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Abstract—Flux balance analysis (FBA) provides a frame-
work for the estimation of intracellular fluxes and energy
balance analysis (EBA) ensures the thermodynamic feasibil-
ity of the computed optimal fluxes. Previously, these tech-
niques have been used to obtain optimal fluxes that maximize
a single objective. Because mammalian systems perform
various functions, a multi-objective approach is needed when
seeking optimal flux distributions in such systems. For
example, hepatocytes perform several metabolic functions
at various levels depending on environmental conditions;
furthermore, there is a potential benefit to enhance some of
these functions for applications such as bioartificial liver
(BAL) support devices. Herein we developed a multi-objec-
tive optimization approach that couples the normalized
Normal Constraint (NC) with both FBA and EBA to obtain
multi-objective Pareto-optimal solutions. We investigated the
Pareto frontiers in gluconeogenic and glycolytic hepatocytes
for various combinations of liver-specific objectives (albumin
synthesis, glutathione synthesis, NADPH synthesis, ATP
generation, and urea secretion). Next, we evaluated the
impact of experimental flux measurements on the Pareto
frontiers. We found that measurements induce dramatic
changes in Pareto frontiers and further constrain the network
fluxes. This multi-objective optimality analysis may help
explain certain features of the metabolic control of hepato-
cytes, which is relevant to the response to hepatocytes and
liver to various physiological stimuli and disease states.

Keywords—Metabolic networks, Energy balance analysis,

Flux balance analysis, Multi-objective optimization, Pareto

optimality, Hepatocytes, Bioartificial liver.

INTRODUCTION

The quantification of intracellular metabolic

fluxes is widely used for investigation of the metabo-

lism in mioorganisms9,10,17–21 and mammalian sys-

tems.1,5–8,11–14,24,25 Flux balance analysis (FBA) uses

stoichiometric and mass balance constraints to com-

pute the intracellular fluxes. Recently, energy balance

analysis (EBA) was developed to ensure the thermo-

dynamic feasibility of the computed fluxes.2–4,23 EBA

imposes the thermodynamic constraints on reaction

fluxes both explicitly and implicitly. Essentially, the

reaction potentials are computed based on the chemi-

cal potentials and then these are used to obtain ther-

modynamic constraints that are based on the first and

second laws of thermodynamics. Thermodynamic

constraints further reduce the feasible solution space

based on stoichiometric constraints alone. Available

measurements, which bring in environmental con-

straints such as certain cell culture conditions, medium

supplements, induced stress and extracellular matrices,

typically limit the feasible solution space even further.

If a sufficient number of measurements is available, the

analysis may yield a unique solution.

Since mammalian systems perform an array of

metabolic functions (protein secretion, detoxification,

energy production), several different objectives need to

be taken into account simultaneously when seeking

optimal fluxes. Typically, several objectives compete

against each other; therefore, only ‘‘Pareto-optimal’’

solutions can be achieved. A solution is said to be

Pareto-optimal if there are no other solutions that can

better satisfy all of the objectives simultaneously.16

Specifically, a Pareto solution is one where any

improvement in one objective necessitates the

worsening of at least one other objective. Non-Pareto-

optimal solutions are sub-optimal and their perfor-

mance is inferior to systems operating and designed

based on Pareto optimality of objectives. The class of

Generate First-Choose Later (GCFL) multi-objective

optimization approaches entails first generating a

representative set of Pareto solutions, and then

choosing the most suitable and appropriate solution
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within this set. The Normal Constraint (NC)

method,15 unlike other popular methods such as the

Normal Boundary Intersection (NBI) method, can

generate complete Pareto frontiers for multi-objective

problems from the full range of Pareto bi-objective

solutions. The NC method essentially generates an

even distribution of Pareto points throughout the

complete Pareto frontier; and it is guaranteed to yield

any Pareto point in the feasible design space. Further,

it is insensitive to objective function scaling, and is

valid for any arbitrary number of design objectives.

Figure 1a shows the reduced feasible space because of

various constraints (stoichiometric, environmental,

and thermodynamic) changes the Pareto surface. As

seen in the figure, the decreased Pareto hypersurface

area ultimately results in the decreased Pareto frontiers

when the hypersurface is projected in two-dimensions.

In the current work, we develop a Normalized

Constraint Energy and Flux Balance Analysis

(NCEFBA) based multi-objective framework for

characterizing the intermediary metabolism of large-

scale metabolic networks. The implementation is gen-

eral and could be easily modified for other metabolic

networks but here it is presented in the context of he-

patic metabolism. In the context of a bioartificial liver

(BAL) device, this multi-objective optimal flux analysis

FIGURE 1. (a) Feasible space reduction due to of the imposed stoichiometric, flux balance, energy balance, and measurement
constraints. The Pareto surface of the feasible space is projected onto the g1g2, g2g3, and g1g3 planes and their corresponding
Pareto frontiers are shown. The mutually orthogonal axes g1, g2, and g3, represent the individual design objectives. (b) Pareto
frontiers and Pareto-optimal solutions shown are for bi-objective maximization and minimization problems.
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could play an important role in: (a) understanding the

underlying mechanisms of perturbing a sub-optimal

hepatic cellular system towards an optimal state, (b)

optimizing hepatocyte functions in an extracorporeal

BAL device, (c) studying the intracellular activity of

liver under various physiological and disease states,

and (d) the preconditioning and preservation of donor

livers. The presented multi-objective optimization

platform NCEFBA couples the normalized NC

method with both FBA and EBA to obtain multi-

objective Pareto-optimal solutions.

Here the NCEFBA method was implemented to

investigate Pareto-optimal solutions for the hepatic

metabolic network under both gluconeogenic and gly-

colytic conditions. We analyzed various combinations

of liver-specific objectives (albumin synthesis, gluta-

thione synthesis, NADPH synthesis, ATP generation,

and urea secretion). Next, the sensitivity to available

measurements of these Pareto frontiers and changes in

objective inter-optimality is presented. Noticeably,

measurements induced dramatic changes in Pareto

frontiers and further constrained the network fluxes.

THEORY

Metabolic Flux Analysis

The stoichiometric coefficients of the metabolic

reactions are collected into a matrix S, where each

element sij is the coefficient of metabolite i in reaction j.

S has dimensions of M � N, where M is the number of

metabolites and N is the number of reactions. In ma-

trix form the mass balance is written as:

dx

dt
¼ SJ; ð1Þ

where each element xi of x is the intracellular concen-

tration of metabolite i and element Ji of J is the net rate

of conversion in reaction j. External metabolite fluxes

are generally measured (e.g., uptake of glucose, lactate,

amino acids). Because of the very high turnover of the

intracellular pools of most intracellular metabolites, the

time scale of the intracellular metabolic reactions is

short compared to other cellular reactions. Hence, the

pseudo steady state assumption is generally applied to

the metabolite mass balances and thus

Stoichiometric Equality Constraints for Unmeasured

Fluxes

SJ ¼ 0 (Mass Balance ConstraintÞ ð2Þ

Stoichiometric Equality Constraints for Measured

Fluxes

SuJu ¼ �SmJm ðMass Balance ConstraintÞ ð3Þ

where Jm and Ju indicates measured and unmeasured

fluxes, respectively, and Sm and Su contain the stoi-

chiometric coefficients of measured and unknown

reactions, respectively.

A previously described hepatic metabolic net-

work5–8 includes all of the major intracellular path-

ways that account for the majority of central carbon

and nitrogen metabolism found in hepatocytes, namely

the tricarboxylic acid (TCA) and urea cycles, the glu-

coneogenic and glycolytic pathways, the pentose

phosphate shunt, pathways of entry, transamination,

and deamination of amino acids, protein synthesis, and

the major components of lipid metabolism, including

triglyceride synthesis and breakdown and b-oxidation

of fatty acids, in addition to amino acid synthesis and

apolipoprotein degradation. The current hepatic met-

abolic network model (Table 1) includes a few addi-

tional reactions, namely those of the 3-

phosphoglycerate cycle as it is involved in glycerol

production and glutathione synthesis reaction, which

results in a total of 81 reactions (as compared to 76

reactions in the previous model) and 47 metabolites

(Table 2). Glutathione is an important mediator in

detoxification reactions of hepatocytes. The model

assumes pseudosteady-state with no metabolic futile

cycles. These assumptions are discussed in detail else-

where.5–8

Energy Balance Analysis

Energy Balance Analysis imposes constraints based

on law of thermodynamics on the cellular reaction

networks.2,3 For any reaction set, if stoichiometry is

represented by matrix S, l denotes an M-dimensional

vector of chemical potentials, Dl denotes the N-dimen-

sional vector of reaction potentials, then these potentials

can be computed as Dl ¼ STl. The null space matrix of

S (for r linearly independent rows, with r � N) is

denoted byK and forms a basis for the null space ofS, so

that SK = 0. The product of the null space K of the

stoichiometric S with the chemical potential difference

gives the energy balance equation as KDl ¼ 0. This

balances the global potential energy of the network. The

first law of thermodynamics necessitates energy con-

servation, which then leads to an equality constraint as

KT
Dl ¼KTSTl ¼ 0

ðFirst Law of Thermodynamics-based

Energy Equality ConstraintÞ

ð4Þ

This constraint requires that the sum of reaction

potentials around any cycle of reactions equals zero,

which is similar to Kirchoff’s voltage or loop law of

electrical circuit theory, and is known as the energy

balance constraint of EBA.2–4 The second law of
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TABLE 1. Hepatic stoichiometric reactions.

