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Abstract - On-site cogeneration of heat and electricity, 

thermal and electrical storage, and curtailing/rescheduling 

demand options are often cost-effective to commercial and 

industrial sites. This collection of equipment and responsive 

consumption can be viewed as an integrated energy system 

(IES). The IES can best meet the site’s cost or environmental 

objectives when controlled in a coordinated manner.  However, 

continuously determining this optimal IES dispatch is beyond 

the expectations for operators of smaller systems. A new  

algorithm is proposed in this paper to approximately solve the 

real-time dispatch optimization problem for a generic IES 

containing an on-site cogeneration system subject to random 

outages, limited curtailment opportunities, an intermittent 

renewable electricity source, and thermal storage. An example 

demonstrates how this algorithm can be used in simulation to 

estimate the value of IES components.  

 

I. INTRODUCTION 

ODERN automation, power generation and energy 

storage technologies have enabled commercial and 

industrial buildings a large degree of flexibility regarding 

power consumption. Objectives that can be achieved by 

exploiting this flexibility include energy cost minimization 

and site energy efficiency maximization. Optimization of 

energy system controls, however, is a complex problem 

requiring integrated planning and dispatch of all energy 

options under uncertain, yet relevant future conditions. 

This paper illustrates the value of dispatch informed by 

data collection and computation to individual customers and 

to society. The costs of energy production and consumption 

to suppliers, consumers, and society at large are described in 

Section II. Section III describes the particular energy options 

available to buildings. Section IV discusses the optimization 

problem that these options, coupled with the costs of energy 

consumption and uncertain future conditions, present. 

Section V proposes an algorithm for determining the near-
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optimal real-time dispatch of integrated energy systems. 

Results of the application of this algorithm to an illustrative 

site are presented in Section VI.  

II. ENERGY COSTS TO SUPPLIERS, CONSUMERS, AND 

SOCIETY  

Commercial and industrial customers are billed for 

electricity in a manner that reflects the costs to suppliers. In 

the United States, the main components of their electricity 

bill are volumetric ($/kWh), demand ($/kW peak 

consumption per month), and fixed ($/month) costs. 

Volumetric costs cover variable costs to suppliers such as 

for fuel and disposal of byproducts. These rates may vary by 

time of day to reflect the higher cost of producing electricity 

during the peak hours of the day. Demand charges reflect 

the capacity costs incurred by the utility per MW of peak 

demand on the system, and include the infrastructure costs 

of power plants, transmission, and distribution systems, 

which must be sized to meet this peak demand. Fixed costs 

are incurred regardless of electricity demand quantities or 

rates, and cover maintenance costs and the administrative 

costs of metering and billing. Customers can reduce 

electricity costs by 1) shifting their electricity consumption 

to times of less expensive volumetric rates, 2) reducing their 

volume of consumption, or 3) reducing their peak demand. 

Volumetric costs to society are incurred because of the 

consumption of finite resources (i.e. fossil fuels), the 

environmental and political costs of obtaining and 

processing fuels, and environmental cost of electricity 

byproducts, such as greenhouse gases, NOx and particulate 

matter. Capacity costs are incurred because of the 

undesirability of siting new power plants and transmission 

lines.  

This section illustrates that the pricing mechanism for 

consumers is 1) equitable because costs are incurred to 

individuals in proportion to the costs that suppliers incur and 

2) is beneficial to society because it encourages reductions 

in both volume and peak demand. 

III. DISTRIBUTED ENERGY RESOURCE OPTIONS TO 

COMMERCIAL AND INDUSTRIAL BUILDINGS 

To reduce energy costs and/or to improve their 

environmental footprint, commercial and industrial 

buildings have several investment and implementation 

options. In addition to energy efficiency retrofitting, which 

requires no active controls, they can invest in on-site energy 
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generation and storage devices, as well as programs to 

curtail or reschedule some of their power demand. 

Collectively, these actively controlled options are referred to 

as distributed energy resources (DER). 

