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The problem of implementing fault-tolerant control to nonlinear processes with input
constraints subject to control actuator failures is considered, and an approach predicated
upon the idea of integrating fault-detection, feedback and supervisory control is presented
and demonstrated. To illustrate the main idea behind the proposed approach, availability
of measurements of all the process state variables is initially assumed. For the processes
under consideration, a family of candidate control configurations, characterized by
different manipulated inputs, is first identified. For each control configuration, a Lya-
punov-based controller that enforces asymptotic closed-loop stability in the presence of
constraints, is designed, and the constrained stability region, associated with it, is
explicitly characterized. A fault-detection filter is used to compute the expected closed-
loop behavior in the absence of faults. Deviations of the process states from the expected
closed-loop behavior are used to detect faults. A switching policy is then derived, on the
basis of the stability regions, to orchestrate the activation/deactivation of the constituent
control configurations in a way that guarantees closed-loop stability in the event that a
failure is detected. Often, in chemical process applications, not all state variables are
available for measurement. To deal with the problem of lack of process state measure-
ments, a nonlinear observer is designed to generate estimates of the states, which are then
used to implement the state feedback controller and the fault-detection filter. A switching
policy is then derived to orchestrate the activation/deactivation of the constituent control
configurations in a way that accounts for the estimation error. Finally, simulation studies
are presented to demonstrate the implementation and evaluate the effectiveness of the
proposed fault-tolerant control scheme, as well as to investigate an application in the
presence of uncertainty and measurement noise. © 2006 American Institute of Chemical
Engineers AIChE J, 52: 2129–2148, 2006
Keywords: fault-tolerant control, fault-detection, input constraints, stability region, Lya-
punov-based control

Introduction

Modern-day chemical plants involve a complex arrangement
of processing units connected, in series and/or in parallel, and
highly integrated with respect to material and energy flows

through recycle streams, and to information flow through
tightly interacting control approaches. Increasingly faced with
the requirements of safety, reliability and profitability, chemi-
cal plant operation is relying extensively on highly automated
process control systems. Automation, however, tends to also
increase vulnerability of the plant to faults (for example, de-
fects/malfunctions in process equipment, sensors and actuators,
failures in the controllers or in the control loops), potentially
causing a host of economic, environmental, and safety prob-
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lems that can seriously degrade the operating efficiency of the
plant if not addressed within a time appropriate to the context
of the process dynamics. Examples include physical damage to
the plant equipment, increase in the wasteful use of raw ma-
terial and energy resources, increase in the downtime for pro-
cess operation resulting in significant production losses, and
jeopardizing personnel and environmental safety. Management
of abnormal situations is a challenge in the chemical industry
since abnormal situations account annually for at least $10
billion in lost revenue in the U.S. alone.1 These considerations
provide a strong motivation for the development of methods
and strategies for the design of advanced fault-tolerant control
structures that ensure an efficient and timely response to en-
hance fault recovery, prevent faults from propagating or devel-
oping into total failures, and reduce the risk of safety hazards.
Given the geographically-distributed, interconnected nature of
the plant units and the large number of distributed sensors and
actuators typically involved,2 the success of a fault-tolerant
control method requires efficient fault detection, control de-
signs that account for the complex nonlinear dynamics and
constraints, and a high-level supervisor that coordinates the
overall plant response to achieve fault-tolerant control.

Fault-tolerant control has been an active area of research for
the past ten years, and has motivated many research studies in
the context of aerospace engineering applications (see, for
example,3,4), and is based on the underlying assumption of the
availability of more control configurations than is required.
Under this assumption, the reliable control approach dictates
use of all the control loops at the same time so that failure of
one control loop does not lead to the failure of the entire control
structure (for example,5). The use of only as many control
loops as is required at a time, is often motivated by economic
considerations (to save on unnecessary control action), and in
this case, fault-tolerant control can be achieved through con-
trol-loop reconfiguration. Recently, fault-tolerant control has
gained increasing attention in the context of chemical process
control; however, the available results are mostly based on the
assumption of a linear process description (for example,6,7),
and do not account for complexities such as control constraints
or the unavailability of state measurements.

In process control, given the complex dynamics of chemical
processes (for example, nonlinearities, uncertainties and con-
straints) the success of any fault-tolerant control method re-
quires an integrated approach that brings together several es-
sential elements, including: (1) the design of advanced
feedback control algorithms that handle complex dynamics
effectively, (2) the quick detection of faults, and (3) the design
of supervisory switching schemes that orchestrate the transition
from the failed control configuration to available well-func-
tioning fallback configurations to ensure fault-tolerance. The
realization of such an approach is increasingly aided by a
confluence of recent, and ongoing, advances in several areas of
process control research, including advances in nonlinear con-
troller designs, advances in the analysis and control of hybrid
process systems and advances in fault detection. In the remain-
der of this section, we will briefly review the state-of-the-art in
these areas, as pertinent to the focus of this article.

The highly nonlinear behavior of many chemical processes
has motivated extensive research on nonlinear process control.
Excellent reviews of results in the area of nonlinear process
control can be found, for example, in:8,9,10; for a more recent

review, see.11 The problems caused by input constraints have
motivated numerous studies on the dynamics and control of
systems subject to input constraints. Important contributions in
this area include results on optimization-based control meth-
ods, such as model predictive control (for example,12,13,14)
Lyapunov-based control (for example,15,16,17,18,19,20) and hybrid
predictive control (for example,21,22).

The occurrence of faults in chemical processes and subse-
quent switching to fallback control configurations naturally
leads to the superposition of discrete events on the underlying
continuous process dynamics, thereby making a hybrid systems
framework a natural setting for the analysis and design of
fault-tolerant control structures. Proper coordination of the
switching between multiple (or redundant) actuator/sensor con-
figurations provides a means for fault-tolerant control. How-
ever, at this stage, despite the large and growing body of
research work on a diverse array of hybrid system problems
(for example,23,24,25,26,27,28), the use of a hybrid system frame-
work for the study of fault-tolerant control problems for non-
linear systems subject to constraints has received limited at-
tention. In a previous work,29 a hybrid systems approach to
fault-tolerant control was employed where, under the assump-
tion of full state measurements and knowledge of the fault,
stability region-based reconfiguration is implemented to
achieve fault-tolerant control.