No Stoichiometry

1 F6P fi G6P Gluconeogenesis

2 F16P2 + H2O fi F6P + Pi

3 2 G3P fi F16P2

4 3Pglyc + NADH + H+ + ATP M G3P + Pi + NAD+ + ADP

5 PEP M 3Pglyc

6 oac + GTP fi PEP + GDP + CO2

7 pyr + CO2 + ATP + H2O fi oac + ADP + Pi +2 H+

1 G6P fi F6P Glycolysis

2 F6P + Pi fi F16P2 + H2O

3 F16P2 fi 2 G3P

4 G3P + Pi + NAD+ + ADP fi 3Pgyc + NADH + H+ + ATP

5 3Pgyc fi PEP

6 PEP + ADP fi pyr + ATP

7 pyr + CoA + NAD+
fi acCoA + CO2 + NADH

8 oac + acCoA + H2O fi ctt+ CoASH

9 ctt +NADþ $ a kgl + CO2 + NADH + H+

10 akgl + NAD+ + CoASH fi sucCoA + CO2 + NADH + H+

11 sucCoA + Pi + GDP + FAD M fum + GTP + FADH2 + CoASH

12 fum + H2O M mal

13 mal + NAD+
M oac + NADH + H+

14 ctr + asp + ATP fi arg + fum + AMP + PPi

15 orn + (CO2 + NH4
+ + 2 ATP) + H2O fi ctr+ 2 ADP + 2 Pi + 3 H+

16 arg + H2O fi urea + orn

17 ala + 0.5 NAD+ + 0.5 NADP+ + H2O M pyr + NH3 + 0.5 NADH + 0.5 NADPH + H+

18 ser fi pyr + NH3

19 cys + 0.5 NAD+ + 0.5 NADP+ + H2O + SO3
2)
M pyr + thiosulfate + NH4

+

+ 0.5 NADPH + 0.5 NADH

20 thr + NAD+ + ATP + CoASH fi gly + acCoA + NADH + H+ + AMP + PPi

21 thr + NAD+ + CoASH fi propCoA + CO2 + NADH + H+ + NH3 + H2

22 2 gly + NAD+ + THF + H2O M NTHF + H+ + CO2 + NH4
+ + ser + NADH

23 3Pglyc + NAD+ + glu + H2O fi NADH + H+ + akgl + ser + Pi

24 trp + 3 O2 + 4 H2O + 2 NAD+ + FAD + CoASH fi Formate + ala + 2 CO2 + NH3

+ 3 NADH + FADH2 + HCO3
) + acacCoA

25 propCoA + CO2 + ATP fi ADP + Pi + sucCoA

26 lys + 2 akgl + 2 NAD+ + CoASH + FAD + 2 H2O + NADP+
fi CO2 + NH3

+ acacCoA + 5 NADH + FADH2

27 phe + O2 + H4biopterin + H+
fi tyr + H2O + H2biopterin

28 tyr + akgl + 2 O2 + H2O fi glu + CO2 + fum + acac

29 pro + 0.5 O2 + 0.5 NAD+ + 0.5 NADP+
fi glu + 0.5 NADH + 0.5 NADPH + H+

30 his + H4folate + 2 H2O fi NH4
+ + N5, N10-CH2-H4folate + glu

31 met + ATP + ser + NAD+ + H2O + CoASH fi PPi + Pi + adenosine + cys + NADH

+ H+ + CO2 + NH4
+ + propCoA

32 val + akgl+3 NAD+ + 2 H2O + FAD + CoA fi glu + 2 CO2 + 3 NADH + 2 H+

+ FADH2 + CO2 + propCoA

33 iso + akgl + H2O + 2 NAD+ + FAD + 2 CoASH fi glu + CO2 + 2 NADH + 2H+

+ FADH2 + acCoA + propCoA

34 leu + akgl + H2O + NAD+ + FAD + ATP + CoASH + HCO3
)

fi glu + CO2 + NADH

+ H+ + FADH2 + acCoA + acac + ADP + Pi

35 oac + glu M akgl + asp

36 asn + H2O fi asp + NH3

37 glu + 0.5 NAD+ + 0.5 NADP+ + H2O M NH4
+ + akgl + 0.5 NADPH + 0.5 NADH + H+

38 orn + NAD+ + NADP+ + H2O fi glu + NH4
+ + NADH + NADPH + H+

39 gln + H2O fi glu + NH4
+

40 palm + ATP + 7 FAD + 7 NAD+
fi 8 acCoA + 7 FADH2 + 7 NADH + AMP + PPi Gluconeogenesis

40 8 acCoA + 7 ATP + 14 NADPH + 14 H+
fi palm + 8 CoA + 6 H2O + 7 ADP + 7Pi + 14 NADP+ Glycolysis

41 2 acCoA M acacCoA + CoA

42 acacCoA + H2O fi acac + CoA
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thermodynamics takes the form of an inequality con-

straint for each flux as �JiDli � 0. However, this

equation is written in terms of net fluxes. Beard et al.3

compute the net flux distribution through the reaction

network by introducing the concept of reversibility of

each reaction which entails defining the non-negative

forward and reverse reaction fluxes, J+ and J
)

respectively, with jth entries representing the one-way

fluxes through the jth reaction. The vector of net flux

distribution through the reaction network can be then

computed as J ¼ Jþ � J�, which is then used to com-

pute the jth reaction potential as

Dlj ¼ RT ln
J j
�

J
j
þ

 !

ð5Þ

where R is the ideal gas constant and T is the tem-

perature.

This relationship leads directly to the second law of

thermodynamics, i.e.,

� J j
Dl j ¼ �RT J

j
þ � J j

�

� �

ln
J j
�

J
j
þ

 !

� 0

ðSecond Law of Thermodynamics-based

Energy Inequality ConstraintÞ

ð6Þ

which says that the system must dissipate heat, and

entropy must increase as a result of the work being

done on the system through the external fluxes. For

equilibrium systems, this is an equality since for these

systems Jj ¼ Dlj ¼ 0.

TABLE 1. Continued.

No Stoichiometry

43 NADH + H+ + 0.5 O2 + 3 ADP fi NAD+ + H2O + 3 ATP

44 FADH2 + 0.5 O2 + 2 ADP fi FAD + H2O + 2 ATP

45 gol + NAD+ + ATP M G3P + NADH + H+ + ADP + Pi

46 G6P + 12 NADP+ + 7 H2O fi 6 CO2 + 12 NADPH + 12 H+ + Pi

47 24 arg + 32 asp + 61 ala + 24 ser + 35 cys + 57 glu + 17 gly + 21 tyr + 33 thr + 53 lys

+ 26 phe + 25 gln + 30 pro + 15 his + 6 met + 20 asn + trp + 35 val + 13 iso + 56 leu

+ 2332 ATP fi albumin + 2332 ADP + 2332 Pi

48 glu + 2 ATP + cys + gly + NADPH fi GSH + 2 ADP + 2 Pi + NADP+ + H+

49 gol + 3 acCoA + H2O + ATP fi 3 CoASH + Pi + TG + ADP + Pi

50 lactate + NAD+
M pyr + NADH + H+

51 acac + NADH + H+
M b-OH-butyrate + NAD+

52 TG + 3 H2O fi gol + 3 palm + 3 H+

53 G6P release

54 gol uptake

55 palm release

56 cholesterol ester + H2O fi cholesterol + palm

57 TG stored

58 trp uptake

59 O2 uptake

60 pro uptake

61 glu secretion

62 asn uptake

63 orn secretion

64 arg uptake

65 NH4
+ uptake

66 ala uptake

67 ser uptake

68 gly uptake

69 asp uptake

70 acac production

71 thr uptake

72 lys uptake

73 phe uptake

74 his uptake

75 met uptake

76 val uptake

77 iso uptake

78 leu uptake

79 gln uptake

80 cys uptake

81 tyr uptake

Integrated Energy and Flux Balance 867



The other inequality constraint is obtained for

energy balance by ensuring that the total heat dissi-

pation rate of the living system is always positive as

indicated by

hdr ¼ �JTDl > 0

ðInequality Heat Dissipation ConstraintÞ
ð7Þ

Since, hdr ! 0 in the limit as J�=Jþ ! 1 compo-

nent-wise while maintaining J ¼ Jþ � J� so to prevent

this physically unrealistic possibility, an additional

inequality constraint

hdrð Þlb� hdr � hdrð Þub
ðInequality Heat Dissipation ConstraintÞ

ð8Þ

is also imposed as part of energy balance analysis.

Pareto Optimality

Table 3 shows some of the definitions and mathe-

matical formulation of the generic terms involved in

multi-objective optimization. The mathematical rep-

resentation of the generic multi-objective optimization

problem is as follows.

