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Integrated Directional Derivative Gradient Operator

OSCAR A. ZUNIGA, MEMBER, IEEE, AND
ROBERT M. HARALICK, FELLOW, IEEE

Abstract — Accurate edge direction information is required in many
image processing applications. A variety of operators for computing local
edge direction have been proposed, many of them estimating a kind of
gradient. These operators face two major problems. One problem is the
inherent bias in their estimate of edge direction. The bias itself is a
function of edge direction. Another problem is their sensitivity to the
presence of noise in the image data. The second problem can be alleviated
by an increase in the processing neighborhood size but usually at the
expense of an increase in estimate bias and also in errors in the processing
of small or thin objects. An operator based on the cubic facet model is
discussed, which reduces sharply both estimate bias and noise sensitivity
with no increase in computational complexity. The measure of gradient
strength is the maximum value of the integral of the first directional
derivative taken over a rectangular or square neighborhood, the maximum
being taken over all possible directions for the directional derivative. The
line direction which maximizes the integral defines the new estimate of
gradient direction. Experimental results show the superiority of this oper-
ator to others such as the Roberts operator, the Prewitt operator, the Sobel
operator, and the standard cubic facet gradient operator for step edges and
ramp edges. Under zero-noise conditions the 77 integrated directional
derivative gradient operator has a worst bias of less than 0.09°, and the
5X 5 integrated directional derivative gradient operator has a worst bias of
less than 0.26° on ramp edges. For comparison purposes the 7 X 7 standard
cubic facet gradient operator has a worst bias of about 1.2°, and the 5xX5
standard cubic facet gradient operator has a worst bias of 0.5°. The 7x7
Prewitt operator has a worst bias of 5°, and the 5X 5 Prewitt operator has
a worst bias of 4°. This improvement in worst bias stays with the
contamination of edges by additive independent zero-mean Gaussian noise.

I. INTRODUCTION

The computation of edge direction is a required step in many
image processing tasks. Hough transformation techniques [3]
have been used extensively together with edge direction informa-
tion to detect lines {13], circles [10], and arbitrary shapes {1]}.
Martelli [12] and Ramer [15] each use edge direction information
to perform edge linking. Kitchen and Rosenfeld [11] and Zuniga
and Haralick [17] use edge direction information in schemes to
detect corners.

A variety of operators for computing local edge direction have
been proposed, many of them estimating a kind of gradient of
the picture function. Local edge direction is then estimated as
that direction which is orthogonal to the gradient direction.
Knowledge of the directional derivatives D; and D, in any two
orthogonal directions is sufficient to compute the directional
derivative in any arbitrary direction. The gradient magnitude,
which is defined as the maximum such directional derivative, is
computed as D + D} and its direction as tan"! D,/D;. A
number of local operators have been utilized to estimate these
directional derivatives. Examples are the Roberts operator [16],
the Prewitt operator [14], the Sobel operator [3], and the Hueckel
operator [8]. Of special interest are those operators which result
from a local surface fit to the graytone image data and subse-
quent computation of directional derivatives in two orthogonal
directions from the analytic description of the estimated surface.
Thus the oniginal Roberts operator has been shown to result from
a linear surface fit within a 2X2 pixel neighborhood [5]. The
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original Prewitt operator was derived from a quadratic surface fit
within a 3 X3 pixel neighborhood. Haralick [6] and Zuniga and
Haralick {17] compute edge direction information from a cubic
polynomial surface fit. This fitting idea can also be extended to
arbitrary sized neighborhoods [2], [5].

These gradient operators face two major problems. One prob-
lem is that their estimate of edge direction is inherently biased as
a function of true edge direction and displacement of the true
edge from the pixel’s center. The second major problem is the
sensitivity of these operators to data noise. An obvious approach
to decrease noise sensitivity is to increase the neighborhood size.
However, this creates problems with small or thin objects. In
addition, for all the gradient operators already mentioned an
increase in neighborhood size causes an increase in edge direction
estimate bias.

In this correspondence we use an operator based on a cubic
polynomial surface fit. This cubic facet model has been success-
fully used in the past to detect edges [6], topographic features [7],
and corners [17]. Instead of computing directional derivatives
directly from the fitted surface as in the case of the standard
cubic facet gradient operator mentioned earlier, we describe an
operator that measures gradient strength as the minimum value
of the integral of first directional derivative taken over lines going
in all possible directions. The line direction which maximizes the
integral defines the new estimate of gradient direction. We pre-
sent experimental evidence that this operator possesses two main
characteristics.

