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Integrated design of observer based Fault Detection (FD) for a class of uncertain nonlinear systems with Lipschitz non-
linearities is studied. In the context of norm based residual evaluation, the residual generator and evaluator are designed
together in an integrated form, and, based on it, a trade-off FD system is finally achieved in the sense that, for a given
Fault Detection Rate (FDR), the False Alarm Rate (FAR) is minimized. A numerical example is given to illustrate the
effectiveness of the proposed design method.
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1. Introduction

The observer based fault detection and isolation technol-
ogy is currently receiving much attention (Ding, 2008;
Blanke et al., 2003; Chen and Patton, 1999; Patton
et al., 2002). Generally speaking, an observer-based fault
detection system consists of an observer-based residual
generator and a residual evaluator. For linear systems,
the observer-based FD technology has been well devel-
oped. Ding et al. (1993) as well as Qiu and Gertler
(1993) proposed residual generator design schemes based
on the H∞-optimization technique. Further on, the so-
called H−/H∞ design of residual generator, initiated by
Ding et al. (1993) as well as Hou and Patton (1996), at-
tracted lots of interest (Wang et al., 2007; Henry and Zol-
ghadri, 2005). Recently, Ding et al. (2000a) and Zhang
et al. (2005) proposed a unified solution which solves the
Hi/H∞ (including H−/H∞ and H∞/H∞) optimization
problem, where Hi represents all nonzero singular values
of the transfer matrix from faults to the residual signal.
For residual evaluation, there are two major strategies.
One is statistic testing, which deals with the systems with
stochastic behavior (Basseville and Nikiforov, 1993; Lai
and Shan, 1999), and the other is norm based residual
evaluation, which focuses on deterministic disturbance
and model uncertainty (Frank and Ding, 1997).

In applications, an optimal trade-off between the

False Alarm Rate (FAR) and Fault Detection Rate (FDR)
is of practical interest in designing an FD system. Ding
et al. (2000b) extended the FAR and FDR concepts from
the statistic context to characterize the performance of an
FD system with norm based residual evaluation. As the
FAR and FDR depend not only on the performance of
the residual generator but also on the residual evaluator,
an optimal trade-off between the FAR and FDR requires
an integrated design of the residual generator and residual
evaluator, which optimizes the performance of the whole
FD system. This trade-off problem has been formulated in
two ways: (1) given the FDR, minimize the FAR (Zhang
and Ding, 2008), (2) given the FAR, maximize the FDR
(Ding et al., 2000b).

On the other hand, since nonlinear systems are more
common in practice, observer based FD techniques for
nonlinear systems have also been studied extensively
(Frank, 1994; Hammouri et al., 1999; Ferrari et al.,
2007; Narasimhan et al., 2007; Shumsky, 2007; Edel-
mayer et al., 2004). There are many works dealing with
Lipschitz nonlinear systems (Pertew et al., 2007; Chen
and Saif, 2007; Rajamani and Ganguli, 2004; Yaz and
Azemi, 1998; de Souza et al., 1993; Xie et al., 1996; Ab-
baszadeh and Marquez, 2008), since, under some condi-
tions, more general nonlinear systems can be transformed
into Lipschitz nonlinear systems (Rajamani, 1998). In
this paper, we extend the integrated FD system design ap-
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proach which has been well developed for linear systems
to uncertain Lipschitz nonlinear systems, based on the fol-
lowing formulation: Given the FDR, minimize the FAR.

The paper is organized as follows. After preliminar-
ies addressed in Section 2, the problem of minimizing the
FAR for a given FDR is formulated in Section 3. In Sec-
tion 4, a solution to the integrated FD system design prob-
lem is proposed. Finally, in Section 5, the achieved results
are illustrated with an example.