Problem P1

min
x

g1 xð Þ; g2 xð Þ; . . . ; gn xð Þf g ðn � 2Þ ð9aÞ

subject to:

fj xð Þ � 0 ð1 � j � rÞ ð9bÞ

hk xð Þ ¼ 0 ð1 � k � sÞ ð9cÞ

xl � xi � xu ð1 � i � nxÞ ð9dÞ

where the vector x denotes the design variables and gi
denotes the ith objective function. Equations (9b)–

(9d) denote the inequality, equality and side con-

straints, respectively. Problem P1 does not yield a

unique solution on its own, as it requires a preference

or prioritization of objectives to obtain a single

optimum solution. The NC method requires anchor

points, gi*, or optimum vertices to obtain the desired

optimal solutions. The ith anchor point (or end point)

is obtained when the generic ith objective is mini-

mized independently. Figure 1b presents a schematic

of a Pareto set for a bi-objective problem. If the de-

sign metric g1 alone is optimized (maximized), then

the optimal value is g�1ðP1Þ. Similarly, if the design

metric g2 alone is optimized, then the optimal value is

g�2ðP2Þ. Here g�1 and g�2 are the anchor values for de-

sign metrics g1 and g2, respectively. The ideal or

Utopian solution (g�1, g
�
2) obtained by the individual

maximization of the objective functions is generally

not a feasible solution of the multi-objective optimi-

zation problem. The arc joining points P1 and P2 is

the Pareto frontier that represents the optimal

tradeoff solutions. Generally, the desired solution can

be chosen from the Pareto set; the line joining two

anchor points in bi-objective cases, the utopia line,

and the plane that comprises all anchor points in the

multi-objective case, the utopia hyper plane. The an-

chor points are obtained by solving Problem PUi,

defined as follows.

TABLE 2. List of metabolites.

No Symbol Metabolite

1 G6P Glucose-6-phosphate

2 F6P Fructose-6-phosphate

3 F16P2 Fructose-1,6-biphosphate

4 G3P Glyceraldehyde-3-phosphate

5 PEP Phosphoenolpyruvate

6 oac Oxaloacetate

7 pyr Pyruvate

8 ctt Citrate

9 akgl a-Ketoglutarate

10 sucCoA Succinyl-CoA

11 fum Fumarate

12 mal Malate

13 arg Arginine

14 orn Ornithine

15 ctr Citrulline

16 NH4
+ Ammonium

17 asp Aspartate

18 his Histidine

19 glu Glutamate

20 gln Glutamine

21 met Methionine

22 thr Threonine

23 val Valine

24 iso Isoleucine

25 phe Phenylananine

26 trp Tryptophan

27 lys Lysine

28 tyr Tyrosine

29 ala Alanine

30 asn Asparagine

31 pro Proline

32 cys Cysteine

33 ser Serine

34 gly Glycine

35 propCoA Propionyl-CoA

36 acCoA Acetyl-CoA

37 palm Palmitate

38 acacCoA Acetoacetyl-Coa

39 acac Acetoacetate

40 gol Glycerol

41 NADH Nicotinamide adenine dinucleotide, reduced form

42 NADPH Nicotinamide adenine dinucleotide phosphate,

reduced form

43 FADH2 Flavin adenine dinucleotide, reduced form

44 O2 Oxygen

45 leu Leucine

46 3Pglyc 3-Phosphoglycerate

47 TG Triglyceride
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Problem PUi

min
x

gi xð Þf g ð1 � i � nÞ ð10aÞ

subject to:

fj xð Þ � 0 ð1 � j � rÞ ð10bÞ

hk xð Þ ¼ 0 ð1 � k � sÞ ð10cÞ

xl � xi � xu ð1 � i � nxÞ ð10dÞ

Normal Constraint Method

The NC method is based on the design space

reductions using reduction constraints. The reduction

constraint is constructed by ensuring the orthogonality

by constructing the dot product between the normal ~w
and r0 an arbitrary point on a plane. The vector

equation of a plane is expressed as

~w � r� r0ð Þ ¼ 0 ð11Þ

To solve for multi-objective solutions, a reduced

feasible space is constructed using the above equation

as

~w � r� gð Þ � 0 ð12Þ

where g is any point in the feasible space. Figure 2a

shows the non-normalized design space and the

Pareto frontier of a bi-objective problem. Figure 2b

represents the normalized Pareto frontier in the nor-

malized design space. In the normalized objective

space, all anchor points are one unit away from the

TABLE 3. Definitions and mathematical formulations of some of the relevant multi-objective optimization keywords used
in this paper.

Terms Mathematical formulation Definition

Multi-objective

optimization

Problem P1

min
x

g1 xð Þ;g2 xð Þ; . . . ;gn xð Þf g ðn � 2Þ

subject to

fj xð Þ � 0 ð1 � j � rÞ
hk xð Þ ¼ 0 ð1 � k � sÞ
xl � xi � xu ð1 � i � nx Þ

The vector x denotes the design variables

and gi denotes the ith objective function

A multi-objective optimization is a problem involving several

competing objectives and constraints. The solution of this

problem is considered the best solution that satisfies the

conflicting objectives

Pareto solution Solutions joining the anchor points and

part of the feasible space

A Pareto solution is one where any improvement in one

objective can only take place at the cost of another objective.

A Pareto set is a set of Pareto-optimal solutions

Design parameters The vector x denotes the design parameters A design parameter is a parameter over which the designer

has direct control. Other terms used in the literature for design

parameters include decision variables, design variables or

decision parameters

Design metric The variable g(x) denotes the vector of

design metrics

A design metric refers to an objective measure of a design

attribute. Other commonly used terms are objective functions,

design criterion, figure-of-merit, goal and performance metric

Design constraint fj xð Þ � 0 ð1 � j � rÞ
hk xð Þ ¼ 0 ð1 � k � sÞ
xl � xi � xu ð1 � i � nx Þ

A design constraint indicates the lower or upper bounds in the

design metrics or design parameters

Anchor value Problem PUi

min
x

gi xð Þf g ð1 � i � nÞ

subject to

fj xð Þ � 0 ð1 � j � rÞ
hk xð Þ ¼ 0 ð1 � k � sÞ
xl � xi � xu ð1 � i � nx Þor

g i� ¼ g1 x i�
� �

g2 x i�
� �

. . .gn x i�
� �� �T

where x i� ¼ argfmin gi xð Þg

The value obtained for a particular design objective if that

design metric alone is optimized, given the bounds on the

design parameters

Nadir point gN ¼ gN
1 gN

2 n
N

� �T
where gN

i is

defined as gN
i ¼ max

x
gi xð Þ

A point in the design space where all the objectives are

simultaneously at their worst values
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utopia point, and the utopia point is at the origin. A

bar over a variable implies that it is normalized. The

two anchor points denoted by g�1 and g�2, are obtained

by successively minimizing the first and second design

metrics (Problem PUi) by solving Problem PU1 and

PU2 respectively. The line joining these two points is

the utopia line. The actual optimization takes place in

the normalized design metric space. Let �g be the nor-

malized form of g and gu, the utopia point defined as

gu ¼ g1 x1�
� �

g2 x2�
� �� �T

ð13Þ

and ‘1 and ‘2 be the distances between g2� and g1�, and

the Utopia point, gu, respectively (Fig. 2a). Then

‘1 ¼ g1 x2�
� �

� g1 x1�
� �

ð14Þ

‘2 ¼ g2 x1�
� �

� g2 x2�
� �

ð15Þ

The normalized design objectives can then be eval-

uated as

�gT ¼
g1 xð Þ � g1 x1�

� �

‘1

g2 xð Þ � g2 x2�
� �

‘2

� �

ð16Þ

�N1 is defined as the direction from �g1� to�g2�, yielding

�N1 ¼ �g2� � �g1� ð17Þ

Next, the utopia line is divided into m1 ) 1 seg-

ments, resulting in m1 points. A normalized increment,

d1 along the direction �N1 for a prescribed number of

solutions, m1, is obtained as

d1 ¼
1

m1 � 1
ð18Þ

As seen in Fig. 2b, the next step involves generat-

ing a set of evenly distributed points on the utopia

line as

�XPj ¼ a1j�g
1� þ a2j�g

2� ð19aÞ

where

0 � a1j � 1 ð19bÞ

X

2

k¼1

akj ¼ 1 ð19cÞ

FIGURE 2. Steps involved for obtaining bi-objective Pareto-optimal solutions using the Normalized Normal Constraint method for
minimization. The mutually orthogonal axes g1 and g2 represent the individual design objectives. (a) Pareto frontier for a mini-
mization problem and the anchor points obtained using non-linear optimization; (b) the usage of anchor points to work in a
normalized objective space; (c) drawing the utopia line and constructing evenly spaced points on the utopia line; (d) constructing
the normal on the utopia line and reducing the feasible space.
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and a1j is incremented by d1 between 0 and 1 (Fig. 2c),

with values of j as j 2 f1; 2; . . . ;m1g.
Figure 2c shows one of the generic points intersecting

the segments used to define a normal to the utopia line.

This normal line is used to reduce the feasible space as

indicated in Fig. 2d. As can be seen, if we minimize �g2
the resulting optimum point is �g2�. By translating the

normal line, we can see that a corresponding set of

solutions will be generated. This is essentially done by

generating a corresponding set of Pareto points by

solving a succession of optimization runs of ProblemP2.

Each optimization run corresponds to a point on the

utopia line. Specifically, for each generated point on the

utopia line, solve for the jth point.

Problem P2 (for jth point)

min
x

�g2 xð Þf g ð20aÞ

subject to:

fj xð Þ � 0 ð1 � j � rÞ ð20bÞ

hk xð Þ ¼ 0 ð1 � k � sÞ ð20cÞ

xl � xi � xu ð1 � i � nxÞ ð20dÞ

�N1 �g� �XPj

� �T
� 0 ð20eÞ

This results in a set of vectors for the design parameters,

one vector x for eachPareto point. Then, design objectives

are computed by evaluating the non-normalized design

metrics that correspond to each Pareto point. The non-

normalized design objectives can be obtained through an

inverse mapping of Eq. (16) by using the relation

g ¼ �g1‘1 þ g1 x1�
� �

�g2‘2 þ g2 x2�
� �� �T

ð21Þ

Importantly, we note that the generation of the set of

Pareto points is performed in the normalized objective

space, which results in critically beneficial scaling

properties. Since some of the points generated in some

pathological cases will be dominated by other points in

the set, we use a Pareto filter (Table S1) to finally

compute the true Pareto-optimal solutions. This filter

compares a point generated on the Pareto frontier with

every other generated point. If a point is not globally

Pareto, it is discarded. The steps involved and the

essential mathematical formulation for the NC method

for an n-objective case are presented in Table 4.

