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ABSTRACT | Multienergy systems (MES) can optimally deploy
their internal operational flexibility to use combinations of
different energy vectors to meet the needs of end-users and
potentially support the wider system. Key relevant applications
of MES are multienergy districts (MEDs) with, for example,
integrated electricity and gas distribution and district heating
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networks. Simulation and optimization of MEDs is a grand
challenge requiring sophisticated techno—economic tools that
are capable of modeling buildings and distributed energy
resources (DERs) across multienergy networks. This article pro-
vides a tutorial-like overview of the state-of-the-art concepts
for techno—economic modeling and optimization of integrated
electricity—-heat-gas systems in flexible MEDs, also considering
operational uncertainty and multiple grid support services.
Relevant mixed integer linear programming (MILP) formula-
tions for two-stage stochastic scheduling of buildings and
DER, iteratively soft-coupled to nonlinear network models, are
then presented as the basis of a practical network-constrained
MED energy management tool developed in several projects.
The concepts presented are demonstrated through real-world
applications based on The University of Manchester MED case
study, the details of which are also provided as a testbed for
future research.

KEYWORDS |
integrated energy systems;

Integrated electricity-heat-gas networks;
multienergy district (MED);

multienergy systems (MES); power system flexibility.

I.INTRODUCTION
Historically, the energy sector has been planned, devel-
oped, and operated as a group of decoupled systems
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that supply electricity, gas, and other energy vectors to
end-users. The multienergy system (MES) concept chal-
lenges that idea by recognizing that what end-users actu-
ally require are services (e.g., lighting and heating),
and these may be provided through multiple systems
and various combinations of energy vectors (e.g., inte-
grated electricity—heat—gas systems) [1]-[3]. By taking this
approach, the MES concept offers flexibility to access a
wide pool of options from multiple energy vectors and
sectors to provide end-user services [4]. Some exam-
ples of use cases include reducing energy costs through
the use of the cheapest combinations of energy vec-
tors at different times [2], storing surplus renewables as
heat/hydrogen [5]-[7], and switching to different vectors
as a means to provide energy and network services [8].
However, modeling and assessing such flexibility is a
grand challenge, especially when looking at distributed
MES [9] that require integration of already complex
models of different distributed energy resources (DERs),
energy vectors and networks, and other key assets such as
buildings [10], [11].

A special and extremely relevant and widespread case of
distributed MES with huge flexibility potential are multi-
energy districts (MEDs). In MEDs, buildings and local DER
are linked with each other through integrated, multienergy
networks (e.g., for electricity and gas distribution and
for district heating), and their operation in aggregate is
intelligently coordinated and optimized to achieve suitable
common objectives, for example, energy cost minimization
or profit maximization. Buildings, where most DERs are
also installed, represent an important source of flexibil-
ity [3], [12]. However, while building-level flexibility may
be limited by the building’s energy demands, MEDs that
aggregate several buildings and DER can feature signifi-
cantly greater flexibility potential [4], [13]. In fact, MEDs
benefit from resource diversity and flexibility opportunities
across space (e.g., from building to building), energy net-
work/vector (e.g., from electricity to heat), and time (e.g.,
by energy storage): for example, by allowing multivector
exchanges between buildings that take surplus electricity
generation [e.g., from photovoltaics (PV)] from one build-
ing and store it as a different vector in another building,
for example, using electric heat pumps (EHPs) and thermal
energy storage (TES) [14], [15]. However, MED’s greater
flexibility also comes with greater complexity, as the build-
ings exchange energy through the district multienergy
networks [16], [17], which needs to be modeled.

On the above premises, this article gives a compre-
hensive tutorial-like overview of state-of-the-art concepts
and models, and presents relevant applications,! aimed at
deploying and optimizing the flexibility value of MEDs in

10ur studies will focus on the techno—economic modeling and
complexity of the services associated with network-constrained MEDs.
Further issues, such as asset ownership, contractual and market arrange-
ments, information access, distributed optimization, and privacy, are
outside the scope of this article. However, some of these are briefly
discussed in Section VI.

providing various services to the district’s end-users and
the wider energy system. Contents of particular relevance
include.

1) Mixed integer linear programming (MILP) formula-
tions for two-stage stochastic optimization of building
and DER set-points considering relevant operational
uncertainties.

2) Nonlinear mathematical models to simulate with high
fidelity integrated electricity-heat—gas networks that
connect buildings and DER within an MED.

3) An algorithmic approach that soft-couples the above
operational optimization and network models: the
resulting unified framework also represents the basis
for a practical network-constrained MED energy
management tool.

4) Several use cases, from different international
projects and real applications, of MED flexibility for
provision of multiple services internally and exter-
nally to the district.

5) TIllustrative examples and case studies throughout this
article, based on The University of Manchester (UoM)
MED test case: this may also be used as a testbed
for future multienergy network research (see the
Appendix).

The rest of the article is organized as follows. Section II
highlights the features of general (distributed) MES and
their flexibility, with focus on buildings and DERs in
districts, and provides a general MILP formulation for
resource set-point optimization in the case of uncertainty.
Section III introduces a nonlinear formulation for inte-
grated electricity—heat—gas network simulation. Section IV
brings together the above resource-level MILP optimization
and nonlinear integrated network models into a practical
tool purpose-built for MED operational optimization and
active network management. Section V presents several
applications of MED flexibility for the provision of multiple
services for end-users and the wider energy system, includ-
ing discussing potential synergies and conflicts across ser-
vices. Section VI finally provides a discussion on possible
research directions, applications, and challenges, while the
Appendix summarizes all the information of The UoM MED
test case.

II. MES, FLEXIBILITY, AND
DISTRICT’S DER AND BUILDING
OPERATIONAL OPTIMIZATION

This section overviews the concept of MES (compared
to decoupled energy systems) and operational flexibil-
ity for MEDs. Multienergy flexibility, in particular, arises
as an extension of demand side flexibility enabled by
combinations of different energy vectors. An MILP-based
two-stage stochastic formulation is presented to optimize
the time-ahead operation of the district’s multienergy
resources (buildings and DER) considering uncertainty.
Furthermore, as a too general MES representation of build-
ings may be unsuitable to capture their flexibility, specific
building models are also introduced.
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Fig. 1. llustrative building-level decoupled energy system.

A. Decoupled Energy Systems and MES

Historically, end-users meet their energy demand via
different energy vectors that are treated separately. For
example, in Fig. 1, a building’s electricity demand is met
with supply from the grid and PV generation, whereas a
different system is used to meet its heat demand. When
considering the affordability and sustainability? criteria of
this building’s energy system, relevant costs, and emissions
clearly depend on gas and electricity prices and carbon
contents. End-users could reduce them by investing in
more efficient devices [13]; however, the building would
still have little supply flexibility.

Let us now apply the MES concept. Note that in the
example from Fig. 1 the required end-use is heating,
and gas is only procured as a means to provide such
service.? Other heating options could be used, for example,
combined heat and power (CHP) and district heating.
The rationale for using these options is the flexibility to
use the most cost-effective (least carbon intensive) com-
binations of solutions available from different vectors and
sectors [20].#4 In the example from Fig. 2, the addition of
CHP offers new options to manage energy imports and
exports. However, this increases system complexity (e.g.,
effective CHP use may require storing surplus heat in TES)
and calls for suitable techno-economic modeling, as will
be shown below.

B. Demand Side Flexibility

Power system flexibility in traditionally decoupled
energy systems can be enhanced by demand side manage-
ment (DSM) and demand side response (DSR). DSM and
DSR flexibility may also be further enhanced in the context
of MES [21]. To illustrate this idea, we will elaborate

2These are two pillars of the more general “energy trilemma”
(and “energy quadrilemma”), which also include reliability (and social
aspects) [18], [19].