Existing results on the design of fault-detection filters in-
clude those that use historical plant data, and those that use
fundamental process models for the purpose of fault-detection
filter design. Statistical and pattern recognition techniques for data
analysis and interpretation (for example,30,31,32,33,34,35,36,37,38,39)
use historical plant data to construct indicators that identify
deviations from normal operation to detect faults. The problem
of using fundamental process models for the purpose of de-
tecting faults has been studied extensively in the context of
linear systems;40,41,42,43 and more recently, some existential
results in the context of nonlinear systems have been de-
rived.44,45

In summary, a close examination of the existing literature
indicates the lack of general and practical methods for the
design of integrated fault-detection and fault-tolerant control
structures for chemical plants accounting explicitly for actua-
tor/controller failures, process nonlinearities and input con-
straints. Motivated by these considerations, we consider in this
work the problem of implementing fault-tolerant control on
nonlinear processes with input constraints subject to control
actuator failures, and present and demonstrate an approach
predicated upon the idea of integrating fault-detection, feed-
back and supervisory control. To illustrate the main idea be-
hind the proposed approach, we first assume availability of
measurements of all the process state variables. For the pro-
cesses under consideration, a family of candidate control con-
figurations, characterized by different manipulated inputs, is
first identified. For each control configuration, a Lyapunov-
based controller that enforces asymptotic closed-loop stability
in the presence of constraints is designed, and the constrained
stability region associated with it is explicitly characterized. A
fault-detection filter is used to compute the expected closed-
loop behavior in the absence of faults. Deviations of the pro-
cess states from the expected closed-loop behavior are used to
detect faults. A switching policy is then derived, on the basis of
the stability regions, to orchestrate the activation/deactivation
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of the constituent control configurations in a way that guaran-
tees closed-loop stability in the event that a failure is detected.
Often, in chemical process applications, not all state variables
are available for measurement. To deal with the problem of
missing but needed process state measurements, a nonlinear
observer is designed to generate estimates of the states, which
are then used to implement the state feedback controller and the
fault-detection filter. A switching policy is then derived to
orchestrate the activation/deactivation of the constituent con-
trol configurations in a way that accounts for the estimation
error. Finally, simulation studies are presented to demonstrate
the implementation and evaluate the effectiveness of the pro-
posed fault-tolerant control scheme as well as to investigate an
application in the presence of uncertainty and measurement
noise.

Preliminaries
Process description

We consider a class of continuous-time, single-input single-
output nonlinear processes with constraints on the manipulated
input, represented by the following state-space description

ẋ�t� � f� x�t�� � gk�t�� x�t���uk�t� � mk�t��, ym � hm� x�

k�t� � � � �1, . . . , N �, N � �, �uk�t�� � umax
k (1)

where x(t) � �n denotes the vector of process state variables,
ym � � denotes the measured variable, uk(t) � [�umax

k , umax
k ]

� � denotes the constrained manipulated input associated with
the k-th control configuration, and mk(t) � � denotes the fault
in the k-th control configuration. For each value that k assumes
in �, the process is controlled via a different manipulated input
which defines a given control configuration.

It is assumed that the origin is the equilibrium point of the
nominal process (that is, f(0) � 0), gk( x) � 0 @x � �n, and
that the vector functions f� and gk� are sufficiently smooth,
for all k, on �n. Throughout this article, a function �(r, s) is
said to belong to class �� if, for each fixed s, the mapping �(�,
s) belongs to class � (a continuous function �� is said to
belong to class � if it is strictly increasing, and �(0) � 0)
and for each fixed r, the mapping �(r, �) is decreasing, and
�(r, s) 3 0 as s 3 �; see also.46 The notation ��� is used to
denote the standard Euclidean norm of a vector, the notation ���
is used to denote the absolute value of a scalar, x	 denotes the
transpose of x, and the notation R � [r1 r2] is used to denote
the augmented vector R � �m
n comprising of the vectors
r1 � �m, and r2 � �n. The notation Lfh denotes the standard
Lie derivative of a scalar function h� with respect to the
vector function f�, and the notation x(T
) denotes the limit of
the trajectory x(t) as T is approached from the right, that is,
x(T
) � limt3T
 x(t). Throughout the manuscript, we assume
that for any �uk� � umax

k the solution of the system of Eq. 1
exists, and is continuous for all t.

Motivating example

To motivate our fault-tolerant control design methodology,
we introduce in this subsection a bench-mark chemical reactor
example that will be used to illustrate the design and imple-
mentation of the fault-tolerant control structure. To this end,

consider a well-mixed, nonisothermal continuous stirred tank
reactor (see Figure 1), where three parallel irreversible elemen-
tary exothermic reactions of the form A 3k1 B, A 3k2 U, and A
3k3 R take place, where A is the reactant species, B is the desired
product and U, R are undesired byproducts. Under standard
modeling assumptions, a mathematical model of the process
can be derived from material and energy balances and takes the
following form

dT

dt
�

F

V
�TA0 � T� � �

i�1

3
���Hi�

�cp
ki0exp��Ei

RT �CA �
Q

�cpV

dCA

dt
�

F

V
�CA0 � CA� � �

i�1

3

ki0exp��Ei

RT �CA

dCB

dt
� �

F

V
CB � k10exp��E1

RT �CA (2)

where CA and CB denote the concentrations of the species A
and B, T denotes the temperature of the reactor, Q denotes the
rate of heat input/removal from the reactor, V denotes the
volume of the reactor, �Hi, ki, Ei, i � 1, 2, 3, denote the
enthalpies, pre-exponential constants and activation energies of
the three reactions, respectively, cp and � denote the heat
capacity and density of the fluid in the reactor, respectively.
The values of the process parameters and the corresponding
steady-state values can be found in.29 It was verified that under
these conditions, the process of Eq. 2 has three steady-states
(two locally asymptotically stable and one unstable at (Ts, CAs,
CBs) � (388.57 K, 3.59 kmol/m3, 0.41 kmol/m3)).

The control objective considered here is the one of stabiliz-
ing the reactor at the (open-loop) unstable steady-state. Oper-
ation at this point is typically sought to avoid high temperature
while simultaneously achieving reasonable conversion. To ac-

Figure 1. CSTR showing the three candidate control
configurations.
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complish this objective in the presence of control system fail-
ures, we consider as manipulated inputs the rate of heat input,
u1 � Q, subject to the constraint �Q� � umax

1 � 748 KJ/s, the
inlet stream temperature, u2 � TA0 � TA0s, subject to the
constraint �u2� � umax

2 � 100 K, with TA0s � 300 K, and the
inlet reactant concentration, u3 � CA0 � CA0s, subject to the
constraint �u3� � umax

3 � 4 kmol/m3, with CA0s � 4 kmol/m3.
Each of these manipulated inputs, together with measure-

ments of reactor temperature and/or concentration, represents a
unique control configuration (or control-loop) that, by itself,
can stabilize the reactor. In the event of some failure in the
primary configuration (involving the heat input Q), the impor-
tant questions that arise include how can the supervisor detect
this fault (note that measurements of the control actuator output
that is implemented on the process are not available), and
which control loop to activate once failure is detected in the
active configuration. The answer to the first question involves
the design of an appropriate fault-detection filter. The approach
that we will utilize to answer the second question—that of
deciding which backup controller should be activated in the
event of a fault—will be based on the stability regions under
the individual control configuration. To this end, we next
review a state feedback control design that allows for charac-
terizing the constrained stability region under each control
configuration. Note that this particular choice of the controller
is presented only as an example to illustrate our results, and
that any other controller design that allows for an explicit
characterization of the constrained stability region can be used
instead. Note also, that while the earlier example will be used
to illustrate the main ideas behind the proposed fault-detection
and fault-tolerant control method, we also investigate in the
simulation studies an application to a network of chemical
reactors in the presence of uncertainty and measurement noise.