A. Distributed Generation 

Buildings can invest in on-site electricity generation 

equipment (i.e. distributed generation (DG)) such as 

reciprocating engines, gas turbines, microturbines, and fuel 

cells. For prime-power applications (as opposed to back-up 

power) in the United States, these devices are typically 

fueled by natural gas, biogas, or propane. The heat 

generated by these devices can be harnessed for application 

to site space, water, and process heating needs. Heat can 

also be used to satisfy cooling loads via an absorption 

chiller. Solar electricity (i.e. photovoltaics (PV)), solar 

thermal, and wind power devices are also options.  

Typically, on-site electricity production is most economic 

when in parallel with utility electricity purchase. When the 

cost of producing electricity and heat on-site is less than the 

cost of purchasing electricity and heating fuel separately, 

on-site generation is dispatched to run. On-site generation 

can reduce both the volumetric and demand charges of 

electricity production, although unplanned outages often 

reduce the potential for demand charge mitigation. 

This paper examines the problem of optimal real-time 

control of DG systems already installed. Much work has 

already been done by the authors and their research team on 

the optimal DG investment problem [1]. 

B. Storage 

Thermal or electrical energy can be stored for use at a 

more opportune time. Typically, electrical storage is cost 

prohibitive for all but brief transition periods (on the order 

of milliseconds to minutes) and targeted loads 

(manufacturing or data processing). Thermal storage is more 

cost effective and can be in the form of tanks, the embodied 

heat retention of operating fluids in thermal loops, or the 

thermal mass of a building. 

Storage can reduce energy costs by applying an abundant 

or inexpensive resource (e.g. recovered or solar heat, off-

peak electricity) at one time to an energy demand at a less 

opportune time. The co-optimization of DG and thermal 

storage investments has been examined in [2]. 

C. Demand Side Management 

Curtailment and rescheduling opportunities can be used to 

limit peak power consumption or shift energy consumption 

for cost savings. Typical curtailment measures include 

raising chiller setpoints and reducing lighting in hallways, 

garages, and other non-work areas. Rescheduling measures 

include time-shifting energy intensive processes or 

production schedules. These demand side management 

(DSM) measures can be characterized by their maximum 

demand reduction magnitude (kW), duration (e.g. minutes 

per episode), and frequency (e.g. times per month). There 

may be direct and/or indirect costs associated with DSM 

episodes, which must be weighed against their value.  

DSM can reduce costs to buildings by lowering their peak 

demand for electricity, and by shifting some volumetric 

costs to lower priced times of the day. [3] provides a recent 

examination of fully-automated DSM opportunities.  

IV. THE OPTIMIZATION PROBLEM FOR INTEGRATED 

ENERGY SYSTEMS 

Dispatch to a site’s DER options must be made 

continuously and includes the setpoints of generators, the 

charging or discharging of storage, and DSM commands. 

Typical constraints on the system include  

• engineering constraints on equipment such as ramping 

rates and maximum and minimum operating levels; 

• regulatory constraints on noise, operation hours, or 

overall DG system efficiency (i.e. utilization of waste 

heat); and 

• magnitude, duration, and frequency constraints on DSM.  

As with any set of decisions that affect a common 

objective, the dispatch decisions to all DER options can best 

meet site energy objectives if the decisions are coordinated. 

This introduces the concept of the integrated energy system 

(IES), a holistic view of all site energy options. 

A common problem for DG systems is determining the 

proper level of demand charge mitigation. This arises when 

the volumetric costs of utility electricity and heating fuel are 

less than that of on-site production of electricity and heat, 

yet monthly utility demand charges tip the scale in favor of 

on-site generation. The situation is complicated by the 

stochastic nature of DG system failures, which can happen 

at inopportune times during the month and lead to surges in 

utility electricity demand. For this hedging problem, the 

optimal level of demand mitigation must be determined in 

light of energy costs, DG system reliability parameters, and 

hourly end-use load forecasts for the month. As the month 

progresses, the optimal demand hedge will change as any 

DG failures are incurred and as forecasts are updated. 

Another common problem for a wider range of IES 

systems is making the best use of limited opportunities. 

Examples of limited opportunities include  

• profitable DG systems that are operationally constrained 

by regulatory efficiency constraints (where there is only 

limited use for waste heat), maximum run-time 

regulations, or limited fuel supply, and 

• DSM measures that a site’s occupants will only 

accommodate a limited number of times. 