31t should be noted that heat can also be considered as an energy
vector, especially in the presence of a district heating network.

4There might also be additional reliability benefits in the case of
electricity supply disruption, noting that in Fig. 2 electricity could also
be generated by the CHP. However, this depends on the specific MES
scheme.
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on the characteristics of DSM and DSR applied to both
decoupled systems and MES.

First, let us clarify the differences between DSM and
DSR. DSM generally relies on motivating investments in
energy efficiency (e.g., better building insulation and more
efficient heating) and changes in the behavior of end-users
(i.e., energy consumption) by exposing them to predefined
and static signals [22]. An example is the U.K. “economy
seven” tariff [23], which normally offers lower electric-
ity prices between midnight and 7:00 h to incentivize
end-users to shift their consumption (e.g., laundry and
dishwashing) to this off-peak period. The mechanism is rel-
atively straightforward to implement as it does not require
any major investment in information and communications
technologies (ICT) or automation. However, the flexibility
captured by this mechanism can be limited as not all end-
users will respond to the signal, and some could potentially
experience discomfort [24], [25]. Also, the static nature
of predefined price signals makes DSM inadequate to
provide power system flexibility services that are actively
required to balance intermittent renewable generation,
alleviate network stress, etc., that is, in response to specific
incumbent conditions. Such DSR can thus be considered
a more advanced and effective, although potentially more
expensive, version of DSM which requires the use of ICT
and automation to actively deploy flexibility from DER and
various building appliances [26], [27] to respond to close
to real-time signals.

In the context of decoupled systems, potential end-user
discomfort caused by DSR (e.g., demand curtailment [25])
could be mitigated or avoided with battery energy storage
(BES) [12], [28]. However, at present, BES may still be too
expensive for small domestic and commercial customers,
as highlighted by the “ADDRESS” project [29], [30], which
demonstrated that small end-users who partake in DSR
were unlikely to have DER and might experience relatively
high discomfort. End-user flexibility should then be limited
to services that are called infrequently (e.g., a few times
a year), but provide high payoffs, for example, network
capacity support [25].
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Fig. 2. Hlustrative building-level MES.
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In the context of MES, a wider variety of DER and energy
vectors become available to provide DSM and DSR through
multienergy flexibility. For example, TES and storage in
the fabric of buildings could be used as alternatives to
BES [31]. This multienergy optionality offers more cost-
effective alternatives to increase end-user flexibility and
reduces their risk of discomfort.> However, this is not free
either, as the already complex models used to plan and
operate different systems must now be brought together,
thus motivating vast research, in the last years, in MES
mathematical modeling.

C. General MES Modeling

A wide range of mathematical formulations have been
developed to model MES and their capabilities to pro-
vide flexibility in the context of planning and operation
applications [10], [32], [33]. The main MES modeling
applications are discussed in Section III-A. The most com-
mon, general-purpose MES mathematical formulation is
arguably the energy hub framework [34]. Based on this
approach, all MES resources can be aggregated to form
an “energy hub.” This approach treats the MES and its
internal components as black boxes with the aim of reduc-
ing complexity, allowing the modeling to focus on the
relationships between inputs (e.g., energy vectors) and
outputs (e.g., energy vectors or services). An energy hub’s
synthetic formulation is [35], [36]:

vOutputs — vInputs C (1)

where vI?PUtS and vOUPULS are arrays of energy vectors and
services representing the inputs and outputs of the energy
hub, respectively, and C is an efficiency matrix used to
calculate outputs as a function of combination of inputs.

The widespread use of the energy hub model can be
attributed to its simplicity and general nature, which
has incentivized its use to model different types of
MES, from buildings to districts and multidistrict set-
tings (i.e., cities) [37]-[40]. However, by aggregat-
ing all resources within one MES, the energy hub
approach may inherently overlook the physical charac-
teristics of the system under consideration. For example,
the thermal inertia of individual buildings and operation
(set-points) of individual DER might not be adequately
captured. When aggregating all buildings and DER within
an MED, the energy hub approach also neglects internal
multivector exchanges (through internal networks within
the MED [3], [8], which will be further discussed later).
Regulatory and commercial issues associated with dif-
ferent stakeholders within a district or across multiple
districts (e.g., network operators) may also eventually be
oversimplified.

SThermal discomfort may occur as a knock-on effect of flexibility
deployment from virtual storage in the building fabric. However, this
can be actively managed and controlled based on the user’s require-
ments [12], [28].

Integrated Electricity-Heat-Gas Systems: Techno-Economic Modeling, Optimization, and Application to MEDs

D. Two-Stage Stochastic Optimization of
Multienergy DER and Buildings in a District

The capability of modeling the set-points of individ-
ual buildings and DER is a fundamental requirement for
building and district energy managers. Accordingly, in the
formulation presented below® we explicitly model each
resource as a connection point between multiple networks
within an MED [41]. From a mathematical perspective,
relationships (2)-(18) [31]-[33] represent an MILP-based
two-stage stochastic scheduling problem for cost mini-
mization of multiple aggregated buildings (and DERs in
general) subject to operational uncertainties.

~ElecPibB|.;i _ ElecPoBm + n,lGdsGle)A[ )

NS‘
min Z wg(mi

s.t. PlBul P Bul — PDBui _ POCHP + P EHP

+ PlBES POBES (3)
HlBul HObB,l;i < HDBul _ HOngller HOCHP HOE’I;IP
+H1TES— Ho TES+ @)
GlBul _ GDBm + GZCHP + GlBoﬂer 5)
Poyy = neb‘ﬁ POy (6)
HDEHP — PlEHPﬂehEHP (7)
HBRP < PP < pr B ®)
pSHP AL < PoSHP — poCHP | < pCHP A ©)
POCHP GlCHPV]gBICHP + ngeZCHPﬂCHP (10)
HDCHP — GlCHPﬂghICHP + ﬂgh2CHPﬂCHP (11)
ﬂbCEPPngHP < POCHP < ﬁCHPPxCHP (12)
HOngiler — i’[gthOllerGlEfvﬂer (13)
Hn}]?oiler < HoBoiler < HxBoiler (14)
EebBEil = Ee BES + (Pthl;:SnelBES - PoffsneZBES)At
(15)
EnptS < Eep’S < ExptS (16)
Eh{ﬁil = EhTES + (HifESnh13ES — HopRS nh2]) At
a7
Enl®S < ERJES < ExTES. (18)

In the above formulation, ni and mo denote
input (import) and output (export) prices, Pi, Hi,
and Gi, respectively, represent power (electricity), heat,
and gas inputs (imports) [kW], Po and Ho, respectively,
denote power and heat outputs (export) [kW], PD, HD,
and GD, respectively, denote power, heat, and gas demand
[kW], Ee and Eh, respectively, denote electrical and

6In the same way as the energy hub model, the formulation provided
may also be adjusted for different aggregation levels such as to represent,
e.g., MEDs within a city (by replacing the superscript Bui, which
currently denotes buildings). However, this approach, which centers on
devices and resources rather than hubs, explicitly models the different
active components within an MED (e.g., DERs and buildings with active
deployment of thermal inertia), which is the key point in assessing and
deploying multienergy flexibility.
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thermal energy [kWh], Pn, Hn, and En, respectively,
denote minimum power and heat [kW], and energy [kWh]
output, Px, Hx, and Ex, respectively, denote maximum
power and heat [kW], and energy [kWh] output; At
is the length of a time period [h], p denotes ramping
constraints [kW/h], ey is the probability of occurrence
of a time period (further details about the stochastic
formulation are provided below), B denotes binary
variables [0,11, ne, nh, neh, ngh, and nge, respectively,
denote electrical, thermal, electricity-to-heat, gas-to-heat,
and gas-to-electricity efficiencies (or efficiency functions)
[%], respectively.