TABLE 4. Normalized Normal Constraint Method for n-objective.

STEP Functions Formulations

1 Anchor points Obtain the anchor points, gi* for i 2 f1; 2; . . . ng, by solving Problem PUi. Define hyperplane, as the

one that comprises all the anchor points. This plane is called the utopia hyperplane (or, utopia plane)

2 Objectives mapping/

normalization

Compute the Nadir points and Utopia Points. Define L asL ¼ ‘1‘2 . . . ‘n½ �T¼ gN � gu , t

hat leads to the normalized design metrics as�gi ¼
gi�gi x i�ð Þ

‘i
i ¼ 1;2; . . . ;n,

3 Utopia plane vector Define the direction, �Nk from �gk� to �gn� for k 2 f1;2; . . . ;ng as �Nk ¼ �gn� � �gk�

4 Normalized increments Compute a normalized increment, dk along the direction �Nk for a prescribed number

of solutions, mk, along the associated �Nk direction: dk ¼ 1
mk�1

ð1 � k � n � 1Þ

5 Generate utopia

hyperplane points

Evaluate a set of evenly distributed points on the Utopia hyperplane as �Xpj ¼
P

n

k¼1

akj �g
k�

where 0 � akj � 1 and
P

n

k¼1

akj ¼ 1. Figure 1c describes how generic points are generated in

the utopia plane, where two planes serve as constraints. Figure 2c shows the resulting uniformly

distributed points on the utopia plane for a two-dimensional case in the normalized objective space

6 Pareto points

generation

A set of well-distributed Pareto solutions in the normalized objective space. For each value of �Xpj generated

in Step 5, the corresponding Pareto solution is obtained by solving the following problem:

Problem Pn

min
x

�gn xð Þf g

Subject to:

fj ðxÞ � 0 ð1 � j � rÞ
hk ðxÞ ¼ 0 ð1 � k � sÞ
xl � xi � xu ð1 � i � nx Þ

�Nk ð�g � �XPj Þ
T � 0 ð1 � k � 1Þ

7 Pareto design

metrics values

The design metrics values for the Pareto solutions obtained in Step 6 can be obtained

using the equation gi ¼ �gi ‘i þ g i x i�
� �

; i ¼ 1; 2; . . . ;n
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Normal Constraint Energy and Flux Balance Analysis

(NCEFBA)

This section combines FBA, EBA, and NC con-

straints. In the combined EBA and FBA, non-linear

thermodynamic constraints analogous to electrical

circuit system constraints are included with the linear

FBA constraints. The addition of non-linear thermo-

dynamic constraints leads to a non-linear optimization

problem. To avoid repetition in the presented NC

method we will show here only the fluxes that are

changed in the previously presented NC. There are

changes in anchor points which lead to a different

utopian hyperplane. Further, both FBA and EBA

constraints are added to the NC formulation with the

optimized quantity being the desired fluxes as objec-

tives.

Computation of the Utopia hyperplane: The anchor

points for NCEFBA are obtained by solving the

Problem PUi, which is now defined as follows:

Problem PUi

min
x

gi xð Þf g ð1 � i � nÞ ð22aÞ

subject to:

SuJu ¼ �SmJm ð22bÞ

KT
Dl ¼ KTSTl ¼ 0 ð22cÞ

J ¼ Jþ � J� ð22dÞ

�JjDlj ¼ �RT J
j
þ � Jj�

� �

ln
Jj�

J
j
þ

 !

� 0 ð22eÞ

hdr ¼ �JTDl > 0 ð22fÞ

hdrð Þlb� hdr � hdrð Þub ð22gÞ

Jlb � J � Jub ð22hÞ

0 � Jþ � 1 ð22iÞ

0 � J� � 1 ð22jÞ

Jextlb � Jext � Jextub ð22kÞ

Dllb � Dl � Dlub ð22lÞ

where vector x is defined as

xT ¼ JT DlT JTþ JT�
� �

ð22mÞ

and the boundary constraints are meant to be satisfied

component-wise.

Computation of Pareto points: Once anchor points

are obtained, a set of well-distributed Pareto solutions

are generated in the normalized objective space, by

solving Problem Pn:

Problem Pn (for jth point)

min
x

�gn xð Þf g ð23aÞ

subject to:

SuJu ¼ �SmJm ð23bÞ

KT
Dl ¼ KTSTl ¼ 0 ð23cÞ

J ¼ Jþ � J� ð23dÞ

�JjDlj ¼ �RT J
j
þ � Jj�

� �

ln
Jj�

J
j
þ

 !

� 0 ð23eÞ

hdr ¼ �JTDl > 0 ð23fÞ

hdrð Þlb� hdr � hdrð Þub ð23gÞ

Jlb � J � Jub ð23hÞ

0 � Jþ � 1 ð23iÞ

0 � J� � 1 ð23jÞ

Jextlb � Jext � Jextub ð23kÞ

Dllb � Dl � Dlub ð23lÞ

�Nk �g� �XPj

� �T
� 0 ð1 � n� 1Þ ð23mÞ

where vector x is defined as

xT ¼ JT DlT JTþ JT�
� �

ð23nÞ

and the boundary constraints are meant to be satisfied

component-wise.

The combined algorithm NCEFBA was imple-

mented in MATLAB (Mathworks Inc.) and all simu-

lations were run on a PENTIUM 3.0 GHZ dual

processor. For whole genome-scale applications the

presented algorithm can be easily implemented using

parallel computing in High Performance Fortran 90.16

Hepatic Function Specific Fluxes for Pareto

Optimization

The main goal that we wish to achieve in the

BAL device is for hepatocytes to perform at the highest

level of liver-specific functions. Therefore, for hepatic
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metabolic optimization, the set of objective functions

maximizing urea, albumin, NADPH, and glutathione

synthesis, ATP generation are chosen. NADPH, which

is produced in the pentose phosphate pathway (PPP),

is primarily used in non-proliferating hepatocytes for

cytochrome p450 dependent oxidation reactions

(detoxification reactions) and glutathione synthesis.

Hence, to increase the NADPH flux, the NADPH-

generating oxidative branch of the PPP represented in

a lumped fashion as reaction 46 (Table 1) is maxi-

mized. As a marker of secretory liver-specific function,

we use albumin synthesis, which is maximized by

modulating flux 47. Urea synthesis is primarily derived

from ammonia and aspartate generated through

transamination reactions and is maximized by modu-

lating reaction 16. The tripeptide glutathione (GSH,

c-Glu-Cys-Gly) is an important reductant and has

many detoxifying and cytoprotective effects. The syn-

thesis of glutathione is increased by maximizing reac-

tion 48. The ATP generation is maximized by

increasing the TCA cycle fluxes (11, 43, 44). Figure 3

presents the comprehensive hepatic metabolic network

with all the cycles shown with each reaction and the

constraints for this metabolic network are listed in

Table S2. The complexity of the hepatic metabolic

network shown in Fig. 3, is due to the various
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FIGURE 3. Hepatic metabolic network showing the linkages among the various metabolites.
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inter-connected cycles (urea cycle linked with TCA

cycle; TCA cycle linked with fatty acids oxidation;

linkage of Pentose Phosphate Pathway with both glu-

coneogenesis and glycolysis) and the dependence of

hepatocyte specific objectives (albumin synthesis, urea

secretion, NADPH synthesis, ATP generation, gluta-

thione synthesis) on all of the cycles. Specifically, any

change induced in one objective alters the availability

of substrates for other objectives resulting in a tradeoff

or competing behavior in various objectives. It is

important to emphasize that the more branched the

network, the higher the tradeoff between various

objectives.

RESULTS

Pareto-optimal solutions are accepted solutions of

multi-objective optimization problems, and can serve

as a useful tool to understand the underlying tradeoffs

between conflicting design objectives and cellular

phenotypes. Pareto optimality analysis has been

applied to numerous disciplines and more recently to

cellular systems.22 As mentioned earlier, usage of FBA

alone can lead to thermodynamically infeasible fluxes.

Consequently, we chose to combine both FBA and

EBA constraints with Pareto optimality to optimize

hepatocellular function in the context of a BAL device.

As part of this analysis, we first obtained Pareto

frontiers between various bi-objective combinations of

liver-specific functions (albumin synthesis, urea secre-

tion, NADPH synthesis, GSH synthesis, and ATP

generation). This was done for hepatocytes in a glu-

coneogenic state and in a glycolytic state. Next, for a

representative case, i.e., ATP generation vs. urea

secretion, we compared the Pareto frontier using

NCEBFBA (i.e., both FBA and EBA) with FBA

alone. Lastly, we obtained the Pareto solutions in the

presence of measurement constraints. The experimen-

tally measured flux data for gluconeogenic and glyco-

lytic state were taken from Chan et al.,5,6 respectively.