2. Preliminaries

Consider the following uncertain nonlinear systems:

ΣS :

{
ẋ = Āx + φ(x, u) + B̄u + Ēdd + Eff,

y = C̄x + D̄u + F̄dd + Fff,
(1)

where x ∈ R
n is the state vector, u ∈ R

m is the control
input, y ∈ R

p is the output vector, f ∈ R
l is the fault

vector to be detected, and d ∈ R
q is the unknown input

vector. Moreover, the matrices Ā, B̄, Ēd, C̄, D̄, F̄d in
(1) are uncertain of the form X̄ = X + ΔX , where X ∈
{A, B, Ed, C, D, Fd} are known matrices with appropri-
ate dimensions. Similarly, the matrices Ef and Ff are
also known. ΔX ∈ {ΔA, ΔB, ΔEd, ΔC, ΔD, ΔFd}
are norm bounded uncertainties and can be expressed as[

ΔA ΔB ΔEd

ΔC ΔD ΔFd

]
=

[
E
F

]
Δ(t)

[
G H K

]
,

where E, F , G, H , K are known matrices with appropri-
ate dimensions and Δ(t) is bounded by

Δ(t)T Δ(t) ≤ I.

The nonlinear function φ(x, u) is assumed to be Lip-
schitz in x with a Lipschitz constant γ, i.e., ∀x, x̂, u:

‖φ(x, u) − φ(x̂, u)‖ ≤ γ‖x − x̂‖.

In addition, the following assumptions should be made
throughout:

1. A + ΔA is asymptotically stable for all ΔA.

2. (C, A) is detectable.

The first assumption can be checked by the standard
Lyapunov approach with LMI tools. The nonlinear ob-
server based fault detection filter is designed as

ΣF :

{
˙̂x = Ax̂ + φ(x̂, u) + Bu + L(y − Cx̂ − Du),
r = y − Cx̂ − Du,

where r ∈ R
p is the residual signal and L ∈ R

n×p is the
observer gain. Denoting by e = x−x̂ the estimation error,

we have the following observer error dynamics:

ΣE :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ė = (A − LC)e + Ψ + (ΔA − LΔC)x
+ (ΔB − LΔD)u + (Ēd − LF̄d)d
+ (Ef − LFf )f,

r = Ce + ΔCx + ΔDu + F̄dd + Fff,

(2)

where

Ψ = φ(x, u) − φ(x̂, u).

Combining the system (1) and the error dynamics (2), the
residual generator dynamics are as follows:

ΣR :

{
ẋ0 = Ā0x0 + Ψ0 + Ē0d0 + E0,ff,

r = C̄0x0 + F̄0d0 + F0,ff,
(3)

where

x0 =
[

x
e

]
, d0 =

[
u
d

]
,[

Ā0 Ē0

C̄0 F̄0

]
=

[
A0 E0

C0 F0

]
+

[
ΔA0 ΔE0

ΔC0 ΔF0

]
,

A0 =
[

A 0
0 A − LC

]
, E0 =

[
B Ed

0 Ed − LFd

]
,

E0,f =
[

Ef

Ef − LFf

]
, Ψ0 =

[
φ(x, u)

φ(x, u) − φ(x̂, u)

]
,

C0 =
[

0 C
]
, F0 =

[
0 Fd

]
, F0,f = Ff ,

ΔA0 =
[

ΔA 0
ΔA − LΔC 0

]
,

ΔC0 =
[

0 ΔC
]
,

ΔE0 =
[

ΔB ΔEd

ΔB − LΔD ΔEd − LΔFd

]
,

ΔF0 =
[

ΔD ΔFd

]
,[

ΔA0 ΔE0

ΔC0 ΔF0

]
=

[
Ē
F̄

]
Δ(t)

[
Ḡ H̄

]
,

where

Ē =
[

ET (E − LF )T
]T

, F̄ = F,

Ḡ =
[

G 0
]
, H̄ =

[
H K

]
,

and d0 is assumed to be bounded by

‖d0‖2 ≤ δd,max. (4)

In the following, we will define the H− index to mea-
sure the influence of the faults f on the residual signal r
in (3).
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Definition 1. (Khan et al., 2009) Given the system ΣR

(3), assume that d0 = 0. Then the H− index can be de-
fined as

‖ΣR‖− = inf
f �=0

‖r‖2

‖f‖2
.

For the H− index to be larger than some positive number,
β can be defined as

‖ΣR‖− = inf
f �=0

‖r‖2

‖f‖2
≥ β

or

‖r‖2 ≥ β‖f‖2.
For the purpose of residual evaluation, the L2 norm

of the residual signal is often adopted as the evaluation
function and is also used in this paper,

J = ‖r‖2.

