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Integrated extracellular microRNA profiling for
ovarian cancer screening
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A major obstacle to improving prognoses in ovarian cancer is the lack of effective screening

methods for early detection. Circulating microRNAs (miRNAs) have been recognized as

promising biomarkers that could lead to clinical applications. Here, to develop an optimal

detection method, we use microarrays to obtain comprehensive miRNA profiles from

4046 serum samples, including 428 patients with ovarian tumors. A diagnostic model based

on expression levels of ten miRNAs is constructed in the discovery set. Validation in an

independent cohort reveals that the model is very accurate (sensitivity, 0.99; specificity,

1.00), and the diagnostic accuracy is maintained even in early-stage ovarian cancers. Fur-

thermore, we construct two additional models, each using 9–10 serum miRNAs, aimed at

discriminating ovarian cancers from the other types of solid tumors or benign ovarian tumors.

Our findings provide robust evidence that the serum miRNA profile represents a promising

diagnostic biomarker for ovarian cancer.
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O
varian cancer is the gynecologic malignancy with the
highest death rate1, and the number of cases is increasing
worldwide2. The high degree of lethality is largely a

reflection of the fact that the disease is often detected late in its
progression: approximately 75% of patients present at stage III or
IV, as defined by the International Federation of Gynecology and
Obstetrics (FIGO), with widespread metastasis in the peritoneal
cavity3. The 5-year survival rate of stage I patients is 90%, whereas
that of patients in stage III–IV is less than 10%4. Unfortunately,
no effective screening method for this cancer yet exists. Pelvic
examination and trans-vaginal ultrasound are the standard
methods for diagnosing ovarian tumors, but are inadequate for
screening because they lack sensitivity and cause stress to the
patient5. CA125 is a widely accepted serum biomarker protein for
ovarian cancer6, but is a poor indicator of early-stage patients,
with a sensitivity of approximately 40%7,8. Because the ovaries are
completely intraperitoneal organs, it is currently impossible to
diagnose ovarian cancer without surgical resection. However,
needle biopsies for early-stage ovarian tumors should be avoided
because cancer cells easily disseminate into the peritoneal cavity,
and puncture can promote peritoneal metastasis9. Consequently,
less-invasive biomarkers for ovarian cancer that could achieve
early detection and monitor the course of the disease, potentially
leading to cancer screening tests, are urgently needed.

Extracellular RNA (exRNA), including circulating microRNA
(miRNA), has recently received a great deal of research attention.
MiRNAs, small non-coding RNAs 20–25 nucleotides in length,
regulate gene expression in cells by repressing the translation of
their target genes or degrading their target mRNAs10. miRNAs
secreted from cells exist stably in body fluids within extracellular
vesicles (EVs), including exosomes, or bound to proteins or
lipids11, and play crucial roles in intercellular communication12.
Recent work revealed that circulating miRNAs reflect physiolo-
gical and pathological status, and are thus promising biomarkers
for various disease states13,14.

Although several reports demonstrate the suitability of cir-
culating miRNAs as cancer biomarkers15,16, these molecules are
still considered insufficient for clinical applications, primarily
due to the lack of large-scale validation and inconsistencies
among detection devices17. To standardize platforms for col-
lection and detection of serum miRNAs, we recently launched a
national project in Japan, entitled Development and Diagnostic
Technology for Detection of miRNA in Body Fluids. This
project includes the comprehensive characterization of serum
miRNA profiles of 13 types of human cancers, including
ovarian cancer, in more than 40,000 patients, using the same
platform and technology.

Here, we describe our identification of promising biomarkers
for the diagnosis of ovarian cancer using serum samples obtained
from 4046 women, including 428 patients with ovarian tumors.
Our primary aim is to develop a novel screening strategy capable
of discriminating cancer patients from healthy women. In addi-
tion, comprehensive profiles of circulating miRNAs, which were
obtained from all samples, enabled us to generate optimal diag-
nostic models for ovarian cancer.

Results
Assay design. A total of 4052 serum samples were analyzed by
miRNA microarray, yielding comprehensive miRNA expression
profiles. After exclusion of six samples with low-quality results,
4046 samples remained for analysis, including 333 ovarian can-
cers, 66 borderline ovarian tumors, 29 benign ovarian tumors,
2759 non-cancer controls, and 859 other solid cancers. Using
these samples, we constructed three kinds of discrimination
models: (1) ovarian cancer vs. non-cancer, (2) ovarian cancer vs.

the other cancers+ non-cancer, and (3) ovarian cancer vs. bor-
derline/benign ovarian tumors+ non-cancer.

Selection of circulating miRNA biomarker candidates. To focus
on extracellular miRNAs released from ovarian cancer cells, we
evaluated miRNA expression in EVs, including exosomes, from
12 ovarian cancer cell lines (listed in Supplementary Table 1). A
total of 858 miRNAs detected in exosomes derived from at least
one cell line were considered as candidate ovarian cancer-released
miRNAs. We proceeded to further select miRNA candidates
using a human serum dataset. Specifically, miRNAs with a signal
value >26 in more than 50% of samples were selected as robust
biomarkers in serum samples from ovarian cancers. Based on this
analysis, 648 miRNAs (of the previously selected 858) were
excluded due to low signal. Ultimately, 210 miRNAs were selected
for further analyses (Supplementary Figure 1).

