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Abstract 
The high abstraction level of equation-based object-
oriented languages (EOO) such as Modelica has the 
drawback that programming and modeling errors are 
often hard to find. In this paper we present the first in-
tegrated debugger for equation-based languages like 
Modelica, which can combine static and dynamic 
methods for run-time debugging of equation-based 
Modelica models during simulations. This builds on 
and extends previous results from a transformational 
static equation debugger and a dynamic debugger for 
the algorithmic subset of Modelica. 
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1 Introduction 
The advanced development of today’s complex prod-
ucts requires integrated environments and equation-
based object-oriented declarative (EOO) languages 
such as Modelica [10][14] for modeling and simulation.  

The increased ease of use, the high abstraction, and 
the expressivity of such languages are very attractive 
properties. However, the downside of this high-level 
approach is that understanding the root causes of unex-
pected behavior and numerical errors of simulation 
model is very difficult, in particular for users who are 
not experts in simulation methods.  

The main reason of this difficulty the fact that lots 
of sophisticated symbolic and numerical transfor-
mations are applied to the original model in order to 
eventually obtain the executable simulation code, in 
which errors and problems do occur. An effective de-
bugging environment should then guide the end user 

back and forth through the numerical results and all the 
performed symbolic transformations of the model, in 
order to quickly find and correct the causes of errors. 
This paper presents the integrated debugger of the 
OpenModelica tool suite, including a graphical user 
interface integrated with the OpenModelica Connection 
Editor (OMEdit) GUI. This builds on and extends pre-
vious results from a transformational static equation 
debugger [6][7] and a dynamic debugger [1][3][4] for 
the algorithmic subset of Modelica.  

Despite the fact that debugging environments have 
been the subject of extensive research and implementa-
tion work in the field of computer science, to the best 
of the authors’ knowledge this is the first documented 
operational debugging environment for equation-based 
modeling languages supporting dynamic debugging of 
equation-based mathematical models as well as algo-
rithmic code in an integrated way. 

The rest of the paper is structured as follows: The 
debugging procedure is outlined in Section 2 and the 
GUI in Section 3. The tracing of equation transfor-
mation is discussed in Section 4, while Section 5 dis-
cusses the issues of interfacing with the run-time simu-
lation executable. In Section 6, some example models 
are shown, illustrating how the debugger can help their 
troubleshooting. Section 7 discusses background and 
related work, Section 8 states the current implementa-
tion status at the time of this writing, and Section 9 
concludes the paper. 

2 Overall Debugging Procedure 
The debugger should support three basic scenarios: 

• The simulation stops at a certain time step, or during 
initialization, because of a numerical runtime error; 
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• A complete simulation run has been performed suc-
cessfully, but some variables exhibit suspicious or 
clearly wrong values; 

• A breakpoint is inserted to stop the integration ei-
ther at a certain given value of the time variable, or 
when some user-supplied condition is triggered. In 
this case, it should be possible to restart the  simula-
tion (and possibly to set a new breakpoint) 

The different functionalities of the debugger are speci-
fied in more detail in the following sub-sections. 

2.1  Types of Debugging Activities 

We divide the problem of debugging the execution 
(i.e., the numerical simulation) of an equation-based 
model into three different areas: 

• Initialization. Before starting the simulation, con-
sistent initial conditions are computed by solving a 
set of initial equations. In the following, it is as-
sumed that this is done by using multiple optimiza-
tion strategies, such as alias variable elimination, 
BLT partitioning, tearing, etc.  

• Causalization. It is also assumed that the solution of 
the differential-algebraic equations over time is ob-
tained by a two-stage strategy. In the casualization 
stage, the DAEs are solved for the derivatives by us-
ing multiple optimization strategies, such as sym-
bolic index reduction as well as the ones previously 
mentioned.  