The decision logic of fault detection is as follows:

J > Jth =⇒ faulty
J ≤ Jth =⇒ fault − free

so that a false alarm is created if

J > Jth for f = 0

and a fault is detected if

J > Jth for f �= 0.

Moreover, the following lemma is very useful.

Lemma 1. (Wang et al., 1992) Let G, L, E, F (t) be real
matrices of appropriate dimensions with F (t) being a ma-
trix function and F (t)T F (t) ≤ I . Then, for any ε > 0,

LF (t)E + ET F (t)LT ≤ 1
ε
LLT + εET E.

3. Problem formulation

The objective of FD system design in this paper is to min-
imize the FAR under a given FDR. Ding (2008) defines
the FDR in the norm based framework as

FDR =
βδf,min

Jth

where β is the H− gain from faults to the residual signal
with the assumption that there are no disturbances and un-
certainties. In this case, the residual generator dynamics
(3) become{

ẋf = (A − LC)xf + Ψ + (Ef − LFf )f,

rf = Cxf + Fff,
(5)

so β fulfills

‖rf‖2 ≥ β‖f‖2,

and δf,min is the minimum size of the f vector which is
defined as a fault to be detected. We have

‖f‖2 ≥ δf,min.

The physical meaning of this definition is that the
larger the faults (δf,min is larger), the larger the FDR and
the larger the threshold (Jth is larger), the smaller the
FDR.

Based on the definition of the FDR, when it is given
(FDR �= 0), the threshold should be set as

Jth = βθFDR, (6)

where

θFDR =
δf,min

FDR
.

In the work of Ding (2008), given a residual genera-
tor r and Jth, the set ΩFA defined by

ΩFA = {d | J > Jth for f = 0}
is called the set of disturbances that cause false alarms
(SDFA). Since false alarms are created when f = 0, in
this case, the residual generator dynamics (3) become{

ẋ0,d = Ā0x0,d + Ψ0 + Ē0d0,

rd = C̄0x0,d + F̄0d0.
(7)

So when the FDR is given and the threshold is set as (6),
ΩFA can be expressed as

ΩFA = {d0 | ‖rd‖2 > βθFDR}.
The size of ΩFA is a reasonable measurement of the

rate of the false alarms. In this context, the size of ΩFA

is interpreted as the FAR (0 ≤ FAR ≤ 1). Since the L2

norm of the disturbances considered is bounded by (4),
when the FAR is small, only relative large disturbances
will cause false alarms. So in the norm-based framework,
the FAR can be expressed as

‖d0‖2 > (1 − FAR)δd,max (8)

⇐⇒ ‖rd‖2 − βθFDR > 0. (9)

Note that, when FAR = 0, since ‖d0‖2 is bounded by
(4), the condition ‖d0‖2 > δd,max will never be fulfilled,
which leads to the smallest size of ΩFA. When FAR =
1, the condition ‖d0‖2 > 0 is almost always true, which
leads to the largest size of ΩFA.

Based on the relationship between the FDR and FAR
which is represented in (8) and (9), our problem can be
formulated as follows: Given the FDR, find an observer
gain L so that the FAR is minimized.
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4. Solution to the integrated design problem

Since the FDR is given, (9) can be transformed into

‖rd‖2

βθFDR
> 1. (10)

Then, based on (10), one sufficient condition for (8) is

‖d0‖2 ≥ (1 − FAR)δd,max
‖rd‖2

βθFDR
. (11)

In (11), the FAR and FDR are connected, which is the key
step for optimization. Since (11) is a sufficient condition,
for the given FDR, the FAR calculated by (11) will be
larger than or equal to its actual value. So a suboptimal
solution can be achieved by minimizing the FAR based on
(11). The FAR has been defined as

0 ≤ FAR ≤ 1.

In the following study, it is assumed that

0 ≤ FAR < 1.

Since the FAR should be minimized, this assumption
will not lead to a conservative result. Based on it, (11) can
be transformed into

‖rd‖2 − βθFDR
‖d0‖2

(1 − FAR)δd,max
≤ 0, (12)

where β fulfills

‖rf‖2 ≥ β‖f‖2. (13)

Based on (12) and (13), for a given FDR, the minimization
of FAR can be solved in an iterative way as follows:

Step 1. Set the initial value of FAR.