Identifying the best combination of miRNAs for screening. To
develop models for discrimination between ovarian cancer and
non-cancer samples, we randomly divided 320 ovarian carcinoma
samples and 2759 non-cancer samples into two groups: the dis-
covery set and validation set (Fig. 1a). Samples of non-epithelial
ovarian cancers, borderline ovarian tumors, and benign ovarian
tumors were allocated to the validation set to evaluate whether
the model for detecting ovarian carcinomas would also detect
non-epithelial ovarian cancers, borderline tumors, or benign
ovarian tumors. Participant characteristics are described in
Table 1.

First, we identified the best 10 miRNAs with the highest AUC
values, termed pivot miRNAs, as shown in Supplementary
Table 2. A predictive model was created based on these pivot
miRNAs, and other miRNAs were used to compensate for their
diagnostic performance. Thus, the levels of the pivot miRNAs are
the most important factors governing model performance, and
must be reproducible on independent platforms if these models
are to proceed to clinical application. Accordingly, we investi-
gated the expression of pivot miRNAs by qRT-PCR. Around 60%
of miRNAs were detectable in the quantitative performance assay
and were used for subsequent analysis (Supplementary Figure 2);
an R-value of 0.9 which was greater than 0.9 was considered as a
cut-off value for inclusion. Then, to assess reproducibility of
miRNAs between microarray and qRT-PCR analyses, the levels of
each miRNA were plotted as histograms using ten patient
samples randomly selected from the non-cancer A (N= 5) and
ovarian cancer cohorts (N= 5), as shown in Supplementary
Figure 3. If the R-values were less than zero, we considered the
miRNA to be validated by qRT-PCR. The prediction models were
further developed using these pivot miRNAs.

Using Fisher’s linear discriminant analysis, we designed
comprehensive discriminants consisting of one to ten miRNAs
from the discovery set (Supplementary Table 3). Based on the
optimal level of accuracy, the analysis identified a combination of
ten miRNAs (miR-320a, miR-665, miR-3184-5p, miR-6717-5p,
miR-4459, miR-6076, miR-3195, miR-1275, miR-3185, and miR-
4640-5p) that provided the best discrimination in the discovery
set [diagnostic index= (0.581) × miR-320a+ (0.691) × miR-665
+ (−0.704) ×miR-3184-5p+ (−0.313) × miR-6717-5p+
(−1.302) × miR-4459+ (0.729) ×miR-6076+ (0.676) ×miR-
3195+ (0.716) ×miR-1275+ (0.672) ×miR-3185+ (−0.384) ×
miR-4640-5p—9.375 [model 1]; area under curve (AUC): 1.00;
sensitivity: 1.00; specificity: 1.00]. Some single miRNAs were also
statistically effective in distinguishing cancer patients (Fig. 1b, c).
The diagnostic performance of model 1 was confirmed in the
validation set, revealing that the model was very accurate (AUC:
1.00; sensitivity: 0.99; specificity: 1.00) (Fig. 1c). Although model
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1 successfully discriminated non-epithelial ovarian cancer
patients from non-cancer controls, it could not distinguish
ovarian cancer patients from those with borderline and benign
tumors (Fig. 1d).

According to the FIGO criteria, we subdivided ovarian cancers
based on the stage: stage I, stage II, and stage III–IV. Although the

serum samples were collected before any type of treatment, FIGO
stage was diagnosed using tissue specimens collected during
surgery. The stage III and IV groups were combined because most
patients diagnosed at advanced stages underwent chemotherapy
prior to surgery, and consequently we were unable to correctly
categorize them individually as stage III or IV. As shown in
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Fig. 1e, advanced stages had higher diagnostic indices. Notably,
model 1 classified 95.1% of stage I patients as positive, indicating
that this model is highly suitable for early detection. Thus, this
combination of ten miRNAs represents a promising biomarker
for ovarian cancer screening.

Further potentials for ovarian cancer biomarkers. To investi-
gate whether the serum miRNA profile can distinguish ovarian
cancers from other solid cancers, we developed another model.
For this purpose, we also comprehensively analyzed female serum
miRNA profiles of breast carcinoma (N= 115), pancreatic ductal
adenocarcinoma (N= 115), colorectal adenocarcinoma (N=
115), hepatocellular carcinoma (N= 81), esophageal squamous
cell carcinoma (N= 88), gastric adenocarcinoma (N= 115), lung
carcinoma (N= 115), and bone and soft tissue sarcoma (N=
115). As for model 1, 320 ovarian carcinoma samples were ran-
domly divided into a discovery set and validation set (Fig. 2a).
Fifteen samples of each non-ovarian cancer and non-cancer
controls were randomly selected and allocated to the discovery
set. The other non-ovarian cancer samples, 100 non-cancer
samples, and samples of non-epithelial ovarian cancers, border-
line ovarian tumors, and benign ovarian tumors were allocated to
the validation set. Participant characteristics are described in
Table 2.

This model was developed in the same manner as model 1: we
first identified pivot miRNAs (Supplementary Table 4) and then
validated the miRNAs by qRT-PCR (Supplementary Figure 2 and
3). Using the validated pivot miRNAs, we performed Fisher’s

linear discriminant analysis, this time identifying a different
combination of ten miRNAs (miR-4687-3p, miR-939-5p, miR-
5739, miR-211-3p, miR-1273g-3p, miR-3663-3p, miR-4726-5p,
miR-4745-5p, miR-1268b, and miR-658) that provided the best
discrimination within the discovery set [diagnostic index=
(0.996) × miR-4687-3p+ (−0.741) ×miR-939-5p+ (0.718) ×
miR-5739+ (−0.798) × miR-211-3p+ (0.719) × miR-1273g-3p
+ (1.036) × miR-3663-3p+ (0.520) ×miR-4726-5p+ (−0.583) ×
miR-4745-5p+ (0.786) × miR-1268b+ (−0.223) × miR-658−
25.0 (model 2); AUC: 0.97; sensitivity: 0.94; specificity: 0.99],
although none of the individual miRNAs was sufficient to
discriminate cancer patients from healthy subjects (Supplemen-
tary Table 5, Fig. 2b, c). The diagnostic performance of model 2
was confirmed in the validation set (AUC: 0.87; sensitivity: 0.84;
specificity: 0.90) (Fig. 2c). Although model 2 misdiagnosed
around half of sarcoma and esophageal cancer samples as ovarian
cancer, it adequately distinguished ovarian cancer patients from
the other cancer types (Fig. 2d).