Optimally exploiting limited opportunities is challenging 

because it is dependent on uncertain future conditions, such 

as DG intermittency (generator outages or variation in 

renewables output), end-use demand, and energy pricing. 

The IES dispatch problem is to minimize, at each time 

step, the expected cost (or other site energy objective) of all 

energy consumption, given past system operation, present 

conditions, and forecasts of future conditions. This is done 



 

 

 

 

by simultaneously solving the unit commitment and setpoint 

level problems for the current timestep and all future 

timesteps, conditional on future conditions.  

While prior research has considered dispatch optimization 

for IES systems comprised of DG, storage, and/or 

curtailment (e.g. [4]), a literature review revealed none that 

considered demand charges or stochastic DG outages.  

These, however, are exactly details of the IES problem that 

cause real-world results to deviate from design estimates. 

V. AN ALGORITHM FOR OPTIMIZATION OF REAL-TIME IES 

DISPATCH 

Because of the complexity of the IES dispatch 

optimization problem and large number of timesteps to be 

solved over (ideally timesteps of several minutes over the 

course of a month or more), an exact solution to the 

problem, conditional on the statistical description of 

stochastic parameters, is infeasible. A feasible approach is to 

optimize the current dispatch and future dispatch strategy 

relative to a finite number of future scenarios. 

This section describes a simple IES dispatch optimization 

algorithm from which more complicated, practical 

algorithms could be built upon. The algorithm considers a 

finite number of possible future scenarios as an 

approximation of the future. Scenarios are generated 

randomly; each scenario contains values for each stochastic 

parameter at each timestep. Because of the similarity of days 

in a month, a relatively small number of scenarios can be 

used to represent the most probable future conditions. The 

dispatch problem, then, is to select a dispatch decision for 

the current time-step and a dispatch strategy for all future 

time steps, given historic load and dispatch information. 

This algorithm considers optimization over the course of a 

month for a site with a DG system comprised of one 

generator with heat recovery for heating and absorption 

cooling, a photovoltaic (PV) system, and limited curtailment 

options. A limited amount of thermal storage is considered 

by relaxing the synchronous constraint on thermal demand. 

Two dispatch decisions are considered: the setpoint of the 

generator in the CHP system and a curtailment command. 

A. Parameter Assignment 

The best information about the stochastic parameters, SP 

(scen, sp,t), is a combination of actual (historic and current) 

scenario values, AS(sp,t), for all previous and current 

timesteps, and the set of S randomly generated parameter 

values, SV(scen,sp,t), for all future timesteps.  

For all timesteps prior to and including the current 

timestep, stochastic parameter values are all known and are 

equal to the actual scenario parameter values.  

me CurrentTi tscen,sp,tspAStspscenSP ≤∀∀=      ),(),,(  (1) 

For all future timesteps, the stochastic parameter values 

are the stochastic values generated for each scenario. 
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TABLE II 

PARAMETERS 

Parameter Description 

AS (sp,t) actual scenario stochastic parameter values 

CurrentTime current timestep of month 

Curt magnitude (kW) of curtailed load 

CurtFreq maximum number of curtailment timesteps 

allowed per month 

DailyHeatLoad (d) daily total space and water heating (kWh) 

requirement 

DCost (TOU) demand cost ($/kW peak) for electricity by 

time of use 

DGCapacity electric capacity (kW) of on-site 

generation 

DGVarCost variable maintenance costs ($/kWh) of on-

site generation  

Efixed monthly fixed cost ($) of utility electricity 

service 

EnergyCost (TOU) volumetric cost ($/kWh) of electricity by 

time of use 

FtoHeffic efficiency of converting fuel to heat via 

direct combustion 

HistD (dd,t) historical dispatch decisions 

HtoEgen ratio of useful heat to electricity 

generation of DG 

NGCost volumetric cost of natural gas ($/kWh) 

NGfixed monthly fixed cost ($) of utility natural 

gas service 

PVCapacity electric capacity (kW peak production) of 

photovoltaics on-site  

S number of stochastic scenarios considered 

SP (scen, sp, t) stochastic parameter values used for 

optimization problem  

SV (scen, sp, t) stochastic values from Monte Carlo 

simulation 

T number of timesteps in month 

 

