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Abstract

We propose a novel approach of integrating exemplar-based template matching with statistical modeling to

improve continuous speech recognition. We choose the template unit to be context-dependent phone segments

(triphone context) and use multiple Gaussian mixture model (GMM) indices to represent each frame of speech

templates. We investigate two different local distances, log likelihood ratio (LLR) and Kullback-Leibler (KL)

divergence, for dynamic time warping (DTW)-based template matching. In order to reduce computation and

storage complexities, we also propose two methods for template selection: minimum distance template selection

(MDTS) and maximum likelihood template selection (MLTS). We further propose to fine tune the MLTS template

representatives by using a GMM merging algorithm so that the GMMs can better represent the frames of the

selected template representatives. Experimental results on the TIMIT phone recognition task and a large vocabulary

continuous speech recognition (LVCSR) task of telehealth captioning demonstrated that the proposed approach of

integrating template matching with statistical modeling significantly improved recognition accuracy over the

hidden Markov modeling (HMM) baselines for both TIMIT and telehealth tasks. The template selection methods also

provided significant accuracy gains over the HMM baseline while largely reducing the computation and storage

complexities. When all templates or MDTS were used, using the LLR local distance gave better performance than

the KL local distance. For MLTS and template compression, KL local distance gave better performance than the LLR

local distance, and template compression further improved the recognition accuracy on top of MLTS while having

less computational cost.

Keywords: Gaussian mixture model; Template matching; KL divergence; Dynamic time warping; Large vocabulary

continuous speech recognition

1 Introduction
In speech recognition, hidden Markov modeling (HMM)

has been the dominant approach since it provides a prin-

cipled way of jointly modeling speech spectral variations

and time dynamics. However, HMM has the shortcoming

of assuming the observations being independent within

each state, which makes it ineffective in modeling the fine

details of speech temporal evolutions that are important

in characterizing nonstationary speech sounds [1]. Time

derivatives of cepstral coefficients [2] are widely used to

supplement time dynamic information to speech feature

distributions. Trajectory model [3] introduces time-varying

covariance modeling to capture temporal evolutions of

speech features. Additionally, approaches like segment

models [4,5] and long-contextual-span model of resonance

dynamics [6] have been proposed for similar purposes.

Exemplar-based methods have the potential in address-

ing the deficiency of HMMs and in recent years they have

drawn renewed attention in the speech recognition com-

munity [7,8], such as sparse representations (SRs) [9] and

template matching [10,11]. Template-based methods make

direct comparisons between a test pattern and the tem-

plates of training data via dynamic time warping (DTW),

and potentially they can capture the speech dynamics bet-

ter than HMMs. Template-based methods were originally

used to recognize isolated words or connected digits with
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good performances [12]. Until recently, template-based

methods had been impractical for large tasks of speech

recognition, since feature vectors of training templates

need to be stored in computer memory. With today’s

rapid advance in computing power and memory cap-

acity, template-based methods are investigated for large

recognition tasks and promising results are reported

[10,11,13-18]. However, they are still difficult to use in

large vocabulary continuous speech recognition (LVCSR)

due to their needs for intensive computing time and stor-

age space. The newly proposed methods, such as template

pruning and filtering [19], template-like dimension reduc-

tion of speech observations [20], and template matching

in the second-pass decoding search [21], are beginning to

address this problem. In general, there is a tradeoff be-

tween the costs in computation and space and the accur-

acy in recognition.

Considering the pros and cons of HMMs and template

methods, i.e., HMM-based statistical models are effective in

compactly representing speech spectral distributions of

discrete states but are ineffective in representing the fine

details of speech dynamics, while template matching cap-

tures well the speech temporal evolutions but demands

much larger computational complexity and memory space,

it appears plausible to integrate the two approaches so as to

exploit their strengths and avoid their weaknesses. In the

current work, we propose a novel approach of integrating

exemplar-based template matching with statistical model-

ing. We construct triphone context-dependent phone tem-

plates to preserve the time dynamic information of phone

units and use phonetic decision trees to generate templates

of tied triphone units, which improves the reliability of tri-

phone templates and covers unseen triphones by some tri-

phone clusters. The load on memory storage is reduced by

using Gaussian mixture model (GMM) indices to represent

the speech frames of the templates. It is worth noting that

Gaussian indices were previously used to represent speech

frames in speech segmentation [22], speech separation [23],

and keyword spotting [24-26]. To facilitate comparison of

the templates labeled by GMM indices, we propose the

local distances of log likelihood ratio (LLR) and Kullback-

Leibler (KL) divergence for DTW-based template matching.

To further reduce the costs of memory space and com-

putation, we propose template selection methods to

generate template representatives based on the criteria

of minimum distance (MDTS) and maximum likelihood

(MLTS) and we also propose a template compression

method to integrate information from training tem-

plates to obtain more informative template representa-

tives. In the recognition stage, the GMMs and the

templates are used together by DTW with the proposed

local distances. The proposed methods have been ap-

plied to lattice rescoring on the tasks of TIMIT [27]

phone recognition and telehealth [28] large vocabulary

continuous speech recognition, and they have led to

consistent error reductions over the HMM baselines.

This paper is organized as follows. In Section 2, we dis-

cuss the related work for template-based speech recogni-

tion and provide an overview of our proposed system. In

Section 3, we describe the proposed methods for template

construction, matching, and clustering. In Section 4, we

discuss the proposed methods for template representative

selection and compression. In Section 5, we present evalu-

ation results on the task of TIMIT phone recognition and

the task of telehealth LVCSR. Finally in Section 6, we give

our conclusion and discuss future work.

2 Related work and system overview
2.1 Related work

Continuous speech recognition using template-based ap-

proaches has gained significant attention over the past

several years. In [10], a top-down search algorithm was

combined with a data-driven selection of candidates for

DTW alignment to reduce search space, together with a

flexible subword unit selection mechanism and a class-

sensitive distance measure. On the Resource Management

task, although the performance of the template matching

system fell below the best published HMM results, the

word error patterns of the two types of systems were

found to be different and their combination was beneficial.