However, neither model 1 nor model 2 distinguished ovarian
cancer patients from patients with borderline and benign tumors.
To this end, we performed cluster analysis and principal
component analysis (PCA) between cancer and benign tumors,
revealing relatively distinct miRNA profiles between them (Fig. 3a,
b). These data prompted us to establish another model to
discriminate these two groups (i.e., cancer and benign tumors).
The third model was developed in the same manner as described
above (Table 2, Fig. 3c, Supplementary Table 6, Supplementary
Figure 2 and 3), and we identified a combination of nine miRNAs
(miR-663b, miR-4730, miR-642a-3p, miR-658, miR-486-3p,

Fig. 1 Development of the ovarian cancer screening model (model 1). a Work flow of patients for developing prediction model 1. Serum samples were

obtained from 3007 subjects, including 428 patients with ovarian tumors and 2759 non-cancer donors. The sample set was divided into two groups, the

discovery set and validation set. b ROC curves for detecting cancer patients using a combination of ten miRNAs selected for prediction model 1.

c Diagnostic performance of the ten selected miRNAs in the discovery set and validation set. d Diagnostic index using prediction model 1 in the validation

set (ovarian cancer, 160; non-cancer A, 109; non-cancer B, 789; non-cancer C, 482; non-epithelial ovarian cancer, 13; borderline ovarian tumor, 66; and

benign ovarian tumor, 29). Each diagnostic accuracy (%) is included. p values were calculated by χ2 test. e Diagnostic index for each FIGO stage using

prediction model 1. Each diagnostic accuracy (%) is indicated. N= stage I, 82; stage II, 33; and stage III–IV, 218. The p value was calculated using Pearson’s

correlation analysis

Table 1 Participant characteristics in model 1

Characteristics Total (N= 3187) Discovery set (N= 1539) Validation set (N= 1648)

N N Mean SD N Mean SD p

Ovarian carcinoma 333 160 160

Age, years 56.8 11.5 57.1 11.6 0.97a

Histopathological subtypes 0.29b

Serous 182 90 92

Clear cell 64 37 27

Endometrioid 43 17 26

Mucinous 14 6 8

Other epithelial carcinoma 17 10 7

Non-epithelial carcinoma 13 13

Stage 0.97b

I 82 39 43

II 33 15 18

III–IV 218 106 112

Borderline ovarian tumor 66 66

Benign ovarian tumor 29 29

Non-cancer cohort 2759 1379 1380

Institute A 209 100 109

Institute B 1581 792 789

Institute C 969 487 482

aStudent’s t-test
bχ2 test
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miR-1246, miR-1207-5p, miR-4419b, and miR-6124) that
provided the best discrimination in both the discovery set
[diagnostic index= (0.715) × miR-663b+ (−0.710) × miR-4730
+ (0.254) × miR-642a-3p+ (0.628) × miR-658+ (0.013) × miR-
486-3p+ (−0.0519) × miR-1246+ (0.317) ×miR-1207-5p+
(0.179) ×miR-4419b+ (−0.264) ×miR-6124− 7.2 (model 3);
AUC: 0.72; sensitivity: 0.64; specificity: 0.80] and the validation

set (AUC: 0.86; sensitivity: 0.82; specificity: 0.91) (Supplementary
Table 7 and Fig. 3d, e). Consistent with its diagnostic
performance in the validation set, model 3 distinguished
ovarian cancer from non-cancer controls but could not
efficiently discriminate patients with benign or borderline tumors
from ovarian cancer patients (Fig. 3b, f and Supplementary
Figure 4).
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Characterizing the performance of prediction models. To fur-
ther assess the models developed herein, we investigated the
influence of patient background. Patients at advanced FIGO
stages had higher diagnostic indices in all models (Fig. 1e and
Supplementary Figure 5). Because participant age was not mat-
ched between ovarian cancer samples and non-cancer controls,
we performed age-adjusted logistic regression analysis. As shown
in Table 3, all three models could predict the presence of ovarian
cancer with statistical significance after adjustment for age.

We also investigated the relationship of histopathological
subtypes in ovarian cancer. For this purpose, we categorized
ovarian carcinoma samples into four major histological subtypes
with distinct molecular and pathological characteristics: serous
(N= 182), clear-cell (N= 64), endometrioid (N= 43), and
mucinous (N= 14). Unclassifiable ovarian carcinoma samples
were excluded from this analysis. PCA mapping suggested that
miRNA profiles did not differ significantly among the four
subtypes (Supplementary Figure 6a). By contrast, hierarchical
cluster analysis showed that serum miRNA profiles of patients
with ovarian carcinoma could be categorized into three clusters
(Supplementary Figure 6b). When we compared age, histopatho-
logical subtypes, and disease stage among the three clusters,
however, we detected no significant differences (Supplementary
Table 8). This suggests that histopathological subtype does not
affect the serum miRNA profile of ovarian carcinoma. In fact, the
diagnostic sensitivities of the three models exhibited no obvious
differences among the histopathological subtypes (Supplementary
Figure 7).