Pareto Frontiers of Liver-Specific Functions

Pareto optimality analysis here is carried out first

in gluconeogenic hepatocytes (Fig. 4) and then for
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FIGURE 4. Pareto frontiers for bi-objective problems in hepatocytes operating in a gluconeogenic mode. Five major hepatic
functions were considered: albumin, urea, ATP, NADPH, and glutathione synthesis. (a) Albumin vs. urea synthesis; (b) glutathione
vs. albumin synthesis; (c) NADPH vs. albumin synthesis; (d) glutathione vs. urea synthesis; (e) ATP vs. albumin synthesis; (f) ATP
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are selected Pareto solutions for which flux distributions are shown in Table S3.
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glycolytic hepatocytes (Fig. 6). This distinction was

necessary because the hepatic metabolic network used

in each case is different. Note that in both figures, the

same panels analyze the same objectives to facilitate

the comparison of results obtained in the gluconeo-

genesis and glycolysis modes. For each Pareto curve

shown in Fig. 4 for gluconeogenic hepatocytes, Fig. 5

shows the relative flux changes that are necessary when

switching objective priority. This information is sum-

marized in Table 5, where important groups are clus-

tered together. Similarly, for each Pareto curve shown

in Fig. 6 for glycolytic hepatocytes, Fig. 7 and Table 6

summarize the flux changes that are necessary when

switching objective priority. Supplementary Tables S3

and S4 provide the comprehensive set of flux data that

are summarized in Figs. 4 and 6, respectively.

The bi-objective Pareto-optimal solutions were first

obtained using the NCEFBA approach for various

binary combinations of liver-specific objectives in glu-

coneogenic hepatocytes (Fig. 4). The Pareto frontiers

for albumin synthesis vs. urea secretion, glutathione

synthesis vs. albumin synthesis, NADPH synthesis vs.

albumin synthesis, glutathione synthesis vs. urea

secretion, ATP generation vs. albumin synthesis, and

ATP generation vs. urea secretion are shown in

Figs. 4a–4f, respectively.

As seen in Fig. 4, all of these objectives have a

tradeoff region with each other. For example, we

cannot have both albumin and urea synthesis at their

maximal values. Additionally, there is a tradeoff

between other liver-specific functions such as GSH

and albumin synthesis, NADPH and albumin
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FIGURE 5. Distribution of flux changes when moving along the Pareto surface in Fig. 4: (a) % Flux changes from point A to point
B in Fig. 4a; (b) % Flux changes from point C to point D in Fig. 4b; (c) % Flux changes from point E to point F in Fig. 4c; (d) % Flux
changes from point G to point H in Fig. 4d; (e) % Flux changes from point I to point J in Fig. 4e; (f) % Flux changes from point K to
point L in Fig. 4f. The corresponding flux values are in Table S3. Note that the % flux changes for all figures are on y-axis and the
corresponding reaction flux number is shown on the horizontal axis. Only changes up to 100% are shown in the figure.
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synthesis, GSH synthesis and urea secretion, ATP

synthesis and albumin synthesis, and ATP synthesis

and urea secretion. As seen in these figures, the

tradeoff region or range of Pareto-optimal solutions

(how far the optimal value is from the ‘‘anchor va-

lue’’) for albumin synthesis is very high compared to

NADPH, GSH and ATP synthesis and urea secre-

tion. Several other combinations were also tested and

all of them indicated Pareto optimality between

various objectives (data not shown). Figure 5 pre-

sents the metabolic flux profiling of Pareto-optimal

fluxes throughout the tradeoff region, which shows

the changes required in flux values and direction

(i.e., increasing or decreasing) as the objective pref-

erence is changed from one objective to another. The

corresponding flux values for these cases are pre-

sented in Table S3.

The Pareto frontiers for various binary combina-

tions of objectives were also obtained for glycolytic

hepatocytes (Fig. 6). As in the case of gluconeogenic

hepatocytes, these objectives have a tradeoff region

with each other, and some objectives change over a

wide range (e.g., albumin, urea, and GSH) while some

change only little (NADPH and ATP). Figure 7 pre-

sents the metabolic flux profiling of Pareto-optimal

fluxes throughout the tradeoff region, which shows the

changes required in flux values and direction (i.e.,

increasing or decreasing) as the objective preference is

changed from one objective to another. The corre-

sponding flux values for these cases are presented in

Table S4.

Figure 4a examines the tradeoff between albumin

and urea secretion in gluconeogenic hepatocytes.

Many flux changes were required to go from Pareto-

optimal solutions ‘‘A’’ to ‘‘B’’ in Fig. 4a, in other

words, when going from a state of high-albumin/low-

urea secretion rate to a low-albumin/high-urea secre-

tion rate. As seen in Fig. 5a and summarized in

Table 5, this change required increasing marginally

gluconeogenic fluxes (1–9), increasing moderately urea

cycle fluxes (14–15), decreasing formation of glutamate

(38–39), increasing oxidation of triglycerides (52),

decreasing uptake of both glucogenic (proline, 60;

serine, 67; aspartate, 69; threonine, 71; phenylalanine,

73; methionine, 75; valine, 76; isoleucine, 77; gluta-

mine, 79, tyrosine, 81) and ketogenic (lysine, 72; leu-

cine, 78) amino acids, with the exception of glycine (34)

uptake, which was increased. Arginine (64) uptake rate

did not change because it was at its maximum at both

optimal points. Histidine (18) uptake increased

because it results in an increase of a-ketoglutarate. The

uptake of pyruvate-forming amino acids (alanine, 66;

serine, 67; and threonine, 71), fumarate-forming amino

acids (phenylalanine, 73; and tyrosine, 81), and succi-

nyl CoA-forming amino acids (methionine, 75; valine,T
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76; and threonine, 71), which play a major role in

albumin synthesis, were decreased.

When considering the tradeoff between albumin and

urea secretion in glycolytic hepatocytes (Figs. 6a and

7a), the main difference with the case of gluconeogenic

hepatocytes was in the b-oxidation flux which was

higher in gluconeogenesis and decreased in glycolysis.

This is expected because glycolysis is dominant in the

fed state and gluconeogenesis in the fasted state. Fur-

ther, the production of ketone bodies through b-oxi-

dation occurs mostly in the fasted state.

Next, we investigated the tradeoff between gluta-

thione and albumin synthesis in gluconeogenic he-

patocytes. The Pareto curve is shown in Fig. 4b. Going

from Pareto-optimal solutions ‘‘C’’ to ‘‘D’’ also re-

quired many flux changes, which are reported in

Fig. 5b and Table 5. There was a marginal increase in

urea cycle fluxes (14–15), a decrease in lipid uptake (52)

and lipid stored (57), and a significant increase in

aspartate uptake (69). Additionally, the uptake of both

gluconeogenic amino acids (60, 67, 69, 71, 73, 76, 77,

79, and 81) and ketogenic amino acids (72, 78) in-

creased. The corresponding flux values for NADPH

synthesis decreased. There were no significant differ-

ences in the results of this analysis when considering

glycolytic hepatocytes (Figs. 6b and 7b, and Table 6).

Considering the tradeoff between NADPH synthesis

and albumin synthesis (Figs. 4c and 6c), flux changes

required to move from points E to F along the Pareto

frontier were generally similar in both gluconeogen-

ic and glycolytic hepatocytes (Figs. 5c and 7c), with

the exception of b-oxidation, electron transport (43,

44), lipid uptake and lipid storage fluxes. This is

because fatty acid synthesis significantly consumes

NADPH (14 molecules of NADPH per molecule of

palmitate).

Considering the tradeoff between glutathione syn-

thesis and urea secretion (Figs. 4d and 6d), the changes

in flux required to move from points G to H along the

Pareto frontier were also generally similar in both

gluconeogenic and glycolytic hepatocytes (Figs. 5d and

7d), with the exception of aspartate uptake (69).
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FIGURE 6. Pareto frontiers for bi-objective problems in hepatocytes operating in a glycolysis mode. Five major hepatic functions
were considered: albumin, urea, ATP, NADPH, and glutathione synthesis. (a) Albumin vs. urea synthesis; (b) glutathione vs.
albumin synthesis; (c) NADPH vs. albumin synthesis; (d) glutathione vs. urea synthesis; (e) ATP vs. albumin synthesis; (f) ATP vs.
urea synthesis. The blue circles are the anchor points, black circles are Pareto-optimal solutions, and red circles labeled A to L are
selected Pareto solutions for which flux distributions are shown in Table S4.
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Considering the tradeoff between ATP synthesis and

albumin synthesis (Figs. 4e and 6e), the changes in flux

required to move from points I to J along the Pareto

frontier significantly differed between gluconeogenic

and glycolytic hepatocytes (Figs. 5e and 7e), mainly

with respect to gluconeogenesis fluxes (2–6), and TCA

cycle fluxes (8–13). In the gluconeogenesis mode, TCA

cycle fluxes are higher because of increased demand to

produce ATP (gluconeogenesis consumes ATP too),

since glycolysis itself produces ATP (2 molecules of

ATP for 1 molecule of glucose consumed).

Considering the tradeoff between ATP synthesis and

urea synthesis (Figs. 4f and 6f), the changes in flux

required to move from points K to L along the Pareto

frontier in both gluconeogenic and glycolytic hepato-

cytes were mainly lipid uptake (52), TCA cycle (8),

aspartate uptake (69) and the uptake of gluconeogenic

and ketogenic amino acids. This is expected because

higher urea secretion could be achieved with increased

uptake of arginine or aspartate under gluconeogenic

conditions. Higher urea secretion has been seen to

require an increase in gluconeogenic fluxes and this is

coupled with an increase in TCA cycle fluxes, which

necessitates an increase in aspartate uptake.