Bounded Lyapunov-based control

Consider the system of Eq. 1, for which a family of control
Lyapunov functions (CLFs), Vk( x), k � � � {1, . . . , N }
has been found (see the last paragraph of this subsection for a
discussion on the construction of CLFs). Using each control
Lyapunov function, we construct, using the results in15 (see
also19), the following continuous bounded control law

uk� x� � �
L*fVk�x� � ��L*fVk� x��2 � �umax

k ��LgkVk��x���4

��LgkVk��x��21 � �1 � �umax
k ��LgkVk��x���2�

	 �LgkVk��x� (3)

when (Lgk
Vk)( x) � 0 and uk( x) � 0 when (Lgk

Vk)( x) � 0,
L*fVk( x) � [
Vk( x)/
 x] f( x) 
 �kVk( x), �k � 0 and
Lgk

Vk( x) � [
Vk( x)/
� x] gk( x). Let �k be the set defined by

�k�umax
k � � �x � �n : L*fVk�x� � umax

k ��LgkVk��x��� (4)

and assume that

�k :� �x � �n : Vk�x� � ck
max� � �k�umax

k � (5)

for some ck
max � 0. It can be shown, using standard Lyapunov

arguments, that in the absence of faults (mk(t) � 0), �k

provides an estimate of the stability region, starting from where
the control law of Eq. 3 guarantees asymptotic (and local
exponential) stability of the origin of the closed-loop system
under each control configuration. This implies that there exist
class �� functions �i, i � 1, . . . , N, such that � x(t)� �
�i(� x(0)�, t). We will use this property later in the design of
the output feedback controllers.

Referring to the earlier controller design, it is important to
make the following remarks. First, a general procedure for the
construction of CLFs for nonlinear systems of the form of Eq.
1 is currently not available. Yet, for several classes of nonlinear
systems that arise commonly in the modeling of engineering
applications, it is possible to exploit system structure to con-
struct CLFs (see, for example,47,48). Second, given that a CLF,
Vk, has been obtained for the system of Eq. 1, it is important to
clarify the essence and scope of the additional assumption that
there exists a level set, �k, of Vk that is contained in �k.
Specifically, the assumption that the set, �k, contains an in-
variant subset around the origin, is necessary to guarantee the
existence of a set of initial conditions for which closed-loop
stability is guaranteed (note that even though V̇k � 0 @x �
�k�{0}, there is no guarantee that trajectories starting within
�k remain within �k for all times). Moreover, the assumption
that �k is a level set of Vk is made only to simplify the
construction of �k. This assumption restricts the applicability
of the proposed control method because a direct method for the
construction of a CLF with level sets contained in �k is not
available. However, the proposed control method remains ap-
plicable if the invariant set �k is not a level set of Vk, but can
be constructed in some other way (which, in general, is a
difficult task). Note also that possibly larger estimates of the
stability region can be computed using constructive procedures
such as Zubov’s method49 or by using a combination of several
Lyapunov functions.

Integrated Fault-Detection and Fault-Tolerant
Control: State Feedback Case
State feedback fault-tolerant control

Consider the system of Eq. 1, where all process states are
available as measurements, that is, hm( x) � x, and without
loss of generality, assume that it starts operating using control
configuration i, under the controller of Eq. 3. At some un-
known time, Ti

f, a fault occurs in the first control configuration
such that for all t � Ti

f, mi � �ui, that is, control configu-
ration i fails. The problems at hand are those of detecting that
a fault has occurred and, upon detection, deciding which of the
available backup configurations should be implemented in the
closed-loop to achieve fault-tolerant control. To this end, we
consider a fault-detection filter and a switching logic of the
form

ẇ�t� � ff�w, x�, r�t� � hf�w, x�, k�t� � �r, w, x� (6)

where w � �n is the state of the filter, r(t) � � is a residual
that indicates the occurrence of a fault, and is the output of the
filter, ff � �n is the vector field describing the evolution of the
filter state w, and (r, w, x) is the switching logic that dictates
which of the available control configurations should be acti-
vated.
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The main idea behind the fault-tolerant control design is as
follows: (1) use the available state measurements, the process
model, and the computed control action to simulate the evolu-
tion of the closed-loop process in the absence of actuator faults,
compare it with the actual evolution of the states, and use the
difference between the two behaviors, if any, to detect faults,
and (2) having detected the fault, activate a backup control
configuration for which the closed-loop state is within its
stability region estimate. To formalize this idea, consider the
constrained system of Eq. 1 for which a bounded controller of
the form of Eq. 3 has been designed for each control config-
uration, and the stability region, �j, j � 1, . . . , N has been
explicitly characterized. The fault-detection filter and the fault-
tolerant control design are described in Theorem 1 below. The
proof is given in the Appendix.

Theorem 1: Let k(0) � i for some i � � and x(0) :� x0 �
�i. Set w(0) � x(0), and consider the system

ẇ � f�w� � gi�w�ui�w�; r � �w � x� (7)

where w � �n is the filter state and ui� is the feedback
control law defined in Eq. 3. Let Ti

f be such that mi(t) � 0
@0 � t � Ti

f, then r(Ti
f
) � 0 if and only if mi(Ti

f) � 0.
Furthermore, let Ti

s be the earliest time such that r(t) � 0, then
the following switching rule

k�t� � � i, 0 � t � Ti
s

j � i, t � Ti
s, x�Ti

s� � �j
� (8)

guarantees asymptotic stability of the origin of the closed-loop
system.

The fault-detection filter and fault-tolerant controller are
designed and implemented as follows (see also Figure 2):

● Given any x0 � �i, initialize the filter states as w(0) �
x0, and integrate the filter dynamics using Eq. 7.

● Compute the norm of the difference between the filter
states and the process states, r(t) � �w(t) � x(t)�, and if
r(t) � 0, continue to implement control configuration i.

● At any time Ti
s that r(Ti

s) � 0, switch to a control

configuration j � i, for which x(Ti
s) � �j to achieve asymp-

totic stability of the origin of the closed-loop system.
Note that the fault-detection filter uses a replica of the

process dynamics, and that the state of the filter w is initialized
at the same value as the process states x(0). In the absence of
faults, the evolution of w(t) is identical to x(t), and, hence,
r(t) � 0. In the presence of faults, however, the effect of the
fault is registered by a change in the evolution of the process,
but not in that of the filter state (since the filter state dynamics
include the computed control action, ui(w), and not the imple-
mented control action, ui(w) 
 mi). This change is detected by
a change in the value of r(t), and declared as a fault. Note also,
that the fact that the faults mi appear as additive terms to the
manipulated input variable is a natural consequence of focus-
sing on the problem of detecting (through the design of appro-
priate fault-detection filters) and dealing (via reconfiguration)
with faults in control actuators. The approach employed in the
design of the fault-detection filter can also be used to detect
faults that do not necessarily appear in the control actuators, as
long as they influence the evolution of the state variables.