Step 2. If there exist β and an observer gain L which ful-
fill (12) and (13), decrease (otherwise increase)
the value of FAR till we get a minimum FAR.

The above algorithm gives an elegant tool for the
minimization of the FAR provided the FDR is given. Now
the question is how to check whether β and L exist in
Step 2. To this end, the following theorem gives sufficient
conditions for the existence of β and L based on the LMI
technique.

Theorem 1. Given the residual generator dynamics (5)
and (7), assume that xf (0) = 0, x0,d(0) = 0. Then

‖rd‖2 − βθdf‖d0‖2 ≤ 0, (14)

‖rf‖2 ≥ β‖f‖2, (15)

where

θdf =
θFDR

(1 − FAR)δd,max

if there exist some ε > 0, β > 0, L and symmetric matri-
ces P1 > 0, P2 > 0, Q ≤ 0 so that[

Ω1 Ω2

∗ Ω3

]
≤ 0, (16)

⎡
⎣ N5 Q(Ef − LFf ) + CT Ff γQ

∗ FT
f Ff − β2I 0

∗ 0 I

⎤
⎦ ≥ 0, (17)

where

Ω1 =

⎡
⎢⎢⎣

N1 0 N3 P1Ed + εGT K
0 N2 0 P2(Ed − LFd)
∗ ∗ N4 εHT K
∗ ∗ ∗ −β2θ2

dfI + εKT K

⎤
⎥⎥⎦ ,

Ω2 =

⎡
⎢⎢⎣

0 P1E 0 γP1

CT P2(E − LF ) γP2 0
0 0 0 0

FT
d 0 0 0

⎤
⎥⎥⎦ ,

Ω3 =

⎡
⎢⎢⎣

−I −F 0 0
∗ −εI 0 0
∗ ∗ −I 0
∗ ∗ ∗ −I

⎤
⎥⎥⎦ ,

N1 = P1A + AT P1 + εGT G + I,

N2 = P2(A − LC) + (A − LC)T P2 + I,

N3 = P1B + εGT H,

N4 = −β2θ2
dfI + εHT H,

N5 = Q(A − LC) + (A − LC)T Q − I + CT C.

Proof. The proof includes two parts.
Part 1: Let

Vd = xT
0,dPx0,d, P =

[
P1 0
0 P2

]
> 0.

We have that

rT
d rd − β2θ2

dfdT
0 d0 + V̇d ≤ 0 (18)

=⇒
∫ ∞

0

rT
d rd − β2θ2

df

∫ ∞

0

dT
0 d0 + Vd(∞) ≤ 0

=⇒ ‖rd‖2 − βθdf‖d0‖2 ≤ 0.

Thus (18) is a sufficient condition for (14).
We have

V̇d = 2xT
0,dP [Ā0x0,d + Ē0d0] + 2xT

0,dPΨ0. (19)

Using the Cauchy–Schwarz inequality,

2xT
0,dPΨ0 ≤ 2‖Px0,d‖‖Ψ0‖, (20)

and with the Lipschitz property of Ψ0, we have

2‖Px0,d‖‖Ψ0‖ ≤ 2γ‖Px0,d‖‖x0,d‖
≤ γ2xT

0,dPPx0,d + xT
0,dx0,d. (21)
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Substituting (20) and (21) into (19) we get

V̇d ≤ 2xT
0,dP [Ā0x0,d + Ē0d0]

+ γ2xT
0,dPPx0,d + xT

0,dx0,d. (22)

Then a sufficient condition for (18) is

(C̄0x0,d + F̄0d0)T (C̄0x0,d + F̄0d0) − β2θ2
dfdT

0 d0

+ 2xT
0,dP [Ā0x0,d + Ē0d0] + γ2xT

0,dPPx0,d

+ xT
0,dx0,d ≤ 0

⇐⇒
[

x0,d

d0

]T

χ1

[
x0,d

d0

]
≤ 0,

(23)

where

χ1 =
[

C̄T
0

F̄T
0

] [
C̄0 F̄0

]
+

[
N6 PĒ0

∗ −β2θ2
dfI

]

and

N6 = PĀ0 + ĀT
0 P + γ2PP + I,

so that

χ1 ≤ 0 =⇒ ‖rd‖2 − βθdf‖d0‖2 ≤ 0. (24)

