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 In recent decays, there has been an extensive improvement in technology and knowledge; hence, 
human societies have started to fortify their urban environment against the natural disasters in 
order to diminish the context of vulnerability. Local administrators as well as government 
officials are thinking about new options for disaster management programs within their 
territories. Planning to set up local disaster management facilities and stock pre-positioning of 
relief items can keep an urban area prepared for a natural disaster. In this paper, based on a real-
world case study for a municipal district in Tehran, a multi-objective mathematical model is 
developed for the location-distribution problem. The proposed model considers the role of 
demand in an urban area, which might be affected by neighbor wards. Integrating decision-
making process for a disaster helps to improve a better relief operation during response phase of 
disaster management cycle. In the proposed approach, a proactive damage estimation method is 
used to estimate demands for the district based on worst-case scenario of earthquake in Tehran. 
Since such model is designed for an entire urban district, it is considered to be a large-scale 
mixed integer problem and hence, a genetic algorithm is developed to solve the model. 

© 2013 Growing Science Ltd.  All rights reserved 
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1. Introduction  
 
Natural disasters are outcomes of environmental forces, which endanger urban societies all around the 
world. Despite the progresses made in science and technological aspect of life, human has been unable 
to protect his life from the treats of these events, completely. Recent casualties all around the world, 
even in the developed countries, have provided enough evidences that we are vulnerable to calamities 
created by nature and there is still a necessity to study preventive and responding methods for these 
casualties. Whilst some of these disasters such as hurricanes and Tsunami are predictable, others might 
happen quite out of the blue, like earthquakes and landslides. Recent fatal earthquakes in Italy, Japan, 
and Haiti, floods in Pakistan, hurricanes and Tsunamis have left thousands of casualties, billions of 
dollars in terms of damages in assets and lots of homelessness. 
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Emergencies and disasters pose extraordinary demands on the logistical and organizational capabilities 
of an affected region. Providing sufficient relief items and equipment is considered as not only a 
decision problem but also managing these supplies is another important issue. Deliveries may be 
accumulating at some echelons of relief chains while lack of emergency supplies might happen at the 
final customers’ level i.e. the people of the affected regions. Other problems in transportation and 
distribution of relief supplies as well as inappropriate donation and storage of undesirable goods might 
occur during the response period (De Ville De Goyet, 2001). So the issue of using Operations Research 
in disaster management programs in recent decades has been raised (Ergun et al., 2009) to optimize 
efforts in this area of humanitarian activities. 

Disasters are created either naturally or by human being and they have sudden onsets. Disasters may 
create enormous catastrophes around the world and relief chain management has emerged as an 
important and global matter (Sheu, 2007). In order to attain an effective and efficient response, it is 
necessary to plan and to operate elements from an appropriate relief chain, but only in recent years, 
humanitarian organizations have paid special attention on these issues (Van Wassenhove, 2006). 
Providing quick relief to minimize casualties and sufferings people is the primary objective of 
humanitarian disaster response (Beamon & Kotleba, 2006a). 

In many studies and researches, a four-stage disaster management cycle with mitigation, preparedness, 
response and recovery phases has been developed and proposed in order to manage strategic, tactical 
and operational decisions about a certain catastrophic event. Earthquake is one of the major threats in 
urban regions, especially near or on the natural faults among different plates, which might cause 
significant amount of financial losses and casualties. Hence, national and local authorities have to think 
about solutions in order to minimize the consequences of such disasters. Usually, such considerations 
are combination of strategic and tactical decisions, which would be provided during preparation phase 
and include emergency shelters and their locations, inventory warehouses for relief items, evacuation 
routes for people and emergency vehicles and so on. So, as a local authority point of view, the problem 
of locating regional or local emergency bases and warehouses and the amount of relief items that must 
be gathered and distributed in the region should be noticed as an important decision problem. 
 
In this paper, a multi-objective mathematical modeling problem is developed to locate local emergency 
management bases and to allocate affected people to them. Since each hypothetical region cannot be 
considered without the effect of neighbor areas and their unidentified demand on the response activities 
of local authorities, a mechanism for considering the effects of neighbors has been provided for the 
mathematical model. The proposed approach uses proactive damage estimation information of an urban 
region for earthquake as an input for a location-distribution model. The distribution of relief supplies 
for emergency bases and coverage of the demand points, both inside the district and neighbors outside 
the boundaries of the urban areas are decisions made using this model. In order to examine the 
application of the proposed model for a real-world problem, necessary data is gathered from a 
municipal district in Tehran and computational results are shown for this case study. 