1) Edge direction estimate bias is sharply reduced as compared
with the bias of the standard cubic facet, Sobel, and Prewitt
gradient operators. Noise sensitivity is comparable to that of the
Sobel and Prewitt operators and much better than the standard
cubic facet operator.

2) Unlike the standard cubic facet, Sobel, and Prewitt oper-
ators, increasing the neighborhood size decreases both estimate
bias and noise sensitivity. For ramp edges the integrated operator
is very nearly unbiased. The worst bias for the 7 X7 operator is
less than 0.09°, and the worst bias for the 5X 5 operator is less
than 0.26°.

Section II describes the standard cubic facet gradient operator.
Section III describes the mathematical analysis necessary to
derive the new gradient estimate. Section IV presents experimen-
tal results and provides a comparison of the integrated direc-
tional derivative gradient operator against the standard cubic
facet gradient operator, Prewitt operator, and Sobel operator for
step edges and ramp edges contaminated by zero-mean Gaussian
noise. The appendix describes the mathematical analysis of the
cubic facet.

II. THE STANDARD CUBIC FACET GRADIENT OPERATOR

Given a graytone intensity function f defined in the row and
column coordinate system of a given pixel neighborhood, the
gradient vector function Vf is given by

af af
vf= ( 7 5;) : (1)
Under the cubic facet model each surface facet centered about a
given pixel is approximated by the bivariate cubic form
f(r,c) =K+ Kyr+ Kyc+ K,r* + Ksre
+ Ko ? + Kord + Kgrie + Kore? + Kyped (2)

where the K coefficients change from neighborhood to neighbor-
hood and are estimated using a least-square-error surface fit. A
detailed analysis of this estimation procedure is provided in the
Appendix. Evaluating the first row and column partial deriva-
tives of (2) at the neighborhood center (0,0) and replacing their
values in (1), the gradient vector at the neighborhood center
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becomes
vf=(K,,K;).

The magnitude and direction of the standard cubic facet gradient
operator are, therefore, given by {K7 + K7 and tan™' K, /K,
respectively, with the gradient direction being measured as a
clockwise angle from the column axis.

III. THE INTEGRATED DIRECTIONAL DERIVATIVE
GRADIENT OPERATOR

For a given direction vector (sinf,cos #), it is well-known that
the first directional derivative fj(r, ¢) of f in the direction & can
be evaluated as the component of the gradient v/ along the
direction vector, that is,

()

of
fi(r,e)=—= sm0 + Fe cosf.
Let F, be defined as

0_4LWf f ff(pcosf + wsind,

—psinf + wcosf) dp daw

4

for a given N X N neighborhood.

F, represents the integrated first directional derivative along
lines orthogonal to the direction § forming a rectangle of length
2L and width 2W centered at the origin of the coordinate
system. The proposed gradient estimate is

(%)

is a unit vector in the direction

G= F"MAX Ugpax

where Fy , = maxg Fy and up
that maximizes F,.

Using (2) and (3), fy(pcosf + wsinf, — psin@ + wcos @) re-
duces to

fi(pcosl + wsind, — psind + wcos §)
= [3( K, — K,)sin® 8 +3( Ky — Ky ) cos 8
+(3K, —2K,)sinf + (3K, — 2Ky ) cos 8] p?
+2[ - Ky sin* 8 + (3K, —2K,) sinf cos 0
+(2Ky ~3K,) sinf cos? 8 + K, cos’ 0] poo
+[3(K, - Ky)sin?  +3( Ky ~ Kg) cos®
+3K, sinf +3Kg cos 8] oo?
+[ - K sin*0 +2( K, — Kg) sinf cos 8 + K cos 8] p
+2[ K, sin?8 + K sinf cos § + K cos? 0] oo
(6)

+ K, sinf + K, cos 8.

Substituting (6) in (4) results in

F= 4LW-[ f (Ap + Bpw + Cw? +Dp+Ew+F)dpdw

where A, B, C, D, E, and F are the coefficients of the quadratic
equation (6). Evaluating this integral results in

lAL2+1CW3+F
"3 3 )
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Finally,
Fy=(Ke— K;)(L2 - W?)sin’ 0 +( Ky ~ Kyo)(L> — W?) cos’ 8
1
+[L2K7~§(2L2—3W2)K9+ K,_]sin&
1
+[L2K10——(2L2—3W2)K8+K3]0050. (7

Thus F, reduces to a trigonometric expression in sinf and cos 8.
Notice that if L =W, the cubic terms sio’ § and cos’ § drop, and
F, is maximized when

2 1 2
LKy + 3 LKy + K,
- > NG
L?Ky + §L2K8 + K,

Then
Py, =YDP + D} (9)

where D, and D, are the numerator and denominator of the
argument of the tangent function in (8).