Discussion
In this study, we analyzed serum miRNAs in a large sample set
(N= 4046), including 428 patients with ovarian tumors. From all
samples, we obtained comprehensive profiles of 2588 miRNAs
using highly sensitive miRNA microarray analysis on a
standardized platform (3D-Gene®, Toray Industries, Inc., Tokyo,
Japan)18. Previously, the largest study aimed at evaluating the
diagnostic performance of circulating miRNAs in ovarian cancer
included 360 patients19. In that study, however, the authors
pooled serum samples of ten early-stage cases (stage I), ten late-
stage cases (stage IIIc–IV), and ten healthy controls, and analyzed
these three pool samples using a TaqMan low-density array (667
miRNAs) in the initial step of their analyses20. They then selected
candidate miRNAs, but evaluated only a limited number of
miRNAs by quantitative reverse transcription PCR (qRT-PCR).
Therefore, the present study is the first large-scale comprehensive
analysis of circulating miRNAs in ovarian cancer. We also ana-
lyzed exosomal miRNAs using 12 ovarian cancer cell lines, and
selected as marker candidates miRNAs that can be encapsulated
in exosomes and released from ovarian cancer cells. Using such
large-scale data, we confirmed previous suggestions that ovarian
cancer patients can be accurately discriminated from non-cancer
controls using serum miRNA profiles (model 1). In the current
study, we did not isolate exosomes from serum due to limitations
on sample volume; moreover, such isolation is not compatible

with high throughput. However, it is possible that miRNAs are
packaged in exosomes and that they might play functional roles.

Before developing each prediction model, we performed qRT-
PCR validation of pivot miRNAs to maximize the usefulness of
models for further clinical applications. Several miRNAs were not
well validated. miRNA microarray can detect iso-miRNAs, but
qRT-PCR requires perfect consistency with the primer sequen-
ces21. This may have been responsible for the validation failure.
However, this validation step is important for ensuring and
improving the value of models.

Previous studies did not investigate whether the circulating
miRNA profile of ovarian cancer patients is distinct from those of
other solid cancers. Although the profiles of well-studied circu-
lating miRNA biomarker candidates, such as miR-21, miR-221,
and miR-155, are altered in ovarian cancer patients19, it is not
possible to distinguish ovarian cancers using these miRNAs
because their levels are also altered in patients with other cancers.
Our data revealed that ovarian cancer patients could be suffi-
ciently discriminated from those with lung, gastric, breast,
hepatic, colorectal, and pancreatic carcinoma, but not from those
with sarcoma and esophageal squamous cell carcinoma (model
2). Although we do not currently have evidence of similarities
among those cancers, future investigations could elucidate a
connection. This information about analyses across various can-
cer types will also be useful in the clinical application of serum
miRNA panels for the monitoring of ovarian cancer.

In addition, we investigated whether the serum miRNA profile
could discriminate ovarian cancers from borderline or benign
ovarian tumors. Distinguishing benign tumors from malignant
cancers is a major concern for gynecologists, and a less-invasive
diagnostic method would be of great clinical value. Our model 3
could not discriminate ovarian cancer from benign tumors
(Fig. 3f). Several previous reports using much smaller sample sets
suggested that it would be possible to discriminate malignant
from benign ovarian tumors using circulating miRNAs22–24.
However, none of those studies reported diagnostic performance
in terms of sensitivity and specificity, and no previous study has
developed a model capable of discriminating between malignant
and borderline ovarian tumors. In this study, we also found it
difficult to discriminate between ovarian cancer and borderline
ovarian tumors. However, because the sample sizes of borderline
or benign ovarian tumors were insufficient for model construc-
tion, further large-scale validation studies are needed to resolve
this issue.

In 2012, The Cancer Genome Atlas (TCGA) Research Network
released the whole genome profiles of ovarian cancer, including
miRNA profiles25. TCGA analyzed 489 ovarian cancer tissues,
and performed miRNA microarray analyses on all samples. The
results identified three miRNA profile subtypes associated with
different survival outcomes. The serum miRNA profiles of
ovarian carcinoma patients in this study were also categorized
into three groups (Supplementary Figure 6b). Because the details
of miRNA clustering were not described in TCGA25, it was dif-
ficult to compare the clustered patterns of miRNAs between sera
and tissues. We showed that serum miRNA clusters were not

Fig. 2 Development of the ovarian cancer detection model (model 2). a Work flow of patients for development of prediction model 2. Serum samples were

obtained from 1402 subjects, including 428 patients with ovarian tumors, 859 with other cancers, and 115 non-cancer controls (from non-cancer control B).

The sample set was divided into two groups, the discovery set and validation set. b ROC curves for detecting cancer patients using the miRNAs selected for

prediction model 2. c Diagnostic performance of the ten selected miRNAs in the discovery set and validation set. d Diagnostic index using prediction model

2 in the validation set (ovarian carcinoma, 160; breast carcinoma, 100; colorectal adenocarcinoma, 100; esophageal squamous cell carcinoma, 73; gastric

adenocarcinoma, 100; hepatocellular carcinoma, 66; lung carcinoma, 100; pancreatic ductal adenocarcinoma, 100; sarcoma, 100; non-cancer, 100; non-

epithelial ovarian cancer, 13; borderline ovarian tumor, 66; and benign ovarian tumor, 29). Each diagnostic accuracy (%) is indicated. The p values were

calculated by χ2 test
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associated with histopathological subtypes. Again, however, we
could not assess this issue in the tissue miRNA data because all
TCGA samples were of the serous adenocarcinoma subtype.
Because the tissue miRNA clusters are associated with disease
prognosis25, further investigation of the association between cir-
culating miRNA clusters and disease prognosis is warranted.