The mathematical modeling (2)-(18) takes costs mini-
mization from electricity and gas imports, also considering
benefits from selling electricity, as the relevant objective
function (2). Electricity, heat, and gas balance for every
MES is modeled with (3)-(5). PV generation is modeled
with (6). The set-points and limits of individual EHP units
are modeled with (7) and (8), respectively. The set-points
of every CHP is modeled with (9) and (11), and their
capacity is modeled with (12). Equations (13) and (14)
are, respectively, used to model the set-points and capac-
ities of the boilers. The operation of the BES is modeled
with (15) and (16), whereas TES operation is modeled
with (17) and (18).

A superscript-based nomenclature is also used, in which
the superscripts Elec, Gas, PV, Solar, CHP, EHP, BES,
TES, Boiler, and Bui denote parameters associated with
electricity, gas, PV, solar radiation, CHE EHE BES, TES,
boilers, and buildings, respectively. The superscript Bui
may also be modified to represent other types of DER
or resource (e.g., a centralized EHP or CHP production
scheme within an MED). The subscript b represents the
building’s number. The superscript s represents time peri-
ods. In this respect, the model addresses uncertainty by
linking different time periods across scenarios which are
denoted by the sequence used by the model to go through
the different time periods. The approach, that is explained
in detail in [33], is based on linked list [42] and is
equivalent to introducing nonanticipativity constraints in
multistage optimization but with significantly fewer vari-
ables. This allows the model to emulate robust constraints
that depict worst case conditions [33], [43], [44], and flex-
ibility constraints formulated as decision trees [33], [45].

E. Multienergy Flexibility Illustrative Example

The mathematical formulation provided, initially devel-
oped in the “COOPERaTE” project [46], allows addressing
the limitations of decoupled systems and highlights the
flexibility that can be deployed from MES. This can be
illustrated, for the case of an individual building, through
the systems depicted in Figs. 1 and 2. These are optimized
for a typical winter weekday (24 h) considering the flat
and time of use (ToU) price signals presented in Fig. 3.
The latter would incentivize the systems to reduce energy
consumption during the peak period (16:00-18:00 h). The
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Fig. 3. Price signals for import/export electricity considered in this
article.

prices are based on the U.K.’s context, and include a price
spike associated with a signal for transmission network
support (“triad mechanism”) [47], [48]. The electricity
profiles were taken from the Beyer building using The UoM
building management system [49]. The Beyer building is
one of the 26 buildings in the “Oxford Road corridor”
within The UoM MED used as testbed throughout this
article (see the Appendix). For illustrative purposes, and
following the configuration in Fig. 2, a 20-kW (electric)
CHP with an electric efficiency of 35% and a thermal effi-
ciency of 45% is assumed to be connected to the building.

The net power inputs (Pip% — Pop% and Hip — Hop™)
of both multienergy and decoupled systems when exposed
to flat and ToU prices are presented in Figs. 4 and 5,
respectively. The building’s manager is modeled as price
taker, and the predefined system prices are assumed to
be taken from relevant markets (e.g., day-ahead). As is
assumed that the building of Fig. 1 does not have any DSR
flexibility, in the case of decoupled system the net energy
flows in Figs. 4 and 5 remain unchanged regardless of the
price signals. In contrast, the MES of Fig. 2 deploys its
flexibility to adjust its energy use in response to the price
signals. When exposed to flat prices, in fact, CHP utiliza-
tion is maximized throughout the day, as it offers cheaper

0
SR I R U N
Time (h)
---------- Import - ToU Import - Flat Import-Inflexible

Fig. 4. Electricity imports from “inflexible,” decoupled system
(same curve for both prices) and flexible MES, for both flat and ToU
pricing.
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Fig. 5.
system (same curve for both prices) and flexible MES, for both flat
and ToU pricing.

Boiler and CHP thermal outputs for “inflexible,” decoupled

electricity than the power grid. On the contrary, with ToU
pricing, electricity prices are low during most of the day,
when power is imported from the grid. In this case, then,
the CHP is only used to respond to the triad price spike.
This corresponds to a decrease in electricity consumption
between 16:00 and 18:00 h in Fig. 4 (Import—ToU curve).

E Building-Level MES and Virtual Storage

The formulation (2)-(18) used in the previous example
explicitly models DER operation, as discussed, but still it
does not capture specific multienergy flexibility features of
a building (e.g., its thermal inertia).

The starting point to model such building-level flexibility
is to understand its energy demand profiles, for exam-
ple, from historical data from the building management
system [49]. However, alternative approaches to build
such profiles may be needed if the information is not
available or for future scenarios. Initial high-resolution
demand models focused on electricity demand [50], and
were later extended to include a more comprehensive
list of appliances and activities, but without considera-
tion of occupancy-driven demand coincidence within the
building [51]. This then led the authors to developing
a bottom-up probabilistic tool for mapping multienergy
demand profiles considering different appliances, space
heating, cooking, and so on.[52]. The use of these models
has become the norm during the last few years [53], [54].

Another aspect that is relevant for building modeling is
their thermal inertia from the building’s fabric, which can
potentially be used as a form of virtual storage. This fea-
ture, which can be captured with electro-thermal models
of buildings [12], [52], leads to the formulation of addi-
tional constraints that can be included in an MILP model.
That is, the general multienergy mathematical formulation
of MED resources presented above can be extended to
address the thermal inertia characteristics of buildings and
their interaction with TES. This can be carried out by
adopting thermal high-resolution profiles and replacing
the thermal model (17) and (18) with (19)-(23) [31].
The temperature of the building, considering outdoor

Integrated Electricity-Heat-Gas Systems: Techno-Economic Modeling, Optimization, and Application to MEDs

temperatures, devices, and occupation (e.g., temperature
gain from opened windows, and adjustments of thermo-
stat) are modeled with (19). Occupation (represented
with a binary variable ) is modeled with (20) and (21),
whereas TES operation and limits are modeled with (22)
and (23), respectively

T}P;l_lH — Bu1 + (HDBul + (1 a’]?lil)HLBul + Eth/At
(TBul TSOUI)/RhEuI)At/ChEuI (19)
ﬁBm Tme < ﬁBm(TSCth _’_5xBu1) (20)
ﬂBul(TsetBul+5nBu1) < 11731.11 Bm (21)
EhTES )
Bui __ > B
oits = (G -7 (”’
1
x RhBui (TnZ‘ES Bm)Cth < EhTES
b . .
< (Txp™ — T2 Chpt. (23)

In the above relations: T denotes temperatures (°C),
with Tset, Tn, and Tx representing set, minimum, and
maximum temperatures (°C), respectively; HL is power
loss (kW); a represents thermal gain (%); Eh denotes heat
energy (kWh); Rh and Ch are, respectively, thermal resis-
tance (°C/kW) and capacitance (kWh/°C) of the building’s
first-order thermal model; dn and Jdx are minimum and
maximum temperature set-point variations (°C). In addi-
tion, as before, HD is the heat demand (kW), Ar is the
length of a time period [h], f denotes binary variables, and
the subscripts b and s, respectively, denote buildings and
time periods; uncertainty can once again be considered by
linking the time periods across scenarios [33], [42]. The
simplified superscript-based notation is once again used.
The superscripts Bui, Out, and TES denote parameters
associated with buildings, outdoor, and TES. By modeling
the buildings’ thermal inertia, this formulation can thus
capture additional virtual (thermal) storage.