• Time integration. The computed derivatives (and 
possibly their Jacobian matrix) are then passed to 
ODE solvers, such as DASSL, Runge-Kutta, Radau, 
etc., that advance the solution of the system over 
time 

2.2 Debugging Initialization and Causalization 
Problems 

For the purpose of debugging, initialization and 
causalization share a common structure despite using 
different numerical solvers. They can be represented 
using a similar GUI. The only difference is that the set 
of equations and unknowns for initialization is larger 
than for causalization, as it also includes the state vari-
ables and the parameters, as well as the initial equations 
and parameter-binding equations. Also, the simulation 
code to solve both problems is usually generated by the 
Modelica tool itself, so it is fairly straightforward for 
the tool developers to add all kind of instrumentation to 
it for debugging purposes. 

Variables are matched to the equations that are used 
to solve them. If an error has occurred while trying to 
compute a certain variable or a certain set of variables 

for strong components in the BLT, the error (e.g., divi-
sion by zero, logarithm of a negative number, singular 
linear system of equations, etc.) is reported in the con-
text of the equation as it has been transformed in order 
to solve it efficiently at run time. Then, it is possible to 
backtrack step-by-step each stage of the transfor-
mations of each equation, up to the original equations 
in the source code. 

This activity can also be carried out in the absence 
of errors, either when a breakpoint is triggered, or when 
the values at a specific time step are inspected after the 
simulation run has been performed. Assuming that 
some variable(s) have suspicious, or maybe clearly 
wrong values, one starts analyzing the equations that 
were used to compute them, going backwards in the 
causality chain determined in the BLT, and trying to 
locate the model error that caused the computation of 
the wrong values. 

The solution of the equation(s) also depends on the 
values taken by all the other known variables showing 
up in the equations, either states or other unknown var-
iables previously computed in the BLT. The debugger 
allows to inspect the values taken by these variables, as 
well as the equation(s) in which they were solved for. 
Then, the same activities will be possible recursively 
on this new set of equations: understanding where they 
come from in the equation transformation chain, as 
well as inspecting the values of the variable(s) they 
depend upon. 

2.3 Debugging Time Integration Problems 

The requirements for the debugging of time integration 
problems are quite different. Unrecoverable errors gen-
erated by the ODE solver should be reported to the de-
bugger using some kind of unified representation (e.g., 
using XML), which is as independent as possible from 
the specific solver used. Of course, some errors will 
only make sense for a subset of solvers; for example, 
singular Jacobians are only relevant in the case of im-
plicit solvers; event chattering is only relevant for solv-
er with state event detection.  

The first kind of error that can arise in solvers with 
state event detection based on zero crossing function is 
chattering: if a large number of events takes place in a 
very short time interval, then the debugger reports the 
corresponding zero-crossing functions and allows to 
back-track them to their original formulation in the 
source code, as well to inspecting the values of all the 
variables involved in them in the last accepted time 
steps.  

It may also be the case that chattering arises without 
any event being generated, if the noEvent() operator 
is incorrectly placed around a discontinuous expression 
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inside a model equation, or if some functions in the 
model generate results which are discontinuous w.r.t. 
their inputs (recall that Modelica functions do not gen-
erate events). This situation can be detected by moni-
toring the step size, and detecting the fact that the step 
size has been reduced to very small values for a very 
large number of step sizes.  

In order to identify the root cause of the problem, it 
is necessary that the ODE solver can report which 
component(s) of the state vectors have the largest esti-
mated errors, and are thus mainly responsible for the 
excessive step size reduction. The debugger will then 
point the end user to the equations that are used to 
compute the corresponding derivatives, using the same 
mechanism adopted for the initialization and casualiza-
tion steps. Wildly oscillating values of the derivatives 
will be observed across the last time steps, and it will 
then be possible to analyze the expressions leading to 
these oscillations, eventually locating the root cause of 
the problem.  

Another possible error can arise at the ODE solver 
level if the underlying differential equations have a 
finite escape time, i.e., one or more elements of the 
state vector go to infinity as time approaches a certain 
finite value. The main symptom in this case is very 
similar to the previous case, i.e., the step size is greatly 
reduced and the simulation seems stuck at a certain 
point in time.  