In [13], an episodic-HMM hybrid system was proposed to

exploit the ability of HMMs in producing high-quality

phone graphs as well as the capability of an episodic mem-

ory in accessing fine-grained acoustic data for rescoring,

where template matching was performed by DTW using

the Euclidean distance. This system was evaluated on the

5k-word Wall Street Journal (WSJ) task and it showed a

comparable performance with state-of-the-art HMM sys-

tems. In [18], prosodic information of duration, speaking

rate, loudness, pitch, and voice quality was integrated with

template matching through conditional random fields to

improve recognition accuracy. On the Nov92 20k-word

trigram WSJ task, the proposed method improved the

state-of-the-art template baseline without prosodic in-

formation and led to a relative word error rate reduction

of 7%. To make the template-based approach realistic

for hundreds of hours of speech training data, a data

pruning method was described for template-based auto-

matic speech recognition in [19]. The pruning strategy

worked iteratively to eliminate more and more tem-

plates from an initial database, and at each iteration, the

feedback for data pruning was provided by the word

error rate of the current model. This data pruning re-

duced the database size or the model size by about 30%,

and consequently saved the computation time and

memory usage in speech recognition. In [21], exemplar-

based word-level features were investigated for large-

scale speech recognition. These features were combined
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with the acoustic and language scores of the first-pass

model through a segmental conditional random field to

rescore word lattices. Since the word lattices helped re-

strict the search space, the templates were not required

to cover the full training data, and the templates were

also filtered to a smaller set to reduce computation cost

and improve robustness. Experimental results showed

that the template-based approach obtained a slightly

better performance than the baseline system in Voice

Search and YouTube tasks.

Relative to the above-discussed efforts, our approach

as proposed in the current work falls into the hybrid

category, but our integration of statistical modeling

and template representation and matching are tighter,

since we not only rescore the lattices generated by the

HMM baseline, but we also use the baseline phonetic

decision tree (PDT) structures to define the tied tri-

phone templates, representing the template frames by

the GMMs and using the LLR and KL distances to

measure the differences of speech frames represented

in this way. In the aspect of reducing computation and

memory costs, we absorb the training data information

into template representatives through clustering and

estimation, rather than selecting a subset of training

data as the templates. On the TIMIT and telehealth

tasks, we are able to show statistically significant im-

provements in phone and word accuracies, respect-

ively, over the HMM baselines.

2.2 System overview

The overall architecture of the proposed template

matching method is described in Figure 1. In the train-

ing stage, Viterbi alignment is performed on the training

data by the baseline model to determine the phone tem-

plate boundaries; using the PDT-based triphone state

tying structures of the baseline system, template cluster-

ing is performed to generate tied triphone templates

(Section 3.3); using the GMM codebook derived from

the baseline model, the template frames are labeled by

the GMMs (Section 3.1); template selection and com-

pression are further performed to generate the template

representatives (Section 4). In the test stage, the baseline

model is first used to perform decoding search on a test

speech utterance to generate a word lattice; the test

speech frames are labeled by the GMMs in the same

way as in training; template matching and best path

search are then performed on the word lattice to gener-

ate the rescored sentence hypothesis (Section 3.3).

3 Template representation, matching, and
clustering
3.1 Template representation

We choose the template unit to be context-dependent

phone segments, the context being the immediately left

and right phones of each phone segment, and we refer the

context-dependent templates as triphone templates. We

first carry out forced alignments of training speech data

Figure 1 System overview.
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with their transcriptions to obtain phone boundaries which

define the phone templates. We then use a GMM code-

book {m1,m2,…,mN} that consists of the GMMs of the

phonetic-decision-tree tied triphone states in the baseline

HMMs to label the template frames, where N is the total

number of GMMs from the HMM baseline. To do so, we

compute the likelihood scores of a feature vector or frame

(these two terms are used interchangeably with the under-

standing that a feature vector is normally extracted from a

frame of data), xt ∈R
d (d is the dimension of a real-valued

feature vector), of a phone template by all GMMs and take

the n GMMs that give the top n likelihood scores,

p xt m1 xtð ÞÞ≥p xt m2 xtð ÞÞ≥…≥p xt mn xtð ÞÞ≥…
�

�

�
�

�

�
�

�

�

, to label xt.

Each GMM index is also associated with a weight wk xtð Þ
that is defined to be proportional to the likelihood

score p xt mk xtð ÞÞ
�

�

�

, with wk tð Þ ¼ pðxt jmk xtð ÞÞ
∑
n
l¼1p xt jml xtð Þð Þ and

∑
n
k¼1wk xtð Þ ¼ 1. A template frame is therefore represented as

xt→

m1 xtð Þ
⋮

mn xtð Þ

2

4

3

5

w1 xtð Þ
⋮

wn xtð Þ

2

4

3

5

8

<

:

9

=

;

: ð1Þ

In general, n < < d, and hence storing the template

frames in GMM indices requires a much smaller space

than storing the feature frames for the Templates.

3.2 Template matching

In using DTW to measure the dissimilarity between two

speech utterances, the allowed range of speaking rate

variations can be specified by local path constraints [12].

Let d(i, j) denote the local distance between the ith and

the jth frames of two sequences under comparison and

D(i, j) denote the cumulative distance between the two

sequences up to the time i and j. The symmetric con-

straint that we adopt here is defined as

D i; jð Þ ¼ d i; jð Þ þmin D i−1; jð Þ;D i−1; j−1ð Þ;D i; j−1ð Þf g:
ð2Þ

Given a sequence Sx representing a template and a se-

quence Sy representing a test segment, their average frame

distance is calculated as

�D Sx; Sy
� �

¼ 1

N
min∅

XN

k¼1
d ∅Sx kð Þ; ∅Sy kð Þ
� �

; ð3Þ

where ∅Sx and ∅Sy are the warping functions that map

Sx and Sy to a common time axis, and N is the warping

path length. Considering the fact that in HMM-based

decoding search the acoustic score of a test segment is

the sum of its frame log likelihood scores (the segment

acoustic score is therefore the average frame score scaled

by the length of the segment), we define the distance be-

tween the template Sx and the test segment Sy in the

similar way as

D Sx; Sy
� �

¼ L� �D Sx; Sy
� �

¼ L

N
min∅

XN

K¼ 1d ∅Sx kð Þ; ∅Sy kð Þ
� �

ð4Þ

where L is the length of the test segment Sy. Through scal-

ing the average frame distance by the test segment length,

the acoustic scores for different hypotheses of a test

speech utterance (which in general consists of many seg-

ments) can be directly compared in template matching, as

in HMM-based decoding search. Note that without the

normalization by N in Equation 3, a template matching

score for a speech segment would be affected by the

length of the time warping path, which may vary with dif-

ferent templates; on the other hand, if the rescaling by L is

not adopted, then the total distance on a decoding path

would be dependent on the number of test segments in

the path but not the lengths of these segments.

Commonly used local distances, such as Euclidean or

Mahalanobis distances, compute the difference between

two feature vectors directly [10], and they are thus of a

feature-feature type. Let x and y represent two frames

under comparison. The Euclidean distance is

dEuc x; yð Þ ¼ x−yð Þ0 x−yð Þ ð5Þ

and the Mahalanobis distance is

dMah x; yð Þ ¼ x−yð Þ0Σ−1
x−yð Þ ð6Þ

with Σ as the covariance matrix estimated from training

data.