The rest of this paper is organized as follows: Section 2 describes a brief literature review on this topic. 
Section 3 reviews the problem description. Mathematical model and solution procedure are described at 
Sections 4 and 5 and computational results are presented at Section 6.The rest of the paper is formed of 
conclusions and references which are regarded in the following sections 
 

2. Literature review 
 
First studies in the literature of emergency or disaster management models are based on traditional set 
covering problems, which have been applied to locate optimized serving units in a geographical area 
(Daskin, 1995). Gradually, researchers began to use distribution and logistics modeling techniques for 
disaster management problems. Similarly, many researchers have been studying transportation and 
distribution modeling problems. Rathi et al. (1992) developed three linear models to allocate a limited 
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number of transportation vehicles to generate the minimum penalty of inefficiency for distribution 
services. Barbarosoglu et al. (2001) developed a mathematical model for a tactical-operational decision 
problem based on helicopter mission planning for relief operations. The interactions among these 
decisions and conflicts are mirrored in different objective functions, which are used in a two-level 
hierarchical model. Ozdamar et al. (2004) studied the vehicle routing problem for distribution of relief 
items, Beamon and Kotleba (2006b) adopted an inventory control model for food demand in disasters. 
Sheu (2007) developed a hybrid fuzzy model for a logistics distribution problem in emergency events 
to respond to demands in a certain period. Tzeng et al. (2007) developed a multi-objective supply 
distribution model for to devastated areas. 
 
Doerner and Hartl (2008) investigated different transportation problems in health care logistics and 
disaster relief including warehouse locations, inventory and vehicle routing problems and so on with 
special focus on Austrian situation. Balcik and Beamon (2008) considered the facility location problem 
in order to respond to quick onset disasters. Mete and Zabinsky (2009) provided stochastic optimization 
approach for storage and distribution of medical. Ortuno et al. (2010) developed a lexicography goal 
programming model for supply distribution. Ng and Waller (2010) developed an evacuation route 
planning model to determine the relationship between uncertain demand and supply variations. Van 
Duin et al. (2010) described the conditions in which the city municipality under their study might need 
to use urban consolidation centers. Rosenthal et al. (2011) proposed a network problem with a single 
source for disaster relief problem. Qin et al. (2012) presented a single-period resource model for 
solving optimal order quantity in order to recover resources of the response equipment. Bretschneider 
and Kimms (2011) also developed a mixed-integer evacuation model to minimize evacuation time of a 
traffic routing in an area considering a safe evacuation process using network modeling approach. 
Chales and Lauras (2011) developed a quantitative modeling approach and a business process modeling 
approach in order to understand and to analyze humanitarian supply chains. Chakravarty (2011) 
considered a hybrid reactive proactive response system based on a threshold value for disaster intensity, 
which might affect costs and capacities in contingent planning. 

Last mile distribution is the final stage of a humanitarian relief chain; it refers to delivery of relief 
supplies from local distribution centers to beneficiaries affected by disasters (Balcik et al., 2008). Knott 
(1987) developed a linear model for Last Mile Distribution problem in order to minimize the total 
transportation costs or to maximize the delivered food. Balcik et al. (2008) created a last mile 
distribution system based on vehicles to allocate relief items of local distributors to demand points. The 
distribution of goods by vehicles and selection of routes based on a schedule for vehicles in a specific 
planning horizon is their main concern. Rath and Gutjahr (2011) considered an international aid 
problem, which consists of location-allocation and routing model after a natural disaster to establish 
warehouses to provide relief commodities. Tricoire et al. (2011) formulated a bi-objective covering 
model with stochastic demand for a two-stage humanitarian logistics problem. Rottkemper et al. (2011) 
developed a planning method to optimize supply chain operations in humanitarian operations after 
occurrence of a sudden disaster. They considered inventory relocating problem in an uncertain demand 
situation after a disruption. Bozorgi-Amiri et al. (2011a, 2011b) investigated uncertainty in many 
parameters of a relief operation like demand, supply and operational costs associated with it. Location 
of relief centers and allocation of affected area to these centers can be determined under situation 
described in their model. Ben-Tal et al. (2011) developed a robust logistic planning method with 
uncertain demand for evacuation traffic flow and dynamic emergency response problems. Ozdamar and 
Demir (2012) provided a network flow model in coordinate vehicle routing for evacuation and delivery 
activities in response phase of a disaster. Since they used both distribution and evacuation, last mile 
delivery and evacuation are considered in their hierarchical optimization problem. Yazdian and 
Shahanaghi (2011) presented a multi-objective possibilistic programming approach for locating 
distribution centers and allocating customers’ demands in supply chains. 
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The applications of operations research and mathematical modeling in the area of humanitarian relief 
have been improved recently by applying logistics and supply chain concepts. To the best of our 
knowledge, there are few studies with decision integrity for both before and after a disaster occurs 
mirrored as preparation and response phases for disaster management cycle. On the other hand, 
uncertainty of some parameters in real-world problems, which might not be controllable or 
knowledgeable by local or regional authorities, is another important issue, which affects demand 
predictions and relief operations significantly (Roghanian & Foroughi, 2010). 