The root cause can also be identified in this case if 
the solver reports the component(s) of the state record 
that mostly contribute to the error estimate, so that the 
debugger can allow the user to inspect the equation(s) 
that compute the corresponding derivatives. The values 
of these derivatives will constantly grow from one step 
to the next one, rather than oscillating wildly as in the 
previous case. Again, by careful inspection and analy-
sis, it might be possible to understand the root cause of 
the problem and fix it.  

2.4 Debugging Homotopy-based Initialization 
Problems 

If the homotopy() operator is used for initialization, 
two extra stages are added to the debugging of the ini-
tialization problem. First, the set of initial equations 
using the simplified expression is presented. The BLT 
structure of this problem might be substantially differ-
ent (and hopefully simpler) than that of the actual ini-
tialization problem, but the way it is presented in the 
GUI to the user for analysis is the same as for the actual 
initialization problem. 

 The second stage is the homotopy transformation. 
From a GUI perspective, this is very similar to the sim-
ulation phase as there are several steps involved. Each 
might be accepted, rejected, or eventually fail if the 
errors cannot be recovered by taking shorter steps. Al-
so, similarly to the simulation phase, errors might be 
reported that arise while solving the equations in the 
BLT sequence (as in the initialization and causalization 
problems), but also some system-level errors might be 
reported by the homotopy solver itself, e.g., in case of 
homotopy path bifurcations, similarly to problems re-
ported by the ODE solver during time integration. 

The GUI is therefore similar to the one used for de-
bugging errors during simulation, with the following 
differences: 

• The set of unknowns includes states and parameters; 
• the set of equations include initial equations and pa-

rameter-binding equations 
• All occurrences of the homotopy operator [14] in 

the equations are transformed into λ*actual_expr + 
(1 − λ)*simplified_expr;  

• The independent variable which is stepped is not 
time but rather the λ homotopy parameter. 

3 Debugger Graphical User Interface 
In order to visualize the transformations performed and 
the operations taken by the solver to solve for a varia-
ble and its corresponding equation(s), a transfor-
mations browser (Figure 1; Figure 2; Figure 3) has 
been created. 

The transformations browser lists the variables 
along with their respective types hierarchy, operations 
performed, equations which defines the variable and 
equations which are using the variable. The types can 
be used to navigate to the specific class. 

Double clicking on the equation updates the trans-
formation browser and shows the list of operations and 
variables involved in the solution of the equation. See 
Figure 3. 

The transformation browser provides two views: 

• Variables view 
• Equation View 

The data needed to build the structures shown in the 
GUI, i.e., the structural information about the equation 
systems, and the equation transformation traces, are 
loaded from an XML file which is generated by the 
OpenModelica compiler, see Section 4 for more details. 
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Figure 2. Enlarged left part of variable info in 
transformations browser variable view with columns: 
Variables, Variable Types, Variable 
Operators. 

When a numerical error is reported, clicking on the 
“Debug more” link at the end of the error report brings 
up the debugger showing the equation(s) involved in 
the error. 

 

 
Figure 3. Enlarged part of transformation browser 
equation view with Defines variable, Depends on 
variable, Equation Operators operations like solved, 
simplify, substitute, etc. 

4 Transformation Tracing 
The underlying implementation of the transformation 
tracing mechanism is described in more detail in [7]. 
Some further improvements are present in this version. 

The key idea introduced in [7] is to encode and store   
in a list all transformations that are performed by the 
Modelica compiler on the model equations, such as 
symbolic solution, alias elimination, symbolic differen-

Figure 1. Transformations browser variables view with columns: Variables, Variable Types, Variable 
Operators. 
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tiation, etc. Because every operation is stored, it is pos-
sible to replay the operations and verify that the tool 
only performed sane operations during translation. This 
list of operations is then output to an XML-file (Figure 
4) which is parsed by the debugger. 

 
Figure 4. List of equation transformations in the model 
Modelica.Electrical.Analog.Examples.NandGate. 