When the template frames are represented by GMM

indices, the Euclidean and Mahalanobis distances are no

longer suitable. One possibility is to use negated log like-

lihood (NLL) score as a local distance. Let xt and yt0 be

the frames of a test segment and a training template, re-

spectively, and assume that yt0 is labeled by a GMM

m1 y
t
0ð Þ. The NLL distance is then

dNNL xt; yt0
� �

¼ − log p xt jm1 y
t
0ð Þ

� �

: ð7Þ

When yt0 is represented by n GMMs m1 y
t
0ð Þ;…;

n

mn y
t
0ð Þ
o

with the weights w1 y
t
0ð Þ;…;wn y

t
0ð Þ

n o

, the NLL

distance becomes

dNNL xt ; yt0
� �

¼ − log
Xn

k¼1
wk yt0ð Þp xt mk yt0ð ÞÞ:

�

�

�

ð8Þ

The NLL distance is of the feature-model type, as it

does not use the information of the GMM labels on the

test segment frames. The proposed log likelihood ratio

and KL divergence distances make use of the GMM
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labels on both the test and the training frames. These

two model-model distances are described below.

3.2.1 Log likelihood ratio local distance

Assuming that the test frame xt is labeled by a GMM

m1 xtð Þ and the training frame yt0 is labeled by a GMM

m1 y
t
0ð Þ. The LLR local distance between xt and yt0 is then

defined as follows:

dLLR xt ; yt0
� �

¼ log
p xt jm1 xtð Þ
� �

p xt jm1 y
t
0ð Þ

� � : ð9Þ

The LLR distance contrasts the fit score of a test frame

with its best model against its fit score with the best model

of the template frame, and it therefore compares the two

frames indirectly through the models. The LLR distance is

nonnegative when 1-best GMM is used in frame labeling.

When using multiple GMM indices for speech frame rep-

resentation, the nonnegativity also holds if the weights are

kept uniform, but it is not guaranteed if the weights are

nonuniform, where the latter is due to the fact that al-

though the GMM scores of the numerator are not smaller

than those of the denominator, a skew in the denomina-

tor’s weights toward some large GMM scores may make

the denominator larger than the numerator. On the other

hand, since what we really need is the difference of the nu-

merator and denominator log likelihood scores as the dis-

similarity between a test frame and a template frame,

while a strict-sense log likelihood ratio is not needed here

as in statistic hypothesis testing, we can therefore simply

take the absolute value of the log likelihood score differ-

ence as the distance measurement which is also the recti-

fied LLR given in Equation 10:

dLLR xt ; yt0
� �

¼
�

�

�

�

�

log
X

n

k¼1

wk xtð Þp xt jmk xtð Þ
� �

− log
X

n

k¼1

wk y
t
0ð Þp

�

xt jmk y
t
0ð Þ
�

�

�

�

�

�

¼
�

�

�

�

�

log
∑
n
k¼1wk xtð Þp xt jmk xtð Þ

� �

∑
n
k¼1wk y

t
0ð Þp

�

xt jmk y
t
0ð Þ
�

�

�

�

�

�

ð10Þ

(it is worth mentioning here that although getting

a negative log likelihood ratio is a mathematical possi-

bility, it never occurred in the experiments described

in Section 5).

3.2.2 KL divergence local distance

In either the NLL distance or the LLR distance, the feature

vector xt is involved in the distance calculation. Here we

consider measuring the local distance between two frames

without using the feature vectors. KL divergence is widely

used for measuring the difference between two probability

distributions [29]. Since the frames are represented by

GMM indices, the KL divergence between GMMs becomes

a natural choice for indirectly measuring the dissimilarity of

two frames. Because there is no closed-form expression for

KL distance of GMMs, we use the Monte Carlo sampling

method of Hershey and Olsen [30] to compute the diver-

gence from a GMM mx to a GMM my as

d mx jj my

� �

¼ 1

ns

Xns

i¼1
log

mx xið Þ
my xið Þ ð11Þ

where the xis are i.i.d. samples generated from the

GMM mx. Since the KL divergence is asymmetric, we

further define a symmetric KL distance as

dKL mx;my

� �

¼ 1

2
d mx jj my

� �

þ d my jj mx

� �� �

: ð12Þ

The local distance between the two frame vectors xt
and yt0 is then calculated as

d xt ; yt0
� �

¼
Xn

k¼1

Xn

l¼1
wk xtð Þwl y

t
0ð ÞdKL mk xtð Þ;ml y

t
0ð Þ

� �

:

ð13Þ

3.3 PDT-based template clustering and matching score

calculation

Considering the fact that certain triphone contexts may

rarely occur or even be missing in a training set, we investi-

gate tying triphone templates into clusters of equivalent

contexts to improve the reliability of template matching as

well as to handle unseen triphones in recognition. Among

many possible clustering algorithms, we decide to utilize

the PDT tying structures of the triphone states in the base-

line HMMs directly to cluster triphone segments, since the

tying structure of a phone state indicates partial similarities

among triphone segments. We assume that each phone

HMM has three emitting states as commonly used in HTK

[31]. For the triphone templates of each monophone, we

keep the three tying structures defined by the three emit-

ting states of the corresponding phone HMM and use them

jointly in template matching.

Specifically, in matching a test speech segment against

a triphone arc in a word lattice, we first identify the three

tied triphone clusters by answering the phonetic questions

in the PDTs, and for an identified cluster i with ki tem-

plates, we then choose
ffiffiffiffi

k i
p

best-matching templates and

average their matching scores for the test segment, and we

further average the three scores of the three clusters as the

matching score between the speech segment and the tri-

phone arc. Using the square-root rule helps compress the

variations of the number of templates ki used in computing

the scores, since the number often vary largely in different

triphone clusters. The rule is also analogous to the K-
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nearest neighbor (KNN) method where K is set as the

square root of the training sample size [32].

Figure 2 illustrates the process of computing template

matching score for lattice rescoring. It shows a phone

lattice and a test speech segment X extracted from a

speech utterance according to the start and end time of

the phone arc P that has a predecessor phone PL and

successor phone PR. Figure 3 illustrates the way that the

matching scores of X with the three triphone template

clusters containing PL − P + PR are averaged to one

matching score, which is used to replace the original

acoustic score in the phone lattice for the phone arc P.

4 Template selection and compression
When the above-described template matching is used for

lattice rescoring in LVCSR, the computation and storage

overheads are still high. However, certain redundancies in

the training templates can be reduced to improve compu-

tation and storage efficiency. We propose three methods

of template selection and compression to address this

problem. In template selection, the goal is to choose a

small subset of templates as the representatives for the full

set of training templates. In template compression, new

GMMs are generated for labeling the frames of the se-

lected template representatives so as to better capture the

information in the training Templates.