This research tries to formulate a new mathematical model for the integration of preparation and 
response phases of disaster management cycle. Determining the location of local emergency bases and 
their inventory level and allocating affected areas to these bases are considered as the main problems, 
which have been considered in the proposed model. In order to test the applicability of the 
mathematical model, a real-world urban district of Tehran is considered. For a certain scenario of 
earthquake, proactive damages has been estimated for the urban area while due to lack of knowledge 
about neighbor areas, uncertain demands of outside wards have been regarded as an affecting parameter 
for the model. For large-scale real-world problems, the proposed mixed-integer model cannot be solved 
through conventional optimization algorithms; hence, a genetic algorithm is designed as a solution 
approach to the proposed model. This meta-heuristic solution is supposed to establish a near optimum 
answer to the following terms: 

 Number and location of emergency bases, 
 Coverage of urban wards inside district and exterior area, 
 Amount of storage for relief items in each emergency base and distribution of these goods 

within urban district and exterior areas.   
 

3. Problem description 
 

Humanitarian supply chain management or relief chain management is a scientific approach to deliver 
the proper amount of relief items in the right places and at the right time. In disaster relief operations, 
logistics are required to implement response operations and to ensure their timeliness and efficiency. 
Distribution of the equipment and goods of humanitarian relief, the evacuation of the injured or the 
resettlement of those directly affected by the disaster requires a logistics system to maximize 
effectiveness (De Ville de Goyet, 2001). Storage and distribution of relief items from bases and 
warehouses located in an urban area is a significant research topic to maximize or, at least, to improve 
efficiency and effectiveness of efforts in the area of humanitarian relief chain management. Literature 
of supply chain management indicates that using location-allocation/distribution models in commercial 
area can optimize many strategic, tactical or operational decisions but there is still a lack of sufficient 
models in the literature of relief chains. To the best of our knowledge in this area, although there have 
been some researches on proactive damage estimation results for natural disasters like earthquakes, 
there is no connection between these kinds of studies and mathematical models, which are used for 
relief operations in urban districts. 

In this paper, urban disaster management for a municipal district of Tehran City is considered. This 
district consists of 10 sub-regional areas and more than 350000 inhabitants. The main probable natural 
disaster in Tehran is earthquake and its consequences create major faults inside or near Tehran. 
Damage caused by a hypothetical earthquake has been estimated via an international software called 
RADIUS, which stands for Risk Assessment tool for Diagnosis of Urban Areas against Seismic 
Disaster. This earthquake-damage-estimation software has been developed as an international program 
to give a better understanding of the seismic vulnerability of cities. Total population and ward areas, 
building type distribution in each ward, a scenario for earthquake, ground conditions and soil types and 
lifeline facilities beside some modifiable damage estimation functions gives an estimation of damages 
for each area. In order to use this software, the whole district has been divided into equal blocks (or 
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pixels) and information requirements such as each block population or the number of buildings and 
width of streets and other factors has been imported to software using geographic information system 
(GIS). Damage estimation functions of the software have been modified based on historical results of 
earthquake in the urban areas of Iran. The results of the software demonstrated the worst-case scenario 
of an earthquake with magnitude of 7.2 in scale of Richter at midnight by a fault located in north of 
Tehran. A two-echelon relief chain location-allocation distribution model is shown in Fig. 1. The relief 
chain in this figure consists of local bases as distribution centers, which should be located in urban 
pixels and regional and non-regional wards, which form the demand pixels or blocks. They are equal 
rectangular areas considered as unified neighborhoods for damage estimation software. Regional pixels 
have been considered in the damage estimation process and demand characteristics have been identified 
for them. Non-regional pixels shown on the left of the figure are considered for areas outside the urban 
district and due to lack of information about them, their demands and damage estimation results are 
unknown. 

Demands for regional and sub-regional wards depend on their population and damage severity 
estimated for each pixel. Based on the damage estimation for the urban area, there are four kinds of 
demand pixels which are sorted by a range of four colors; Red, yellow, green and blue. Red color 
shows the most vulnerable urban areas to earthquake and pixels distinguished with blue color show 
safest wards in the whole district. The main issue for this problem is to determine the number of local 
bases and their locations in the whole district. These bases are used to cover demand pixels, although 
this operation is affected by non-urban pixels. Therefore, there is a kind of trade-off between coverage 
of the whole urban area and partial coverage of the outside demands. Outside demand can also be 
interpreted as unknown demands from a neighbor area, which is not under the same municipal 
authority but cannot be ignored completely due to humanitarian goals of a relief operation. Therefore, 
percent of coverage for these pixels can be considered as a policy for disaster management authorities 
in the municipal organizations. Since all pixels are regarded as discrete units, the location problem is 
considered in a discrete space and center of each pixel would represent its characteristics in the model. 
Fig. 2 shows a picture of this district. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 1. Relief chain configuration 
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Fig. 2. The municipal district used for case study divided into 10 sub-regional areas 

 
4. Mathematical modeling 
 

In this section, based on pro-active damage estimation results for a hypothetical earthquake in an urban 
area, a location-distribution mathematical model is developed considering the effect of neighboring 
areas on relief demand.  