The XML-file contains all the variables and equations 
used to solve the model, as well as variables that have 
already been solved for, alias relations, and so on. The 
equations are split into several groups, such as start-
value equations, initial equations, regular equations, 
since the same variable may have different equations 
defined for it in different phases of the program.  

These groups are related to how the compiler decid-
ed to numerically solve simulations. For example, the 
file includes the equations generated for the Jacobian, 
which is not used by all numerical ODE/DAE solvers. 

Each equation knows the variables it solves for, as 
well as the variables it uses. This enables fast lookup of 
parents, children, and siblings in the BLT matrix. When 
reading the file, information is propagated to variables 
in a way such that each variable also knows the equa-
tion(s) where it is defined. This is again to ensure that 
the debugger can perform cheap lookup operations. 

In the case of strongly connected components, an 
equation index will point to a set of equations (linear 
and nonlinear systems of equations in OpenModelica 

are defined as a set of equations and variables to solve 
for). The generated code knows the index of an equa-
tion in the XML-file, so in case error or diagnostic 
messages are generated, a link to the equations and var-
iables associated with this index can be provided to the 
debugger. 

The message routines have been updated to take a 
list of equation indexes as an option, as well as output 
the messages as structured XML. This enables the de-
bugger to read the messages and insert links to equa-
tions as appropriate. 

This approach allows a user to debug simulations 
even if he/she did not run the simulation through the 
debugger, because it is possible to perform post-
mortem debugging only based on the messages and 
diagnostics produced by the simulation executable. 

There is no additional overhead during regular exe-
cution except reading and writing the additional infor-
mation in the XML-file. This can be done by a thread 
running in the background and takes only a few se-
conds even for the large EngineV6 model which both 
has many equations and many symbolic operations per-
formed on each equation.  

For error-messages there is an additional overhead 
of creating an error message that contains all the rele-
vant information. This is a small one-time cost for er-
ror, which are hopefully infrequent. Consequently, the 
detailed error messages are output even if the user had 
not decided to debug the simulation before he started it 
since it will help him figure out why things went 
wrong. 

5 Run-Time and Event Related Im-
plementation 

The run-time system performs the actual simulation of 
a Modelica model, in which the solution process is 
done by different solvers that cooperate in a master-
slave hierarchical configuration, with the ultimate mas-
ter being the end-user: 

• ODE solver 
• Functions computing the derivatives and algebraic 

variables 
• Function computing the initial states and the values 

of parameters 
• Function computing event points 
• Linear equation solvers 
• Nonlinear equation solvers 

All of them may fail with different kinds of errors de-
pending on the solver, generally because of numerical 
issues (e.g. singular Jacobian, no convergence, too tight 

<simplify> 

 <before> 

  Nand.TP1.G.i + Nand.TN1.G.i + (-Nand.x2.i)  

  = 0.0 

 </before> 

 <after> 

  Nand.TP1.G.i + Nand.TN1.G.i - Nand.x2.i  

  = 0.0 

 </after> 

</simplify> 

<substitution> 

 <before> 

  Nand.TP1.G.i + Nand.TN1.G.i - Nand.x2.i 

 </before> 

 <!-- list of intermediate results --> 

 <exp>0.0 + 0.0 - (-VIN2.i)</exp> 

</substitution> 

<simplify> 

 <before>0.0 + 0.0 - (-VIN2.i) = 0.0</before> 

 <after>VIN2.i = 0.0</after> 

</simplify> 

<solved> 

 <lhs>VIN2.i</lhs> 

 <rhs>0.0</rhs> 

</solved> 
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tolerance). However, at the bottom level they all share 
particular error types: 

• Evaluation of expressions 
• Division by zero. 
• Functions called outside their domain (e.g.: 

sqrt(-1), log(-3), asin(2)). 
• Evaluation of non-integer powers with nega-

tive argument 
• Assertion violations for the model 

In general some errors can be recovered automatically 
by the system (e.g. by re-trying with a shorter time 
step), whereas others abort the simulation and are re-
ported to the user, which can then enter the debugging 
mode. 