TABLE I 

INDICES 

Symbol Description Set 

d days {1,…,D} 

dd dispatch decisions {generation level, curtail} 

scen stochastic scenarios {1,…,S} 

sp stochastic parameter {electric load, generation 

availability, solar 

insolation} 

t timesteps {1,…,T} 

t-mid subset of mid-peak timesteps  

t-off subset of off-peak timesteps  

t-on subs set of on peak hours  

TOU time of use {on-peak, mid-peak, 

off-peak} 

TABLE III 

DECISION VARIABLES 

Variable Description 

AbsHeatLoad(scen,t) heat required (kWh) for absorption 

chiller 

AbsOffset(scen,t) electric load (kWh) offset by absorption 

chiller 

D (scen, dd, t)  dispatch decision  

EPurch (scen, t)  electricity purchased (kWh) 

ExCost expected monthly energy cost, 

considering all scenarios 

NGforDG (scen, t)  natural gas purchase (kWh) for DG 

NGforHeat (scen,t)  natural gas purchase (kWh) for heating 

RecHeat (scen,t)  useful recovered heat (kWh) from 

distributed generation 



 

 

 

 

B. Dispatch Constraints 

For all timesteps prior to the current timestep, dispatch is 

known and is the historical dispatch of the system. 

eCurrentTimtddscen

tddHistDtddscenD

<∀∀

=

,,   

    ),(),,(
 (3) 

For the current timestep, dispatch for each scenario must 

be equal, i.e. as there is only one actual scenario, there is 

only one actual dispatch. 
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For all timesteps beyond the current timestep, dispatch may 

vary by scenario. The set of dispatch decisions for all future 

timesteps for all scenarios represents a dispatch strategy. 

C. Energy Balance: 

Electricity loads must be met instantaneously by the sum 

of electricity purchase, on site generation (including PV 

generation), and electric chiller load offset by heat-driven 

absorption chiller, and curtailment. 

scen,ttcurtailscenDCurttscenAbsOffset

tinsolationsolarscenSPPVCapacity
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∀++

−+

−+=

−

       ),"",(*),(

),"",(*

),"",(),(

),"",(

 (5) 

Heating loads, including that of the absorption chiller, 

must be met on a daily basis by the sum of direct 

combustion of natural gas and recovered heat from on-site 

electricity generation. It is assumed that tank storage is 

adequate to support daily asynchrony in thermal supply and 

demand. 

scen,dt) Heat(scen,RecFtoHeffictscenNGforHeat

tscendAbsHeatLoadoadDailyHeatL

dt

dt
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D. On site generation: 

On-site generation is only allowed when the DG system is 

available, and must be less than or equal to the capacity of 

the system. Availability at each timestep and for each 

scenario (SP(scen, “generation-availability”,t)) is a binary 

variable equal to zero if the generator is unavailable and one 

if it is. 

scen,t

DGCapacityttyavailabiligenerationscenSP
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E. Curtailment: 

The number of curtailment timesteps per month is 

constrained.  

∑ ∀≤
t

scenCurtFreqtcurtailscenD         ),"",(  (8) 

 

F. Energy Costs: 

Cost for each scenario is the sum of volumetric electricity 

and natural gas costs, time of use demand charges, 

volumetric natural gas costs, DG variable maintenance costs, 

and fixed monthly fees for electricity and natural gas 

service. 
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G. Objective Function: 

 

The objective is then to minimize the expected monthly 

energy cost, where the expected cost is the average of costs 

from each scenario. 

S

scenCost

ExCost scen

∑
=

)(
 (10) 

For risk averse operators, the expected cost may exceed 

the average cost; a cost function that assigns 

disproportionate penalties to high cost scenarios would also 

be possible. 

The optimal dispatch for the current timestep is contained 

in the solution to the minimized expected cost 

))(min(arg),,( DExCosttddscenD =  (11) 

  

 For this research, the optimization is formulated as a 

mixed integer linear program (MILP) and solved by the 

CPLEXTM solver. Integer variables are the on/off decision 

on DG equipment and curtailment options. As is typical for 

MILP, this problem is NP-hard: the number of discrete 

feasible solutions is exponential in time. 