Our attempt to classify histopathological subtypes yielded little
insight because these cancers did not have unique miRNA profiles,
as determined by PCA mapping (Supplementary Figure 6).
Because the tissue miRNA profile reflects the signature of the
tumor origin26, it may be generally true that the circulating
miRNA profile cannot classify histopathological subtype in any
cancer type. These ovarian cancer subtypes were reported to have
genomic differences27, but the DNAs or RNAs used for that study
were mostly extracted from tumor tissue rather than bio-fluids. In
addition, the percentage of circulating miRNAs in the bloodstream
that are derived from tumors remains unknown, but it may have
been quite low in the samples used in that research, potentially

affecting the results. Even in this study, the sample size of each
histopathological subtype was limited. Therefore, further large-
scale validation is needed to determine whether histopathological
subtypes specifically affect the circulating miRNA profile.

This study has some limitations. First, because it was per-
formed using retrospectively collected samples, the processes
before microarray analysis, such as the time interval between
centrifugation and storage and the storage temperature, were not
strictly regulated and may have differed between samples, as
mentioned in the 'Methods' section. Although miRNAs are much
more stable than mRNA, various processes can influence the
levels of serum miRNAs28,29. Therefore, we collected
non-cancer sample sets from three institutions and confirmed
that diagnostic accuracy was maintained irrespective of
the source. In addition, we have started a clinical prospective
validation study, and we will be able to verify the generalizability
of our data using fresh blood samples within a couple of
years. Second, the absence of ovarian cancer was defined based

Table 2 Participant characteristics in models 2 and 3

Characteristics Total
(N=
1402)

Model 2 Model 3

Discovery set
(N= 295)

Validation set
(N= 1107)

Discovery set
(N= 223)

Validation set
(N= 320)

N N Mean SD N Mean SD p N Mean SD N Mean SD p

Ovarian carcinoma 333 160 160 160 173
Age, years 56.8 11.5 57.1 11.6 0.79a 56.8 11.5 57.1 11.6 0.79a

Histopathological
subtypes

0.29b 0.29b

Serous 182 90 92 90 92
Clear cell 64 37 27 37 27
Endometrioid 43 17 26 17 26
Mucinous 14 6 8 6 8
Other
carcinoma

17 10 7 10 7

Non-epithelial
cancer

13 13 13

Stage 0.97b 0.97b

I 82 39 43 339 43
II 33 15 18 15 18
III–IV 218 106 112 104 112

Other cancers 859 120 739
BC 115 15 100
CC 115 15 100
ESCC 88 15 73
GC 115 15 100
HC 81 15 66
LC 115 15 100
PDA 115 15 100
SA 115 15 100

Borderline ovarian
tumor

66 66 33 33

Age, years 53 15.5 51.6 15.3 54.3 15.9 0.50a

Histopathological
subtypes

0.85b

Serous 18 10 8
Mucinous 32 17 15
Granulosa cell 5 2 3
Others 11 4 7

Stage 0.51b

I 56 26 30
II 5 3 2
III 5 4 1

Benign ovarian tumor 29 29 15 14
Age, years 57.2 10.3 52.2 7.6 62.6 10.3 0.004a

Histopathological
subtypes

0.73b

Serous 5 2 3
Mucinous 11 7 4
Others 13 6 7

Non-cancer controls 115 15 100 15 100
Age, years 45.5 10.8 45.6 9 0.97a 45.5 10.8 45.6 9 0.97a

BC breast carcinoma, CC colorectal adenocarcinoma, ESCC esophageal squamous cell carcinoma, GC gastric adenocarcinoma, HC hepatocellular carcinoma, LC lung carcinoma, PDA pancreatic ductal

adenocarcinoma, SA bone and soft tissue sarcoma
aStudent’s t-test
bχ2 test
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on self-reported medical history in non-cancer control partici-
pants, but not precisely confirmed by gynecological examination.

In summary, our comprehensive analysis of serum miRNA
profiles in 428 cases of ovarian tumors identified promising
miRNA combinations for early-stage detection of ovarian cancer.

This kind of liquid biopsy represents a powerful tool in the
clinical setting because the profile of a tumor is unstable and
evolves dynamically over time, and tissue biopsies are almost
impossible to obtain repeatedly30. On the other hand, we found
that discrimination of ovarian cancer from borderline or benign
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Fig. 3 Development of the cancer-specific detection model (model 3). a Heatmap for serum miRNA expression of patients with benign tumors or cancer.

N= cancer, 333; benign tumors, 29. b PCA mapping for serum miRNA expression of patients with benign tumors or cancer. c Work flow of patients for

development of prediction model 3. Serum samples were obtained from 543 subjects, including 320 patients with ovarian carcinoma, 66 with borderline

tumors, 29 with benign tumors and 115 non-cancer controls (from non-cancer control B). The sample set was divided into two groups, the discovery set

and validation set. d ROC curves for detecting cancer patients using miRNAs selected for prediction model 3. e Diagnostic performance of the selected nine

miRNAs in the discovery set and validation set. f Cancer specificity of the diagnostic index using prediction model 3 in the validation set (ovarian cancer,

160; non-cancer [from non-cancer control B], 100; non-epithelial ovarian cancer, 13; borderline ovarian tumor, 33; and benign ovarian tumor, 14). Each

diagnostic accuracy (%) is indicated. The p values were calculated by χ2 test
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ovarian tumors using circulating miRNA profiles, or diagnosis of
histopathological subtype, was more difficult than discrimination
between cancer and non-cancer. Overall, our data suggest that
evaluation of circulating miRNA is suitable for primary screening
of ovarian cancer. The development of a less-invasive, rapid, and
accurate diagnostic strategy for ovarian cancer even at an early
stage should contribute to improvements in patient prognoses.