4.1 Minimum-distance-based template selection

Agglomerative clustering [33] is a hierarchical clustering

algorithm and it is widely used in pattern recognition, in-

cluding speech recognition [34]. For selecting template

representatives, we use the agglomerative clustering algo-

rithm to further cluster the templates in each tied triphone

cluster at a PDT leaf node, which recursively merges two

closest clusters into one cluster until only one cluster is

left. Given a distance function D(Ci, Cj) for two clusters,

the following procedure describes the algorithm for clus-

tering m templates {s1, s2,…,sm} in a leaf node of a PDT:

1. Initialize the template set Z1 = {{s1}, {s2},…, {sm}}

with each template si being a cluster.

2. For n = 2,…,m: Obtain the new set Zn by merging

the two clusters Ci and Cj in the set Zn − 1 with the

distance D(Ci, Cj) to be the minimum among all

existing distinct cluster pairs. Stop the clustering

process if the number of clusters in the set Zn drops

below a threshold.

The cluster distance function D(Ci, Cj) is commonly

defined by the distance of their elements D(sx, sy), and

the average distance measure is adopted here [33]:

D Ci;C j

� �

¼ 1

Cij j Cj

�

�

�

�

∑sx�Ci
∑sy�Cj

D sx; sy
� �

: ð14Þ

Note that D(sx, sy) is the DTW distance of two tem-

plates as defined in Section 3.2, and in this step, the local

distance d is the Euclidean distance of two frames.

To select a template representative for a cluster, we

use the minimum distance from a template to all other

templates in the cluster as the criterion, and therefore

the method is called minimum distance template selec-

tion (MDTS). Given a cluster Ci, the template-to-cluster

distance is defined as follows [33]:

D sx;Cið Þ ¼
X

sx0∈Ci

sx≠sx0

D sx; sx0ð Þ; ð15Þ

and the template s* is selected as the representative for

the cluster Ci if its distance to the rest of the templates

in the cluster is the minimum, i.e.,

s� ¼ argminsx�Ci
D sx;Cið Þ: ð16Þ

The frames of the selected template representatives are

subsequently indexed by their n-best GMMs according to

Section 3.1.

4.2 Maximum-likelihood-based template selection

In maximum likelihood template selection, each frame of

a cluster center s* as generated by the MDTS method is

relabeled by a set of GMMs that are selected by using a

maximum likelihood criterion, so as to make the repre-

sentative better characterize the templates in each cluster.

For maximum likelihood template selection (MLTS), we

Figure 2 A faction of a phone lattice and a speech segment X.
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use the DTW described in Section 3.2 to align the tem-

plates in a cluster Ci to the MDTS-initialized template cen-

ter s*. Figure 4 illustrates an outcome of aligning the

sequences s1,…, sN to s* in Ci, where the frames x
1ð Þ
t1 ;…;

x
Nð Þ
tN of the sequences s1,…, sN, respectively, are aligned to

the frame x
�ð Þ
t� of the cluster center s*. The following pro-

cedure describes the MLTS method that is applied to re-

label x
�ð Þ
t� of s* by using the aligned frames

X ¼ x
�ð Þ
t� ; x

1ð Þ
t1 ;…; x

Nð Þ
tN

n o

:

1. Pool the distinct GMMs which are used to label the

frames in X into a local GMM set M.

2. Use the K-medoids algorithm [33] with the KL

distance to partition the GMM set M into l clusters

Mi, i = 1,…, l, where each Mi defines a subset of

frames that are labeled by the GMMs in Mi.

3. For i = 1,…, l: Use the maximum likelihood criterion to

select a GMM of Mi as the cluster center m
�
i for Mi:

m�
i ¼ argmax

m
j

i
�Mi

X

xϵXMi

log pðxjmj
iÞ

� 	

ð17Þ

where m
j
i is the jth GMM in Mi.

4. For i = 1,…, l: Calculate the weight wi for each

GMM cluster center m�
i , which is proportional to the

likelihood of X evaluated by m�
i , i.e., p X m�

i Þ
�

�

�

:

wi ¼
p Xjm�

i

� �

∑
l
k¼1p Xjm�

k

� � ¼ e∑xϵX logp xjm�
ið Þ

∑
l
k¼1e

∑xϵX logp x m�
k

�
�

�

� : ð18Þ

After the relabeling, the frame xt is represented by m�
i

and wi, i = 1,…, l. The MLTS procedure is applied to

each frame of s*. The resulting representation of s* has a

form similar to what is described in Section 3.1, with the

difference that the best-fitting n GMMs of the baseline

HMMs are used to label a frame in Section 3.1, but here

the template frames that are aligned to a frame of the

MDTS representative are used to select a set of l GMMs

to relabel the frame of the representative.

4.3 Template compression

The template compression method aims at taking in more

information from the original templates for the template

representatives. For each frame of a template representa-

tive, instead of selecting only one GMM and excluding the

rest of the GMMs for a cluster Mi as in MLTS, here we

merge the original GMMs in each cluster Mi into a new

GMM and use the l new GMMs from the l clusters Mi,

i = 1,…, l to relabel the frame. To reduce the negative ef-

fect of outlier templates, for each GMM m
j
i in a cluster

Mi, we calculate its distance to the cluster center m�
i based

on the KL distance d
j
i ¼ d m

j
i;m

�
i

� �

. From the distances d
j
i

Figure 3 Using three PDT clustering structures to calculate the template matching score.

Figure 4 An alignment of the sequences s,…, sN to s*.
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of Mi, the mean �d and the standard deviation σ are com-

puted. If a GMM m
j
i is t times standard deviation away

from �d , i.e.,

jdj
i−

�dj > tσ ð19Þ

then it is considered an outlier and is removed from the

merging process. Suppose that after removing the out-

liers, there are nG GMMs left in Mi. We first pool the

component Gaussian densities from the nG GMMs and

normalize the weight of each Gaussian component by

nG. We then merge the pooled Gaussian components ac-

cording to the criterion of minimum entropy increment.

The entropy increase due to merging two Gaussian

components fi ~N(µi, Σi) and fj ~N(µj, Σj) into N(µ, Σ) is

defined as [35]:

ΔE f i; f j

� �

¼ log Σj j− wi

wi þ wj

log Σij j− wj

wi þ wj

log Σj

�

�

�

�

ð20Þ

where wi and wj are the normalized mixture weights for

fi and fj. The mean μ, covariance Σ, and mixture weight

w of the newly generated Gaussian component are de-

fined as

Σ ¼ wi

wi þ wj

Σi þ
wj

wi þ wj

Σj þ
wiwj

wi þ wj

� �2

�

μi−μj
��

μi−μj
�0

μ ¼ wi

wi þ wj

μi þ
wj

wi þ wj

μj

w ¼ wi þ wj:

ð21Þ

The Gaussian components are merged iteratively until

the number of components in Mi is below a preset

threshold. The remaining Gaussian components are used

to construct a new GMM, and the new GMM is used as

one of the l GMMs to label the corresponding frame of

the template representative.