Remark 1: Once a fault is detected, the switching logic
ensures that the backup control configuration that is imple-
mented in the closed-loop system is one that can guarantee
closed-loop stability in the presence of constraints, and this is
achieved by verifying that the state of the process, at the time
that a fault is detected, is present in the constrained stability
region of the candidate control configuration. Note that while
the bounded controller is used for a demonstration of the main
ideas, other control approaches, that provide an explicit char-
acterization of the set of initial conditions for which closed-
loop stability is guaranteed (achieved, for example, via the use
of the hybrid predictive control approach21 or via a Lyapunov-
based model predictive control design50) can be used within the
proposed framework. Note also that early detection of a fault
enhances the chances that corrective action can be taken in time
to achieve fault-tolerant control (Theorem 1 guarantees that a
fault is detected as soon as it occurs). Specifically, it may
happen that a fault occurs when the closed-loop state resides in
the stability region of one of the backup configurations, but if
the fault is not immediately detected, the destabilizing effect of
the fault may drive the state outside the stability region of the
backup configuration by the time a fault is detected (for a
demonstration, see the simulation example).

In the event that the process state, at the time of the failure
of the primary control configuration, lies in the stability region
of more than one backup control configuration, additional
performance considerations such as ease and/or cost of imple-
menting one control configuration over another, can be used in
choosing which control configuration should be implemented
in the closed-loop system.51 If the state at the time of a failure
lies outside the stability region of all the backup controllers,
then this indicates that the backup controllers do not have
enough control action available and calls for increasing the
allowable control action in the fallback configurations. Note
that the set of initial conditions starting from where a given
control configuration can stabilize a steady state—the so-called
null-controllable region—is fundamentally limited by the con-
straints on the available control action, and that different con-
trol laws typically provide estimates of the stability region
which are subsets of the null-controllable region.

Remark 2: In the presence of plant model mismatch or

Figure 2. Integrated fault-detection and fault-tolerant
control design: state feedback case.
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unknown disturbances, the value of r(t) will be nonzero even
in the absence of faults. The fault-detection and fault-tolerant
control (FDFTC) problem in the presence of time varying
disturbances with known bounds on the disturbances can be
handled by (1) redesigning the filter to account for the distur-
bances; specifically, requiring that a fault be declared only if
the value of r(t) increases beyond some threshold �, where �
accounts for the deviation of the plant dynamics from the
nominal dynamics in the absence of faults (please see the
simulation example for a demonstration of this idea in an
application to a network of chemical reactors in the presence of
uncertainty and measurement noise), and (2) by redesigning the
controllers for the individual control configurations to mitigate
the effect of disturbances on the process characterizing the
robust stability regions and using them as criteria for deciding
which backup controller should be implemented in the closed-
loop. Note that while Theorem 1 presents the FDFTC design
for a fault in the primary control configuration, extensions to
faults in successive backup configurations are straightforward
and involve similar filter designs for the active control config-
uration and a switching logic that orchestrates switching to the
remaining control configurations.

Remark 3: While we illustrate our idea using a single input,
extensions to multi-input systems are possible, and fault-detec-
tion filters can be designed in the same way, using a replica of
the process dynamics. The case of multi-input systems, how-
ever, introduces an additional layer of complexity due to the
need of identifying which particular manipulated input has
failed, that is, the additional problem of fault-isolation. For the
purpose of presenting the integrated fault-detection and fault-
tolerant control structure, we focus here on multiple control
configurations, where each control configuration comprises of
a single input that does not require the filter to perform the
additional task of fault-isolation. For a simple illustration of a
fault-detection and isolation filter design, see the simulation
example.

Remark 4: Note that the fault-detection filter presented in
Theorem 1 detects the presence of both complete and partial
failures. Once a fault is detected, the control reconfiguration
strategy is the same for both cases, and that is to shut down the
faulty configuration and switch to some well-functioning fall-
back configuration. Note that in the case of a partial failure,
unless the faulty configuration is shut down, the backup control
configurations will have to be redesigned to be robust with
respect to the bounded disturbance generated by the faulty
configuration (for the backup control configuration, the unmea-
sured actuator action of the faulty control configuration will act
as a disturbance and will be bounded because of the fact that
the actuator itself has a limited capacity and, therefore, even if
the implemented control action is not the same as that pre-
scribed by the controller, it cannot exceed the physical limita-
tions and will remain bounded). By shutting down the faulty
configuration, however, the source of the disturbance is elim-
inated and no controller redesign is needed for the backup
control configurations.

Simulation results

In this subsection, we illustrate the implementation of the
proposed fault-detection/fault-tolerant control methodology to
the chemical reactor introduced as a motivating example. We

first describe the controller design for the individual control
configurations. Note that our objective is full state stabilization;
however, to facilitate the controller design and subsequent
stability analysis, we use a state transformation to transform the
system of Eq. 2 into the following one describing the input/
output dynamics

ė � Ae � l�e� � b�kuk :� f��e� � g� k�e�uk (9)

where e � �n is the variable in transformed co-ordinate (for
the specific transformations used for each control configura-
tion, please see below), A � [0

0
0
1], b � [1

0], l� � Lf
2hk( x),

�k� � Lgk
Lf hk( x), hk( x) � yk is the output associated with

the k-th configuration, x � [ x1 x2]T with x1 � T � Ts, x2 �
CA � CAs, and the functions f� and gk� can be obtained by
rewriting the (T, CA) model equations in Eq. 2 in the form of
Eq. 1. The explicit forms of these functions are omitted for
brevity. A quadratic Lyapunov function of the form Vk �
eTPke, where Pk is a positive-definite symmetric matrix that
satisfies the Riccati inequality ATPk 
 PkA � PkbbTPk � 0,
is used for controller design. In particular:

1. For the first configuration with u1 � Q, we consider the
controlled output y1 � CA � CAs. The coordinate transfor-
mation (in error variables form) takes the form: e1 � CA �
CAs, e2 � (F/V)(CA0 � CA) � �i�1

3 ki0e(�Ei/RT)CA, and
yields a relative degree of two with respect to the manipulated
input.

2. For the second configuration with u2 � TA0 � TA0s, we
choose the output y2 � CA � CAs which yields the same
relative degree as in the first configuration, r2 � 2, and the
same coordinate transformation.

3. For the third configuration with u3 � CA0 � CA0s, a
coordinate transformation of the form used for configurations 1
and 2 earlier does not yield a sufficiently large estimate of the
stability region, we therefore choose a candidate Lyapunov
function of the form V3( x) � x	Px, where P � 0, and x �
[T � Ts CA � CAs]	 with P � [0.019

0.011
0.101
0.019].

Figure 3 depicts the stability region, in the (T, CA) space, for
each configuration. The desired steady-state is depicted with an

Figure 3. Evolution of the closed-loop state profiles un-
der the switching rule of Eq. 8 subject to fail-
ures in control systems 1 and 2 (solid line) and
under arbitrary switching (dashed line).
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asterisk that lies in the intersection of the three stability re-
gions. The reactor, as well as the fault-detection filter for the
first control configuration is initialized at T(0) � 330 K,
CA(0) � 3.6 kmol/m3, CB(0) � 0.0 kmol/m3, using the
Q-control configuration, and the supervisor proceeds to mon-
itor the evolution of the closed-loop trajectory.