Methods
Clinical samples. A total of 1496 serum samples were obtained from female
patients with ovarian, breast, pancreatic, colorectal, hepatic, esophageal, gastric,
and lung cancers, sarcoma, and non-cancer tumors (non-cancer control A)
admitted or referred to the National Cancer Center Hospital (NCCH) between
2008 and 2016, and registered in the National Cancer Center (NCC) Biobank.
Serum samples were stored at 4 °C for 1 week, and then stored at −20 °C until
further use. Cancer patients with the following characteristics were excluded: (1)
treatment with surgical operation, chemotherapy, or radiotherapy prior to serum
collection, and (2) low-quality microarray data. Additional non-cancer control
samples were obtained from the Yokohama Minoru Clinic (YMC) and the
National Center for Geriatrics and Gerontology (NCGG). The first set (non-cancer
control B) included 969 cancer-free female volunteers aged over 35 years who were
recruited in 2015. The inclusion criteria for this sample set were no history of
cancer and no hospitalization during the last 3 months, and the serum samples
were collected and stored at −80 °C until further use. The second set (non-cancer
control C) included 1581 individuals whose serum samples were collected between
2010 and 2012 and stored in the NCGG Biobank at −80 °C. Clinical information of
all samples was obtained by referring to the registration information for each
subject. Information about gynecological background, such as reproductive history
or age at menopause, was not available for most samples. Due to insufficient
descriptions, the histopathological subtypes of serous cancers contained a few low-
grade tumors (<3%), but the vast majority of the population consisted of high-
grade serous carcinoma (HGSC). The study was approved by the NCCH Institu-
tional Review Board (2015-376, 2016-29) and the Research Ethics Committee of
Medical Corporation Shintokai Yokohama Minoru Clinic (6019-18-3772). Written
informed consent was obtained from each participant.

miRNA expression arrays of clinical samples. Total RNA was extracted from
300 µL of serum using the 3D-Gene® RNA extraction reagent (Toray Industries,
Inc.). Comprehensive miRNA expression analysis was performed using the 3D-
Gene® miRNA Labeling kit and the 3D-Gene® Human miRNA Oligo Chip (Toray
Industries, Inc.), which was designed to detect 2588 miRNA sequences registered in
miRBase release 21 (http://www.mirbase.org/). For quality control of microarray
data, criteria for low-quality results were as follows: coefficient of variation for
negative control probes >0.15; and number of flagged probes, identified by 3D-
Gene® Scanner, >10; samples meeting these criteria were excluded from further
analyses. The presence of miRNA was determined based on a corresponding
microarray signal of greater than [mean+ 2 × standard deviation] of the negative
control signals, from which the most and least intense signals were removed. Once
a miRNA was considered present, the mean signal of the negative controls (from
which the top and bottom 5%, ranked by signal intensity, were removed) was
subtracted from the miRNA signal. When the signal value was negative (or
undetected) after background subtraction, the value was replaced by 0.1 on a base-2
logarithm scale. To normalize the signals among the microarrays tested, three pre-
selected internal control miRNAs (miR-149-3p, miR-2861, and miR-4463) were
used as previously described31. Each miRNA signal value was standardized using
the ratio of the average signal value of the three internal control miRNAs to the
pre-set value. All microarray data in the present study were obtained in accordance
with the Minimum Information About a Microarray Experiment (MIAME)
guidelines. TaqMan™ Advanced miRNA Assays (Thermo Fisher Scientific) were
used for qRT-PCR validation. miRNA quantification data were normalized against
the corresponding levels of miR-149-3p, miR-2861, and miR-4463. Serial dilutions
of RNA extracted from human serum (LONZA, 14-490E) were used for quanti-
tative performance assays (Supplementary Figure 2).The full miRNA expression

profiles are stored in the Gene Expression Omnibus (GEO) database (GSE106817,
GSE103708).

miRNA expression array in exosomes derived from cell lines. Twelve human
ovarian cancer cell lines were purchased from the American Type Culture Col-
lection (ATCC; Manassas, VA, USA), the European Collection of Cell Cultures
(ECACC; Porton Down, Wiltshire, UK), and the Japanese Collection of Research
Bioresources (JCRB; Tokyo, Japan) cell bank (Supplementary Table 1) and all cells
were certificated with no mycoplasma contamination. As previously described16, all
cell lines were cultured in optimal medium according to the suppliers’ recom-
mendations. The cells were washed with phosphate-buffered saline (PBS), and the
culture medium was replaced with advanced Dulbecco’s modified Eagle’s medium
for ES-2, SKOV3, CAOV3, OV-90, OAW42, COV362, and MCAS cells, advanced
DMEM/Ham’s F-12 medium for RMG-1 and RUG-S cells, or advanced RPMI
medium for A2780, OVCAR3 and KURAMOCHI cells. After incubation for 48 h,
the conditioned medium (CM) was collected and centrifuged at 2000 × g for 10 min
at 4 °C. To thoroughly remove cellular debris, the supernatant was filtered through
a 0.22-μm filter (Millipore). To prepare exosomes, CM was ultracentrifuged at
35,000 rpm using a SW41Ti rotor for 70 min at 4 °C. The pellets were washed with
PBS, ultracentrifuged at 35,000 rpm using the SW41Ti rotor for 70 min at 4 °C and
resuspended in PBS. Total RNA was extracted from those exosomes using QIAzol
and the miRNeasy Mini Kit (Qiagen, Hilden, Germany) as instructed by the
manufacturer’s protocols. Total RNA was labeled with cyanine 3 (Cy3) using the
miRNA Complete Labeling and Hyb Kit (Agilent Technologies) as instructed by
the manufacturer. Agilent SurePrint G3 Human miRNA 8 × 60 K Rel.19 (design
ID: 046064) arrays were used and scanned using an Agilent DNA microarray
scanner. The intensity values for each scanned feature were quantified using
Agilent Feature Extraction software version 10.7.3.1. The expression analysis was
performed with Agilent GeneSpring GX version 13.0.