The flowcharts of the above-discussed three template

selection and compression methods are given in Figure 5.

As shown in the figure, the three methods share the

same template representatives that are selected from the

original GMM-labeled templates. While MDTS stops

here, MLTS reselects the GMM labels for the represen-

tative frames, and template compression generates new

GMMs and uses them to relabel the frames of the tem-

plate representatives. As are shown in the experimental

results of Section 5, the refinements on the GMM labels

make the template representatives more effective, and

when coupled with a proper local distance they allow

using only a small fraction of template representatives in

lattice rescoring with little performance loss.

5 Experimental results
We performed speaker-independent phone recognition

on the task of TIMIT [27] and speaker-dependent large

vocabulary speech recognition on the task of telehealth

captioning [28]. The experimental outcomes were mea-

sured in phone accuracy and word accuracy, respect-

ively, for TIMIT and telehealth through aligning each

phone or word string hypothesis against its reference

string by using the Levenshtein distance [31].

5.1 Corpora

The TIMIT training set consisted of 3,696 sentences

from 462 speakers and the standard test set included

1,344 sentences spoken by 168 speakers. The telehealth

task included spontaneous speech from five doctors and

the vocabulary size was 46,000. A summary of the Tele-

health corpus is given in Table 1, where the word counts

from the transcription texts are also listed. For a detailed

description of this task, please refer to [28].

5.2 Experimental set up and lattice rescoring

For both tasks of TIMIT and telehealth, the speech

features consisted of 13 MFCCs and their first- and

second-order time derivatives, and crossword tri-

phone acoustic models were trained by using HTK

toolkit. In calculating a KL distance between two

GMMs [30], 10,000 Monte Carlo simulation data

samples were generated.

For the TIMIT dataset, the set of 39 phones was de-

fined as in [36], and a phone bi-gram language model

(LM) was used (trained from the TIMIT training speech

transcripts). The HMM baseline was trained with the

GMM mixture sizes of 24; and 1,189 GMMs were ex-

tracted for template construction. The total original tri-

phone templates were 152,715 in the training set. Phone

lattices were generated for each test sentence by HTK.

The average number of nodes per lattice was in the

order of 850, and the average number of arcs was in the

order of 2,350.

For the telehealth task, speaker-dependent acoustic

models were trained for five healthcare provider

speakers Dr. 1 to Dr. 5. In the baseline acoustic model,

each GMM included 16 Gaussian components and on

average, 1,905 GMMs were extracted from the baseline

HMMs of each of the five doctors. The average number

of triphone templates was 181,601 per speaker for the

five doctors. Trigram language models were trained on

both in-domain and out-of-domain datasets, where

word-class mixture trigram language models with

weights obtained from a procedure of forward weight

adjustment were used [37]. For each test sentence, word

lattices including phone boundaries were generated by

HTK. The average number of nodes per lattice was in
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the order of 700, and the average number of arcs was in

the order of 1,950.

In rescoring a lattice, the acoustic score of each phone

arc in the lattice was replaced by its corresponding

triphone template matching score, where the distance

score of Equation 4 was negated to become a similarity

score. By using the acoustic similarity scores and the

original language model scores, the best path with the

largest sum of acoustic and language model log scores

was searched on the lattice using dynamic programming

to produce the rescored sentence hypothesis.

5.3 TIMIT phone recognition task

On the TIMIT task, we provide a detailed account of the

factors in the proposed template matching methods that

affect the rescoring performance, including local dis-

tances, number of GMMs employed for frame labeling,

template selection, compression methods and their in-

teractions with the local distances, and the percentage of

selected template representatives. We also examine the

Use the merged GMMs to label the corresponding 

frame of the template representative

Compressed

template

representatives

Use the GMM centers to

label the corresponding frame 

of the template representative

Merge the GMMs of each 

cluster within the distance 

to the GMM center

MLTS based

template

representatives

Align templates to the cluster 

center in each template cluster

Templates with GMM

labels in a triphone cluster

Hierarchical

agglomerative

clustering

Template 

clusters

Select a center for each 

cluster with the minimum

distance criterion

MDTS based 

template

representatives

For each set of aligned 

frames, partition their 

GMMs into l clusters by

the K-medoids algorithm

For each GMM cluster, 

use the ML criterion to

select a GMM center

t

Figure 5 Flowcharts of MDTS, MLTS, and template compression.

Table 1 Datasets used in the telehealth task: speech

(min)/text (no. of words)

Training set Test set

Dr. 1 210/35,348 19.3/3,248

Dr. 2 200/39,398 29.8/5,085

Dr. 3 145/28,700 12.1/3,988

Dr. 4 180/39,148 14.3/2,759

Dr. 5 250/44,967 27.8/6,421

Total 985/187,561 103.3/21,501
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patterns of phone error reduction and look at the cost-

performance tradeoffs.

5.3.1 Local distances

In Figure 6, we compare the phone recognition perfor-

mances by using the HMM baseline and the template-

matching-based lattice rescoring with the local distances

of Mahalanobis, NLL, LLR, and KL divergence. Except

for the baseline and the Mahalanobis distance, each

frame of a template or a test speech segment was labeled

by 1GMM index. The HMM baseline had the phone ac-

curacy of 72.72%. In template matching, the Mahalano-

bis and NLL local distances improved the baseline by

merely 0.11% and 0.12% absolute, respectively, but the

LLR and KL distances improved the HMM baseline by

1.30% and 0.96% absolute, respectively. The LLR dis-

tance gave higher phone accuracies than the KL distance

did. This may be attributed to the fact that the KL diver-

gence measures the difference between GMM distribu-

tions but not directly the difference between feature

vectors, whereas the LLR distance contrasts the likeli-

hood scores of two sets of GMMs for each test frame,

and therefore it reflects the characteristics of the test

frame more closely. Giving the superiority of the pro-

posed LLR and KL distances, we only use these two local

distances in the subsequent experiments.

5.3.2 Number of GMMs for frame labeling

In Figure 7, we show the effects of using different num-

bers of GMMs (n = 1, n = 3, n = 5, and n = 7) in labeling

each frame of the templates. For both LLR and KL

distances, the accuracy performance peaked when five

GMMs were used for frame labeling, and phone accur-

acies of 74.51% and 74.26% were achieved for LLR and

KL distances with absolute improvements of 1.79% and

1.54%, respectively, over the HMM baseline of 72.72%.

The results confirmed the advantage of using multiple

GMMs for frame labeling over using single GMM, as

the former induced smaller quantization errors than the

latter. However, using too many GMMs to represent a

frame could increase confusion and reduce efficiency.