If an error cannot be recovered by the solver hierar-
chy, informative diagnostics are provided to the user. 
The diagnostic error message includes the correspond-
ing equation block, the involved variables and their 
values. Furthermore the hierarchical context of the er-
ror is important to be able to classify it.  

In the next step the user may be able to enter the de-
bugging mode, where the simulation can be re-run to an 
accepted step just before the error occurs again. The 
last accepted step corresponds to the last point in time 
in the result file created in the first run. This point in 
time can be a breakpoint for debugging mode.  

In the debug mode breakpoints are interpreted like 
zero-crossings, but without the time-consuming search 
process which the numerical solver does — the simula-
tion just breaks if the condition becomes true. 

Then the step that caused the failure is executed in a 
verbose mode, where informative diagnostic is provid-
ed for every equation that needs to be solved till the 
error occurs again. This allows the user to trace the so-
lution process and if necessary, to engage by changing 
the model. 

6 Example Models for Debugging 
In this section some simple test cases are shown which 
demonstrate various possible error scenarios, and how a 
debugger can help their troubleshooting. 

6.1 Chattering Models 

In the model ChatteringEvents1, chattering takes 
place after t = 0.5, due to the discontinuity in the right 
hand side of the first equation. Chattering can be de-
tected because lots of tightly spaced events are generat-
ed. The debugger allows to identify the equation from 
which the zero crossing function that generates the 
events originates. 
 

model ChatteringEvents1 
  Real x(start=1, fixed=true); 
  Real y; 
  Real z; 
equation 
  z = if x > 0 then -1 else 1; 
  y = 2*z; 
  der(x) = y; 
end ChatteringEvents1; 

Also in the model ChatteringNoEvents1, chattering 
takes place after t = 0.5, due to the discontinuity in the 
right hand side of the first equation. However, events 
are not generated in this case, because of the noEvent 
operator. If a variable-step-size integration algorithm 
with error control is used, the time step will be reduced 
to very small values once the discontinuity is hit, and 
this can be detected by monitoring the value of time at 
each time step. 

The variable step size solver should be able to re-
port which state variable(s) give the biggest contribu-
tion to the error estimate, thus causing the step size re-
duction. The corresponding derivative shows very high 
frequency oscillations between two values. The end 
user can then use the BLT navigation functionality of 
the debugger to investigate which variable/equation is 
introducing the discontinuity. 
model ChatteringNoEvents1  
  Real x(start=1, fixed=true); 
  Real y; 
  Real z; 
equation 
  z = noEvent(if x > 0 then -1 else 1); 
  y = 2*z; 
  der(x) = y; 
end ChatteringNoEvents1; 

Regarding ChatteringFunction1, after t = 0.5, chat-
tering takes place due to the discontinuity in the right 
hand side of the first equation. The discontinuity is 
caused by a discontinuous function, which does not 
generate events. 

The considerations regarding variable-step solvers, 
derivatives, and debugger BLT navigation are the same 
as for the previous example ChatteringNoEvents1. 
model ChatteringFunction1 
  Real x(start=1, fixed=true); 
  Real y; 
  Real z; 
 
function f_sign 
  input Real x; 
  output Real y; 
algorithm 
  if x > 0 then 
    y := 1; 
  elseif x < 0 then 
    y := -1; 
  else 
    y := 0; 
  end if; 
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end f_sign; 
 
equation 
  z = Functions.f_sign(x); 
  y = 2*z; 
  der(x) = y; 
end ChatteringFunction1; 

6.2 Models with Different Numerical Failure 
Modes 

The NonlinearSolverFailureInitial, model de-
scribes a simple hydraulic system with a pump, fol-
lowed by a valve, which fills a reservoir. 

The initial value of the level of the reservoir is too 
high for the pump sizing, so the pressure p2 is too high 
and consequently the nonlinear algebraic system of 
equations that determines p1 and w_pump has no solu-
tion. 