Statistical analysis. Prior to statistical comparisons, samples were divided into
discovery and validation sets. The discovery set was used to select miRNA markers
and construct discriminant models, and the validation set was used to validate the
discriminant models.

Based on combinatorial optimization for multicandidate miRNAs, diagnostic
indices were generated using Fisher’s linear discriminant analysis. Using leave-one-
out cross-validation in the discovery set, the best diagnostic index was ultimately
selected. An index score ≥ 0 indicated ovarian cancer, and an index score <0
indicated the absence of ovarian cancer, including the presence of other cancers
and non-cancer controls. The diagnostic sensitivity, specificity, accuracy, and area
under the receiver operating characteristics (ROC) curve (AUC) were calculated for
each diagnostic index in the validation sets.

Statistical analyses were performed using R version 3.1.2 (R Foundation for
Statistical Computing, http://www.R-project.org), compute.es package version
0.2–4, glmnet package version 2.0–3, hash package version 2.2.6, MASS package
version 7.3–45, mutoss package version 0.1–10, pROC package version 1.8, and
IBM SPSS Statistics version 22 (IBM Japan, Tokyo, Japan). Unsupervised clustering
and heatmap generation with sorted datasets, using Pearson’s correlation in Ward’s
method for linkage analysis, were performed using Partek Genomics Suite 6.6. PCA
was also performed using Partek Genomics Suite 6.6. The limit of statistical
significance for all analyses was defined as a two-sided p value of 0.05.

Data availability
The microarray data that support this study are available through the NCBI database

under accession GSE106817 and GSE103708. All other relevant data are available within

the article file or Supplementary Information, or available from the authors on reasonable

request.

Received: 11 December 2017 Accepted: 28 August 2018

References
1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA Cancer J.

Clin. 67, 7–30 (2017).
2. Webb, P. M. & Jordan, S. J. Epidemiology of epithelial ovarian cancer. Best.

Pract. Res. Clin. Obstet. Gynaecol. 41, 3–14 (2017).
3. Lengyel, E. Ovarian cancer development and metastasis. Am. J. Pathol. 177,

1053–1064 (2010).
4. Duffy, M. J. et al. CA125 in ovarian cancer: European Group on Tumor

Markers guidelines for clinical use. Int. J. Gynecol. Cancer 15, 679–691 (2005).
5. Myers, E. R., et al. Management of adnexal mass. Evid. Rep. Technol. Assess

(Full Rep). 130, 1–145 (2006).
6. Meany, D. L., Sokoll, L. J. & Chan, D. W. Early detection of cancer:

immunoassays for plasma tumor markers. Expert Opin. Med Diagn. 3,
597–605 (2009).

Table 3 Independent association between the diagnostic

indices and the presence of ovarian carcinoma

Odds ratio (95% CI)a

Univariable analysis Age-adjusted analysis

Model 1 12.3 (7.6–19.9) 12.4 (7.7–20.1)

Model 2 9.6 (7.1–12.8) 9.9 (6.8–12.1)

Model 3 3.6 (3.1–4.1) 3.8 (3.2–4.4)

CI confidence interval
aLogistic regression analysis

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06434-4 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:4319 | DOI: 10.1038/s41467-018-06434-4 | www.nature.com/naturecommunications 9

http://www.mirbase.org/
http://www.R-project.org
www.nature.com/naturecommunications
www.nature.com/naturecommunications


7. Jacobs, I. J. & Menon, U. Progress and challenges in screening for early
detection of ovarian cancer. Mol. Cell. Proteom. 3, 355–366 (2004).

8. Jacobs, I. et al. Prevalence screening for ovarian cancer in postmenopausal
women by CA 125 measurement and ultrasonography. BMJ 306, 1030–1034
(1993).

9. Miralles, R. M., Petit, J., Gine, L. & Balaguero, L. Metastatic cancer spread at
the laparoscopic puncture site. Report of a case in a patient with carcinoma of
the ovary. Case Report. Eur. J. Gynaecol. Oncol. 10, 442–444 (1989).

10. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nat.
Rev. Mol. Cell Biol. 10, 126–139 (2009).

11. Kosaka, N., Yoshioka, Y., Fujita, Y. & Ochiya, T. Versatile roles of extracellular
vesicles in cancer. J. Clin. Invest. 126, 1163–1172 (2016).

12. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev.
Mol. Cell Biol. 6, 376–385 (2005).

13. Pritchard, C. C., Cheng, H. H. & Tewari, M. MicroRNA profiling: approaches
and considerations. Nat. Rev. Genet. 13, 358–369 (2012).