We conducted significance tests on the performance

difference between the ‘5GMMs’ case and the HMM

baseline. Let xi and yi be the phone recognition accuracy

of the ith test sentence for the baseline and a proposed

method, respectively. Let ti = yi − xi and denote the sam-

ple mean and sample variance of ti as �t and s2 with the

sample size m. The Student’s t test statistic is T ¼ �t=

s=
ffiffiffiffi

m
pð Þ . In the TIMIT standard test set, m= 1,344 and

tm − 1,1 − 0.05 = 1.65 for one-sided test. For the LLR and

KL local distances, we obtained T > tm − 1,1 − 0.05, and

therefore our proposed template matching methods

using the LLR and KL distances improved TIMIT phone

recognition accuracy significantly over the HMM base-

line at the significance level of 0.05. We also used two-

fold cross-validation on the test set to automatically

select the number of GMMs for frame labeling, and the

case of 5GMM was selected in each validation set.

Therefore, the result of the 5GMM case in Figure 7 also

represents an open test performance. In the subsequent

experiments, five GMMs were used for labeling each

frame.

5.3.3 Template selection and compression

The performances of template selection and compres-

sion exhibited a dependency on the local distance mea-

sures. Here we discuss how the three methods of (1)

MDTS, (2) MLTS, and (3) template compression per-

formed when using the LLR and KL distances and show

the results in Figure 8, where the number of template

representatives were kept to be 20% of the total tem-

plates for the three cases (further details are discussed in

Section 5.3.5). In template compression, the threshold t

in Equation 19 was set to 2 for removing GMM outliers,

and the number of Gaussian components in each

merged GMM was 24, the same as the GMM mixture

size in the baseline HMMs, with a total of 749 newly gen-

erated GMMs for the template representatives. In MDTS,
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Figure 6 Phone accuracies based on different methods. Comparison on phone accuracies (percent) from the HMM baseline and the

template-matching-based lattice rescoring with the local distances of Mahalanobis, NLL, LLR, and KL, where in the last three cases 1GMM was

used in labeling each frame vector.
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the phone accuracies were 73.82% and 72.70% for the LLR

and KL distance, respectively, and in MLTS, the phone ac-

curacies were 74.05% and 73.07% for the LLR and the KL

distance, respectively. Relative to MLTS, template com-

pression increased absolute phone accuracy by 0.27% with

the KL distance and it decreased absolute phone accuracy

by 0.40% with the LLR distances. Several points worth

noting in Figure 8 are discussed below.

First, MDTS worked well with the LLR distance but

poorly with the KL distance, and vice versa for MLTS

and template compression. In MDTS, the template rep-

resentative frames were labeled in the same way as the

test frames, i.e., by the best-fit GMMs of the baseline

model, and in this case, a better outcome of LLR than

KL is consistent with what was shown in Figure 6 for

using all templates. In MLTS, however, the selected tem-

plate representative frames were relabeled by GMMs to

maximize the likelihood of the aligned template frames,

and template compression went further by generating new

GMMs from the baseline GMMs and used the new

GMMs to relabel the representative frames. Because in

MLTS or template compression the template representa-

tive frames were no longer labeled by the best-fit GMMs,

the LLR distance that contrasted the model-frame fit

became ineffective in comparison with the KL distance

that measures the distance between GMMs.

Second, relative to using all of the original templates

as discussed in Section 5.3.2, using 20% template repre-

sentatives that were selected by MLTS with the KL dis-

tance slightly decreased phone accuracy by 0.21% (from

74.26% to 74.05%), but using the template representa-

tives selected by MDTS with the LLR distance signifi-

cantly decreased phone accuracy by 0.69% (from 74.51%

to 73.82%). This difference may be explained by the fact

that MDTS simply selects a cluster center as a template

representative, but MLTS further refines the GMM indi-

ces of each template representative frame to maximize

the likelihood of the aligned frames in the corresponding

cluster. In this way, MLTS absorbs more information

from the training data into the template representatives

than MDTS, and so fewer template representatives are

needed in MLTS than in MDTS.

Third, with the KL distance, template compression

further improved the performance over MLTS, where by

using 20% template representatives, phone accuracy was

actually improved by 0.06% over the case of using all

templates (from 74.26% to 74.32%). This indicates that

the new GMMs were more effective in labeling the
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Figure 7 Lattice rescoring phone accuracy (percent) using different numbers of GMM indices for frame representation. Using multiple

GMMs such as 3, 5, and 7 to label each frame can get better performance than using one single GMM. For both LLR and KL distances, the

accuracy performance peaked when five GMMs were used for frame labeling.
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Figure 8 Phone accuracies (percent) for methods of template selection and compression with KL and LLR local distances. The three

methods of template selection and compression interact with the LLR and KL local distances in different ways, and therefore each selection or

compression method has its most compatible local distance. Here the number of template representatives was kept to be 20% of total templates.
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template representative frames, and the exclusion of the

outlier GMMs was helpful, too.

In summary, MDTS worked well with LLR distance, and

MLTS and template compression worked well with KL dis-

tance. Using the respectively compatible local distances and

fixing the selection percentage at 20%, template compres-

sion performed the best, MLTS the next, and MDTS the

last. Specifically, the accuracy gains over the HMM baseline

were 1.6% absolute by template compression with KL,

1.33% by MLTS with KL, and 1.1% by MDTS with LLR.

We also conducted the Student’s t test on the performance

differences between each of the three methods (with re-

spectively compatible distance) and the HMM baseline,

and the three methods all significantly improved phone

accuracy over the baseline at the level of α = 0.05.

5.3.4 Evaluation on the outlier threshold t

In Table 2, we show how the threshold value t of Equa-

tion 19 for removing the GMM outliers affected the recog-

nition performance, where the template selection method

was MLTS with the KL distance, and 20% template repre-

sentatives were selected. Among the four t values studied

here, it is observed that t = 2 gave the best phone accuracy

performance. Also note that when t =∞, all GMMs in a

cluster were used to generate compressed templates, where

the existence of outliers degraded the accuracy perform-

ance significantly. Accordingly, the threshold t = 2 was

used in all the template compression experiments.

5.3.5 Evaluation on the number of template representatives

in template selection methods

In Figure 9, we show how the percentages of template

representatives selected from the total templates affect

phone accuracies for MDTS and MLTS with their re-

spectively compatible distances. The number of GMM

clusters l in MLTS was set to 5, corresponding to using

five GMMs to label each frame of a template representa-

tive. It is seen from the two curves that with the per-

centage varied from 100% down to 1%, the phone

accuracies decreased for both methods. When 100%

templates were used, i.e., without template selection,

LLR distance performed better than KL distance, as dis-

cussed in Section 5.3.1 and Section 5.3.2. When less

than 80% templates were used, MLTS performed better

than MDTS since the MLTS templates generalized bet-

ter than MDTS templates, as discussed in Section 5.3.3.