4.1 Assumptions 

1. Damage estimation results are provided in preparation phase using pro-active methods and GIS 
data for the urban region. 

2. Since adjacent areas are out of the municipal authority, their relief demand is estimated based 
on probabilistic parameters. 

3. Relief distribution items considered in this model consists of food and water, medical and 
hygienic items, primary rescue equipment and blanket and cloths. These items are only regular 
daily commodities and do not need any special holding equipment. 

4. Since the whole district is divided into 10 municipal sub-regions, it is assumed that a base 
located in a block can only serve other blocks in its own sub-region. This assumption helps to 
ignore unnecessary travels between sub-regions after an urban disaster and it also helps people 
to stay in a reasonable distance from their own residencies.  

 
4.2 Indices 
 
l= 1, 2...L (the whole district should be divided to a defined number of municipal sub-regions), 
m= 1, 2...M (commodities and equipment that should be stored in emergency management bases can be defined 
by this index), 
i= 1, 2... I, j= 1, 2…J (coordinates (�, �) show blocks location in the district), 
k= 1, 2... K (damage severity priority for the region shown by colors: Red, yellow, Green, Blue…), 
o= 1, 2...O (neighboring areas outside urban region are divided into O pixels) 
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4.3 Parameters 
 ��,(�,�)������  If a pixel with coordinates (�, �)  belongs to level k of damage severity, this equals one; zero, 

otherwise, ��,(�,�)������  If a pixel with coordinates (�, �)  belongs to region l, this equals one and zero, otherwise,  ��,(�,�),(��,��) If a facility in (�, �) ∈ � is allowed to serve a demand point (�′, �′), this equals one; otherwise this 
equals zero. 

 
In other words, each base can serve demand points in its own municipal section: ��,(�,�),���,��� = ��,(��,��)������ . ��,(�,�)������       ;  ∀�, (�, �) ∈ �, (�′, �′) ∈ �, (1) �(�,�) Average set-up cost for facility at coordinates (�, �) , �(�,�),(��,��) Average distance between coordinates (�, �) and (�′, �′), �� �  Average transportation cost of equipment m in distance unit, ����,(�,�) Average Penalty cost for equipment type m shortage at (�, �), ��  Spatial volume of equipment type m, �� Maximum storage space of facility, ℎ����,(�,�) Average maintenance cost for equipment type m shortage at (�, �), ���(�,�) People population at coordinates (�, �), ��������,(�,�),� Average cost of meeting demand for commodity type m of an outside pixel o from a facility 

located at coordinates (�, �), �����,�  Demand for equipment type m from an adjacent pixel o outside urban region, ����,� Demand for equipment type m at level k of damage severity, ����,(�,�) Demand for equipment type m of damage severity in coordinates (�, �), 

In other words: ����,(�,�) = Pop(�,�) . �� ��,(�,�)������� . ����,�� ;  ∀(�, �), � (2) 

4.4. Decision variables �(�,�) 
If population of coordinates (�, �)  is covered by a facility, this equals one; otherwise this equals 
zero. �(�,�) If a facility is located at coordinates (�, �) , this equals one; zero, otherwise. ��,(�,�),��� ,��� Amount of equipment type m transported from facility at coordinates (�, �)  to demand point at 
coordinates(�′, �′), ��,(�,�),� Amount of equipment type m transported from facility at coordinates (�, �)  to outside pixel o, ��,(�,�) Amount of equipment type m stored in a facility at coordinates (�, �), ��,(�,�) Amount of equipment type m shortage at demand point(�′, �′), ����� If outside pixel o is covered by a facility, this equals one; otherwise this equals zero, �� Percentage of demand coverage for an outside pixel. 

 
4.5 Primary model 
 �����(�) = �����(�,�). �(�,�)�(�,�)  (3) �����(�) = � �� � . �(�,�),(��,��). ��,(�,�),(��,��)�,(�,�),(��,��) +  � ��������,(�,�),���,(�,�),��,(�,�),�+ � ��ℎ����,(�,�). ��,(�,�)� + (����,(�,�). ��,(�,�))��,(�,�)   +  � �(�,�). �(�,�)(�,�)  

(4) 