Applying the Schur complement, we can rewrite (24)
as⎡
⎣ N6 PĒ0 C̄T

0

ĒT
0 P −β2θ2

dfI F̄T
0

C̄0 F̄0 −I

⎤
⎦ ≤ 0 (25)

⇐⇒
⎡
⎣ PA0 + AT

0 P + γ2PP + I PE0 CT
0

ET
0 P −β2θ2

dfI FT
0

C0 F0 −I

⎤
⎦

+

⎡
⎣ PΔA0 + ΔAT

0 P PΔE0 ΔCT
0

ΔET
0 P 0 ΔFT

0

ΔC0 ΔF0 0

⎤
⎦ ≤ 0.

Split the second matrix in the above inequality into⎡
⎣ PΔA0 + ΔAT

0 P PΔE0 ΔCT
0

ΔET
0 P 0 ΔFT

0

ΔC0 ΔF0 0

⎤
⎦ = χ2 + χT

2 ,

where

χ2 =

⎡
⎣ PĒ

0
F

⎤
⎦Δ(t)

[
Ḡ H̄ 0

]
.

Then, according to Lemma 1, (25) holds if there exists
ε > 0 so that⎡
⎣ N7 PE0 CT

0

ET
0 P −β2θ2

dfI FT
0

C0 F0 −I

⎤
⎦ +

1
ε

⎡
⎣ PĒ

0
F

⎤
⎦

⎡
⎣ PĒ

0
F

⎤
⎦

T

+ε
[

Ḡ H̄ 0
]T [

Ḡ H̄ 0
] ≤ 0.

where

N7 = PA0 + AT
0 P + γ2PP + I.

Applying the Schur complement yields⎡
⎢⎢⎣

N8 PE0 + εḠT H̄ CT
0 PĒ

∗ −β2θ2
dfI + εH̄T H̄ FT

0 0
∗ ∗ −I F
∗ ∗ ∗ −εI

⎤
⎥⎥⎦ ≤ 0,

where

N8 = PA0 + AT
0 P + γ2PP + I + εḠT Ḡ.

Substituting

P =
[

P1 0
0 P2

]
into the above inequality, we get⎡
⎢⎢⎢⎢⎢⎢⎣

N9 0 N10 N11 0 P1E
∗ N12 0 N13 CT P2(E − LF )
∗ ∗ N14 εHT K 0 0
∗ ∗ ∗ N15 FT

d 0
∗ ∗ ∗ ∗ −I −F
∗ ∗ ∗ ∗ ∗ −εI

⎤
⎥⎥⎥⎥⎥⎥⎦
≤ 0,

where

N9 = P1A + AT P1 + εGT G + γ2P1P1 + I,

N10 = P1B + εGT H, N11 = P1Ed + εGT K,

N12 = P2(A − LC) + (A − LC)T P2 + γ2P2P2 + I,

N13 = P2(Ed − LFd), N14 = −β2θ2
dfI + εHT H,

N15 = −β2θ2
dfI + εKT K.

Finally, applying the Schur complement again, we
get (16) of Theorem 1, which is a sufficient condition for
(14).

Part 2: Let

Vf (x) = xT
f Qxf , Q ≤ 0.

It holds that

rT
f rf − β2fT f + V̇f ≥ 0 (26)

=⇒
∫ ∞

0

rT
f rf − β2

∫ ∞

0

fT f + Vf (∞) ≥ 0

=⇒ ‖rf‖2 ≥ β‖f‖2,

so (26) is a sufficient condition for (15). We have

V̇f = 2xT
f Q[(A − LC)xf + (Ef − LFf )f ]

+ 2xT
f QΨ. (27)

Using the Cauchy–Schwarz inequality,

2xT
f QΨ ≥ −2‖Qxf‖‖Ψ‖, (28)
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and with the Lipschitz property of Ψ, we have

2‖Qxf‖‖Ψ‖ ≤ 2γ‖Qxf‖‖xf‖
≤ γ2xT

f QQxf + xT
f xf . (29)

Substituting (28) and (29) into (27), we get

V̇f ≥ 2xT
f Q[(A − LC)xf + (Ef − LFf )f ]

− γ2xT
f QQxf − xT

f xf .