The computation of the gradient strength given by (9) and
gradient directional given by (8) can be simplified by precomput-
ing “row derivative” and “column derivative” masks from the
numerator and denominator of (8), respectively, using the masks
for the K parameters derived in the Appendix. As a special case,
when L =W =0, then (8) and (9) reduce to the standard cubic
facet operator defined in Section IL.

If L+ W, then the maximization of F; to obtain the estimated
gradient strength F;  and estimated gradient direction 8y,
can be carried out by the following procedure. From (7), F, can
be expressed as

Fy=usi’0 + vcos® 8 + wsinf + zcos § (10)
where u, v, w, and z are functions of the K parameters. Then

Ff =3usin®
Equating Fj to zero to obtain an extremum results in

[3u(1-cos28) + w] cos8 = (3vcos? 0 + z)siné.
Let x = cos? 8; then (9) becomes
3u(l—x)+w=3vx + z) tanf.
Squaring this expression, we obtain
(Bu(1-x)+w)’ = (vx + z)’ tan

Replacing tan’é by (1— x)/x and after some a]gebrauc mani-
pulation, we finally obtain the cubic expression in x:

Ocosf —3vcos?Osin® + wecosf — zsinf.

(11)

9(u? + v?) x* ~ (184 +6uw +9v — 60z) x*
+(9u? +6uw+w? —6vz+2)x—22=0. (12)

Then F,  and 6y, can be obtained by the following steps:

1) find all the roots x of (12) between 0 and 1;
2) convert these x’s to all possible 8’s from x = cos® §;
3) evaluate F; at all these 6’s;

4) choose maximum value F  and Op,x.

IV. EXPERIMENTAL RESULTS

The experiments were performed with step and ramp edges
contaminated by zero-mean Gaussian noise. Step edges were
generated in a rectangular grid with orientations ¢ from zero to
90° and with random displacement from the grid’s center uni-
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formly distributed within the range (— D, D) with the maximum
displacement D given by

_f0.5¢cos8,
D‘{th&

assuming a unit distance between two four-neighbor pixels in the
grid. A step edge passing through a pixel divides it into two parts
having areas A, and A4,, with 4; + A4, =1. Let the corresponding
graytone intensities to each side of the edge be I, and I,. The
pixel is then assigned a graytone intensity / according to the rule

I=LA +LA,.

0<6<45
45 < 0 <90,

The experiments were performed with values for /; and I, equal
to 100 and 200, respectively. That is, the edge contrast was set to
100.

Ramp edges were generated by defocusing step edges with a
3X3 averaging filter. Finally, both step and ramp edges were
contaminated by adding zero-mean Gaussian noise with a given
standard deviation.

Tuning Up the Integrated Directional Derivative Gradient Operator

The performance of the integrated directional derivative gradi-
ent operator depends on the choice of integration limits L and
W. As seen in Section III, this operator is equivalent to the
standard cubic facet gradient operator when L =W =0. We
expect its performance to improve as L and W move away from
zero and to reach a maximum for some value of L # 0 and some
value of W=+ 0. We are primarily interested in improving the
edge direction estimate. We use two performance measurements,
edge direction estimate bias and edge direction estimate standard
deviation. The latter measures noise sensitivity. The estimate bias
is defined as the difference between the estimate mean and the
true edge direction. A single performance measurement to com-
pare two sets of values of L and W is obtained by combining the
previous two measurements into the root-mean-square error of
the estimate which can be shown to be equal to the square root of
the sum of the square bias and the estimate variance. It was
observed that the operator achieved best performance in the
root-mean-square error sense when L=W=138 for a 5x5
neighborhood size and L =W = 2.5 for a 7X 7 neighborhood size
for both step and ramp edges and for a variety of noise levels.

Comparing Different Gradient Operators

The following gradient operators were tested: 5X5 extended
Sobel [9], 5X5 and 7X7 Prewitt, 5X5 and 7X7 standard cubic
facet, and 5X 5 and 7 X7 integrated directional derivative. Fig. 1
shows the 5X5 row derivative masks for each of the operators
tested, and Fig. 2 shows the 7X7 row derivative mask for the
integrated directional derivative gradient operator. The column
derivative masks can be obtained from the row masks by trans-
position.