For MDTS, when the selection percentage reduced from

100% to 60%, the phone accuracy dropped rapidly by

0.55% (from 74.51% to 73.96%), and when the selection

percentage reduced from 60% to 20%, the phone ac-

curacy reduced slowly by 0.14% (from 73.96% to

73.82%). In contrast, for MLTS, with the selection per-

centage reduced from 100% to 20%, the phone accuracy

went down gradually by 0.21% (from 74.26% to 74.05%).

Moreover, both curves went down rapidly when the se-

lection percentage was further reduced below 20%. From

Figure 9, we conclude that MLTS is more robust to

using a small percentage of template representatives,

and the selection percentage of 20% is a reasonable com-

promise between accuracy performance and computa-

tion and storage cost.

5.3.6 Phone accuracy analysis

In order to better understand the effect of the proposed

template matching methods, we compare the patterns of

TIMIT phone accuracies from using the methods of all

templates with the KL and LLR local distances against

that of the HMM baseline. Table 3 provides the phone

accuracies of the five broad phone classes (vowels, semi-

vowels, stops, fricatives, and nasals) and the accuracy of

silence for the HMM baseline and template matching. In

Figure 10, we plot the absolute phone accuracy changes

Table 2 Phone accuracies (percent) from using different

outlier threshold values for the compressed template

representatives

Threshold tσ 1σ 2σ 3σ ∞

Accuracy (%) 73.95 74.32 73.42 70.89
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Figure 9 Phone accuracies (percent) versus the percentage of template representatives for MDTS (LLR) and MLTS (KL). For MDTS and

MLTS with their respectively compatible distances, when less templates were used, worse performance was obtained. MLTS is more robust to

using a small percentage of template representatives, and the selection percentage of 20% is a reasonable compromise between accuracy

performance and computation and storage cost.
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of template matching against the HMM baseline. For

the vowel class, the KL- and LLR-based template match-

ing produced absolute phone accuracy gains of 4.82%

and 4.84%, respectively, and for the semivowel class, the

absolute accuracy gains were 4.05% and 4.38%, in the

same order. For the stop class, template matching using

the LLR distance made an absolute gain of 2.0% while

using the KL distance did not help. For the fricative

class, phone accuracies were decreased 2.46% and 2.88%

by the KL- and LLR-based template matching, respect-

ively. For the nasal class, there were small phone accur-

acy gains, and for silence, there were small accuracy

degradation by template matching, but both changes

were small and insignificant.

It is not surprising that the template-based methods

produced the largest positive impact on semivowels

(largest relative phone error reduction). Semivowels are

transient sounds and templates can capture their trajec-

tory information better than HMM. Similarly, some

vowel sounds are nonstationary, such as diphthongs or

vowels in strong coarticulation. Stops, having the clos-

ure and burst pattern, are nonstationary as well and

often have short durations, and they are difficult to

model by HMM but can be better represented by tem-

plates, as reflected in the accuracy gain by the LLR-

based template matching. Fricatives are noise like and

without clear trajectory patterns, and their boundaries

are also difficult to determine, making template-based

methods not as effective as HMMs.

5.3.7 Computation time and memory overhead

We first compare the storage space costs of the conven-

tional and the proposed template representation methods,

assuming a speech feature vector is 39 dimensional as in

the baseline HMM. In conventional template methods

that use Mahalanobis local distance, a speech frame is rep-

resented by a 39-dimensional vector (float), while in the

proposed method a frame is labeled by n GMM indices

(short integer) and n −1 weights (float). On a 32-bit ma-

chine and with n = 5 in our experiments, the proposed

method used 26 (5 × 2 + (5–1) × 4) bytes per frame versus

the conventional method of 156 bytes per frame, which

amounts to an 83% saving in storage space. For the TIMIT

dataset, there were 152,715 phone templates and the aver-

age length of a phone template was eight frames (with the

frame shift of 10 ms), giving a total of 1,221,720 frames

and an overhead for template storage of 30.3 MB. In tem-

plate selection, the memory overhead was around 6.1 MB

when 20% templates were selected to be the representa-

tives. In template compression, the memory overhead for

template storage was the same as in template selection.

However, since there were 749 new GMMs for labeling

the frames of the template representatives, there was an

extra memory overhead of 5.4 MB.

In Table 4, we provide a comparison on the per-frame

computational time for the proposed template-matching-

based lattice rescoring and the HMM baseline. The com-

putation time was divided into two parts. One part was on

test-frame labeling which used GMMs from the HMM

Table 3 Phone accuracies (percent) of vowels, semivowels, stops, fricatives, nasals, and silence

Vowels Semivowels Stops Fricatives Nasals Silence

HMM baseline 63.48 72.47 73.65 74.83 72.03 86.02

KL distance 68.30 76.52 73.45 72.37 72.53 85.48

LLR distance 68.32 76.85 75.65 71.95 72.66 85.57
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Figure 10 Phone accuracy change due to template-matching-based rescoring with respect to HMM baseline. For the vowel and

semivowel classes, the KL- and LLR-based template matching obtained better performance than HMM baseline. For the stop class, template

matching using the LLR distance got better phone accuracy than HMM baseline while using the KL distance did not help. For the fricative class,

the phone accuracies were worse than HMM baseline for both KL- and LLR-based template matching. For the nasal class and silence, the changes

between template-based methods and HMM baseline were not significant.
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baseline and the time was proportional to the total

number of GMMs extracted from the HMMs. The other

part was the rescoring time which calculated the DTW

matching scores between a test segment (time marked by

a phone arc on the phone lattice) and templates in a tem-

plate clusters (specified by the PDTs of the phone unit).

The more templates were in a template cluster, the longer

the rescoring time. Since the KL distances between the

GMMs were pre-calculated and the likelihood scores used

in LLR distance were obtained in the test frame labeling,

the time for rescoring was mainly consumed on determin-

ing the warping path in DTW, and hence for the LLR and

KL distances, the rescoring times were similar (we there-

fore omit the local distance in Table 4). Relative to the

decoding time per frame of the HMM baseline, when all

templates were used, the test per-frame labeling overhead

was 40% and the rescoring overhead was 22%, and hence

the overall computational overhead per frame was 62.0%.

In template selection, since only 20% template representa-

tives were used, the rescoring time was reduced to 1/5 of

the all-template case, and the computational overhead be-

came 44.4%.In template compression, the number of new

GMMs that were merged from the baseline GMMs was

about 63% of the baseline GMMs (749 vs. 1,189), the time

consumed for test frame labeling also decreased, and the

computation overhead was reduced to 26.8%. Based on

these numbers, we conclude that by using template repre-

sentatives with a selection percentage of 20%, the costs in

computation time and storage space were greatly reduced.