Effect of FBA+EBA on Pareto Frontier Compared to

FBA Alone

We compared Pareto frontiers for the representative

case of ATP synthesis vs. urea secretion considering

FBA (i.e., mass balance) constraints only and then

both FBA and EBA (i.e., both mass balance and

thermodynamic) constraints. Figure 8a shows the

Pareto frontiers when hepatocytes are in a glycolysis
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FIGURE 7. Distribution of flux changes when moving along the Pareto surface in Fig. 6: (a) % Flux changes from point A to point
B in Fig. 6a; (b) % Flux changes from point C to point D in Fig. 6b; (c) % Flux changes from point E to point F in Fig. 6c; (d) % Flux
changes from point G to point H in Fig. 6d; (e) % Flux changes from point I to point J in Fig. 6e; (f) % Flux changes from point K to
point L in Fig. 6f. The corresponding flux values are in Table S4. Note that the % flux changes for all figures are on y-axis and the
corresponding reaction flux number is shown on the horizontal axis. Only changes up to 100% are shown in the figure.
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mode. The addition of EBA constraints generally re-

duced the feasible space of the flux distribution, and

changed the Pareto frontiers accordingly. For example,

for the representative case of ATP synthesis vs. urea

secretion in glycolytic hepatocytes (shown in Fig. 8a),

the Pareto frontier obtained using both FBA & EBA

constraints was below that obtained using FBA alone.

Furthermore, the fluxes obtained using both ap-

proaches were vastly different throughout the Pareto

frontier. Figures 8b–8d show the effect of adding EBA

constraints on the Pareto-optimal solutions A, B, and

C, respectively, and the corresponding flux values are

presented in Table S5. In all cases, EBA reduced the

feasible space. It is to be noted that urea secretion (flux

16 on the abscissa) was kept constant to analyze these

differences. Essentially, keeping urea secretion con-

stant is necessary to compare the Pareto solutions

obtained after different measurements.

As seen in Figs. 8b–8d several glycolytic fluxes (2–6)

and catabolic fluxes that produce pyruvate (17, 18, and

19) were changed at points A, B, and C on the Pareto

frontier when adding EBA constraints. On the other

hand, there was a marginal difference in TCA cycle

flux (8) at Pareto solution A, and no difference at

points B or C. Similarly, when going from A to C,

there was a decreased difference in the uptake of suc-

cinyl CoA forming amino acids (threonine, 71,

methionine, 75, and valine, 76). Notably, the difference

at point A in the aspartate production through

asparagine (36) first increases with the increased urea

secretion, then the difference decreases significantly at

Pareto solution B. Throughout the Pareto frontier

there was a decreased ketone body production (41)

when adding EBA constraints. The change in lipid

uptake and lipid storage fluxes when adding EBA

constraints became more prominent when going from

point A to point C.

Effect of Measured Fluxes on Pareto Frontiers

The incorporation of experimental measurements

also reduced the feasible space for the fluxes and the

Pareto-optimal solutions (Fig. 9). The control case has

no measurements and is labeled as M0 (shown as black

dots in Fig. 9). Experimental measurements were

included as equality constraints in the stoichiometric

matrix according to Eq. (3). For this analysis, four

different bi-objective sets were examined as examples.

Figure 9 shows the effect of adding four different

measurement sets on the Pareto frontiers. Measure-

ments were included in a sequential fashion. The

Pareto curve M1 (shown as red diamonds) was

obtained after adding lactate (50), glucose (53), and

glutamate (61) measurements. The Pareto curve M2

(shown as blue squares) was obtained after adding toT
A
B
L
E
6
.

S
u
m
m
a
ry

o
f
re
s
u
lt
s
in
d
ic
a
ti
n
g
th
e
c
h
a
n
g
e
s
in

h
e
p
a
ti
c
g
ly
c
o
ly
ti
c
fl
u
x
e
s
in

F
ig
s
.
6
a
n
d
7
w
h
e
n
g
o
in
g
fr
o
m

s
e
le
c
te
d
P
a
re
to
-o
p
ti
m
a
l
s
o
lu
ti
o
n
s
‘‘
A
’’
to

‘‘
B
’’
,
‘‘
C
’’
to

‘‘
D
’’
,

‘‘
E
’’
to

‘‘
F
’’
,
‘‘
G
’’
to

‘‘
H
’’
,
‘‘
I’
’
to

‘‘
J
’’
,
a
n
d
‘‘
K
’’
to

‘‘
L
’’
fo
r
w
h
ic
h
fl
u
x
d
is
tr
ib
u
ti
o
n
s
a
re

s
h
o
w
n
in

T
a
b
le

S
4
.

C
a
s
e

A
lb
u
m
in

s
y
n
th
e
s
is

(4
7
)

G
S
H

s
y
n
th
e
s
is

(4
8
)

N
A
D
P
H

s
y
n
th
e
s
is

(4
6
)

U
re
a

s
e
c
re
ti
o
n

(1
6
)

b

o
x
id
a
ti
o
n

(4
0
)

E
le
c
tr
o
n

tr
a
n
s
p
o
rt

(4
3
,4
4
)

L
ip
id

u
p
ta
k
e

(5
2
)

G
lu
c
o
n
e
o

g
e
n
e
s
is

(2
,6
)

U
re
a

c
y
c
le

(1
4
,1
5
)

T
C
A

c
y
c
le

(8
)

T
C
A

c
y
c
le

(1
3
)

L
ip
id

s
to
re
d

(5
7
)

A
s
p

u
p
ta
k
e

(6
9
)

G
lu
c
o
n
e
o
g
e
n
ic

a
m
in
o
a
c
id
s
(6
0
,
6
7
,
6
9
,

7
1
,
7
3
,
7
5
,
8
1
,
7
6
,
7
7
,
7
9
)

K
e
to
g
e
n
ic

a
m
in
o
a
c
id
s

(7
2
,7
8
)

A
to

B
s
-d
e
c

s
-i
n
c

m
-i
n
c

m
-i
n
c

d
e
c

m
-i
n
c

s
-i
n
c

m
-d
e
c

s
a
m
e

m
-i
n
c

m
-i
n
c

in
c

d
e
c

d
e
c

s
-d
e
c

C
to

D
s
-i
n
c

d
e
c

d
e
c

m
-d
e
c

m
-i
n
c

m
-d
e
c

d
e
c

m
-d
e
c

m
-i
n
c

m
-d
e
c

m
-d
e
c

d
e
c

s
-i
n
c
-r

s
-i
n
c

s
-i
n
c

E
to

F
s
-i
n
c

s
-d
e
c

m
-d
e
c

d
e
c

s
a
m
e

in
c

s
a
m
e

m
-i
n
c

d
e
c

d
e
c

m
-d
e
c

s
a
m
e

d
e
c

s
-i
n
c

s
-i
n
c

G
to

H
s
-i
n
c

d
e
c

m
-d
e
c

in
c

s
-i
n
c

m
-d
e
c

m
-d
e
c

m
-d
e
c

in
c

m
-i
n
c

m
-i
n
c

in
c

d
e
c

d
e
c

s
-i
n
c

I
to

J
s
-i
n
c

s
-d
e
c

d
e
c

d
e
c

s
a
m
e

m
-d
e
c

s
a
m
e

s
-i
n
c

s
-d
e
c

d
e
c

s
a
m
e

s
a
m
e

s
a
m
e

in
c

s
-i
n
c

K
to

L
s
-d
e
c

s
-i
n
c

m
-i
n
c

s
-i
n
c

s
a
m
e

s
-d
e
c

s
a
m
e

in
c

s
-i
n
c

d
e
c

s
a
m
e

s
-i
n
c

s
-i
n
c

in
c

in
c

(a
)
‘‘A

’’
to

‘‘B
’’
in
d
ic
a
te
s
fr
o
m

h
ig
h
-a
lb
u
m
in
/l
o
w
-u
re
a
s
y
n
th
e
s
is

to
lo
w
-a
lb
u
m
in
/h
ig
h
-u
re
a
s
y
n
th
e
s
is
.
(b
)
‘‘C

’’
to

‘‘D
’’
in
d
ic
a
te
s
fr
o
m

h
ig
h
-g
lu
ta
th
io
n
e
/l
o
w
-a
lb
u
m
in

s
y
n
th
e
s
is

to
lo
w
-g
lu
ta
th
io
n
e
/

h
ig
h
-a
lb
u
m
in

s
y
n
th
e
s
is
.
(c
)
‘‘E

’’
to

‘‘F
’’
in
d
ic
a
te
s
fr
o
m

h
ig
h
-N

A
D
P
H

/l
o
w
-a
lb
u
m
in

s
y
n
th
e
s
is

to
lo
w
-N

A
D
P
H
/h
ig
h
-a
lb
u
m
in

s
y
n
th
e
s
is
.
(d
)
‘‘G

’’
to

‘‘H
’’
in
d
ic
a
te
s
fr
o
m

h
ig
h
-g
lu
ta
th
io
n
e
/l
o
w
-u
re
a

s
y
n
th
e
s
is
to

lo
w
-g
lu
ta
th
io
n
e
/h
ig
h
-u
re
a
s
y
n
th
e
s
is
.
(e
)
‘‘I
’’
to

‘‘J
’’
in
d
ic
a
te
s
fr
o
m

h
ig
h
-A
T
P
/l
o
w
-a
lb
u
m
in

s
y
n
th
e
s
is
to

lo
w
-A
T
P
/h
ig
h
-a
lb
u
m
in

s
y
n
th
e
s
is
.
(f
)
‘‘K

’’
to

‘‘L
’’
in
d
ic
a
te
s
fr
o
m

h
ig
h
-A
T
P
/l
o
w
-

u
re
a
s
y
n
th
e
s
is
to

lo
w
-A
T
P
/h
ig
h
-u
re
a
s
y
n
th
e
s
is
.
H
e
re
,
s
-d
e
c
in
d
ic
a
te
s
s
ig
n
ifi
c
a
n
tl
y
d
e
c
re
a
s
e
d
,
d
e
c
in
d
ic
a
te
s
d
e
c
re
a
s
e
d
,
m
-d
e
c
m
o
d
e
ra
te
ly
d
e
c
re
a
s
e
d
.
S
im

ila
rl
y
,
s
-i
n
c
in
d
ic
a
te
s
s
ig
n
ifi
c
a
n
tl
y

in
c
re
a
s
e
d
,
in
c
in
d
ic
a
te
s
in
c
re
a
s
e
d
,
m
-i
n
c
m
o
d
e
ra
te
ly

in
c
re
a
s
e
d
.
In
c
-r
,
in
d
ic
a
te
s
in
c
re
a
s
e
d
in

re
v
e
rs
e
d
ir
e
c
ti
o
n
.