As shown by the solid lines in Figures 3–4, the controller
proceeds to drive the closed-loop trajectory towards the desired
steady-state, until the Q-configuration fails after 3 min of
reactor startup (see Figure 6a). As can be seen in Figure 5a, at
this time the value of r1(t) becomes non-zero, and the fault-
detection filter detects this fault. If the supervisor switches
arbitrarily, and in particular, switches to backup configuration
3, closed-loop stability is not achieved (dashed lines in Figures
3–4). Note that this happens because the closed-loop state is
outside the stability region of the third control configuration,

and even though the third control configuration does not en-
counter a fault (r3(t) � 0; see dashed line in Figure 5b), the
limited control action available in this configuration is unable
to achieve closed-loop stability. On the basis of the switching
logic of Eq. 8, the supervisor activates the second configuration
(with TA0 as the manipulated input, see Figure 6b), which
continues to drive the state trajectory closer to the desired
steady-state.

To demonstrate the implementation of the proposed FDFTC
strategy when faults occur in successive control configurations,
we consider the case when a second failure occurs (this time in
the TA0-configuration) at t � 13 min. Once again, the filter
detects this failure via an increase in the value of r2(t) (solid
line in Figure 5b) using the fault-detection filter for control

Figure 4. Evolution of the closed-loop (a) temperature
and (b) concentration under the switching rule
of Eq. 8 subject to failures in control systems 1
and 2 (solid lines), and under arbitrary switch-
ing (dashed lines).

Figure 5. Evolution of the closed-loop residual under the
fault-detection filter for (a) control configura-
tion 1, and (b) control configurations 2 and 3
under the switching rule of Eq. 8 subject to
failures in control systems 1 and 2 (solid lines),
and under arbitrary switching (dashed lines).
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configuration 2. From Figure 3, it is clear that the failure of the
second control configuration occurs when the closed-loop tra-
jectory is within the stability region of the third configuration.
Therefore, the supervisor immediately activates the third con-
trol configuration (with CA0 as the manipulated input, see
Figure 6c) which finally stabilizes the reactor at the desired
steady-state.

Integrated Fault-Detection and Fault-Tolerant
Control: Output Feedback Case

The feedback controllers, the fault-detection filters and the
switching rules in the previous section were designed under the
assumption of availability of measurements of all the process
states. The unavailability of full state measurements has several
implications. First, it necessitates generating estimates of the
states to be used in conjunction with both the state feedback
controller and the fault-detection filter. The state estimates,
however, contain errors, and this results in a difference be-
tween the expected closed-loop behavior of the measured vari-
ables (computed using the state estimates) and the evolution of
the measured variables, even in the absence of actuator faults.
The fault-detection filter has to be redesigned to account for
this fact so that it does not treat this difference to be an
indicator of an actuator fault (i.e., a false alarm). Also, the
switching logic has to account for the fact that the supervisor
can monitor only the state estimates and needs to make infer-
ences about the true values of the states using the state esti-
mates.

In the remainder of this section, we first review an output
feedback controller design, proposed in,20 based on a combi-
nation of a high-gain observer and a state feedback controller
(see also52,53,54,55,56 for results on observer designs and output
feedback control for unconstrained nonlinear systems), and
characterize the stability properties of the closed-loop system
under output feedback control. Then, we present the fault-
detection filter and fault-tolerant controller and demonstrate its
application via a simulation example.

Output feedback control

To facilitate the design of a state estimator with the required
convergence properties, we make the following assumption:

Assumption 1: For each i � �, there exists a set of
coordinates

�i� � 	
�i

1

�i
2

···
�i

n

 � �i� x� � 	

hm� x�
Lfhm� x�

···
Łf

n�1hm� x�

 (10)

such that the system of Eq. 1 takes the form

�̇i
1 � �i

2

···
�̇i

n�1 � �i
n

�̇i
n � Lf

nhm��i
�1���� � LgiLf

n�1hm��i
�1�����ui�t� � mi�t��

(11)

where Lgi
Lf

n�1hm( x) � 0 for all x � �n. Also, �i 3 0 if and
only if x 3 0.

We note that the change of variables is invertible, since for
every x, the variable �i is uniquely determined by the trans-
formation �i � �i( x). This implies that if one can estimate the
values of �i for all times, using an appropriate state observer,
then we automatically obtain estimates of x for all times which

Figure 6. Manipulated input profiles under (a) control
configuration 1, (b) control configuration 2,
and (c) control configuration 3 under the
switching rule of Eq. 8 subject to failures in
control systems 1 and 2 (solid lines), and under
arbitrary switching (dashed lines).
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can be used to implement the state feedback controller. The
existence of such a transformation will facilitate the design of
high-gain observers which will be instrumental in preserving
the same closed-loop stability properties achieved under full
state feedback.

Proposition 1 below presents the output feedback controller
used for each mode and characterizes its stability properties.
The proof of the proposition, which invokes singular perturba-
tion arguments (for a result on input-to-state stability with
respect to singular perturbations, and further references, see57),
is a special case of the proof of Theorem 2 in,20 and is omitted
for brevity. To simplify the statement of the proposition, we
first introduce the following notation. We define �i� as a class
� function that satisfies �i(� x�) � Vi( x). We also define the
set �b,i :� { x � �n : Vi( x) � �b,i}, where �b,i is chosen
such that �i(�i

�1(�b,i), 0) � �i
�1(ci

max), where �i(�, �) is a
class �� function and ci

max is a positive real number defined in
Eq. 5.

Proposition 1: Consider the nonlinear system of Eq. 1, for
a fixed mode, k(t) � i, and with mi(t) � 0, under the output
feedback controller:

ẏ̃ � 	
�Lia1

�i� 1 0 · · · 0
�Li

2a2
�i� 0 1 · · · 0

···
···

···
· · ·

···
�Li

nan
�i� 0 0 · · · 0


 ỹ � 	
Lia1

�i�

Li
2a2

�i�

···
Li

nan
�i�

 ym

ui � ui
c� x̂� (12)

where ui
c is defined in Eq. 3, the parameters, a1

(i), . . . , an
(i) are

chosen such that the polynomial sn 
 a1
(i)sn�1 
 a2

(i)sn�2 

. . . 
 an

(i) � 0 is Hurwitz, x̂ � �i
�1(sat( ỹ)), sat� � min{1,

�max,i/���}�, with �max,i � ��(��,i, 0) where �� is a class ��
function and ��,i is the maximum value of the norm of the
vector [hm( x) . . . Lf

n�1hm( x)] for Vi( x) � ci
max and let �i �

1/Li. Then, given �b,i, there exists �*i � 0 such that if �i � (0,
�*i], x(0) � �b,i, and � ỹ(0)� � ��,i, the origin of the closed-
loop system is asymptotically (and locally exponentially) sta-
ble. Furthermore, given any positive real numbers, em,i and Ti

b,
there exists a real positive number �*i* such that if �i � (0,
�*i*] then � x(t) � x̂(t)� � em,i for all t � Ti

b.
The state observer in Eq. 12 ensures sufficiently fast con-

vergence of the state estimation error necessary for the imple-
mentation of both the state feedback controller (and preserving
its stability properties under output feedback control), and the
fault-detection filter. The most important feature of this esti-
mator (and one that will be used in the fault-detection filter
design) is that the estimation error is guaranteed to fall below
a certain value in a small period of time Ti

b, which can be
chosen arbitrarily small by sufficiently increasing the observer
gain. This requirement or constraint on the error dynamics is
needed even when other estimation schemes, such as moving
horizon observers, are used in the context of estimation-based
output feedback control (for example, see58,59). For such ob-
servers, however, it is difficult in general to obtain a transparent
relationship between the tunable observer parameters and the
error decay rate.