��� ��(�) = � ���  (5) 
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subject to  ����,��� ≤ � ��,(�,�),���,���. �(�,�)(�,�)∈� ;  ∀ � ; ∀ (��, ��)  ∈ � (6) � ��,(�,�),���,���. ��,(�,�),���,��� + � ��,(�,�),,��(��,��) ≤ ��,(�,�)  ;  ∀�, �, (�, �) ∈ � (7) � ��,(�,�),,�� = �����. �� ; ∀ � (8) �� ≤ ����� (9) �. �� ≥ ����� (10) � ��,(�,�),,��,� ≤ �. �(�,�)  ;  ∀(�, �) (11) � ��,(�,�),(�� ,��)�,(��,��) ≤ �. �(�,�)    ; ∀(�, �) (12) � ��,(�,�),(��,��)(�,�) = � ����,(��,��). ����,��� ;  ∀(�′, �′), ��  (13) � ��,(�,�)� . �� ≤ ��. �(�,�); ∀(�, �) (14) ��,���,��� = ����,(��,��) − � ��,(�,�),(��,��). ��,(�,�),(��,��)(�,�)  ; ∀(�′, �′) (15) ��,(�,�), ��,(�,�),(��,��), ��,(�,�), �� ≥ 0, ��,(�,�),,� ;   ∀(�, �), (�′, �′), �, � (16) �(�,�) , �(�,�), ����� = 0 �� 1  ;   ∀(�, �) (17) 
 
First objective function (f1(x)) maximizes the coverage of pixels inside the municipal region. Second 
objective function (f2(x)) is related to costs associated to facility set-up and costs associated to tactical 
and operational level such as transportation, shortage and inventory holding. The third objective 
function (f3(x)) tries to maximize the percentage of coverage for pixels outside the municipal region. 

First constraint in this shown by Eq. (6) is the maximal covering constraint used to ensure whether a 
facility is installed at(�, �) ∈ �coordinates; it can cover the population of a demand point at (�′, �′) ∈ �. 
Eq. (7) defines that the total amount of commodities assigned from a facility to demand pixels cannot 
exceed the amount of goods stored in its warehouse. Eq. (8) describes the amount of relief items 
assigned to pixels outside the municipal region. Eq. (9) and Eq. (10) show the relationships between 
two variable, i.e. coverage percentage for outside pixels (α) and the binary variable related to its 
coverage (i.e. if a pixel is covered, it might receive enough supplies to cover α percent of its 
population). Next four constraints are almost associated with relationship between binary and 
continuous variables for the proposed model. Eq. (11) and Eq. (12) bind the model to assign goods to 
demand pixels only from installed bases. Eq. (13) defines that quantity of relief items allocated to a 
demand pixel equals its demand if it is supposed to be covered. Eq. (14) defines the volumetric limit for 
storage areas in each base. Finally, Eq. (15) describes the amount of shortage as the difference between 
demand and supply for each facility.  

5. Solution approach 
 

Solving the proposed model for a large-scale problem in the simplest form, without considering multi-
objective functions and other constraints that are added to the original problem because of the relief 
chain condition, is identical to solving a maximal covering problem (Eq. (3) & Eq. (6)) which is NP-
hard (Jia et al., 2007). Conventional optimization algorithms cannot provide optimized solution to this 
model in a reasonable amount of time. Therefore, this is the reason that using heuristic and meta-
heuristic algorithms becomes important to provide good-quality solutions for the problem. Among 
meta-heuristic methods, genetic algorithm (GA) is one of the most popular methodologies, because of 
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its applicability and quality of solutions and therefore, it is used to a wide range of location and set 
covering problems.  

In order to use genetic algorithm as a solution approach for the proposed model, distinctiveness of the 
model must be identified and necessary modifications must be determined for GA's operators and 
representations like chromosomes, fitness function, population and parental selection, crossover and 
mutation operators and survival rules. The basic components of the solution approach are described in 
the following sub-sections. 

5.1 Representation of chromosomes 

In order to start initial steps of GA algorithm, representation of each solution, known as a member of 
population, is needed to be accomplished using proper chromosomes and genes in Genotype space. 
Each of these chromosomes can represent a solution for the main problem. Therefore, it can be 
compared with other fitness function used for the proposed model. Best fitted of each population 
usually has better chance of survival through the next generation and even there is usually more chance 
for them to be chosen as parents for the next generation. To encode our mixed-integer location-
distribution problem to a genotype space, each chromosome in the proposed GA should represent a 
solution, which is combined of all decision variables for the mathematical model. For each decision 
variable, a relative matrix is considered and an initial solution is formed by these matrixes.  

5.2 Fitness function 

According to Coello et al. (2007) multi-objective evolutionary algorithms (MOEAs) is capable of 
encoding individual solutions in various representations, chromosome data structures, as well as 
directly computing related objective values. They also have some robust advantage compared with 
traditional multi-objective search techniques. MOEA approaches attempt to detect acceptable but 
approximate Pareto fronts and Pareto optimal solutions within limited computational time. 

