
III-181

ECCTD’01 - European Conference on Circuit Theory and Design, August 28-31, 2001, Espoo, Finland

Integrated Digital Architecture for JPEG Image Compression

Luciano Agostini* and Sergio Bampi*

Abstract – This paper presents the architecture and
design of a JPEG compressor in hardware. The system is
a functional unit of a compressor chip, divided in four
major parts: color space converter and downsampler, 2-D
DCT module, quantization and entropy coding.
Architectures for these four parts were designed and
described in VHDL. The results of the VHDL mapping
into Altera Flex 10K FPGAs are also herein presented.

1 Introduction∗∗

The Join Photographic Expert Group proposed the
JPEG compression standard and the complete standard
documentation can be found in [1]. This paper focuses
only in the hardware implementation of a subset of the
JPEG standard called baseline [2,3]. The baseline is the
mode widely used in both software and hardware
versions of the JPEG compression.

The JPEG baseline can be divided into five main
steps, as shown in Fig. 1: color space conversion,
downsampling, 2-D DCT, quantization and entropy
coding. This paper will present the architectures for
these five modules. The first two operations are
integrated in a single architecture.

Figure 1 – Steps of a JPEG baseline compression

The color space conversion transforms the RGB
coding to the YCbCr color coding. The downsampling
operation reduces the sampling rate of the color
information (Cb and Cr). The 2-D DCT transform the
pixel data from the spatial domain to the frequency
domain. The quantization operation eliminates the high
frequency components and the small amplitude
coefficients of the co-sine expansion. Finally, the
entropy coding uses run-length encoding (RLE),
Huffman, variable length coding (VLC) and differential

∗ Universidade Federal do Rio Grande do Sul,
Microeletronics Group, P.O.Box 15 064, Porto Alegre,
Brazil. E-mail: {agostini, bampi}@inf.ufrgs.br
Tel: +55 (51) 316-6812, Fax: +55 (51) 319-1576.

coding to decrease the number of bits used to
represent the image [1].

The JPEG compression is a lossy compression, since
downsampling and quantization operations are
irreversible [3]. But the losses can be controlled in
order to keep the necessary image quality.

The paper sections present the architectures used in
each one of the four parts mentioned above, their
VHDL description and their synthesis results. The
compressor architecture operates in pipeline, whose
design is also addressed.

2 Color Space Converter & Downsampler

The first two steps of the JPEG compression are color
space conversion and downsampling. The first one
uses the input color components R, G and B to
calculate each one of the Y, Cb and Cr components.
Color spaces with luminance and chrominance
components (like Y-Cb-Cr space) are more appropriate
to be used with DCT [3].

The downsampling operation consists in reducing
the number of samples of the chrominance
components. These are less important to the human
eye than the luminance components. The architecture
uses a 4:1:1 sampling rate ratio for the Y, Cb and Cr
data. Such downsampling results in a 50% reduction in
the image data.

This paper integrates the architectures of the color
space converter and the downsampler to optimize these
operations. Such integration allows that are just
calculated the values of Cb and Cr that will be used.
The downsampling operation is only a control
operation. The operation of the space color conversion
is presented in (1).

Y,R,Cr

Y,B,Cb

B,G,R,Y

71307130

56405640

114058702990

−=
−=

++=
(1)

Multiplication, addition and subtraction operations
are used in color space conversion. Our architecture
uses shift-and-add in 04 parallel barrel shifters and 4
ripple-carry adders. The datapath shown in Fig. 2
operates in a three stage pipeline where the two first
stages are used for multiplications and the last stage is
used to add or subtract the multiplication results.

The integrated architecture generates Y values at
every 4 clock cycles with the pipeline full and has 7
clock cycles latency for a complete Y operation. The
values for Cb and Cr are generated every 4 clock
cycles.

III-182

Figure 2 – Integrated architecture for color space
conversion and downsampling

Table 1 presents the VHDL description results. The
mapping in Altera [4] FPGAs was made using Flex10KE
devices.

Logic
Cells

Period
(ns)

Code
Lines

Color Space
Converter and
Downsampler

441 49,7 869

Table 1 – VHDL mapping results for the integrated
color space conversion and downsampling module.

3 DCT in Two Dimensions

The DCT in two dimensions (2-D DCT) is the core of
the JPEG compression. This is the most critical module
to be designed in hardware JPEG compressor because
of its high algorithm complexity.