Due to the lack of full state measurements, the supervisor
can rely only on the available state estimates to decide whether
switching at any given time is permissible, and, therefore,
needs to make reliable inferences regarding the position of the
states based upon the available state estimates. Proposition 2
below establishes the existence of a set, �s,i :� { x � �n :
Vi( x) � �s,i}, such that once the state estimation error has
fallen below a certain value (note that the decay rate can be
controlled by adjusting Li), the presence of the state within the
output feedback stability region, �b,i, can be guaranteed by
verifying the presence of the state estimates in the set �s,i. A
similar approach was employed in the construction of the
output feedback stability regions �b,i, and the regions for the
state estimates �s,i in the context of output feedback control of
linear systems in 60. The proof of the proposition is given in the
appendix.

Proposition 2: Given any positive real number �b,i, there
exist positive real numbers e*m,i and �s,i such that if � x � x̂� �
em,i, where em,i � (0, e*m,i], and Vi( x̂) � �s,i, then Vi( x) �
�b,i.

Note that for the inference that x̂ � �s,i f x � �b,i to be
useful in executing the switching, the set �s,i needs to be
contained within �b,i. From Proposition 2, this can be ensured
if em,i is sufficiently small, which in turn is ensured for all
times greater than Ti

b provided that the observer gain is suffi-
ciently large. In practice, use of a sufficiently high observer
gain leads to an �b,i that is almost identical to �i, and,
furthermore, once the error has sufficiently decreased, �s,i can
be taken to be almost equal to �b,i.

Integrating fault-detection and fault-tolerant output
feedback control

In this subsection we present a fault-tolerant controller that
uses the estimates generated by the high-gain observer for the
implementation of the fault-detection filter, the state feedback
controllers and the switching logic (see Figure 7). We proceed
by first showing how the implementation of the design and
implementation of the fault-detection filter should be modified

Figure 7. Integrated fault-detection and fault-tolerant
control design under output feedback.
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to handle the absence of full state measurements. To this end,
we consider the following system

ẇ�t� � f�w� � gi�w�ui�w�

r�t� � � x̂�t� � w�t�� (13)

Note that, as in the full state feedback case, the state equation
for the filter in Eq. 13 is a replica of the closed-loop state
equation under full state feedback and in the absence of faults.
However, because of the absence of full state measurements,
the residual can only be defined in terms of the state estimates,
not the actual states. The residual therefore provides a measure
of the discrepancy between the evolution of the nominal
closed-loop system (that is, with no faults) under full state
feedback and the evolution of the closed-loop state estimates
under output feedback. Since the discrepancy can be solely due
to estimation errors and not necessarily due to faults, it is
important to establish a bound on the residual which captures
the expected difference in behavior in the absence of faults.
This bound, which is given in Proposition 3 below, will be used
as a threshold by the supervisor in declaring when a fault has
occurred and consequently when switching becomes necessary.
The proof of the proposition is given in the appendix.

Proposition 3: Consider the nonlinear system of Eq. 1, for
a fixed mode, k(t) � i, and with mi(t) � 0, under the output
feedback controller of Eq. 12. Consider also the system of Eq.
13. Then, given the set of positive real numbers {�b,i, ��,i, �m,i,
Ti

b}, there exists a positive real number, �	i � 0, such that if
�i � (0, �	i], Vi( x(0)) � �b,i, � ỹ(0)� � ��,i, w(Ti

b) � x̂(Ti
b),

the residual satisfies a relation of the form r(t) � �m,i for all
t � Ti

b.
Note that the bound �m,i can be chosen arbitrarily small by

choosing the observer gain to be sufficiently large. Note also
that, unlike the case of full state feedback, the fault-detection
filter is initialized only after the passage of some short period
of time, [0, Ti

b] (which can be chosen arbitrarily small by
increasing the observer gain), to ensure that the closed-loop
state estimates have converged sufficiently close to the true
closed-loop states, and, thus, by setting the filter state w at this
time equal to the value of the state estimate—ensure that the
filter state is initialized sufficiently close to the true values of
the state. From this point onwards, the filter simply integrates
a replica of the dynamics of the process in the absence of
errors. In the absence of actuator faults, the difference between
the filter states and the process states is a function of the initial
error, which can be bounded from above by a value that can be
made as small as desired by decreasing the initial error, which
in turn can be done by appropriate choice of the observer
parameters.

Having established a bound on the residual in the absence of
faults, we proceed with the design of the switching logic. To
this end, consider the nonlinear system of Eq. 1 where, for each
control configuration, an output feedback controller of the form
of Eq. 12 is available and, given the desired output feedback
stability regions �b,i � �i, i � 1, . . . , N, as well as the
desired values for �m,i, Tb

i , an appropriate observer gain has

been determined (for example, �i � min{�*i, �	i, �*i*} to
guarantee both stability and satisfaction of the desired bound
on the residual), and the sets �s,i (see Proposition 2) have been
computed. The implementation of the fault-detection filter and
fault-tolerant controller is described in Theorem 2 below (see
the Appendix for the proof).

Theorem 2: Let k(0) � i for some i � �, x(0) � �b,i,
w(Ti

b) � x̂(Ti
b), and consider a fault for which r(Ti

s) � �m,i,
where Ti

s � Ti
b is the earliest time for which r(t) � �m,i. Then

under the switching rule

k�t� � � i, 0 � t � Ti
s

j � i, t � Ti
s, x̂�Ti

s� � �j
s� (14)

the origin of the closed-loop system is asymptotically stable.
The design and implementation of the fault-detection filter

and fault-tolerant controller proceed as follows:
1. Given the nonlinear process of Eq. 1, identify the avail-

able control configurations, k � 1, . . . , N. For each config-
uration, design the output feedback controller of Eq. 12, and for
a given choice of the output feedback stability region �b,i,
determine a stabilizing observer gain �*i.

2. Given any positive real numbers �m,i and Ti
b, determine

the observer gain, �	i, for which the maximum possible differ-
ence between the filter states and the state estimates, in the
absence of faults, is less than the threshold �m,i for all times
greater than Ti

b.
3. Given the output feedback stability region �b,i, deter-

mine the maximum error e*m,i, and the set �s,i, such that if
� x � x̂� � em,i � e*m,i (that is, the error between the estimates,
and the true values of the states is less than em,i) and x̂ � �s,i

(that is, the state estimates belong to �s,i), then x � �b,i (that
is, the state belongs to the output feedback stability region).