In our solution procedure, fitness function is designed as a barrier function, containing both normalized 
values of objective functions as well as quantities that have been regarded as penalties for violating 
each constraint. This fitness function (or barrier function) can be shown by Eq. (18) and Eq. (19): 
 ������� = �� ��� ��∗� � − �� ���∗ ��� � + �� ��� ��∗� � − ��. �(�), (18) 

 

where B(x) is a conventional Barrier function that can be described by Eq. (19) and �� to �� are 
weighting factors for each normalized term in the fitness function. 

�(�) = � 1�� − ��(�)�
��� + � 1��

�
���  (19) 

 ��,(�,�),(��,��): ��,(�,�),(�,�) = 1.0� + 003 × �0 00 0 …          0   00   00 00 0 … 2.2152  02.2152  0 … 0 00 00 00 0 … � 

��,(�,�),�: ��,(�,�),� = �0 00 0 … 0 00 00 00 0 … 0 00 0 … 0 221.59110 136.50010 73.3410 0 46.9773 … � 
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Table 1 
Sample representation matrix for coverage of exterior pixels 

OutZ 0 0 0 1 0 1 1 0 1 1 
Z � Y 

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 
0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 1 0 1 0.52 0 0 0 0 1 0 0 0 0 
1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 
0 1 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 1 0 
0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 
0 0 1 0 1 0 1 0 0 

0.46 
0 0 1 1 1 1 0 0 0 

0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 
0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 
0 0 0 0 1 1 1 1 0 

0.84 
0 0 0 0 0 0 0 0 0 

0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 0 
0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 
0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 
0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 0 
0 0 1 0 1 1 0 0 0 0.29 0 0 1 0 0 1 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 1 0 0 

0.33 
0 0 0 0 0 0 1 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 

 
 
 

5.3 Initial population 
 

The first generation is created by initializing the population of chromosomes, randomly. For each 
binary variable, a randomly 0-1 array is developed and based on these binary arrays, array for 
continuous variables acquire their values in order to have the least violating constraints. This process 
continues until the number of solutions reaches the population size for the algorithm. Then, fitness 
function is determined for each chromosome. Containing both good and diverse chromosomes in the 
initial population is an important factor for computational performance of genetic algorithm. Therefore, 
it is important to have some chromosomes with good fitness functions in the initial population.  

5.4 Genetic operators  
 

Parental selection is a mechanism to move from one generation of solutions to another one. There is 
always a chance that GA selects the most fitted solution chromosomes as a parent, but there should also 
be some diverse solutions in order to avoid pre-mature convergence to the final answer. Once parents 
are selected using their fitness and randomness, appropriate methods should be applied to generate new 
population. 

In order to have a proper strategy for generating both diverse set of solutions and near optimal 
solutions, it is important to use GA's operators, properly. Recombination (crossover) and mutation are 
two operators used for the proposed solution approach, each with a probability of occurrence.  

In our solution approach, the traditional crossover technique is used, randomly, sets cut-points in a pair 
of chromosomes and then exchanges the genes in two chromosomes. So, by merging two parent 
chromosomes, two legal offspring chromosomes can be generated. Mutation is less probable to happen 
and is aimed at generating only one offspring from a single parent. A part of simulated annealing 
process is chosen as mutation strategy for a single chromosome, i.e. a cooling mechanism occurs for a 
chromosome using Boltzmann distribution until it gets to an equilibrium state. The result is a more 
intensified solution with a chance of better fitness and is accepted as an offspring for its parent. Fig. 3 
shows the cooling process for the mutation operator. 
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Fig. 3. Mutation operator as a part of SA algorithm adopted from (Coello et al., 2007) 

 
5.5 Termination Condition 
 
During each generation, a pool of parents and offspring chromosomes is formed, a percent of the best 
fitted between parents and offspring chromosomes and a percent of random chromosomes are chosen 
for the next generation. This process continues until the stopping criterion of the GA, which is 
considered as the number of generations. 
 
6. Computational Results 
 

A numerical example for the proposed multi-objective model is presented for an urban district in 
Tehran to observe the decision results of the proposed approach for municipal authorities. The 
numerical example is used to show the effect of optimal decision-making process on population 
covering, operational and tactical costs and demand satisfaction in an urban area after a natural disaster. 
The real-world case study is based on a probable earthquake that can be caused by major faults in north 
of Tehran and its consequences are estimated by RADIUS. Total population and ward areas, building 
type's distribution in each ward, a scenario for earthquake, ground conditions and soil types and lifeline 
facilities in addition to some modifiable damage estimation functions gives an estimation of damages 
for each area via RADIUS. Hence, regional and local municipal authorities are responsible for the first 
relief operations and they can cooperate for a better preparation in their own district. 

In order to use this software, the whole district has been divided into 207 equal 600600 (m2) pixels 
(or blocks), but only 136 pixels are urban blocks and considered for the study. The rest of the pixels are 
not within the territory of the urban district. Information requirements such as population of each pixel, 
total number of buildings in each ward, lifeline facilities, soil type, width of the routes and other 
parameters have been imported to software using GIS information. The worst-case scenario for 
earthquake in Tehran can be a 7.2 magnitude 2 in scale of Richter at midnight and the outputs are 
shown as four levels of devastation shown as red, yellow, green and blue in Fig. 4. 