It is possible to find a solution to the system either 
by lowering the initial value of y, and thus the pressure 
p2, or by increasing the value of the parameter dp0, 
increasing the head the pump can provide.  

The debugger can show the dependency of the non-
linear system of equations on the parameters dp0, a1, 
a2, a3, and Kv (also showing their values), as well as 
the dependency on p2 (which has a too high value). 
Once one understands that p2 is too high, it should be 
possible to continue the analysis, looking at the equa-
tion that determines p2, which in turn depends on the 
value of the state y, which is the root cause of the prob-
lem.  

The nonlinear system that cannot be solved has five 
unknowns: w_pump, dp_pump, dp_valve, sqrt_dp, 
and p1, which can be easily reduced to one by using 
dp_pump as a tearing variable. The debugger can show 
the torn variables and the tearing variables, as well as 
the corresponding torn equations and implicit residual 
equations, and allows to track the values of all five var-
iables during the iterations of the Newton algorithm. 
model NonlinearSolverFailureInitial 
  parameter SI.Pressure patm=101325  
    "Atmospheric pressure"; 
  parameter Real Kv=1e-2 "Valve coefficient"; 
  parameter Real dp_small=1  
    "Small dp for valve equation"; 
  parameter Real dp0=3e5 "Pump dp @ zero flow"; 
  parameter Real a1=1e6 "Pump coefficient"; 
  parameter Real a2=3e2 "Pump coefficient"; 
  parameter Real a3=3e2 "Pump coefficient"; 
  parameter SI.Temperature T0=20 + 273.15  
    "Temperature of incoming fluid"; 
  parameter SI.Density rho=995  
    "Density of fluid"; 
  parameter SI.Area A=0.01  
    "Storage tank cross section"; 
  parameter SI.MassFlowRate w_extra=0  
    "Extra mass flow rate into reservoir"; 
  constant SI.Acceleration g= 9.81 
    "Acceleration of gravity"; 
  parameter SI.Temperature Tref=273.16 
    "Reference temperature for specific  

     enthalpy computation"; 
  parameter SI.SpecificHeatCapacity cp=4186  
    "Cp of the fluid"; 
  SI.MassFlowRate w_pump  
    "Mass flow rate from the pump"; 
  SI.Pressure p1 "Pump discharge pressure"; 
  SI.Pressure p2 "Storage tank inlet pressure"; 
  SI.Pressure dp_pump "Pump dp"; 
  SI.Pressure dp_valve "Valve dp"; 
  Real sqrt_dp "Regularized sqrt(dp)"; 
  SI.SpecificEnthalpy h0  
    "Pump inlet specific enthalpy"; 
  SI.SpecificEnthalpy h1  
    "Pump discharge specific enthalpy"; 
  SI.Power W “Pump power consumption”; 
  SI.Length y(start=40, fixed=true) 
    "Reservoir level"; 
  Real eta(final unit="1") =  
    (p1 - patm)*w_pump/rho/W "Pump efficiency"; 
  SI.Temperature T1  
    "Pump discharge temperature"; 
  SI.Time tau=1  
    "Time constant of temperature sensor"; 
equation 
  dp_pump = p1 - patm "Pump dp"; 
  dp_valve = p1 - p2 "Valve dp"; 
  dp_pump = dp0 - a1*w_pump^2; 
  w_pump = Kv*sqrt_dp; 
  sqrt_dp = dp_valve/ 
           (dp_valve^2 + dp_small^2)^0.25; 
  W = a2 + a3*w_pump; 
  w_pump*(h1 - h0) = W; 
  rho*A*der(y) = w_pump + w_extra; 
  p2 = rho*g*y + patm; 
  h0 = cp*(T0 - Tref)"; 
  h1 = cp*(T1 - Tref)"; 
end NonlinearSolverFailureInitial; 