For a step or ramp edge of a given orientation and noise
standard deviation, each operator was applied to the grid’s center
10 000 times, each time with a different noise sample and a
different edge displacement from the grid’s center. Under zero-
noise conditions the operators were applied only 100 times. Edge
orientations varied from zero to 90° and noise standard deviation
from zero to 100. Edge contrast was set to 100. The edge
direction estimates produced by each operator were plotted as
follows: for a fixed noise standard deviation, estimate bias against
true edge direction, and estimate standard deviation against true
edge direction; for a fixed edge direction, estimate bias against
noise standard deviation, and estimate standard deviation against
noise standard deviation.

We compare first the standard cubic facet gradient operator
and the integrated directional derivative gradient operator. Un-
der zero-noise conditions, Figs. 3 and 4 show estimate bias
against true edge direction for step and ramp edges. Three things
can be observed. First, the integrated operator is clearly superior
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Fig. 1. Row derivative masks for gradient operators in 5X 5 neighborhood
size (a) Integrated directional derivative. (b) Standard cubic facet.
(c) Prewitt. (d) Extended Sobel.
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Fig. 2. Row derivative mask for integrated directional derivative gradient
operator for 7 X 7 neighborhood size.
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Fig. 3. Estimate bias as function of true edge direction for step edges under

zero-noise conditions.

to the standard cubic facet gradient operator. Under zero-noise
conditions the 7X7 integrated directional derivative gradient
operator has a worst bias of less than 0.09°, and the 55
integrated directional derivative gradient operator has a worst
bias of less than 0.26° on ramp edges. For comparison purposes,
the 7X 7 standard cubic facet gradient operator has a worst bias
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of about 1.2°, and the 5X 5 standard cubic facet gradient oper-
ator has a worst bias of 0.5°. This improvement in worst bias
stays with the contamination of edges by additive independent
zero-mean Gaussian noise. Second, for the integrated operator,
estimate bias decreases as the neighborhood size increases while
the opposite happens with the standard cubic facet gradient
operator. Third, both operators perform better with ramp edges
than with step edges.

Figs. 5-8 show estimate bias and estimate standard deviation
against noise standard deviation for a fixed-edge orientation of
22.5° and additive independent Gaussian noise. Again, the in-
tegrated operator is uniformly superior to the standard cubic
facet gradient operator for both step and ramp edges.

Next we compare the integrated directional derivative operator
with the Prewitt and extended Sobel operator. Under zero-noise
conditions, Figs. 9 and 10 show estimate bias as a function of
true edge direction for step and ramp edges. The 7 X 7 integrated
operator has the smallest bias followed by the 5X5 integrated
operator, the 55 extended Sobel, and the 5 X5 and 7X 7 Prewitt
operators. Notice that for ramp edges the response of the in-
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Fig. 12. Estimate bias as function of true edge direction for ramp edge.

Noise standard deviation is 25. Edge contrast is 100.
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Fig. 13. Estimate standard deviation as function of true edge direction for

step edge. Noise standard deviation is 25. Edge contrast is 100.

tegrated operator is nearly flat about zero, that is, the operator is
nearly unbiased. For the 7 X7 integrated operator the worst bias
is less than 0.09°, and for the 5X 5 integrated operator the worst
bias is less than 0.26°. For comparison purposes the worst bias in
the 7 X7 Prewitt operator is about 5°, and the worst bias in the
5X5 Prewitt operator is about 4°. Again, the integrated operator
is the only one for which bias decreases as neighborhood size
increases. Only the 5X 5 Sobel operator is shown, but as previ-
ously demonstrated by Iannino and Shapiro [9], the 3 X3 Sobel
operator has a smaller bias than the 5X35 extended Sobel, but it
is still significantly larger than the bias of the integrated operator
and with a much worse noise sensitivity. Iannino and Shapiro [9]
also show results with 3X3 and 5X35 iterated Sobel operators.
The bias for these iterated operators is still larger than the bias of
the integrated operator, and they are more expensive computa-
tionally.