4. For a choice of em,i � (0, e*m,i] and given Ti
b, determine

the observer gain, �*i*, for which the maximum possible dif-
ference between the states and the state estimates, in the
absence of faults, is less than the threshold em,i for all times
greater than Ti

b. Set �i :� min{�*i, �	i, �*i*}. Note that this
choice guarantees that by time Ti

b: (1) the residual is within the
desired threshold and (2) the presence of x̂ within �s,i guar-
antees that x belongs to �b,i.

5. Initialize the closed-loop system such that x(0) � �b,i,
for some i � �, and start generating the state estimates x̂(t).
At time Ti

b, initialize and start integrating the filter dynamics of
Eq. 13 with w(Ti

b) � x̂(Ti
b), where x̂ is the state estimate

generated by the high-gain observer.
6. At the earliest time Ti

s � Ti
b that r(t) � �m,i (implying

that the difference between the expected evolution of the pro-
cess states and the estimates of the process states is more than
what can be accounted for by the error in the initialization of
the filter states, implying that a fault has occurred), activate the
backup configuration for which x̂(Ti

s) � �s, j (note that since
t � Ti

s � Ti
b, we have that � x(Ti

s) � x̂(Ti
s)� � em,i; this

together with x̂(Ti
s) � �s, j implies that x(Ti

s) � �b, j, that is,
the state belongs to the stability region of configuration j).
Implement the backup configuration j to achieve closed-loop
stability.
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Theorem 2 considers faults that are “observable” from the
filter’s residual, in the sense that if the residual in Eq. 13
exceeds the allowable threshold �m,i at any time, then the
supervisor can conclude with certainty that a fault has oc-
curred. On the other hand, if the residual does not exceed the
allowable threshold, it might still be possible that some “un-
observable” fault—the effect of which is within the filter
threshold—has taken place. Note that in contrast to the case of
full state feedback, the states in this case are only known up to
a certain degree of accuracy. Therefore, any fault that causes a
difference in the closed-loop behavior that is within the margin
of (that is, indistinguishable from) the effect of the estimation
error will, in principle, go undetected. While the result of
Theorem 2 excludes these (small) faults to prove asymptotic
stability, these faults can be easily considered, the only tradeoff
being that instead of asymptotic stability, ultimate boundedness
to a small ball whose size depends on the magnitude of these
faults will be achieved (this magnitude of course decreases as
the threshold gets smaller). Ultimately, the choice of �m,i

reflects a fundamental tradeoff between the need to avoid false
alarms that could be caused by estimation errors (this favors a
relatively large threshold), and the need to minimize the pos-
sibility of some faults going undetected (this favors a relatively
small threshold).

Note that for all times prior to Ti
b, the filter is inactive. Up

until this time, the state estimates have not yet converged close
enough to the true values of the states, and no inference about
the state of the system can be drawn by looking at the evolution
of the state estimate, and, therefore, no inference about any
possible faults can be drawn via the fault-detection filter. If a
fault occurs within this time, the filter will detect its occurrence
only after the time Ti

b. By choosing a larger value of the
observer gain, however, the time Ti

b can be reduced further, if
so desired. Note also that while we consider the problem of
unavailability of some of the state variables as measurements,
we do not consider the problem of sensor faults, that is, we
assume that the sensors do not malfunction both in the state and
output feedback cases. In the event of availability of multiple
measurements in a way that each of them can be used to
estimate the process states, the estimates of the states generated
using the different measurements can be used to also detect
sensor faults.

Remark 5: The central idea behind the model-based fault-
detection filter design, that of comparing the evolution of the
process to the expected evolution of the process in the absence
of faults, can be used in ways other than that used in Theorem
2 to detect the occurrence of a fault. Specifically, if the ex-
pected fault-free evolution is characterized by the evolution of
the closed-loop states within the stability region then a fault
could be declared if the state estimates, after a time Ti

b, touch
the boundary of �s,i, which implies that the closed-loop states
themselves may be about to escape the output feedback stabil-
ity region �b,i, i.e. use the stability region to establish detection
limits. Such an approach to detect faults, however, would be
able to detect the fault only when the state estimates hit the
boundary of �s,i, and could take longer than the model-based
fault detection filter, which detects a fault as soon as the effect
of the fault on the closed-loop evolution goes beyond a pre-
scribed threshold. The selection of detection approaches can

have an important effect in that differences in detection times
can be the difference in the state escaping the stability region
of the available backup configurations (see the simulation for
an example). Also, it may happen that the fault causes the
closed-loop process states evolving within �s,i to neither es-
cape �s,i nor converge to the origin. Only monitoring the
position of the states with respect to the stability region would
not be able to detect such a fault. In contrast, the model-based
fault-detection filter of Theorem 2 is able to detect faults that
have an effect, up-to a desirable threshold, on the evolution of
the closed-loop process. Note also that the model-based fault-
detection filter of Theorem 2 and the alternative way to detect
a fault (discussed above) differ only in that the model-based
filter of Theorem 2 uses a more quantitative knowledge of the
closed-loop dynamics to predict the expected closed-loop tra-
jectory, instead of using the qualitative knowledge that the
fault-free closed-loop state trajectory does not escape the sta-
bility region.

Simulation results

In this subsection, we first illustrate the implementation of
the proposed output-feedback fault-tolerant control methodol-
ogy to the chemical reactor introduced as a motivating example
to clearly explain the main ideas behind the application of the
proposed fault-detection and fault-tolerant control method, and
then demonstrate an application to a networked chemical re-
actor example, investigating issues such as uncertainty and
measurement noise.

For the chemical reactor of the motivating example, Figure
11 depicts the stability region, in the (T, CA) space, for each
configuration. The desired steady-state is depicted with an
asterisk that lies in the intersection of the three stability re-
gions. For the first two control configurations, a state estimator
of the form of Eq. 12 is designed. For thresholds of �m �
0.0172 and 0.00151 in the fault detection filters, the parame-
ters in the observer of Eq. 12 are chosen as L1 � L2 � 100,
a1

(1) � a1
(2) � 10 and a2

(1) � a2
(2) � 20. For the third

configuration, the estimates T̂, ĈA are generated as follows

dT̂

dt
�

F

V
�TA0 � T̂� � �

i�1

3
���Hi�

�cp
ki0e

��Ei/RT̂�ĈA � �1�CA � ĈA�

dĈA

dt
�

F

V
�CA0 � ĈA� � �

i�1

3

ki0e
��Ei/RT̂�ĈA � �2�CA � ĈA� (15)

where �1 � �104 and �2 � 10 and CA is the measured output.
The reactor is initialized at T(0) � 330 K, CA(0) � 3.6
kmol/m3, CB(0) � 0.0 kmol/m3, using the Q-control config-
uration, while the state estimates are initialized at T̂(0) � 390
K, ĈA(0) � 3.6 kmol/m3, and the supervisor proceeds to
monitor the evolution of the closed-loop estimates.