5.4 Large vocabulary speech recognition task

Based on the outcomes of the TIMIT phone recognition

task, we only report the telehealth results for the following

three cases of template matching: (1) all templates with

LLR distance, (2) MLTS with KL distance, and (3) tem-

plate compression with KL distance, where the cases 2

and 3 used 20% templates as the representatives and word

accuracy was averaged over the five doctors. In template

compression, the number of Gaussian components in each

new GMM was 16, the same as the GMMs of the baseline;

the average number of GMMs generated for the com-

pressed template representatives was 1,048 per doctor (the

baseline was 1,905 GMMs per doctor). The HMM base-

line was trained using crossword triphone models, with an

average word accuracy of 78.43%. In Table 5, we compare

the recognition word accuracies between the HMM base-

line and the template-based methods. In case 1, the aver-

age word accuracy was 80.03%, which is an absolute gain

of 1.6% over the baseline. In case 2, the average word ac-

curacy was 79.40%, which is an absolute gain of 0.97%

over the baseline. In case 3, the word accuracy was

79.70%, which is an absolute gain of 1.27% over the base-

line. Again, we conducted a Student’s t test on the word

accuracy gain (averaged over the five doctors) obtained by

each of the three cases over the baseline and found the

performance gain in every case to be statistically signifi-

cant at the level of α = 0.05.

In Table 6, the average computation cost of the five

doctors is given for the three cases. In comparison with

the TIMIT phone recognition task, even though there

were more GMMs to be used for test frame labeling and

more templates in template clusters, the computation

overhead did not increase much, especially for template

selection and template compression. In addition, the

memory overhead for all five doctors was around 236.2,

47.2, and 73.2 MB for using all templates, selected tem-

plate representatives, and compressed template repre-

sentatives, respectively. Therefore, the template-based

methods, especially MLTS and template compression,

are affordable for LVCSR.

5.5 Discussion

So far we have shown that representing the template

frames by GMMs and using the local distance measures

Table 4 Computational overhead (percent) per frame using all templates, template selection, and template

compression for TIMIT phone recognition

All templates Template selection Template compression

Test frame labeling overhead 40.0 40.0 22.4

Rescoring overhead 22.0 4.4 4.4

Overall computational overhead 62.0 44.4 26.8

Table 5 Comparison of word accuracies (percent) between the HMM baseline and the template-based methods

Speakers (no. of words) Dr. 1 (3,248) Dr. 2 (5,085) Dr. 3 (3,988) Dr. 4 (2,759) Dr. 5 (6,421) Average

Baselines 72.14 82.50 84.00 74.20 79.32 78.43

All templates (LLR) 73.53 84.22 85.98 75.74 80.67 80.03

MLTS (KL) 73.22 83.39 84.87 75.35 80.15 79.40

Template compression (KL) 73.55 83.61 85.21 75.71 80.39 79.70

Word accuracies (%) for HMM baselines, LLR-based all templates, and KL-based MLTS and template compression for five doctors in the telehealth task.
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of LLR or KL significantly improved the accuracy per-

formance over our HMM baselines, and the proposed

methods are much more effective than the conventional

template matching methods where the template frames

use the original speech features. A question naturally

arises is how would the proposed template-matching

methods interact with an underlying acoustic model

from which the GMMs are derived and the phone or

word lattices are generated, and of particular interest is

that as a baseline HMM system improves, whether the

performance gain we have observed by the proposed

template matching methods can still hold. This is a rele-

vant issue since a baseline HMM system can be im-

proved by using more advanced training methods and

better features. Recently, a major advance has been

made in using deep neural networks (DNNs) with many

hidden layers for speech acoustic modeling, where the

resulting DNNs learn a hierarchy of nonlinear feature

detectors that can capture complex statistical patterns

for speech data. For example, context-independent, pre-

trained DNN/HMM hybrid architectures have achieved

competitive performance in TIMIT phone recognition

[38], context-dependent DNN/HMM has led to large

improvements to several public domain large speech

recognition tasks [39], and dumping features from deep

convolutional neural networks to train GMM/HMM-

based systems achieved higher accuracy performance than

DNN/HMM hybrid architectures in several tasks [40].

We have investigated this issue in [41] on the TIMIT

phone recognition task by performing lattice rescoring

with the proposed template-matching methods on top of

progressively better HMM baselines, where the test set

was the same as discussed in Section 5.1. The HMM base-

line system employed discriminative training, neural-

network-derived phone posterior probability features, as

well as ensemble acoustic models, etc. We observed that

with the baseline system phone accuracy raised to 73.25%,

75.66%, 76.51%, and 77.97%, the template-matching-based

lattice rescoring delivered consistent performance gains

and gave phone accuracies of 74.74%, 77.27%, 77.96%, and

79.55%, respectively, where the phone accuracy of 79.55%

was among the best reported results on the TIMIT con-

tinuous phoneme recognition task. For the sake of space,

we omit the details of these baseline systems. For further

information, please refer to [41]. The consistent perform-

ance gains support the notion that template matching

improves recognition accuracy through a mechanism dif-

ferent from HMM. This is in agreement with the observa-

tion in [10] that the template matching system and the

HMM system behave differently in word error patterns.

Since our template-based methods are compatible with

the GMMs trained from neural-network-derived features,

it is reasonable to expect that our methods can take

advantage of and add value to the advancements in this

research direction.

6 Conclusions
In this paper, we have presented a novel approach of inte-

grating template matching with statistical modeling for

continuous speech recognition. The approach inherits the

GMMs and the PDT state tying structures from the base-

line HMMs and is therefore easily implemented. Generat-

ing template representatives and representing the frames

by GMM indices make the approach extendable to

LVCSR task. Based on our experimental results from

the tasks of TIMIT phone recognition and telehealth

LVCSR, we conclude that the proposed method of inte-

grating template matching and statistical modeling has

significantly improved the recognition performance

over our HMM baselines, and the proposed template

selection and compression methods have also largely

saved computation time and memory space over using

all templates with small losses in accuracy performance.

Although in the current work we used the basic acous-

tic modeling techniques to train our HMM baselines,

the proposed template matching methods can take ad-

vantage of and add value to more advanced GMM/

HMM systems, and as such they are promising for fur-

ther improving the state-of-the-art speech recognition.
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Table 6 Average computation overhead (percent) per frame of the five doctors

All templates (LLR) MLTS (KL) Template compression (KL)

Test frame labeling overhead 43.3 43.3 23.3

Rescoring overhead 26.7 5.4 5.4

Overall computational overhead 70.0 48.7 28.7

Computational overhead per frame using LLR-based all templates and KL-based MLTS and template selection for five doctors in the telehealth task.
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