There are many algorithms to solve the 2-D DCT with
a small number of operations. The algorithm chosen in
this implementation was proposed in [5] and modified
by [6]. This algorithm calculates the DCT in one
dimension (1-D DCT) and uses 29 additions and 5
multiplications. The 2-D DCT has the separability
property. Thus, using two 1-D DCT calculations it is
possible to generate the 2-D DCT results. In an 8x8
input matrix, the first 1-D DCT is applied on the matrix
lines then the second 1-D DCT is applied on the
columns of the first 1-D DCT results matrix. This
separation reduces the complexity of the calculation.
The algorithm proposed by [5,6] is scaled and it makes
possible an efficient pipeline exploration. This
algorithm is presented in Table 2 (where m1 =
cos(4π/16),
m2 = cos(6π/16), m3 = cos(2π/16) - cos(6π/16) and
m4 = cos(2π/16) + cos(6π/16)).

The designed architecture for 1-D DCT calculation is
presented in Fig. 3. This architecture is based on the
architecture proposed by [6] and uses five ripple-carry
adders and one multiplier. In the implementation, the
multiplier is similar to that used in the integrated

architecture of space color conversion and
downsampling, using shift-and-adds.

Step 1

b0 = a0 + a7 B1 = a1 + a6 b2 = a2 – a4
b3 = a1 – a6 B4 = a2 + a5 b5 = a3 + a4
b6 = a2 – a5 B7 = a0 – a7

Step 2

c0 = b0 + b5 C1 = b1 – b4 c2 = b2 + b6
c3 = b1 + b4 C4 = b0 – b5 c5 = b3 + b7
c6 = b3 + b6 C7 = b7

Step 3

d0 = c0 + c3 D1 = c0 – c3 d2 = c2
d3 = c1 + c4 D4 = c2 – c5 d5 = c4
d6 = c5 D7 = c6 d8 = c7

Step 4

e0 = d0 e1 = d1 e2 = m3 x d2
e3 = m1 x d7 e4 = m4 x d6 e5 = d5
e6 = m1 x d3 e7 = m2 x d4 e8 = d8

Step 5

f0 = e0 f1 = e1 f2 = e5 + e6
f3 = e5 – e6 f4 = e3 + e8 f5 = e8 – e3
f6 = e2 + e7 f7 = e4 + e7

Step 6

S0 = f0 S1 = f4 + f7 S2 = f2
S3 = f5 – f6 S4 = f1 S5 = f5 + f6
S6 = f3 S7 = f4 – f7

Table 2 – Scaled 1-D DCT algorithm

The input data in each step of the scaled algorithm is
stored in ping-pong buffers to make possible the use of
just one operator per step. This architecture operates in
a 48-stages pipeline. One 8x8 input matrix is calculated
at every 64 clock cycles with the pipeline full and with a
pipeline latency of 48 cycles.

A transpose buffer connects the two 1-D DCT
architectures. This buffer was designed with two small
64-word RAMs. When the first 1-D DCT architecture
writes the results line by line in one memory, the
second 1-D DCT architecture reads the input values
column by column from the other memory.

The 2-D DCT VHDL results are presented in Table 3.
Altera FPGA of Flex 10KE family was used.

Logic
Cells

Period
(ns)

Memory
Bits

Lines of
Code

1-D DCT 1 2051 73,2 0 2446
1-D DCT 2 2473 80,8 0 2468
Trans.Buf. 274 36,5 1408 439

2-D DCT 4792 78,1 1408 5353

Table 3 – 2-D DCT VHDL synthesis results

III-183

Figure 3 – 1-D DCT architecture

4 Quantization

The quantization operation is an integer division of
the 2-D DCT coefficients by pre-defined values. These
pre-defined values are stored in tables called
quantization tables. In JPEG baseline mode there are
two quantization tables: one for luminance components
(Y) and another for chrominance components (Cb and
Cr). The optimum values of the components in
quantization tables are dependent on the application,
but the JPEG standard suggests typical tables that
have a good efficiency for any application.

This operation eliminates the 2-D DCT coefficients
that are less perceptible to the human eye. The result of
this operation in an 8x8 matrix of 2-D coefficients is a
sparse matrix.

The quantization architecture designed in this paper
is presented in Fig. 4 and uses two ROMs and one
multiplier to calculate the quantized coefficients. The
values in the standard quantization tables used for
divisions were transformed into multiplier values. The
multiplier in the quantization has similar architecture to
that used in the color space conversion and in the 2-D
DCT modules. The barrel shifter control words for each
value in the quantization table are stored in ROM.

Figure 4 – Quantization architecture

The mapping of the quantization architecture was
done in an Altera Flex 10KE FPGA device. The results
of this mapping are presented in Table 4.