VI. EXAMPLE: DSM VALUE WHEN COORDINATED WITH 

INTERMITTENT DG 

 

This section provides an example of a building energy 

simulation which uses the algorithm proposed in Section V. 

For the study, an area with high demand rates was desired to 

illustrate the value in mitigating demand charges. Southern 

California meets this criteria, with on-peak demand rates 

during the six summer months of the year are ~US$30/kW.  

A prototype shopping center in the coastal regions of 

Southern California is considered, and based on data 

obtained from a prior case study [5] of a commercial 

building in Southern California covering 13,000 m2 of floor-

space and containing a large retail store, supermarket, food 

court, and other small businesses. The annual peak 

electricity load is 1,050 kW. Electricity and natural gas 

prices for the year April 2005 to March 2006 were obtained 



 

 

 

 

from the local utilities [6][7] and summarized in Table IV. 

For each case and scenario, a building energy simulation 

for each month of the study year was performed using hour-

long timesteps. Note that for real-time applications, smaller 

timesteps could be used. Uniform distributions were used 

for all stochastic parameters. Simulation entails 

1) considering forecasts of each parameter value at each 

timestep for each of the S stochastic scenarios 

2) determining the optimal dispatch for the current time step 

3) executing the dispatch and recording the resulting system 

performance data 

4) advancing to the next timestep 

and continuing steps 2) – 4) until the last timestep of the 

month is reached. This simulates actual building operation 

where a decision is made at the first timestep of the month, 

and at each consecutive timestep until the end of the month. 

The simulation used here is static: past dispatch decisions 

do not affect current energy loads. Integrating this IES 

dispatch optimization algorithm into a building energy 

simulation program such as EnergyPlus would provide more 

accurate, dynamic simulations by better estimating the 

energy demand of thermal equipment at varying load levels 

and the thermal response of the building to curtailment 

events. Work on this topic is underway by the authors [8]. 

Curtailment opportunities for the site were parameterized 

by their magnitude, frequency, and duration. The magnitude 

of curtailment considered ranged from 50 to 250 kW, the 

frequency ranged from 5 to 25 times/month, and the 

duration was always constrained to one hour at a time. For 

the simulation, it is assumed that any dispatched curtailment 

actually occurred (i.e. curtailment dispatch could not be 

overridden by building occupants).  

Other IES components considered were 1) a DG system: 

500 kW reciprocating engine with heat recovery and a 500 

kW (capacity for heat removal) absorption chiller, and 2) a 

200 kW photovoltaic system. To reflect current California 

incentives, the DG system was constrained to utilize 60% of 

input fuel energy in the form of electricity or useful thermal 

energy. The following cases were considered 

1) curtailment only 

2) DG and curtailment 

3) PV and curtailment 

4) DG, PV, and curtailment 

For each case the forecasted and actual parameter values 

for each scenario (set of curtailment magnitude and 

frequency constraints) are constant; only the constraints on 

curtailment magnitude and frequency vary. The overall 

annual energy cost, including utility electricity, natural gas, 

and DG maintenance costs are summarized in Section VII. 

VII. RESULTS 

Table V summarizes the annual energy costs with no 

curtailment for each case. From the annual savings over 

Case 1 (no on-site generation), the net present value (NPV) 

of the DG and PV systems without curtailment is also 

reported. These values are based on a 20 year lifetime for 

DG systems, 30 year lifetime for PV systems, and a 5% 

discount rate. Fig. 1 shows how electrical loads are met for 

three days in July for a particular case and scenario.  Fig. 2 

through Fig. 5 show contour plots of the annual energy cost 

savings over the no-curtailment scenario for each case. 

These plots show the value of curtailment for each case, 

where value is defined as annual cost less annual cost with 

no curtailment. 

Without on-site generation, feasible curtailment schemes 

could save this site US$20,000/year (Fig. 2), or about 3% of 

the annual energy cost without IES. Curtailment becomes 

more valuable at low curtailment magnitudes (50-100 kW,  

roughly 5-10% of peak load) in conjunction with DG (Fig. 3 

and 5), which is a synergy between the two IES components. 