A simple modification of the previous model allows 
demonstration of the failure of the nonlinear solver in 
the causalization stage during simulation. The initial 
value of the level is reduced to 20, so that an initial so-
lution can be found. 
model NonlinearSolverSimulation 
  extends NonlinearSolverFailureInitial( 
             y(start=20), w_extra=0.2); 
end NonlinearSolverSimulation; 

In this case the reservoir is filled both by the pump and 
by an extra source. The mass flow rate of the pump 
w_pump is determined by a nonlinear system with five 
unknowns: w_pump, dp_pump, dp_valve, sqrt_dp, 
and p1, which basically computes the operating point 
of the pump as the intersection between the pump head 
curve and the load (valve + reservoir head) curve. Note 
that these curves have two intersections (also see 
NonlinearSolverFailure3 later on). As the level 
increases, w_pump is reduced, and the two intersections 
get closer to each other, until at time t = 269 they col-
lide, making the system singular. As the level increases 
further due to the extra source, this system ceases to 
have any solution. This is a typical bifurcation pattern 
in nonlinear systems. 

The debugger can show that the condition number 
of the Jacobian of the nonlinear system gets bigger and 
bigger as the critical time when the two operating 

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096195

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

201



curves become tangent to each other, suggesting that 
this system becomes singular for some reason. Under-
standing the reason why this happens requires physical 
insight into the model.  

The model can be fixed by adding some mass stor-
age depending on the pressure p1, in order to avoid the 
singularity in determining p1, and also by using a more 
realistic cubic curve for the pump model, so that when 
the limit level is reached, the solution will jump to a big 
negative pump flow. Again, this requires physical in-
sight into the validity range of the implemented model. 

Another slight variation of the model allows 
demonstrating the case of finite escape time.  
model FiniteEscapeTime 
  extends NonlinearSolverFailureInitial( 
            y(start=20)); 
  SI.Temperature Ts(start=T0); 
equation 
  tau*der(Ts) = T1 - Ts; 
initial equation 
  der(Ts) = 0; 

end FiniteEscapeTime; 

As the reservoir level increase, the flow rate w_pump 
goes to zero. When it does, the energy balance equation 
causes the specific enthalpy h1, and thus the tempera-
ture T1, to go to infinity.  

The temperature T1 is the input of a first-order line-
ar system, representing the temperature sensor dynam-
ics. If a variable step-size solver with error control is 
used, it will try to compute the state trajectory, which 
also goes to infinity, so the solver eventually gets stuck 
at time t = 664. 

If the ODE solver reports information on the state 
whose error estimate is causing the step size to be re-
duced, (Ts, in this case), then the debugger can point 
the end user to its derivative der(Ts). It will be shown 
that it depends on T1, whose values can be seen to 
grow indefinitely over time. T1 is shown to depend on 
h1, which also goes to infinity. Finally, h1 depends on 
the energy balance equation, which depends on 
w_pump. At that point it will become apparent that as 
the flow rate w_pump goes to zero, the model becomes 
ill-posed. The solution in this case is to change the 
pump model, by adding to the energy balance some 
dynamic energy storage and/or some heat transfer to 
the ambient, in order to avoid the zero-flow singularity. 

Finally, another small change to the original model 
presented in this section allows to demonstrate the de-
bugging of models where the wrong initial solution is 
picked by the nonlinear solver.  
model WrongInitialSolutionSelected 
  extends NonlinearSolverFailureInitial( 
            y(start=20),  
            dp_pump(start=-1000)); 
end WrongInitialSolutionSelected; 

The operating point of the pump is determined by a 
nonlinear system with five unknowns: w_pump, 
dp_pump, dp_valve, sqrt_dp, and p1. It is assumed 
here that dp_pump is selected as a tearing variable. At 
time t=0, this system has two solutions, one with posi-
tive w_pump, and the other one with negative w_pump. 
If the start value of the tearing variable dp_pump is 
chosen incorrectly, the solver will converge to the 
negative solution, then lock onto it for the rest of the 
simulation. 