Logic
Cells

Period
(ns)

Memory
Bits

Lines of
Code

Quantization 293 36,9 1536 676

Table 4 – VHDL synthesis results for the quantization.

5 Entropy Coder

The last stage of the JPEG compression is the
entropy coding. After the quantization process, the
resulting matrix will have a large amount of zero
occurrences.

This matrix is read in zigzag order to increase the
sequences of zeros that are compressed by RLE.

In entropy coding the DC and AC coefficients are
handled separately, as shown in Fig. 5. The DC
component is the first component in an 8x8 matrix
(index 0,0) and the AC components are the remaining
63 elements.

Figure 5 – Entropy coder

The DC components of successive 8x8 windows in an
image have a high degree of correlation. Then the first
step in a DC entropy coding is a differential coding

III-184

between the actual DC component and the DC
component of the previous matrix. This differential
code is coded by VLC were all non-significant bits are
discarded (including the signal bit). The differential
value is used also to calculate the number of significant
bits that are generated by the VLC coder. This
operation is made by a size calculation and generates
the “size” field (Fig. 5). The “size” field is Huffman-
coded. There are four Huffman tables in the JPEG
baseline operation: one for DC luminance components,
one for DC chrominance components, one for AC
luminance components and the last one for the AC
chrominance components. The values generated by
Huffman coder and by VLC coder are concatenated to
generate the JPEG DC code (Fig. 5) [7].

The first step in AC components coding is the RLE,
which is simplified to be only a zeros counter. The RLE
coder generates the “run” field that represents the
number of zeros that precedes a non-zero value. The
non-zeros values pass by a VLC coder and by a size
calculation. The resulting concatenation of the fields
“run” and “size” are Huffman-coded. Finally the
Huffman coded fields “run/size” are concatenated with
the field “amplitude”, generated by the VLC coder, to
generate the JPEG AC code [7].

The entropy coder architecture is being designed.
Architecture implementation has been finished for the
differential coder, the size calculation and the RLE
encoder.

Differential coder is a single subtrator associated with
two registers. The size calculation is made with a
combinational logic and does not use memory to store
the size table [1]. The RLE coder is shown in Fig. 6 and
was designed using a zero comparator and one
counter.

The Huffman coder will use the pre-determined
Huffman tables suggested by the JPEG standard [1].
These tables will be stored in the FPGA internal
memory.

The first VHDL description results for the entropy
coder are presented in Table 5.

Logic
Cells

Period
(ns)

Lines of
Code

RLE 26 5,8 97
Size

calculation
18 14,3 70

Diferential
coding

46 4 108

Total
(preliminary)

90 14,3 275

Table 5 – Preliminary results for entropy coding VHDL
synthesis

Figure 6 – RLE coder architecture

6 Conclusions

This paper presented the architecture of the five main
modules of the JPEG compression: color space
conversion, downsampling, 2-D DCT, quantization and
entropy coding. The final results of the synthesis of
the modules were also presented.

Future work calls for the reutilization of the IP
modules herein presented into a full compressor chip
(with I/O and memory control functions also embedded
in the system). The overall bus and interconnection
architecture is to be proposed, while the JPEG modules
addressed in this paper will compose a single,
dedicated functional unit for this compressor chip. We
expect to use a Flex10KE200 and up to 7,000 logic cells
for this functional unit. The target clock period for the
complete architecture is 80ns, which is a reasonable
target, given the results already presented.

References

[1] The International Telegraph and Telephone
Consultative Committee (CCITT). “Information
Technology – Digital Compression and Coding of
Continuous-Tone Still Images – Requirements and
Guidelines”. Rec. T.81, 1992.

[2] W. Pennebaker and J. Mitchell. JPEG Still Image
Data Compression Standard, Van Nostrand
Reinhold, USA, 1992.

[3] J. Miano. Compressed Image File Formats – JPEG,
PNG, GIF, XBM, BMP, Addison Wesley Longman
Inc, USA, 1999.

[4] Altera Data Book, Altera Corporation, 1995.

[5] Y. Arai, T. Agui and M. Nakajima. “A Fast DCT-SQ
Scheme for Images”. Transactions of IEICE, vol.
E71, n°. 11, 1988, pp. 1095-1097.

[6] M. Kovac and N. Ranganathan. “JAGAR: A Fully
Pipeline VLSI Architecture for JPEG Image
Compression Standard”. Proceedings of the IEEE,
vol. 83, n°. 2, 1995, pp. 247-258.

[7] V. Bhaskaran and K. Konstantinides. Image and
Video Compression Standards Algorithms and
Architectures – Second Edition, Kluwer Academic
Publishers, USA, 1999.