III. INTEGRATED MULTIENERGY
NETWORKS

The MES mathematical model outlined in Section II can
represent both individual buildings as well as aggregates
of several buildings and DER within an MED. Multiple
buildings could thus be coupled together to maximize flex-
ibility from diversity in multienergy needs and resources,
for example, surplus energy from one building could be
used to supply end-users within the district or be stored in
other buildings. However, in practice, the MED model also
requires consideration of the networks than can enable
or constrain multivector exchanges. Without modeling of
the linking infrastructure, in fact, the MED model may
recommend operational set-points that are not technically
feasible once the network limits are factored in. Also,
by capturing the networks’ physical characteristics, new
sources of flexibility may be identified (e.g., using some
network as an additional source of virtual storage).
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On this basis, this section presents a formulation
for an integrated electricity-heat-gas network model
for potential applications and requirements of MEDs.
Besides capturing the network’s technical limitations when
optimizing DER and building operation, potential benefits
from flexibility embedded in the integrated network are
also demonstrated, specifically, by using the heat network
as virtual storage.

A. Multienergy Network Modeling Scope and
Applications

The natural multivector exchanges introduced by the
integration of multienergy resources within an MED can
impact different networks, for which it is critical to use
proper modeling. The selection of the network model
should be based on the specific application under con-
sideration, as there are multiple options ranging from
simplified linear network models to detailed mathematical
formulations of the steady-state or dynamic conditions of
the networks.

A high-level description of different modeling applica-
tions and their time scales is presented in Fig. 6.” Even
though these are primarily based on the structure of power
systems, the main applications, from long-term investment
planning (74) to real-time operation (7p), are also relevant
to other energy vectors and sectors, as well as, in particular,
MEDs [55].

In the figure, each of the five different time scales
includes one or more blocks which represent a type of
constraints. Some constraints are linked with each other
by lines to indicate coupling between them; for example,
electricity network constraints (e.g., thermal and volt-
age issues) are linked to electricity generation (gas- and
nongas-based) and demand. The level of detail associated

TThis diagram and the time scales (7T)—74) are indicative of generic
applications. However, the specific characteristics would change in
different countries, particularly when considering different sectors (e.g.,
the U.K. electricity and gas markets are balanced at different time
scales [55]).
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with the models at each time scale are represented with the
number of blocks, with aggregated models represented as
single blocks, and more complex models as multiple blocks
with interlinks. That is, given the high uncertainty at the
planning time scales (74), aggregate, more abstract models
may be used; on the contrary, for applications closer to real
time, the aggregate demand block is replaced by a more
detailed modeling of electrical network, local small-scale
generation, and individual electrical devices. The use of
system flexibility discussed in Section II is directly relevant
for system operation and short-term operational planning
(To-T3). The different formulations used in these problems
balance uncertainty modeling considerations and individ-
ual problems’ tractability [56].

In the context of MEDs, detailed dynamic models of
integrated networks could, in principle, be considered
when dealing with the relatively faster timescales of
Fig. 6. However, modeling the complex electricity network
dynamics may not be required as relevant flexibility can
still be reasonably modeled via steady-state equations even
for close to real-time applications (7p). Modeling the much
slower gas network dynamics could be valuable for MES
spanning large geographical areas (e.g., cities), particu-
larly to capture the flexibility of the network to be used as a
source of storage [57] and provide flexibility to, for exam-
ple, support the electricity grid [58]-[60]. However, it may
not be adequate to model gas dynamics in MEDs due to
their relatively small geographical areas. There would also
be tractability concerns associated with complex and non-
linear interactions with a potentially significant number
of buildings/devices within a district. Therefore, it would
appear more sensible that MEDs with their associated
local electrical/gas/heat networks are represented through
approximated aggregate models within 7> and 73, and
their available controls are adjusted closer to real-time.
This would happen within 77 so that the aggregate elec-
trical power, heat, or gas consumption matches the values
determined within 7. In a market context, penalties for
deviations could also be applied to ensure coordination
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among subsequent control mechanisms. Given the need
for aggregation (in 7> and 73) and disaggregating the
decision subject to network constraints (in 7y), it is there-
fore assumed that there exists an entity (e.g., district
operator [3]) that coordinates the operation of the devices
within the MED.3

Based on the above, an integrated multienergy network
model will be presented below. In particular, the selected
network formulation can be used for both close to real-time
operation (77) and as a basis for the aggregated modeling
required for 7> and 73 [33]. Other modeling applications,
such as investment planning (74), might use stronger sim-
plifications such as linear [61], [62] or even single-node
network models [32], [63] (if focus is on DER investment).

B. Multienergy Network Models

Various multienergy network models can be integrated
by coupling the relevant network models using energy
hub-like links [16]. An electricity—heat-gas network model
will comprise, then, the models of each network as well
as coupling components associated with the multienergy
DER (CHP EHE and so on) that are connected to the
different networks. However, it should be noted that this
approach may not necessarily require integrated network
modeling, especially for steady-state simulations when
the output of the multienergy technologies is fixed, for
example, when no multienergy technology is connected
to a slack bus, or provide any form of response (e.g.,
voltage, pressure, or temperature control). This becomes
evident when solving the network models, for example,
by using Newton’s approach, as no coupling elements
appear in the Jacobian matrix [64]. In such cases, each
network can be solved independently, without the need for
complex integrated network models. Following the same
logic, integrated models are more likely to be required in
optimization rather than simulation approaches, that is,
when the operation of a multienergy resource is defined
through a decision variable of the optimization problem.

The electricity network model is represented with
(24)-(27) [16], [17]. The connection between the net-
work buses and a generic energy hub converter model
(e.g., a building connected to the bus) is modeled
with (24). The conventional power flow equations, as well
as thermal and voltage limits, are modeled with (25)-(27),
respectively

PRI + 7005 = D cans(Pips — PopY) (24
been
PSS Q0% = D (X VA (VAT @)
i
[Yomion Venss | < 125 (26)
VnElec < ‘VElec| < VxElec (27)

en,s

8In practice, different setups may occur, also depending on the
specific business model developed—see also Section VI. These aspects
also pave the way to relevant research into decentralized optimization.

where P and Q are, respectively, net real (kW) and reactive
(kVAr) powers, cf}leg is an efficilency matrix (from the
energy hub approach) connecting buildings and buses, Y
denotes admittances (S), V and I, respectively, denote
voltages (V) and currents (A), and the superscripts en and
em denote buses while / denotes a line connecting two
buses (en and em). As before, Pi and Po, respectively,
represent power inputs and outputs (kW), the subscript
s represents time periods, and superscripts are used to
denote parameters associated with the electricity network
(Elec) and building (Bui) models.

For gas networks, pressure dynamics are not significant
for small networks such as those within districts.® Accord-
ingly, for MED applications it is convenient to model the
gas network with a steady-state model such as in [67] and
assume that sufficient pressure is provided by the external
gas network. Similar equations are used in [68]-[71].
Following an approach similar to the one for the electricity
network, then, DERs and buildings that are connected to
the gas network are modeled as links between different
networks or between gas network and nodal consumption,
as shown in (28). The specific hydraulic equations used in
this article are (29)-(30) [16], whereby (29) represents
the gas injected to or extracted from a node as a nonlinear
steady-state function of pressures, whereas (30) models
the maximum and minimum pressures of the network

Gas __ Gas -Bui
a9, = At > cSx,Gipt (28)
begn
Gas __ Gas . Gas Gas
qgn,s - Z {Kgn,ngIgn(pgn,w pgm,s)
gm

x Jsign (G, pGas, [ (p5) ~ (r5,)1 |
(29)

(pnGaS)Z |( Gas )2‘ < (praS)Z. (30)

Pgn,s

IA

As notation, g denotes flows (in this case gas) injected to
anode (m?/h), Gi denotes gas consumption, p represents
nodal pressures (Pa), K denotes the pipeline constant,
pn and px are, respectively, the minimum and maximum
pressure limits or flowing through a pipe [Pa], c¢ is the
efficiency matrix (energy hub approach) to link gas import
from buildings/DERs and nodal flows,!? and the subscripts
gn and gm denote nodes. As before, a superscript-based

9For a large-scale gas network, virtual storage flexibility is associated
with the network’s linepack, which in turn depends on its operating
pressures [65]. Transient flow equations should then be used [58] and
consider the minimization of compressor power as part of the objective
function [66], in case. In a relatively small district operating at low or
even medium pressures, however, linepack is small and its flexibility
therefore limited. Additionally, there are few practical ways to actively
control gas pressure within a district, while the virtual storage potential
of a heat network, which depends on its thermal features, as discussed
below, may be actively influenced by modulating operating temperatures
and flow rates.

