,
p.u.Best Worst Average Standard

deviation

Initial
configuration

118, 119, 120, 121, 122, 123, 124,
125, 126, 127, 128, 129, 130, 131,

132

1298.092 0.869 0.131

Final
configuration
RGA [25] 42, 26, 22, 51, 48, 61, 39, 127, 73,

72, 76, 82, 130, 109, 32
891.741 1297.34 963.1 77.4 25.6 31.78 0.9321 0.0679

ITS [23] 42, 26, 23, 51, 119, 58, 39, 95, 74,
71, 97, 129, 130, 109, 34

871.639 1288.17 952.6 73.2 25.81 31.97 0.9321 0.0679

HSA [14] 42, 26, 22, 52, 122, 61, 124, 125, 74,
71, 128, 129, 130, 131, 32

854.21 1282.73 935.01 69.3 27.97 34.19 0.9323 0.0677

FWA [8] 42, 25, 23, 121, 50, 58, 39, 95, 71,
74, 97, 129, 130, 109, 34

854.031 942.34 887.54 29.58 31.63 34.21 0.9323 0.0677

Proposed
method
DEP 42, 25, 23, 121, 50, 58, 39, 95, 71,

74, 97, 129, 130, 109, 34
854.031 919.53 857.63 14.97 33.93 34.21 0.9323 0.0677

DEPSO 42, 25, 23, 121, 50, 58, 39, 95, 71,
74, 97, 129, 130, 109, 34

854.031 919.53 855.996 11.20 34.05 34.21 0.9323 0.0677

 

Table 8 Comparative analysis of the classical and proposed reconfiguration algorithms for the 118-bus distribution system
Tie line configuration Power loss, kW Average loss

reduction, %
Average time,

sBest Worst Average Standard
deviation

Classical
method
PSO 42, 26, 22, 52, 122, 61, 124, 125, 74, 71, 128,

129, 130, 131, 32
854.21 1290.51 928.93 44.66 28.43 22.65

Proposed
method
DEP 42, 25, 23, 121, 50, 58, 39, 95, 71, 74, 97, 129,

130, 109, 34
854.031 919.53 857.63 14.97 33.93 6.02

DEPSO 42, 25, 23, 121, 50, 58, 39, 95, 71, 74, 97, 129,
130, 109, 34

854.031 919.53 855.996 11.20 34.05 7.09

 

Fig. 11  Uniform load variation and power loss of the 118-bus distribution system
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Table 9 118-Bus distribution system reconfiguration for stochastic load variation
Time, h Power loss, kW Tie branches
1 285.0233 23, 25, 34, 39, 42, 50, 60, 71, 73, 82, 109, 121, 125, 128, 130
2 269.2651 23, 25, 34, 39, 42, 50, 58, 70, 73, 75, 95, 109, 121, 129, 130
3 332.3365 23, 25, 34, 39, 42, 50, 58, 71, 74, 95, 97, 109, 121, 129, 130
4 232.4125 22, 25, 34, 39, 42, 51, 58, 71, 74, 82, 95, 96, 109, 121, 130
5 331.2463 23, 25, 34, 39, 41, 50, 58, 72, 74, 95, 97, 109, 121, 129, 130
6 270.1212 23, 25, 34, 39, 42, 50, 58, 71, 74, 95, 97, 109, 121, 129, 130
7 203.8194 22, 26, 34, 39, 42, 51, 58, 70, 73, 75, 95, 109, 121, 129, 130
8 306.5999 23, 25, 34, 39, 42, 50, 58, 72, 74, 95, 97, 109, 121, 129, 130
9 317.9757 23, 25, 34, 39, 42, 50, 58, 72, 74, 95, 97, 109, 121, 129, 130
10 245.3246 23, 25, 34, 39, 42, 50, 58, 70, 73, 76, 95, 109, 121, 129, 130
11 273.5239 23, 25, 34, 39, 42, 50, 58, 71, 74, 82, 95, 97, 109, 121, 130
12 300.5832 23, 25, 34, 39, 41, 50, 58, 70, 73, 75, 95, 109, 121, 129, 130
13 264.7238 23, 25, 34, 39, 42, 50, 58, 71, 74, 95, 97, 109, 121, 129, 130
14 231.9794 23, 25, 34, 39, 42, 51, 61, 71, 73, 75, 82, 109, 121, 125, 130
15 278.2621 23, 25, 34, 39, 42, 50, 58, 72, 74, 82, 95, 96, 109, 121, 130
16 197.7657 23, 25, 34, 39, 42, 52, 58, 70, 73, 95, 108, 121, 128, 129, 130
17 284.0128 22, 25, 34, 39, 41, 50, 58, 70, 73, 75, 95, 109, 121, 129, 130
18 241.6694 23, 25, 34, 39, 42, 50, 58, 70, 73, 75, 82, 95, 109, 121, 130
19 193.9488 23, 25, 34, 39, 42, 50, 58, 72, 74, 95, 109, 121, 128, 129, 130
20 246.4726 23, 25, 34, 39, 42, 50, 58, 70, 73, 75, 95, 109, 121, 129, 130
21 219.8553 22, 25, 34, 39, 42, 51, 58, 72, 74, 95, 96, 109, 121, 129, 130
22 175.7494 23, 25, 34, 39, 42, 50, 61, 71, 73, 97, 109, 121, 125, 129, 130
23 299.2915 23, 25, 34, 39, 42, 50, 58, 72, 74, 95, 97, 109, 121, 129, 130
24 337.5438 23, 25, 34, 39, 42, 50, 60, 73, 75, 109, 121, 125, 126, 129, 130

 

Table 10 Fault analysis at different branches of 118-bus distribution system
Case Faulted branch Final configuration Power loss, kW ΔV, p.u. No. of switching actions
I 30 23, 25, 30, 39, 42, 50, 58, 71, 74, 95, 97, 109, 121, 129, 130 954.66 0.077 2
II 22, 41 22, 26, 39, 34, 41, 50, 58, 71, 74, 95, 96, 109, 121, 129, 130 874.33 0.072 8
III 8, 53, 117 8, 23, 25, 34, 42, 53, 58, 71, 74, 95, 97, 117, 121, 129, 130 1016.84 0.096 6
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