Integrated Energy and Flux Balance 879



M1 measurements, glutamine (79) and tyrosine (81).

The Pareto curve M3 (shown as yellow triangles) is

obtained after adding to M2 measured fluxes, alanine

(66), serine (67), and glycine (68) flux measurments.

The Pareto curve M4 (shown as green stars) is ob-

tained after adding to M3 measured fluxes, methionine

flux measurement (75). Experimental data for gluco-

neogenesis and glycolysis were taken from (14) and

(16), respectively.

We looked at four representative bi-objective sets

(albumin vs. urea; ATP vs. albumin; glutathione vs.

urea; and ATP vs. urea) to ascertain the changes in

Pareto frontiers. The three first sets are in gluconeo-

genic mode and the last one is in glycolytic mode.

Figure 9a show Pareto frontiers for albumin syn-

thesis vs. urea secretion and Fig. 9b shows the Pareto

frontiers for ATP synthesis vs. albumin synthesis. In

both cases, as more measured data are included, the

anchor points of the Pareto frontiers move towards the

center and eventually become a single point solution.

Figure 9c shows that Pareto frontiers for glutathione

synthesis vs. urea secretion, in the higher glutathione

synthesis range did not change when including mea-

surement sets M1 and M2, although they did when

including measurement sets M3 and M4. Figure 9d

shows the Pareto frontiers for ATP synthesis vs. urea

secretion. Pareto frontiers were lowered when adding

each measurement set. The corresponding fluxes for

these four cases are presented in Table S6. Fig-

ures 10a)10h show the distribution of flux changes for

the cases shown in Figs. 9a–9d respectively.

When considering the albumin vs. urea case

(Fig. 9a), the change in Pareto curve at high-urea

secretion was associated with many differences in

fluxes (Fig. 10a), including a moderate decrease

in gluconeogenic fluxes (2–4), a moderate increase in

TCA cycle flux (8), a decrease in urea secretion (16)

and b-oxidation (40), an increase in electron transport

(43, 44), lipid uptake (52), lipid stored (57), albumin

(47), NADPH (46) and GSH (48) synthesis. The

change in Pareto curve at high-albumin synthesis also

caused flux changes (Fig. 10b), including a moderate

increase in gluconeogenic fluxes (2–6), TCA cycle

fluxes (8, 13), urea cycle fluxes (14, 15) and urea

secretion (16), a significant increase in b-oxidation (40),

electron transport (43, 44), lipid storage (57), NADPH

(46) and GSH (48) synthesis, significant decrease in

lipid uptake (52) and albumin synthesis (47). Addi-

tionally, there was a decrease in uptake of both glu-

coneogenic and ketogenic amino acids.
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FIGURE 8. Effect of adding EBA constraints on optimal fluxes for the representative case of ATP synthesis vs. urea secretion bi-
objective problem in glycolytic hepatocytes. (a) Pareto frontiers using FBA constraints alone (gray line) and FBA + EBA con-
straints (black line). The blue circles are the anchor points and the red circles are selected Pareto solutions A, B, C for which the
complete set of fluxes is provided in Table S5. (b) Distribution of flux changes when adding EBA constraints at point A. (c)
Distribution of flux changes when adding EBA constraints at point B. (d) Distribution of flux changes when adding EBA constraints
at point C. In panels (b–d), the data are expressed as % flux change and the corresponding reaction flux number is shown on the
horizontal axis. Note that urea secretion was kept constant when analyzing these differences.
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When considering the ATP vs. albumin case

(Fig. 9b), incorporation of measurements also changed

the Pareto curve. At high- albumin secretion, the

associated flux differences (Fig. 10c) included a sig-

nificant increase in gluconeogenic fluxes (2–4), TCA

cycle flux (8), and GSH (48) synthesis, a moderate in-

crease in b-oxidation (40), a decrease in urea cycle

fluxes (14, 15), urea secretion (16), lipid uptake (52)

and albumin (47), a moderate decrease in electron

transport (44) and NADPH (46) synthesis. At the an-

chor point of ATP generation on the Pareto curve, flux

changes caused by introduction of the measurements

(Fig. 10d) significantly increased gluconeogenesis

fluxes (2–6), urea cycle fluxes (14, 15), and GSH (48)

synthesis, moderately increased TCA cycle flux (8),

urea secretion (16), and b-oxidation (40), decreased

electron transport (44), lipid uptake (52), albumin

synthesis (47), and NADPH (46). Additionally, there

was decreased uptake of both gluconeogenic and ke-

togenic amino acids.

The effect of measurements on the Pareto curve of

glutathione vs. urea are shown in Fig. 9c. The major

differences in fluxes at the anchor point of high-urea

secretion (Fig. 10e) included a significant increase in

albumin (47), a moderate increase in TCA cycle flux

(8), electron transport (43, 44), lipid uptake (52), and

NADPH (46), a decrease in urea secretion (16), a

moderate decrease in gluconeogenic fluxes (2–6),

b-oxidation (40), and glutathione synthesis (48). As

seen earlier, the increased albumin synthesis necessi-

tates significant increase in the uptake of both glu-

coneogenic and ketogenic amino acids. The major

differences in fluxes at the anchor point of high-glu-

tathione synthesis (Fig. 10f) included a moderate in-

crease in TCA cycle flux (8) and lipid storage, a

significant increase in urea cycle fluxes (14, 15), a de-

crease in electron transport (43, 44), a moderate de-

crease in urea secretion (16) and lipid uptake (52), a

significant decrease in b-oxidation (40) and glutathione

synthesis (48).
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FIGURE 9. Effect of adding flux measurements to Pareto frontiers. Measurements were incorporated as equality constraints in
the stoichiometric matrix. Four different bi-objective cases are shown in panels a–d, respectively: albumin vs. urea synthesis
(gluconeogenesis mode), ATP vs. albumin synthesis (gluconeogenesis mode), glutathione vs. urea synthesis (gluconeogenesis
mode), and ATP vs. urea synthesis (glycolysis mode). The control case has no measurements (M0 in black). The Pareto curve M1
(shown as red diamonds) is obtained after adding measured flux 50 (value of 1.0815 and 1.08 for gluconeogenesis and glycolysis,
respectively) + flux 53 (value of 1.1472 and 0.15 for gluconeogenesis and glycolysis, respectively) + flux 61 (value of )0.3789 and
)0.38 for gluconeogenesis and glycolysis, respectively). The Pareto curve M2 (shown as blue squares) is obtained after adding to
M1 measured + flux 79 (value of 1.8962 and 1.9 for gluconeogenesis and glycolysis, respectively) + flux 81 (value of 0.0319 and
0.032 for gluconeogenesis and glycolysis, respectively). The Pareto curve M3 (shown as yellow triangles) is obtained after adding
to M2 measured flux 66 (value of 0.0316 and 0.032 for gluconeogenesis and glycolysis, respectively) + flux 67 (value of )0.2292 and
)0.23 for gluconeogenesis and glycolysis, respectively) + flux 68 (value of 0.1368 and 0.14 for gluconeogenesis and glycolysis,
respectively). The Pareto curve M4 (shown as green stars) is obtained after adding to M3 measured flux 75 (value of 0.0978 and
0.098 for gluconeogenesis and glycolysis, respectively). Experimental data for gluconeogenesis and glycolysis were taken from
(14) and (16), respectively.
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Albumin-ATP (Gluconeogenesis) System
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Urea-Glutathione (Gluconeogenesis) System
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Urea-ATP (Glycolysis) System
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FIGURE 10. Distribution of optimal flux changes between the anchor points of the system solved without constraints (M0) and
with the maximum number of constraints (M4) for the bi-objective system of Fig. 9. (a) and (b): albumin vs. urea (gluconeogenesis
mode); (c) and (d): albumin vs. ATP (gluconeogenesis mode); (e) and (f): urea vs. glutathione (gluconeogenesis mode); (g) and (h):
urea vs. ATP (glycolysis mode). The absolute flux values are in Table S6. Note that the % flux changes for all figures are on y-axis
and the corresponding reaction flux number is shown on the horizontal axis. Only changes up to 100% are shown in the figure.
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The effect of measurements on the Pareto curve of

urea secretion vs. ATP generation (in glycolysis mode)

are shown in Fig. 9d. The major differences in fluxes at

the anchor points of high-urea secretion and ATP

generations are shown in Fig. 10g and 10h, respec-

tively. We found that addition of the measurements did

not change glycolysis fluxes (1–5) at either anchor

point. On the other hand, at the anchor point of high-

urea secretion (Fig. 10g), there was a significant de-

crease in urea cycle fluxes (14, 15), urea secretion (16),

NADPH (46) and GSH synthesis (48), a moderate de-

crease in electron transport (43), a significant increase

in lipid uptake (52), lipid storage (57), and albumin

(47). The increased albumin synthesis necessitates the

increased uptake of gluconeogenic amino acids. The

major differences in fluxes at the anchor point of high-

ATP generation (Fig. 10h) included a moderate de-

crease in TCA cycle flux (8), a significant increase in

urea cycle fluxes (14, 15) and albumin synthesis (47), a

moderate increase in urea secretion (16), a decrease in

electron transport (44), and a significant decrease in

NADPH and GSH synthesis. Additionally, there was a

significant increase in the uptake of both gluconeogenic

and ketogenic amino acids.