Gas

10Note that the components ¢, of the efficiency matrix in (28)

should also include factors to convert kWh to m3/h (e.g., based on a
calorific value of 39.2 MJ/kg, i.e., 1 md =114 kWh).
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(0.0133)—parameters as a function of flow.

nomenclature is used, that is, the superscripts Gas and Bui
denote parameters associated with the gas network and
building models. The sign function used in (29) is equal to
+1 when p2 > pGas and —1 otherwise.

The pipeline constant, K, which in turn depends on the
friction factor, may be calculated using different methods
based on the characteristics of the network and pres-
sures [72], [73]. However, what is typically indicated as
a constant is in reality a highly nonlinear function of the
flow, and different equations may apply, depending on
the flow conditions and pipe characteristics [72]. This is
illustrated in Fig. 7, which shows (left) the friction factor
as a function of gas flow for a 1 km, 500-mm pipe, and
20 °C flow temperature. The pressure drop coefficient is
a function of the friction factor and varies with the flow
conditions in a nonlinear, nondifferentiable manner. The
figure also shows (right) the squared gas pressure drop
error assuming a fixed pressure drop coefficient value
(at fully turbulent region). It should be noted that while
the error in % of the exact pressure drop can be significant
for low flows, its impact should be inconsequential, given
that the corresponding pressure drop would be small. This
poses the basis for using a constant friction factor value
(and hence a pipeline constant) taken from the turbulent
region as a suitable approximation. A similar reasoning
may be used when modeling heat networks.

With regards to heat networks, their modeling is also
coupled to the other networks through energy conversion
links and is composed of a hydraulic module and a thermal
module.

The hydraulic module is based on conventional
steady-state equations as for the gas case.!! Hence,
the connections between the heat network and a generic
energy hub (and, in particular, a building) are formulated
with (31) using an efficiency matrix approach, the water
nodal balance is denoted by (32), the water flow in each
pipe is calculated with (33), and the pressure limits are

UThese equations are deemed adequate to describe the heat net-
work’s hydraulics considering that pressure dynamics travel with the
speed of sound and assuming that the fluid is incompressible.
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imposed with (34) [74]-[76]

g = Ar Y e (HiBN - HOP) /AT 6D
behn
s = D alis" (32)
lehm
915" = KiinnSign (Phnss> Phmsy)
2 2
x Jsign(pfisx, phiea)[ (phiea)? — (pfist)?]  (33)
aneat S P/I;Ineayl (34)

In the above relations, ¢ and ¢!/ denote flows (in this
case water), respectively, injected to a node and flowing
through a pipe (m3/h), c}frfdb‘ are again efficiency matrix
components (energy hub approach) to link heat import
from buildings and nodal flows,'? AT represents tempera-
ture drops (°C), K is the pipe constant, p and pn are pres-
sure and minimum pressure limits (Pa), the subscripts in
and hm denote nodes, and the superscript Heat parameters
associated with the heat network.

In addition to the hydraulics, a thermal module that
models temperatures across the heat network is also
needed. In fact, given that energy roughly travels with
the flow speed of water, depending on the size of the
network, there might be significant delays to propagation
of supply temperature variations. While for limited-length
networks temperatures may be derived through steady-
state exponential functions of flow [16], [77], for larger
networks such a representation would not be sufficient.
Furthermore, this would also neglect any virtual energy
storage potential of the network itself, while the energy
contained in the network’s water, and therefore its thermal
capacity, may not be negligible even for relatively small
sizes.!3 The heat network temperature dynamics are also
modeled here through the set (35)-(39) [78]-[80], where
it is assumed that supply temperatures and flows remain
constant throughout an optimization time step. More
specifically, the temperature drop across a device, and
considering previous temperatures, is modeled with (35).
The temperature drop across a heat exchanger is modeled
with (36). The pipe temperature dynamics, also consid-
ering the effects of the mass flow rate and ambient tem-
peratures, are modeled with (37) and (38). The nodal
temperature balance is described as follows:

sXAt
Heat __ Heat Heat
AThn s / (Thn,s,r - Tdhn,s,r)d‘[ (35)
=(s—1)A7
_hhHeat
Heat __ Heat Out n Out
hn,s,t — (Tdhn,s,r - TS )CXp Heat ) + Ts
hn,s

(36)

12The heat capacity of water is taken as 4.182 kJ/(kg-°C).
13Differcntly from gas networks, as discussed earlier.
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‘a) Electrici T

Heat Heat
Heat Lx,t _ ;Heat Lx,t
ls - ls w
ot ox
Heat Heat Out
_hhn (Tll,x,r - Ts ) (37)
Heat Heat Heat
TS = T, x € [0, L] (38)

Trjst o > dir(gl]") g/’

lehn
= " [ din(— gl |gfien
lehn

I

x = LI (39)

In the above relations, in addition to the symbols
presented for the heat network’s hydraulic equations,
Td and T denote temperatures changes (°C) through time
introduced by input and output flows and flows through
the pipes, m is the mass of water in a pipe (m?), w denotes
heat capacity [kJ/(kg-(°C)C)], L is the pipe’s length (m),
and £ is the heat transfer coefficient (kW/K).

C. Example of Integrated Energy Network Studies

The integrated electricity—heat-gas network model pre-
sented here was initially developed in the “DIMMER” and
“MY-STORE” projects [33], [81], [82] and applied to The
UoM MED test case. The networks were simulated by
taking the buildings’ multienergy demand as inputs, and
declaring one or more DER as slack or active units (e.g.,
for active voltage or temperature control). The model was
then solved by Newton’s method, which, as explained
earlier, will include elements that couple the different net-
works if the networks are actively integrated (e.g., a mul-
tienergy device is one of the slack generators or is used as
an active unit) [64], [76]; otherwise, each model can be
solved independently. In any case, it is important to note
again that the networks will generally be actively coupled
for optimal power flow or other forms of optimization [33].
Some example of relevant integrated network studies that
were conducted is given in this section.

First of all, let us analyze the technical impacts that
different DER can have on different networks of The UoM
MED at peak time, assuming no DER and that only gas
boilers are used for heat supply (see the Appendix). More
specifically, the color-maps in Fig. 8 show: 1) voltage
deviations, where white indicates nominal voltages (close
to 1 pu) and darker colors indicate areas with potential
low voltage issues (closer to 0.96 pu) and 2) pressure drop
variations, where white indicates pressures close to 7 bar
and darker colors indicate areas with low pressure issues
(close to 1.5 bar). The study highlights areas where poten-
tial voltage/pressure issues may arise (thermal constraints
can also be analyzed, as discussed in Section IV), which is
key when sizing and placing new DER [16], analyzing the
feasibility of MED operation strategies [17], and planning
for network reinforcements [83].

Let us now illustrate the use of the heat network as a
source of virtual energy storage flexibility [84], [85]. The
UoM MED is modeled for a typical winter weekday and,
as before, only gas boilers are considered to meet heat

Fig. 8. Color maps of (a) voltage deviations (electrical network)
and (b) pressure drops (heat network) for the UoM MED test case at
peak time.

demand. Further virtual storage in the fabric of buildings
is ignored. Under these conditions, networks are the only
source of flexibility. The model is set to produce additional
heating beyond heat demand (preheating) one hour before
the peak period and thus reduce peak heat generation
requirements thanks to the temperature dynamics of the
heat network. The results are presented in Fig. 9, where
some 10% of the network thermal load seen by the heat
supply can be decreased owing to the heat network’s
virtual storage flexibility. This flexibility mainly depends on
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Fig. 9. Boiler output considering normal operation and the use of
heat network flexibility as a source of virtual energy storage for
peak shaving.
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the size of the network (e.g., volume of water in the pipes),
and can be combined with other sources of thermal storage
(including more virtual storage from thermal inertia in the
fabric of buildings) [86], [87].