Then a sufficient condition for (26) is

(Cxf + Fff)T (Cxf + Fff) − β2fT f

+ 2xT
f Q(A − LC)xf + 2xT

f Q(Ef − LFf )f

− γ2xT
f QQxf − xT

f xf ≥ 0

⇐⇒
[

xf

f

]T [
N16 N17

∗ FT
f Ff − β2I

] [
xf

f

]
≥ 0,

where

N16 = Q(A − LC) + (A − LC)T Q − γ2QQ

− I + CT C,

N17 = Q(Ef − LFf ) + CT Ff .

Applying the Schur complement yields (17) of Theorem 1,
which is a sufficient condition for (15). This completes the
proof. �

In Theorem 1, (16) and (17) are NMIs which can be
approached by an advanced nonlinear optimization tech-
nique. A conservative solution could be achieved by set-
ting

Q = −P2, Y = P2L.

Then (16) and (17) are transformed into standard LMIs.

5. Example

In this section, an example is given to illustrate the
achieved results.

Consider the FD problem of a system in the form of
(1) with coefficient matrices:

A =

⎡
⎣ −6.5 3.9 5.2

0 −9.1 3.9
1.3 3.9 −7.8

⎤
⎦ , B =

⎡
⎣ 1

2
1.5

⎤
⎦ ,

C =
[

1 2 −1
2 −1 3

]
, D =

[
0.5
0.3

]
,

Ed =

⎡
⎣ −0.3 1 0.6

0 0.3 0.5
0.4 0 −0.2

⎤
⎦ ,

Ef =

⎡
⎣ 1.3 0.65

−0.39 1.04
0.78 −1.17

⎤
⎦ , F =

[
0.35
0.1

]
,

Fd =
[

0.7 1 −0.3
0 0.6 0.2

]
,

Ff =
[

1.6 0
0 −1.6

]
,

E =

⎡
⎣ 0.2

0.3
0.15

⎤
⎦ ,

φ(x, u) = 0.5

⎡
⎣ sin(x1)

cos(x2)
0

⎤
⎦

G =
[

0.25 0.1 0.33
]
, H = 0.12,

K =
[

0.16 0.23 0.31
]
.

The faults which are defined to be detected are bounded
by

‖f‖2 ≥ δf,min = 5,

and the disturbances are bounded by

‖d0‖2 ≤ δd,max = 6.

Set FDR = 1. Then, following the design proce-
dure in Section 4 to minimize FAR, we get the optimal
observer gain matrix as

Lopt =

⎡
⎣ 0.8175 −0.3244

−0.1393 −0.4087
0.3407 0.5156

⎤
⎦ .

The corresponding H− gain β in (12) is β = 1.5038, so,
according to (6), the threshold is set as

Jth = β
δf,min

FDR
= 7.5191.

In the simulation study, the simulation time is set
to be 3000 seconds and the control input is a step signal
u = 0.4 (step time at 0). The unknown disturbances are,
respectively, a sine wave 0.14 sin(10t), a step signal (step
time at 0) of amplitude 0.25, and a continuous signal tak-
ing value randomly from a uniform distribution between
[−0.2, 0.2]. The residual signal is evaluated in a time win-
dow of 10 seconds J(t) = (

∫ t

t−10 rT rdt)
1
2 . Fault 1 ap-

pears at the 1750-th second as a step function f1 = 0.5.
Fault 2 appears at the 1950-th second as a step function
f2 = −0.4. The simulation results are shown in Fig. 1.
We can see that, when there are no faults, J is always
less than the threshold, and hence no false alarm is cre-
ated. When faults appear, J is turned to be greater than
the threshold, which means that the faults are successfully
detected. This demonstrates the achieved results.

6. Conclusions

In this paper, an integrated design of observer based fault
detection for a class of uncertain nonlinear systems has
been developed, which is a trade-off design between the
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norm based FAR and FDR. This problem is formulated as
minimizing the FAR under a given FDR. The extension of
the proposed approach to more general nonlinear systems
will be the focus of our future work in this area.
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