Increasing curtailment magnitude does not significantly 

increase the cost savings for these cases. Curtailment is less 

valuable when in conjunction with PV, suggesting some 

overlap in savings between the two IES components.  

For the site considered, small, frequent curtailments are 

more effective than large, infrequent curtailments. If limited 

to 20 one-hour 50 kW (5% of peak load) curtailment 

episodes per month, curtailment alone can reduce site annual 

energy costs by 1.7% relative to site energy costs with no 

IES components. As a component in a more complex IES 

system, this value can increase to 3.1%. These results will 

depend heavily on the statistical distribution of site energy 

loads and DG intermittency patterns.  

VIII. CONCLUSIONS 

Optimal dispatch is a complex and challenging problem 

for IES in commercial and industrial buildings. An 

algorithm is proposed here which can make near-optimal 

dispatch decisions in real-time. The example and results 

presented in Sections VI and VII illustrate how this 

algorithm can be used in simulation to estimate the value of 

particular IES system configurations. Although this example 

should not be considered exemplary of the entire stock of 

U.S. buildings, it does illustrate how valuable IES 

components and systems can be in a location with 

significant demand charges. 

This example suggests the proposed algorithm’s 

usefulness as a screening and design tool for a wide variety 

of sites considering IES projects. For sites where this 

integrated approach suggests significant costs savings over 

current control strategies, this algorithm would be useful in 

the actual real-time dispatch of IES systems. Where this 

algorithm proves too complex to implement, heuristic 

control strategies derived from the results of this algorithm 

could be implemented.  Implementation would require an 

energy management system capable of 1) collecting the 

sensed parameter values, 2) running the optimization 

program, and 3) dispatching the IES components. 

Taking advantage of optimization opportunities with IES 

relies heavily on the information technology available to the 



 

 

 

 

site. Certainly computation is required at each time-step to 

execute an optimization. Additionally, an instrumented 

building can provide the detailed information necessary to 

identify least cost DSM opportunities. These technologies 

enable societal benefits of reduced energy consumption on 

two levels: the first is that they help optimize the volumetric 

and demand reductions that existing IES systems are capable 

of. The second is that they enhance the value of IES 

systems, which incents IES system adoption. This in turn 

leads to more energy savings. 
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Fig. 1: How electricity loads are met for two weekdays and a weekend day 

in July. Results are from Case 4 (DG, PV, and curtailment) limited to 

10 one-hour, 100 kW curtailment episodes per month. 

 
Fig. 2 Curtailment value (US$/year). Case 1: Curtailment Only 

 
Fig. 3 Curtailment value (US$/year). Case 2: Curtailment and DG 

 

 
Fig. 4 Curtailment value (US$/year). Case 3: Curtailment and PV 

 

 
Fig. 5 Curtailment value (US$/year). Case 4: Curtailment, DG, and PV 

 

TABLE IV 

ENERGY PRICES 

  summer 

(May – Oct) 

winter 

(Nov – Apr) 

Electricity Rates 

Fixed (US$/month) 288 

on-peak 0.157 n/a 

mid-peak 0.094 0.118 
Volumetric 

(US$/kWh) 
off-peak 0.055 0.057 

all hours 8.75 8.75 

on-peak 20.51 n/a 

Demand 

(US$/kW-

month) mid-peak 5.01 0.00 

Natural Gas Rates 

Fixed (US$/month) 1022 

Volumetric (US$/kWh (US$/therm)) 0.020- 0.38 (0.60 – 1.10) 

 

TABLE V 

ANNUAL COST RESULTS PRIOR TO CURTAILMENT 

Case 

Energy cost 

without 

curtailment 

(US$/year) 

Savings over no 

IES (US$/year) 

NPV of 

generation 

equipment 

(US$/kW) 

1: No on-site 

generation  

$606,330 n/a  

2: DG only $405,560 $200,770 $8800 

3:PV only $541,350 $64,985 $5000 

4: DG and PV $351,680 $254,650  

 