Another important note to make here is that, as the
system in this example is supplied by a gas boiler, the heat
network’s flexibility also affects the gas consumption of the
system, reducing the gas network loading. Similarly, such
virtual storage would also impact electricity consumption
or network demand for other energy vectors if heat
was supplied with one or more EHE CHP unit, or other
technologies. This highlights how in an MES context
deploying flexibility available in one network may actually
affect all involved energy vectors and networks, as widely
discussed in [9].

IV.NETWORK-CONSTRAINED ENERGY
MANAGEMENT OF MEDs

The multienergy resource scheduling MILP and the inte-
grated network models presented above can be combined
to create an MED energy management tool that captures
the physical constraints and flexibility options from both
DERs and networks. This section discusses approaches for
coupling these models, presents a specific soft-coupling
methodology, and illustrates the use of flexibility to relieve
network constraints and actively manage the district’s
networks.

A. DER Scheduling and Network Model Coupling

In the context of MEDs, impacts across multiple net-
works will increase with higher DER integration before
security limits [88], particularly as flexibility becomes
a more prominent source of network capacity [33].
As a result, there has been growing interest in devel-
oping MES models that bring together optimal DER
operation and multienergy network models [10], [89],
with a great deal of simplification in network model-
ing [65], [68], [90], [91]. Other approaches that address
the full complexity of the models typically deploy meta-
heuristics [92] or multilevel [93] optimization. The former,
in particular, may be adopted by soft-coupling resource
scheduling and network models. In this approach, oper-
ation is first optimized without considering the presence
of the networks, and the outputs of the operation model
are then used to simulate network operation and check for
network limits. Although this approach may in principle
limit the ability to fully exploit multienergy flexibility to
actively manage network constraints, soft-coupling is a
common approach to test predefined operation strategies
and inform network operators about potential reinforce-
ment needs [94], [95]. The use of soft-coupled models
may actually be preferred for large-scale systems and when
considering DER integration with little or no resource coor-
dination, for example, decarbonization pathways [96].
By neglecting complexity from the coupling of DER opera-
tion and network models, this type of approaches can also
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focus on producing high spatial (e.g., per postcode) and
temporal (half-hourly or more frequently) MES analysis
over large areas [97], which is of great relevance for policy
makers, regulators, and other actors interested in urban
development.

A heuristic soft-coupling modeling approach is selected
here that strikes an ideal tradeoff between optimality
(though the MILP-based resource scheduling) and feasibil-
ity (via the detailed nonlinear network model analysis).
The mathematical formulation, taken from [33], can be
expressed as follows:

-Elec p :Dis
s Pij”—m

min At Za)s (i
s

Elec Dis
o, Poyg

+ 7i$SGips + xPF M) (40)
PP — poDis — Lp; Z Pip® — Pop) 41)
0 =LH, + Z (Hip% — Hopt) (42)
S z Z Z dene b, 3 Ple PoBm)]
ne bene
_"_Z Z denhbv HlBul H Bul)]
nh benh
+> D [Kfd,,, Gipy]+ Kfe,—xPF;.
ng beng
43)

In (40)-(43) [33], wi and =o are energy prices
(£/kWh), PiP and PoP®s are district power input and
outputs (kW), x PF is a feasibility constraint that allows
the system to exceed network limits at a high penalty
cost (M), LP and LH denote losses [kW], Kf denotes a
network limit (e.g., thermal, voltage, and pressure), Kfc
and Kfd provide a linear approximation of a binding
network constraint (e.g., losses, loading for lines exceeding
their thermal limits, and flows associated with nodes with
voltage issues), and the subscripts s, b, ne, nh, ng denote
time periods, buildings, electrical buses, heat nodes, and
gas nodes, respectively.

The objective function of the MED (i.e., cost
minimization) is modeled with (40). Equation (40)
considers only costs associated with internal gas

consumption (e.g., to supply gas boilers and CHP),
and costs/revenue from importing/exporting electricity
from/to the primary substation that feeds the whole MED
(i.e., 33 to 6.6 kV).!* The electricity balance within the
district, including electricity imports and exports, and
losses is modeled with (41). The heat balance within
the district, including heat network losses, is modeled
with (42). Heat imports and exports could also be

140nce again, this approach where the whole district rather than
individual buildings is charged for energy consumption applies for cases
where all buildings are managed/owned by a same actor. Charges per
building, as previously denoted by (2), and internal market arrangements
may be required if different actors own or manage the buildings [3]—see
also Section VI.
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included to consider large heat networks that supply
multiple MEDs.

In terms of practical energy management tool imple-
mentation, the heuristic problem proposed can be solved
using the soft-coupling algorithm presented and summa-
rized in Fig. 10. Namely, the approach consists of, first,
solving the MILP model with all losses and network con-
straints in (43) ignored. Then, the resulting DER set-points
are used to simulate detailed network operation with the
integrated electricity-heat-gas model, and the network
impacts are assessed. Assessment of power losses and
active network constraints, that is, when a limit of the
network is exceeded, are then identified and modeled
with (43). For that purpose, the parameters for the linear
model are taken as the differentials of the binding network
constraints and losses (from the integrated model) with
respect to the nodal net flows.!> These differentials provide
linear approximation of the electricity, heat, and gas losses
or network limits, which are modeled with K fd and K fc.
This approach, which is similar to Newton’s method, uses
differential equations to formulate linear approximation
of the network models at relevant operating points. This
information is then passed back to the MILP model so that
the operation of the DER in the MED can be revised. The
process is repeated until the error (difference between set-
points in two consecutive iterations) decreases below a
predefined threshold. More information about modeling,
developed in [81] and [98], can be found in [33].

B. Multienergy Active Network Management

The proposed network-constrained MED tool can effec-
tively manage the DER set-points of the system to meet
different targets (e.g., minimizing costs or increasing profit

I5Note that the differentials of nonbinding constraints where the
networks are operating within their limits are not modeled as their value
is zero.
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Fig. 11. Active power flow through the most loaded line
(bottleneck) and aggregated electricity demand and DER
output-constrained case.

from the trade of energy services), while also actively
managing network limits. This is again demonstrated with
applications to The UoM MED test case. In this example,
it is assumed that a total of 60 devices as PV (3.4 MW),
CHP (2.7-MW electric), EHP (2.6-MW thermal), and gas
boiler (24 MW) are installed throughout the district (more
information can be found in [33]). The ToU prices pre-
sented in Fig. 3 are considered. To illustrate the signif-
icance of network constraints, the thermal capacity of
the electricity distribution network has been artificially
reduced (additional types of constraints too are explored
in [33]). The results of the study are presented in Fig. 11
(electricity vector) and Fig. 12 (heat vector). The gas
profiles are not displayed as there are no bottlenecks in the
gas network and no gas injection back into the network.
More complex examples addressing gas network modeling
can be found in [39], [57], and [65].

This article shows that the MED mainly relies on elec-
tricity imports, and the use of EHP to meet its heat
demand during periods when electricity prices are low
(i.e., before 6 A.M.). Afterward, as electricity prices and
demand increase, operating the EHP using grid imports
becomes too expensive, which motivates using CHP to
meet part of the heat and electricity demand (including
EHP imports), especially at 17:00 h where there is a
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Fig. 12.

case.