14. Cortez, M. A. et al. MicroRNAs in body fluids—the mix of hormones and
biomarkers. Nat. Rev. Clin. Oncol. 8, 467–477 (2011).

15. Schwarzenbach, H., Nishida, N., Calin, G. A. & Pantel, K. Clinical relevance of
circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 11, 145–156
(2014).

16. Yokoi, A. et al. A combination of circulating miRNAs for the early detection
of ovarian cancer. Oncotarget 8, 89811–89823 (2017).

17. Matsuzaki, J. & Ochiya, T. Circulating microRNAs and extracellular vesicles as
potential cancer biomarkers: a systematic review. Int. J. Clin. Oncol. 22,
413–420 (2017).

18. Sato, F., Tsuchiya, S., Terasawa, K. & Tsujimoto, G. Intra-platform
repeatability and inter-platform comparability of microRNA microarray
technology. PLoS ONE 4, e5540 (2009).

19. Nakamura, K. et al. Clinical relevance of circulating cell-free microRNAs in
ovarian cancer. Mol. Cancer 15, 48 (2016).

20. Zheng, H. et al. Plasma miRNAs as diagnostic and prognostic biomarkers for
ovarian cancer. PLoS ONE 8, e77853 (2013).

21. Cammaerts, S., Strazisar, M., De Rijk, P. & Del Favero, J. Genetic variants in
microRNA genes: impact on microRNA expression, function, and disease.
Front. Genet. 6, 186 (2015).

22. Langhe, R. et al. A novel serum microRNA panel to discriminate benign from
malignant ovarian disease. Cancer Lett. 356, 628–636 (2015).

23. Pendlebury, A. et al. The circulating microRNA-200 family in whole blood are
potential biomarkers for high-grade serous epithelial ovarian cancer. Biomed.
Rep. 6, 319–322 (2017).

24. Shapira, I. et al. Circulating biomarkers for detection of ovarian cancer and
predicting cancer outcomes. Br. J. Cancer 110, 976–983 (2014).

25. Cancer Genome Atlas Research, N. Integrated genomic analyses of ovarian
carcinoma. Nature 474, 609–615 (2011).

26. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435,
834–838 (2005).

27. Vaughan, S. et al. Rethinking ovarian cancer: recommendations for improving
outcomes. Nat. Rev. Cancer 11, 719–725 (2011).

28. Moreau, M. P., Bruse, S. E., David-Rus, R., Buyske, S. & Brzustowicz, L. M.
Altered microRNA expression profiles in postmortem brain samples from
individuals with schizophrenia and bipolar disorder. Biol. Psychiatry 69,
188–193 (2011).

29. Sourvinou, I. S., Markou, A. & Lianidou, E. S. Quantification of circulating
miRNAs in plasma: effect of preanalytical and analytical parameters on their
isolation and stability. J. Mol. Diagn. 15, 827–834 (2013).

30. Murtaza, M. et al. Multifocal clonal evolution characterized using circulating
tumour DNA in a case of metastatic breast cancer. Nat. Commun. 6, 8760 (2015).

31. Shimomura, A. et al. Novel combination of serum microRNA for detecting
breast cancer in the early stage. Cancer Sci. 107, 326–334 (2016).

Acknowledgements
The authors thank Tomomi Fukuda, Hiroko Tadokoro, Tatsuya Suzuki, Makiko

Ichikawa, Junpei Kawauchi, Satoshi Kondou, and Kamakura Techno-Science Inc.

for performing the microarray assays. The authors thank Noriko Abe and Michiko

Ohori for collecting samples from the freezing room and Kazuki Sudo for indepen-

dent confirmation of participant eligibility. Some of the samples and clinical infor-

mation used in this study was obtained from the National Cancer Center Biobank,

which is supported by National Cancer Center Research and Development Fund (29-

A-1). The authors also thank the Biobank at the National Center for Geriatrics

and Gerontology for providing biological resources. This study was financially sup-

ported through a Development of Diagnostic Technology for Detection of miRNA in

Body Fluids grant from the Japan Agency for Medical Research and Development (to

TO).

Author contributions
A.Y., J.M. and T.O. designed the experimental approach. A.Y., J.M., Y.Ya., T.S., J.K., S.T.

and Y.A. performed the experiments and analyzed the data. A.Y., J.M. and T.O. wrote the

manuscript, and Y. Ya assisted. Y.Yo., K.T., H.S., T.U., M.I., S.I., S.N., H.S., K.K. and T.K.

managed and provided the patient samples. The manuscript was finalized by T.O. with

the assistance of all the authors.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-

018-06434-4.

Competing interests: J.K. and S.T. are employees of Toray Industries, Inc., the provider

of the 3D-Gene® system. Y.A. is an employee of Dynacom Co., Ltd., the developer of the

statistical script used to select the best miRNA combination. The remaining authors

declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06434-4

10 NATURE COMMUNICATIONS |  (2018) 9:4319 | DOI: 10.1038/s41467-018-06434-4 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-018-06434-4
https://doi.org/10.1038/s41467-018-06434-4
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Integrated extracellular microRNA profiling for ovarian cancer screening
	Results
	Assay design
	Selection of circulating miRNA biomarker candidates
	Identifying the best combination of miRNAs for screening
	Further potentials for ovarian cancer biomarkers
	Characterizing the performance of prediction models

	Discussion
	Methods
	Clinical samples
	miRNA expression arrays of clinical samples
	miRNA expression array in exosomes derived from cell lines
	Statistical analysis

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