When the user sees the negative w_pump in the sim-
ulation (which is physically wrong), he/she should be 
able to analyze how this value was found at time t = 0. 
The debugger shows that w_pump is solved by that non-
linear system, and shows the values of the tearing vari-
ables and of the torn variables at each iteration step. 

It will then become apparent that the start value of 
the tearing variable dp_pump leads to a negative value 
of the torn variable w_pump, leading to the solution of 
the problem, i.e., changing the start value of dp_pump 
to a value that allows convergence on the desired solu-
tion. 

7 Background and Related Work 
Modelica is a declarative language that makes writing 
equations easy while still producing efficient code. 
However, traditional debugging tools like GDB [12], 
Valgrind [19], or any of the other tools described in 
[18] assumes that the program being debugged is 
statement based. It also assumes that the user knows 
something about what the program is doing. This is fine 
if you are a Modelica compiler developer working on 
fixing some segmentation fault in your own code. A 
GDB-based approach exists for Modelica [4]; it works 
fine for debugging algorithms in functions. 

But as a Modelica user you know very little about 
the internals of the run-time system. For example, there 
is speculative execution while simulating a model mak-
ing debugging with GDB confusing. 

There exists previous work on debugging in 
Modelica. Bunus [9] proposes a semi-automated dy-
namic (run-time) debugging of models where the user 
has to provide a correct diagnostic specification of the 
model which is used to generate assertions at runtime. 
Moreover, starting from an erroneous variable value the 
user explores the dependent equations (a slice of the 
program) and acts like an “oracle” to guide the debug-
ger in finding the error. 

Sjölund [7] is used as the main basis of the equation 
debugging part of this work. It was mainly focused on 
tracing operations in the compiler backend. It has been 
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extended with structured error messages from the simu-
lation run-time system as well as an actual debugger. 

Pop et al [3], [4] describe an integrated debugging 
approach based on a dependency graph. Edges in that 
dependency graph can be computed by the transforma-
tional tracing mechanism mentioned in Section 4. 

8 Current Status 
At the time of this writing, the implementation of the 
debugger framework in the OpenModelica environment 
is mostly complete but still missing some parts. 

This debugger framework has three main parts: the 
tracing of symbolic operations in the backend of 
OpenModelica, reporting run-time errors in simula-
tions, and the debugger implemented as an extension of 
the OMEdit graphical user interface. 

The tracing of operations is complete, and the map-
ping of error positions in the low level generated code 
to the high-level model from where they originated.  
However, the reporting of run-time errors only works 
for a subset of problems at the moment. 

The generation of the XML file with the transfor-
mation tracing, and its subsequent representation in the 
OMEdit GUI are fully implemented. Some types of 
numerical errors (e.g., chattering) can already be de-
bugged as described in the paper.  

However, the interface to the numerical solvers 
(both for the casualization and for the time integration 
steps) is still incomplete. Also the functionality of ana-
lyzing the results of simulation runs (which did not 
generate errors) at specific points in time is not imple-
mented yet. 

It is planned to have the implementation with the 
abovementioned additional functionality completed by 
fall 2014. 

9 Conclusions and Future Work 
We have presented a set of problems of simulating 
Modelica models that benefits from increased debug-
ging tool support. We have also presented a design and 
implementation of the first (to our knowledge) docu-
mented debugging framework that can handle this set 
of problems. 

The debugger is operational and has been tested on 
rather large models without noticeable run-time over-
head. It is able to map error positions from low-level 
compiled simulation code to the corresponding source 
level equations in the Modelica model.  

We believe that this kind of debugging support will 
significantly improve the ease-of-use regarding applica-
tion modeling with Modelica compared to the current 

situation typically needing a large amount of trial-and-
error and a lot of expertise in the internal mechanisms 
of Modelica model compilers and simulation run-time 
systems. This can speed up the acceptance and use of 
Modelica in the engineering community. 

Future work includes creating additional specialized 
debugging views including a view to display non-
convergence of non-linear equation systems. 
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