Aggregated thermal demand and DER output-constrained
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Fig. 13. Active power flow through the most loaded line
(bottleneck) and aggregated electricity demand and DER
output-unconstrained case.

price spike. It can be seen in Fig. 11 that the bottleneck
line, which has a 5.4-MW capacity in this example (line
12 connecting buses 0 and 15, see the Appendix) [33],
becomes overloaded between 9:00 and 15:00 h.

To relieve the line constraint during this time, the MED
can actively manage the set-points of the CHB boilers, and
EHP The resulting operational strategy can be appreciated
by comparing the results from Figs. 11 and 12 (constrained
case) with those from Figs. 13 and 14 (unconstrained
case). In the unconstrained case, where the technical lim-
its of the network (e.g., voltage and thermal limits) are
ignored, the loading of the bottleneck line would exceed
its 5.4 MW, which would make the solution unfeasible
unless the electricity network is reinforced. As the line
limit is neglected, the operation of the EHP and CHP
is mainly based on the price signals, for example, low
electricity prices between 23:00 and 5:00 h, and high
prices at 17:00 h (see Fig. 3). Accordingly, CHP generation
is low before 5:00 h and the device operates at maximum
capacity during the peak period. The EHP mainly operates
at a constant output, except during the peak time where
electricity imports become more expensive.

V. MED FLEXIBILITY AND GRID
SERVICES

The model proposed and illustrated in Section IV allows
optimal management of the MED’s flexibility by actively
changing its energy flows in response to different forms
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Fig. 14. Aggregated thermal demand and DER
output-unconstrained case.
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of signals, namely prices and constraints. This section
explores the potential use of the district’s multienergy
flexibility to simultaneously provide combinations of ser-
vices to the electricity grid and relevant markets. It will
also be shown that there may be synergies and conflicts
between different services which cannot be captured when
the services are assessed in isolation.

A. Modeling Grid Services

The general formulation provided in Section IV can
be applied to account for grid services that are incen-
tivized with price signals (e.g., triad) [46], [99], [100]
or require explicit network modeling such as managed
connections [101] and capacity support [25], [83],'¢ and
reserve [106]-[108]. To illustrate this, the MED opera-
tional model presented above is further extended to con-
sider one type of reserve service based on explicit modeling
of DER available headroom, as shown in

CHP CHP CHP
RSP < Z Px§HP — poSt]
b

BES BES
€hs — Eny

At

BES

+ ney EHP

= + Px,, (44)

This is a bespoke equation for an MES comprising CHB
BES, and EHP. That is, the upward reserve that can be pro-
vided at a given time period is calculated as a function of
CHP power generation headroom, available electricity that
can be taken from BES, and demand that can be reduced
by ramping down the EHP [8]. Alternative formulations for
this equation, as well as models for other forms of reserve
can be found in [8], [109], and [110].

This reserve service will be applied next in conjunction
with the modeling features previously introduced.

B. Conflicts and Synergies Among Services

The potential for MEDs to provide flexibility to reduce
costs for multienergy end-users [32], [111] and partake
in the provision of multiple ancillary services [8], [112],
[113] calls for investigating synergies and conflicts that
may arise [8], [114], and the relevant impacts on the MED
business case too.

To this end, let us use The UoM MED test case to study
the effects of simultaneous provision of energy arbitrage,
active network management, and reserve services, by sim-
ulating the following cases.

1) Arbitrage: The district is exposed to ToU electricity
prices, which incentivize shifting electricity genera-
tion to the off-peak period (this corresponds to the
studies already shown in Figs. 13 and 14).

16The latter applications have been explored in detail by the authors
in several industrial-led research projects, e.g., “Capacity to Customers”
(C2C) [102], [103] and “Smart Street” [104] projects, which centered
on active distribution network management [83], [105].
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Fig. 15. Active power flow through the most loaded line
(bottleneck) and aggregated electricity demand and DER output-flat
electricity prices.

2) Baseline: The district is exposed to flat electricity
prices, which do not incentivize the use of flexibility
(see Fig. 15).

3) Reserve: The district is exposed to flat electricity prices
and flat upward reserve prices (see Fig. 16).

4) Active Network Management: The district is exposed
to flat electricity prices and is subject to network
constraints (see Fig. 17).

5) All: The district is exposed to ToU electricity and flat
reserve prices, and network constraints (see Fig. 18).

The Arbitrage case where ToU prices are introduced
was presented above in Figs. 13 and 14. As discussed,
the MED actively changes the use of different technologies
in response to the variable prices. In the Baseline case
(see Fig. 15), the district MES mainly relies on the use of
local CHP generation to meet its energy needs. The opera-
tion is consistent throughout the day as the prices do not
change. When reserve prices are introduced (see Fig. 16),
there is an incentive for the MED to increase its headroom
which can be achieved through different DER uses, for
example, reducing CHP generation and/or increasing EHP
use, in this example. The decision to use either option,
or a combination, will depend on the prices faced by the
district. In the active network management case where
network constraints are considered (see Fig. 17), the MED
is operated to meet the technical limits of the networks (in
this example associated with the thermal limits of a line).
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Fig. 16. Active power flow through the most loaded line
(bottleneck) and aggregated electricity demand and DER output-flat
electricity prices and flat reserve prices.

£ 8 14 g
s 12 2
E 1 A
g =
5 08 5
b= &
jas)

@ 0.6 5
g 04 2
E =
g 0.2 &
5 o =
A >
ey

Time (h)
Demand Bottleneck = = = PV =====- EHP — — CHP

Fig. 17. Active power flow through the most loaded line
(bottleneck) and aggregated electricity demand and DER output-flat
electricity prices and network constraints.

All cases of Fig. 18 clearly represent a tradeoff solution.

What is essential to note from these studies is that
the expected system behavior in providing a given ser-
vice fundamentally changes once other services are intro-
duced (due to the associated conflicts and synergies). For
example, the introduction of ToU incentivizes the MED
to arbitrage and reduce imports during the peak time
(see Figs. 13 and 14). However, when both ToU and reserve
are considered (see Fig. 18), the MED does no longer
arbitrage at peak times. This is not the case for the reserve
service, as the MED provides similar levels of reserve when
exposed to reserve prices only (see Fig. 16) and to reserve,
arbitrage and active network management signals alto-
gether (see Fig. 18). However, the operation of the district
is fundamentally different in those two cases. In fact, when
only exposed to reserve prices, the MED heavily relies
on electricity imports to supply the EHP throughout the
day (see Fig. 16). On the contrary, electricity imports are
low when all services are considered, as the system relies
more on the CHP to supply the EHP The operation of
the MED, in terms of energy imports and exports and
provision of services, can thus change significantly when
new signals (e.g., new services) are introduced. Properly
modeling these effects, for example, by using the frame-
work provided, is critical for the effective deployment and
integration of MEDs in practical regulatory settings [115]
and development of new planning practices [116].
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Fig. 18. Active power flow through the most loaded line
(bottleneck) and aggregated electricity demand and DER output-ToU
electricity prices, flat reserve prices, and network constraints.
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a) Electricity

c) Gas

Fig. 19. Diagram of the (a) electricity, (b) heat, and (c) gas networks within the UoM MED test case.

VI. FUTURE RESEARCH DIRECTIONS
The framework and tools presented have already been
applied in a number of real-world MES and MED appli-
cations. However, much research work is still to be done in
these areas. Some potential directions are provided below.

One important topic in the general context of MES is
the use of hydrogen [6], [7], [58] as an energy vector to
enable the transition to very low-carbon power systems in
support of or replacing electrification of heating and trans-
port. For MEDs, one key question would also be whether
entire districts or even cities could use (green) hydrogen
as the central energy vector as opposed to electricity, or in
any case what role it could play for urban decarbonization,
and under which conditions. See, for example, a number
of relevant ongoing projects [117], [118].