DISCUSSION

Mammalian cells exhibit various phenotypic states

including proliferation, differentiation, etc. Metabolic

flux distributions in these various states must obey

constraints imposed by the environment, reaction

stoichiometry, thermodynamics, and laws of conser-

vation. Mathematically these constraints translate into

a reduction of the feasible space for the flux distribu-

tion. Most of the literature on constraints-based met-

abolic network optimality deals with unicellular

organisms where the main objective is growth of bio-

mass.9,10 In mammalian systems, various phenotypes

are encountered, some of which exhibit proliferation,

and others expression of organ-specific or ‘‘differenti-

ated’’ functions. Several objectives should be consid-

ered before making any conclusions about the optimal

states of such systems. Often times there is a compe-

tition between the various objectives because they are

differentially altered by the constraints. This paradigm

of conflicting objectives is addressed herein using a

class of multi-objective optimality called Pareto opti-

mality. Furthermore, we used the Normal Constraint

method, which yields any Pareto point in the feasible

objective space, guarantees an even distribution of the

Pareto frontier, and is insensitive to design objective

scaling. Combining these concepts with FBA and

EBA, we developed a framework called NCEFBA,

which we applied to the specific case of cultured he-

patocytes.

Hepatocytes are the key cellular component in BAL

devices. The ability to optimize hepatocellular metab-

olism is important to maximize the clinical efficacy of

the BAL, and increasing the function per cell may help

reduce the number of hepatocytes needed in the device.

Hepatocytes express various liver-specific functions

that require common substrates, such as glucose,

amino acids, and so on. Thus, it is expected that

increasing one function (for instance, albumin syn-

thesis) will decrease another (for example, urea secre-

tion). In order to systematically investigate the

tradeoffs between the various hepatocellular functions,

we used NCEFBA. More specifically, we investigated

the interactions among five key hepatocyte metabolic

functions, namely albumin synthesis, urea secretion,

glutathione synthesis, NADPH synthesis, and ATP

generation. These analyses were carried out first in

gluconeogenic hepatocytes (Fig. 4) and then glycolytic

hepatocytes (Fig. 6).

Using NCEFBA, we observed the Pareto optimality

between various liver-specific functions. Some of the

representative bi-objective combinations were shown

in this paper. Here, the implementation was done for

several biobjective combinations in order to develop a

TABLE 7. Objective function flux values for Pareto-optimal solutions in Fig. 4 (for gluconeogenic mode) and Fig. 6 (for glycolysis
mode). The detailed flux values are provided in Tables S3 and S4.

Objectives A B C D E F G H I J K L

Gluconeogenesis

Urea 29.7685 34.56 10.431 10.595 19.752 12.454 30.13 34.465 2.8071 2.601 11.516 33.769

NADPH 0.47 0.53 1.414 0.98 2.985 2.786 1.091 0.825 1.134 1.411 1.008 0.945

Albumin 0.136 0.0126 0.011 0.1296 0.016 0.135 0.00001 0.00001 0.0992 0.139 0.0832 0.01136

GSH 6.837 8.79 14.427 9.585 14.4212 9.345 14.647 10.312 0.083 0.001 1.483 9.395

Glycolysis

Urea 26.717 29.365 14.441 14.388 12.323 9.978 25.304 29.368 8.695 6.28 12.264 28.234

NADPH 1.066 1.098 2.063 1.702 7.443 7.126 2.16 2.077 0.654 0.472 0.456 0.51

Albumin 0.131 0.02 0.012 0.1304 0.0131 0.137 0.00001 0.004 0.0232 0.133 0.0017 0.00001

GSH 5.226 9.175 14.404 9.549 14.36 9.276 14.473 10.173 6.614 1.296 7.007 9.909
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suitable framework for designing a compartmental

BAL device that can perform all essential liver-specific

functions. This BAL device could have several indi-

vidual bioreactor modules interconnected in series and

each individual bioreactor could be designed based on

the various combinations of liver-specific Pareto-opti-

mal solutions. The idea here will be to obtain an

optimal BAL system that can exhibit very high and

stable levels of key liver-specific functions and thus

translate into a proportional reduction of required cell

mass and total perfusion volume of the bioreactor re-

quired for a given processing capacity. The six com-

binations of liver-specific functions for both

gluconeogenic hepatocytes and glycolytic hepatocytes

were analyzed to obtain a global Pareto-optimal

solution with respect to each liver-specific function in

BAL assembly. Table 7 shows the flux values for these

solutions at few representative Pareto-optimal solu-

tions A, B, C, D, E, and F for both gluconeogenic and

glycolytic hepatocytes of Figs. 4 and 6. Based on the

results obtained, to design a BAL assembly system that

provides higher liver-specific functions in gluconeo-

genic mode, one option could be to operate five

different bioreactors in series at H, G, F, E, and D

points, respectively from Fig. 4. If the five reactors are

operated at these points then the total fluxes can be

calculated by summing up the individual fluxes at these

points. For albumin, urea, glutathione, and NADPH

synthesis these values are 0.281, 107.4, 58.31, and 8.67,

respectively. On the other hand, if the reactor assembly

is just operated at the equal preference point of E then

the total fluxes of albumin, urea, glutathione and

NADPH synthesis will be 0.08, 98.76, 72.1, and 14.93,

respectively. This indicates that the variable operating

condition BAL will produce overall higher albumin

and urea synthesis compared to the case where

assembly is just operated at point E condition. It is to

be noted that glutathione and NADPH synthesis in

variable operating condition reactor is lower than that

if assembly is operated at point E alone. This could be

tolerable because of higher priority to attain high-

albumin and -urea synthesis. However, if there is a

situation where there is a higher demand of ATP (be-

cause of stress and mitochondrial dysfunction) BAL

system for gluconeogenic mode could be designed for

H, G, J, K, and L points, resepectively from Fig. 4. In

glycolytic mode of BAL operation the preferred com-

bination of reactor operations could be H, G, C, D,

and F points, resepectively from Fig. 6. If the five bi-

oreactors are operated at these points then the total

fluxes of albumin, urea, glutathione, and NADPH

synthesis are 0.283, 93.48, 57.88, and 15.13, respec-

tively. On the other hand, if the reactor assembly is just

operated at the equal preference point of C then the

total fluxes of albumin, urea, glutathione, and

NADPH synthesis are 0.06, 72.21, 72.02, and 10.32,

respectively. As seen earlier for gluconeogenic he-

patocytes, we see also in glycolytic hepatocytes that the

variable operating condition BAL will produce in

overall higher albumin, urea, and NADPH synthesis

compared to the case where assembly is operated at

point C condition. Again, if there is a situation

demanding higher energy production BAL system for

glycolytic mode could be H, G, I, K, and L point,

respectively from Fig. 6.

The NCEFBA platform is a useful tool for opti-

mality analysis of large-scale metabolic networks that

are bound to possess multi-objective Pareto-optimal

solutions. This technique enables the systematic iden-

tification of tradeoff situations between various meta-

bolic objectives that characterize a particular cellular

phenotype. The addition of FBA to EBA constraints

ensures that thermodynamically feasible solutions are

obtained. Furthermore, experimental flux data can be

easily incorporated into the analysis, which further

reduces the feasible space of fluxes. Although the

NCEFBA approach described here was applied to the

specific case of hepatocellular metabolism, it can be

readily used on any large-scale metabolic network. It is

noteworthy that as part of the future work, the optimal

fluxes obtained through multi-bojective optimization

are currently being experimentally investigated by

using hormonal supplements, inducers, and transfec-

tion of primary heptocytes in our laboratory. Impor-

tantly, since the presented hepatic metabolic network

model has reasonable predictability for both whole

organ (liver) and in vitro hepatic systems it can be

readily applied to BAL systems.

In conclusion, this study highlights how Pareto-

optimal solutions may contribute to operating BAL

devices, alter the metabolic states of hepatocytes,

achieve the desired range of objectives and has rele-

vance for understanding the impact of environmental

stress, inducers, hormones, and supplements on cellular

metabolism. The important contribution of the paper is

that it presents a strategy for the coupling of Normal-

ized Constraint multi-objective method with EBA to

obtain ‘‘true optimal solutions’’ throughout the feasible

space. The simple method like ‘‘weighted sum’’ fails to

capture the points that are in the concave part of the

Pareto frontier. However, using the presented approach

it is possible to capture every Pareto point given the

generic morphology of an objective function.
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