Pixels shown with red color are the ones predicted to have more than 202 devastated buildings in the 
aftermath of the earthquake. Pixels with yellow color might have 139-202 destroyed buildings, the 
green colored pixels are predicted to have 75-139 ruined buildings, the blue color pixels represent the 
safest wards and from 12 to 75 buildings might be destroyed in them. 
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Fig.4. Damage estimation output for the urban district and its municipal wards 
 

A brief introduction of municipal district based on the parameters used in the mathematical model is 
provided here: The whole district is divided into 10 municipal wards (L= 1...10). Damage severity 
priority for the district is shown by 4 colors; Red, yellow, Green and Blue (K= 1, 2, 3, 4). Goods and 
relief items that should be supplied and stored in local emergency bases are divided into 4 categories 
which are: 1) response equipment, 2) medical and sanitary care, 3) food and water supply and finally 4) 
clothes and blanket (m= 1, 2, 3, and 4). The whole area which is considered in this model is 23 blocks 
length and 9 blocks width, (i= 1, 2... 23, j= 1, 2…9), but some parts of this area is not considered in the 
under-study urban district, so damage estimation result has not determined for these pixels because of 
insufficient information, etc. These pixels affect demand characteristics in the urban area and should be 
considered as an outside parameter for the under-study district. This is modeled thorough using of 
outside pixels in the mathematical model, which have their own parameters and decision variables. 
Demand parameter in these pixels is uncertain and follows a probability distribution described in Eq. 
(20). Mean value for this parameter is used in the model as the demand parameter for exterior pixels. 
 

�����,� = � 4.5. ����      �� ������ �������� = ���   3.5. ����  �� ������ �������� =  ������ 2. ����    �� ������ �������� =  �����1.5. ������ ������ �������� =  ����       � = 1, . . , � ��� � = 1, . . , �, 
 

(20) 

where ���� is population of an outside pixel at o. 

Data collection for this case was mostly from GIS information gathered by the district municipal 
authorities and updated through the years. Experts’ knowledge and Tehran municipal laws and 
standards have estimated some parameters. The following figures and tables describe the parameters 
used in this model. Parameters like a�,(�,�)������  and a�,(�,�)������ can be determined from Fig. 4 from municipal 
sub-regions and the damage estimation results for the pixels. Table 2 through Table 4 show the rest of 
parameters used in the model. 

 
Table 2 
Parameters related to type of commodity 

 Parameter 
 Dem(m,k) tcm Costm  holdm penm 

M K=1 K=2 K=3 K=4 ���� ���� �����  Vm�� ���� �����  
M=1 

(medical and sanitary) 0.8 0.6 0.4 0.2 1500 3500 0.3 15000 20000 

M=2  
(rescue equipment) 0.8 0.6 0.4 0.2 1000 4125 0.8 7000 15000 

M=3  
(food and water) 0.8 0.6 0.4 0.2 1200 2900 0.5 10000 20000 

M=4 
 (blanket and cloths) 0.8 0.6 0.4 0.2 800 3200 0.5 3000 15000 

1 

2 

3 4 
5 6 

7 
8 

9 

1
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Table 3 
Population of pixels of the region 
 
Coordinates (i) 

Coordinates (j) 
1 2 3 4 5 6 7 8 9 

1 0 0 0 0 528 389 0 0 0 
2 0 0 1848 500 713 3237 0 0 0 
3 0 0 881 839 2942 4244 2728 0 0 
4 0 0 0 2308 2404 3287 1282 0 0 
5 0 0 2285 3053 3062 2972 3765 0 0 
6 0 0 2591 2799 3166 3331 2282 365 0 
7 2173 3666 4138 3228 2990 3146 1510 535 1322 
8 1755 3044 3388 1912 2605 2616 690 879 846 
9 0 3190 3529 2254 2487 2755 3132 2545 0 
10 0 3692 3455 2227 2453 2713 3688 5926 0 
11 0 0 3326 2913 2684 3218 3283 3038 0 
12 0 0 1587 2488 3616 3417 2570 1983 0 
13 0 0 0 3061 3283 2868 2743 1098 1024 
14 0 0 2308 2833 2879 2321 2495 2764 0 
15 0 0 2571 2770 2439 2818 1039 2147 0 
16 0 0 3732 3391 3476 2396 4405 3278 0 
17 0 0 7166 6678 1644 500 1016 1404 0 
18 0 0 5654 4213 3117 1604 1773 0 0 
19 0 0 1926 1692 5311 3310 0 0 0 
20 0 0 0 2309 6071 2697 0 0 0 
21 0 0 0 7747 6409 7090 2318 0 0 
22 0 0 0 5226 4539 5216 0 0 0 
23 0 0 0 5072 3801 4472 2635 0 0 

 
Finally, by choosing w� = w� = 100 for the first and the second objective functions and w� = w� =10 for the third objective function and barrier function for the fitness of chromosomes, the model can 
be solved using the proposed GA. In order to test the quality of the solutions for this algorithm, an LP-
relaxation technique is used for the original model for the urban district. 