Regarding applications of multienergy flexibility, under-
standing the role and opportunities for MES in making
the energy systems more reliable as well as resilient to
high-impact low-probability events (e.g., natural disasters)
is another important area of research, also considering
that the severity and frequency of extreme events may
increase in the future due to climate change [119]-[121].
For MEDs, in particular, it is crucial to be able to assess how
districts may be able to provide system support, reliability,
and resilience [122]. At the same time, it will be critical to
properly account for the new tradeoffs that these services
are introducing to the system [8], [115], particularly by
reliably reducing investments in traditional network and
generation capacity (e.g., reducing capacity margins).

The integration of a large number of DER owned and
operated by different actors (e.g., aggregators, network
operators, and end-users) within MEDs or across mul-
tiple districts might make traditionally centralized con-
trols obsolete and potentially infeasible [56], [123]. New
decentralized optimization algorithms might therefore be
required, whereas multilevel approaches would have to
be developed to account for the effects of these algo-
rithms across multiple energy vectors and at different
and potentially overlapping time scales [124]. In this
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regard, the different models presented in this article could
be soft-coupled at different time scales by, for example:
1) deploying the MILP model (without network con-
straints) for MED investment planning [41]; 2) using
the full network-constrained MED model for time-ahead
applications [33]; and 3) using the integrated network
simulator to assess network conditions at regular inter-
vals [16] and reoptimizing the MED if required, in case
in a rolling horizon fashion. However, significant research
is still required to develop additional models covering
intermediate and overlapping time scales, and proper
off-/online feedback loops. A particular challenge would
be to deal with computational complexity, which will be
exacerbated with the expected large-scale DER integration.
Increasing DER integration will also bring more chal-
lenges associated with impacts on local and system-level
prices and performance, different DER ownership, privacy
requirements, and handling of data of end-users and other
stakeholders [125].

Local multienergy markets may offer a potential solu-
tion to coordinate DER operation, price the value of
multienergy flexibility, and incentivize its use to support
end-users and the wider energy system. New concepts,
such as markets based on transactive energy approaches,
may provide the above benefits while also protecting
the privacy of the different actors involved in the mar-
kets [126], [127]. However, research to properly develop
transactive mechanisms that would work effectively across
different energy vectors and sectors is yet in its infancy
(see, for instance, [109]), and poor exchange of data and
signals might even result in flexibility deployment causing
network issues, for example, new demand peaks, higher
system stress levels, and reduced system reliability and
resilience.

These challenges, and many more, will have to be
tackled with fresh research to facilitate the development
of affordable, sustainable, reliable, and resilient energy
systems. In this respect, flexibility from MES and MEDs will
be critical to deliver a low-carbon energy future. [ |
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Table 1 Parameters of the 6.6-kV (1-MVA base) Electricity Distribution
Network Within the UoM MED

Table 3 Parameters of the 2 Bar Gas Network Within the UoM MED

Line No. | Bus R X Capacity Pipe No. Nodes Length Diameter
From | To | (pux107) | (pux10%) (A) - Frl‘;‘“ TO" % (']“(;g)
1 0 18 5.1115 6.8685 540 3 5 34 220 100
2 18 10 2.0305 2.7285 540 3 e 3 320 100
3 10 12 4.1756 5.6109 540 Y 18 5 % 160
4 12 11 2.7078 3.6386 540 z 3 a5 360 100
5 11 16 0.6274 0.8430 540 3 35 6 % 100
6 16 14 2.1157 2.8430 540 - 16 7 20 100
7 1 17 | 41682 5.6011 540 3 7 ; 20 300
8 17 9 4.6369 6.2309 540 9 17 > 30 100
9 9 6 1.3649 1.8341 540 10 35 P 160 300
10 6 4 3.5409 47580 540 11 R 33 20 500
11 4 15 2.4066 3.2339 540 2 32 19 180 500
12 0 15 5.6184 7.5497 540 13 19 14 110 500
13 0 8 2.0804 2.7956 540 14 33 22 20 500
14 8 2 2.3038 3.0957 540 15 22 21 150 100
15 2 5 2.5241 33918 540 16 21 4 30 100
16 0 7 46178 6.2052 540 17 4 5 90 100
17 7 19 1.0629 1.4282 540 18 21 20 20 100
18 0 21 1.8762 25212 540 19 20 3 20 100
19 21 13 4.0639 5.4609 540 20 22 23 200 100
20 13 3 4.0771 5.4787 540 21 23 24 60 100
21 3 20 0.6710 0.9017 540 22 24 6 20 100
23 24 7 20 500
Table 2 Parameters of the 85 °C/70 °C District Heating Network Within ;2 ;2 ;Z 193% igg
the UoM MED 26 26 il 20 500
Pipe No. | Nodes Length Diameter Heat transfer 27 26 27 40 100
coefficient 28 27 9 20 100
From | To | (m) (mm) Wi€) 29 27 28 40 100
1 0 12 40 219.10 0.4550 30 28 10 100 100
2 12 1 20 168.30 0.3670 3] 28 29 40 100
3 12 13 70 219.10 0.4550 32 29 8 20 100
4 13 2 20 139.70 0.3670 33 30 29 20 100
5 13 14 70 219.10 0.4550 34 30 31 200 100
6 14 15 70 219.10 0.4550 35 31 12 110 100
7 15 5 130 219.10 0.4550 36 36 15 100 100
8 5 25 30 168.30 0.3670 37 15 0 240 100
9 5 16 80 114.30 0.3210
10 16 17 40 76.10 0.2780
1; 1; ‘3‘ 4213 gg;g g:i;?g heat demand of 18 GWh (12-MW peak). In addition,
3 25 91 20 6030 0.2360 13 additional buildings (39 buildings in total) share
14 19 6 10 4830 0.2190 some of the networks with the district and thus must
12 ;(9) 275 ;g 166(;3300 g-gzgg be considered when modeling the integrated electricity-
7 20 9 20 168.30 03670 heat-gas network. The integrated network, see Fig. 19,
18 18 20 40 168.30 0.3670 comprises: 1) the 22-bus 6.6-kV electricity distribution
19 22 18 ] 20 168.30 0.3670 network presented in Table 1; 2) the 27-node 85 °C/70 °C
20 18 21 40 88.90 0.3270 | district  heati twork ted
i 7 : 0 i T (supply/return) distric eating network presente
22 23 22 20 168.30 03670 in Table 2; and 3) the 36-node gas network presented
23 24 23 20 219.10 0.4550 in Table 3 [16]. In its base configuration: the slack
;‘5‘ ﬁ ég 140% 28189'.9100 gfézg nodes, denoted as nodes 0 in the respective networks, are
2% 27 0 10 219.10 04550 connected to the electricity and gas supply points as well
27 26 11 10 219.10 0.4550 as with the largest boiler for the heat network; the MED
imports electricity from the electricity grid (node 0), and
APPENDIX produces heat with 19.2-, 18-, and 4.8-MW gas boilers

THE UoM MED TEST CASE
This section provides a detailed description of the UoM
MED test case used to demonstrate the different topics
covered in this article. The information provided include
the technical data required to simulate the integrated
electricity—heat—gas network, as well as the energy profiles
associated with the different buildings connected to the
networks.

The UoM MED comprises 26 buildings with an annual
electricity demand of 28 GWh (6-MW peak) and an annual

connected to the nodes 0/0, 11/12, and 27/36 of the
heat/gas networks. However, more in general this UoM
MED system is meant to be used as a testbed for the simu-
lation and optimization of alternative DER configurations,
such as those illustrated in this article and in previous
studies [16], [33]. For this purpose, the electricity, heat,
and gas profiles (17 520 half hourly data points for a year)
for each of the 26 buildings of the UoM MED as well as the
additional 13 buildings connected to its energy networks
(39 buildings in total) are provided in [128].
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