Figs. 10-14 show estimate bias and estimate standard devia-
tion as a function of true edge direction for step and ramp edges
when the noise standard deviation is equal to 25. The bias for all
the operators shown is nearly identical to the bias under zero-noise
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conditions. It can be seen from the plots of estimate standard
deviation that, as expected, the 7X7 operators are less sensitive
to noise than the 5X5 operators. The estimate standard devia-
tions for the integrated operator and the Prewitt operator are
about the same. The Sobel operator has a slightly larger estimate
standard deviation.

Figs. 15-18 show estimate bias and estimate standard devia-
tion as a function of noise standard deviation for a fixed edge
orientation of 22.5°. Several things can be observed from these
plots. First, estimate bias for all the operators remains nearly flat
as the noise level increases up to about a standard deviation of
90. Some of the operators show an increase in estimate bias at
this point. The smallest bias corresponds to the integrated oper-
ator followed by the Sobel. The Prewitt operator shows the
largest bias. Second, the estimate standard deviation for all
operators increases linearly with an increase in noise standard
deviation. The Prewitt operator has the smallest estimate stan-
dard deviation, followed closely by the integrated operator and
the Sobel operator. The 7X7 operators have a much smaller
standard deviation than the 5X 5 operators. For all the operators,
ramp edges produce a smaller estimate bias than step edges,
while step edges produce a smaller estimate standard deviation,

Finally, we show the gradient strength response of each of the
5X5 operators on the two images shown in Fig. 19. The first
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(b)

Fig. 20.

(c) (d)

Gradient strength response for 5 5 operators on synthetic image. (a) Integrated directional derivative. (b) Standard cubic
facet. (c) Prewitt. (d) Extended Sobel.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-17, NO. 3, MAY /JUNE 1987 515

(a)

Fig. 21.

(d)

Gradient strength response for 5 % 5 operators on aerial scene. (a) Integrated directional derivative. (b) Standard cubic facet.

(c) Prewitt. (d) Extended Sobel.

image is a 64 X 64 synthetic image consisting of a bright triangle
on a dark background with zero-mean Gaussian noise added to
it. The background gray level is 50, the object gray level is 150,
and the standard deviation of the noise is 30. The second image is
a 64 X 64 aerial scene. Figs. 20 and 21 show the gradient strength
response for each of the 5X5 operators. The integrated direc-
tional derivative gradient operator and the Sobel operators yield
edges with similar amounts of blur, and both operators produce a
good performance in the presence of noise. The Prewitt operator
has also a good performance in the presence of noise but pro-
duces a larger amount of edge blur. The standard cubic facet
gradient operator yield edges with the least amount of blur but
has a poor performance in the presence of noise.

V. CONCLUSION

A gradient operator based on an integrated directional deriva-
tive on a cubic facet has been investigated. Experimental results
with step and ramp edges contaminated by zero-mean Gaussian
noise show that this operator possesses the following characteris-
tics.

1) Edge direction estimate bias is sharply reduced as compared
with the bias of the standard cubic facet, Sobel, and Prewitt
gradient operators. Noise sensitivity is comparable to that of the
Sobel and Prewitt operators and much better than the standard
cubic facet gradient operator.

2) Unlike the standard cubic facet, Sobel, and Prewitt gradient
operators, increasing the neighborhood size decreases both esti-
mate bias and noise sensitivity. For ramp edges the integrated
operator is very nearly unbiased. The worst bias for the 7x7
operator is less than 0.09°, and the worst bias for the 5x3§
operator is less than 0.26°. In comparison, the worst bias for the
7 X T Prewitt operator is about 5°, and the worst bias for the 5 x5
Prewitt operator is about 4°.

3) Edge strength response in the presence of noise is as good as
that of the Sobel operator and better than the response of the
Prewitt and standard cubic facet gradient operators.

4) Computational complexity is the same as the complexity of
the Sobel, Prewitt, and standard cubic facet gradient operators
since it only involves the application of precomputed row and
column derivative masks.
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APPENDIX

THE CUBIC FACET

The cubic facet is described by the two-dimensional poly-

nomial surface function
f(r,¢) =K, + K,r+ Kyc+ K,r* + Ksrc

+ Koc? + Kor’ + K rle + Kore® + K.
This polynomial is fit to the graytones f(r,c) inside a given
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image neighborhood. We will assume a rectangular-shaped
neighborhood whose row index set is R, whose column index set
is C, and whose center is taken to be at (0,0). Notice that for an
even-sized neighborhood the center falls at the point where the
four center pixels meet. The squared fitting error over this

neighborhood is given by

reRceC

Taking the partial derivatives of e* with respect to the parameters K, - -

, K, results in

= Y Y 2AK, +Kyr+ Kye+ Kyr* + Ksre+ Ko+ Kqr® + KgrPe + Kgre® + Ky = f(r,¢))

e?= 3 Y (Ki+Kyr+ K+ Kyt + Ksre+ Koo

+ K,r* + Kgric + Kgre? + Kpo® = f(r, c))z‘

Because the sum is between symmetnc limits, a cons1derab]e amount of cancellation occurs when carrymg out the summation:

Setting the partials to zero and solving, we immediately obtain the least-squares estimate K¢ of K:

de*/IK, ]
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392/3K6 reRceC
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de*/3K,
de’ /3K,
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de? /9K
de’/IK,
de*/3K,
de’ /0K,
de* /3K,

| de?/3Ky, |

-2% ¥

reRceC

Ki=

K2+ K,e*+ K, — f(r,¢)
Kor* + Kor’e* + Kyr* = rf(r,c)
Kgrle? + Kige* + Ky — of (1, ¢)
Kr* + Koric? + Kyr2 = r2f(r, ¢)

ric? = ref(r,c)

K,rc* + Kgc* + Kye = c*f(r, ¢)
K78+ Kortc? + Kyr* = rif(r. ¢)
Kgricr + Kyoric* + Kyrie? — riegf(r, c)
Kortct + Korie* + Kyric* — rd?f(r, c)
Kgrie* + Kpc® + Kye* — 3f(r, ¢)

Y X rf(r.e)

r&RceC

L Lre

reRceC

The least-squares estimates for the remaining parameters are obtained by solving the following three systems of equations:
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For n=0,1, 2, or 3, let R, and C, be defined as

O R

reRr ceC
Furthermore, let

G =R,R,C,C, — RiC}

A= R,R,C,C, — R5C}

B=R,R,C,C, - RIC}

Q= Co(RoRz - Rlz)

T=R,(CC, - C})

U=Cy(RR;— R3)

V=C,(RoR, - R?)

W =Ry(CGC, — C?)

Z=Ry(C,G - C}).
The solution of the foregoing systems of equations is then given

by

K/ =é2rj;(c— TR,r* - QCc?) f(r,¢)
Kj= 2117/2 Z:,(A — WRyr? = UC,c* ) rf(r, ¢)
Kj= %;;(B~ ZR,r* —VCye?) of (1, ¢)
Ki= g EL(Ror? = R)(10

Ki=7 L E(Ge=C) /(o)

Ki= 5 DL (R~ Ry) ()

<=

Ki=— L X(Ror’ = Ry)ef(rc)

Ké=iEZ(Cocz~C1)rf(r,C)

=

1
Kio=Z L E(C? - G)df(r,0).
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Entropy and Correlation: Some Comments
TARALD O. KVALSETH, MEMBER, IEEE

Abstract—For measuring the degree of association or correlation be-
tween two nominal variables, a measure based on informational entropy is
presented as being preferable to that proposed recently by Horibe [1].
Asymptotic developments are also presented that may be used for making
approximate statistical inferences about the population measure when the
sample size is reasonably large. The use of this methodology is illustrated
using a numerical example.

INTRODUCTION

In a recent article in this TRANSACTIONS, Horibe [1] proposed a
measure of association (correlation) between two nominal vari-
ables based on information-theoretic metrics. The purpose of this
correspondence is essentially threefold. First, this author wants to
take issue with Horibe’s measure, specifically because of im-
proper norming used to rescale the measure to the [0,1] interval.
Second, a more reasonable informational measure will be identi-
fied which is also symmetric and is simply the weighted average
of asymmetric measures for the two nominal variables. Third,
asymptotic (large-sample) methods of statistical inference will be
outlined since, in addition to obtaining point estimates for the
association measure, it is generally of interest to be able to
construct confidence intervals and test hypotheses about the
population measure. The results will be exemplified using a
numerical example.

MEASURE FORMULATION

To define the notation to be used, consider that p,; is the
population probability of that cell in the I X J contingency
(cross-classification) table which corresponds to category i of the
row variable X and category j of the column variable Y. Further-
more, let p,, and p,; denote the marginal totals for row i/ and
column j, respectively. The information conveyed about X by Y,
I(X; Y), and vice versa, I(Y; X), also called transinformation, is
given by the well-known formula

I=I(X;Y) = H(X) - H(X|Y)
=I(Y; X) = H(Y) - H(Y|X) (1)
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