 
The solution to the LP model represents a lower bound for the original mixed-integer programming 
problem. In this technique, all binary variables are considered to be continuous and bounded in the 
interval of [0, 1]. Therefore, optimization tools like LINGO can easily solve this problem in a 
polynomial order. Summary of the results for 10 runs of GA algorithm are presented at Table 5. In 
addition, the same computer calculates computational results for both approaches; GA and LP-relaxed 
approaches and the results are summarized in Table 6.  

Table 4 
Yearly set-up cost for local bases (×106) 
 
Coordinates (i) 

Coordinates (j) 
1 2 3 4 5 6 7 8 9 

1 135 135 135 135 135 135 135 135 135 
2 1400 1400 1400 1400 1400 1400 1400 1400 1400 
3 120 120 120 120 120 120 120 120 120 
4 135 135 135 135 135 135 135 135 135 
5 127 1270 1270 1270 1270 1270 1270 1270 1270 
6 116 116 116 116 116 116 116 116 116 
7 144 144 144 144 144 144 144 144 144 
8 129 129 129 129 129 129 129 129 129 
9 122 122 122 122 122 122 122 122 122 
10 120 120 120 120 120 120 120 120 120 
11 137 137 137 137 137 137 137 137 137 
12 141 141 141 141 141 141 141 141 141 
13 115 115 115 115 115 115 115 115 115 
14 122 122 122 122 122 122 122 122 122 
15 140 140 140 140 140 140 140 140 140 
16 120 120 120 120 120 120 120 120 120 
17 119 119 119 119 119 119 119 119 119 
18 123 123 123 123 123 123 123 123 123 
19 124 124 124 124 124 124 124 124 124 
20 128 128 128 128 128 128 128 128 128 
21 136 136 136 136 136 136 136 136 136 
22 116 116 116 116 116 116 116 116 116 
23 115 115 115 115 115 115 115 115 115 

 
 



  

       

68 

Table 5 
Summary of results for different GA runs 
Runs No. of GA 

generations 
Computational 

time 
District 

Coverage 
Exterior 

Coverage Total cost Total No. of 
Bases 

1 5 834.62 108 3 1.12e+12 59 
2 5 789.57 103 4 1.003e+11 47 
3 5 812.09 105 6 1.24e+12 63 
4 10 1.538e+003 112 5 10.003e+11 46 
5 10 1.679e+003 112 5 1.012e+11 49 
6 10 1.714e+003 115 4 1.18e+12 54 
7 12 7.6722e+003 119 5 9.47e+10 39 
8 12 7.3415e+003 120 7 9.44e+10 38 
9 12 7.4906e+003 118 8 9.98e+10 45 
10 12 7.2114e+003 118 5 9.33e+10 35 

 

 
Table 6 
Computational results for the two solution approaches for the proposed model 
Algorithm Computational 

time 
Total number of 

bases 
Number of covered 
pixels in the region 

Number of covered pixels 
outside the region 

Total cost 

GA 7.3415e+003 38 120 (97.561%) 7 (70%) 9.44e+10 
LP-Relaxed 8.463e+007 53 116 (94.30%) 5 (50%) 5.68e+12 
 
The results show that the applied weighting for fitness function and proper number of generation for 
the genetic algorithm to run (in a proper amount of time) can result into solutions with good qualities 
representing better solution than lower bound techniques. 
 
7. Conclusion 
 
In this paper, the problem of urban disaster management in the preparation phase has been considered 
as a decision aid for municipal authorities. A multi-objective mixed-integer location-distribution 
mathematical model has been proposed based on proactive damage estimation results for interior 
boundaries of an urban district. Since exterior wards have an uncertain effect on demand for relief 
items, a mechanism for regarding these neighbor areas has been considered for the proposed model and 
certain decision variables and parameters has been added to the model. Since such real-world problems 
are supposed to be large-scale problems, a genetic algorithm meta-heuristic approach has been 
developed in order to reach near optimal solutions in a reasonable amount of time. Computational 
results have shown that the suggested genetic algorithm has provided better solutions than lower bound 
technique when the number of generations increases for the algorithm. The proposed approach can be 
applied to a large numbers of urban disaster management situations when an urban district or city might 
be affected by demands opposed to the municipal authorities from exterior neighboring wards. 
Although, there must be enough knowledge about urban areas in order to run proactive damage 
estimation before any disaster occurs. 
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