We first demonstrate the need to wait for a sufficient time
before initializing the filter. To this end, consider the fault-
detection filter initialized at t � 0.005 minutes � T1

b at which
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time the state estimates (dash-dotted lines in Figure 8) have not
converged to the true values (solid lines in Figure 8). As a
result, the fault-detection filter shows a false alarm (see Figure
9a) by crossing the threshold even when control configuration
1 is functioning properly (see Figure 9b) and stabilizes the
closed-loop system. Note that while the initialization of the
filter at a time when the state estimates have not converged
leads to the residual crossing the threshold, the residual even-
tually goes to zero as expected, since both the filter states and
the closed-loop process states eventually stabilize and go to the
same equilibrium point.

We now demonstrate the application of the fault-detection
filter and fault-tolerant controller of Theorem 2. Starting from
the same initial conditions, the estimates of T and CA (dash-
dotted lines in Figures 10a,b) converge very quickly to the true
values of the states (solid lines in Figures 10a,b). The states in
the fault-detection filter are initialized and set equal to the value
of the state estimates at t � 0.01 min � T1

b; note that by this
time the estimates have converged to the true values. By
initializing the fault-detection filter appropriately, a false alarm
is prevented (the value of r1(t) does not hit the threshold in the
absence of a fault after a time t � 0.01 min, see Figure 12a).
As shown by the solid lines in Figure 11, the controller pro-
ceeds to drive the closed-loop trajectory towards the desired
steady-state, up until the Q-configuration fails after 3.0 min �
T1

f of reactor startup (see solid lines as will be shown in Figure
14a). Note that at this time, the value of r1(t) becomes non-
zero and hits the threshold at t � 3.3 min � T1

s . From Figure

Figure 9. Evolution of (a) the residual, and (b) the manip-
ulated input profile for the first control config-
uration when the fault detection filter is initial-
ized at t � 0.005 min.

Figure 8. Evolution of the closed-loop (a) temperature
(solid line), estimate of temperature (dash-dot-
ted line) and the temperature profile generated
by the filter (dashed line), and (b) concentra-
tion (solid line), estimate of concentration
(dash-dotted line) and the concentration pro-
file generated by the filter (dashed line) under
control configuration 1, when the fault detec-
tion filter is initialized at t � 0.005 min.
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11, it is clear that the failure of the primary control configura-
tion occurs when the closed-loop trajectory is within the sta-
bility region of the second control configuration, and outside
the stability region of the third control configuration. There-
fore, on the basis of the switching logic of Eq. 14, the super-
visor activates the second configuration (with TA0 as the ma-
nipulated input). The result is shown by the solid line in Figure
11 where it is seen that upon switching to the TA0-configura-
tion, the corresponding controller continues to drive the state
trajectory closer to the desired steady-state.

When a second failure occurs (this time in the TA0-config-
uration) at t � 13.0 min � T2

f (which is simulated by fixing
TA0 for all t � 13.0 min, see solid lines in Figure 14b) before

the process has reached the steady state, the filter detects this
failure via the value of r2(t) hitting the threshold (see Figure
12b). From the solid line in Figure 11, it is clear that the failure
of the second control configuration occurs when the closed-
loop trajectory is within the stability region of the third con-
figuration. However, if the fault-detection filter were not in
place and the backup configuration is implemented late in the
closed-loop (at t � 30 min � T3

s ), by this time the state of the
closed-loop system would have moved out of the stability
region of the third control configuration, and closed-loop sta-
bility would not be achieved (see dashed line in Figure 11, see
also Figure 13 and dashed lines in Figure 14). In contrast, when
the fault-detection filter is in place, it detects a fault at t �
15.82 min � T2

s and when the supervisor switches to config-
uration 3, closed-loop stability is achieved (see solid line in
Figure 11).

Having illustrated the application and effectiveness of the
proposed fault-detection and fault-tolerant control method in
the case of a single reactor, we next demonstrate an application
of the method to a networked chemical reactor example in the
presence of uncertainty and measurement noise. To this end,
consider the two well-mixed, nonisothermal continuous stirred-
tank reactors shown in Figure 15. Three parallel irreversible
elementary exothermic reactions of the form A 3k1

B, A 3k2

U and A 3k3
R take place in each reactor, where A is the

reactant species, B is the desired product, U and R are unde-
sired byproducts. The feed to the first reactor consists of pure
A at a flow rate F0, molar concentration CA0, and temperature
T0. The output from the first reactor is fed to the second reactor
along with a fresh feed that consists of pure A at a flow rate F3,
molar concentration CA03, and temperature T03. Due to the
nonisothermal nature of the reactors, a jacket is used to remove
heat from or provide heat to the reactor. Under standard mod-
eling assumptions, a mathematical model of the process can be
derived from material and energy balances and takes the fol-
lowing form

Figure 11. Evolution of the closed-loop state trajectory
under the switching rule of Eq. 14 subject to
failures in control systems 1 and 2, using an
appropriate fault-detection filter (solid line),
and in the absence of a fault-detection filter
(dashed line).

Figure 10. Evolution of the closed-loop (a) temperature
(solid line), estimate of temperature (dash-dot-
ted line), and the temperature profile generated
by the filter (dashed line), and (b) concentration
(solid line), estimate of concentration (dash-
dotted line) and the concentration profile gen-
erated by the filter (dashed line) under the
switching rule of Eq. 14 subject to failures in
control systems 1 and 2.
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dT1

dt
�

F0

V1
�T0 � T1� � �

i�1

3
���Hi�

�cp
Ri�CA1, T1� �

Q1

�cpV1

dCA1

dt
�

F0

V1
�CA0 � CA1� � �

i�1

3

Ri�CA1, T1�

dT2

dt
�

F0

V2
�T1 � T2� �

F3

V2
�T03 � T2� � �

i�1

3
���Hi�

�cp
Ri�CA2, T2� �

Q2

�cpV2

dCA2

dt
�

F0

V2
�CA1 � CA2� �

F3

V2
�CA03 � CA2� � �

i�1

3

Ri�CA2, T2� (16)

where, Ri(CAj, Tj) � ki0exp(�Ei/RTj)CAj, for j � 1, 2. T,
CA, Qi (i � 1, 2), and V denote the temperature of the reactor,
the concentration of species A, the rate of heat input/removal
from the reactor, and the volume of reactor, respectively, with
subscript 1 denoting CSTR 1 and subscript 2 denoting CSTR 2.
�Hi, ki, Ei, i � 1, 2, 3, denote the enthalpies, pre-exponential
constants and activation energies of the three reactions, respec-
tively, cp and � denote the heat capacity and density of the fluid
in the reactor. For the values of the process parameters given in
Table 1 and for Q1 � Q2 � 0 the process model of Eq. 16 has
multiple steady states.

The control objective is to stabilize the reactor at the open-
loop unstable steady-state where (T1

s , CA1
s ) � (388.57 K, 3.59

kmol/m3) and (T2
s , CA2

s ) � (433.96 K, 2.8811 kmol/m3). The
measurements of temperature and concentrations are assumed
to contain noise of magnitude 1 K and 0.1 kmol/m3, respec-
tively. Also, the concentrations of A in the inlet streams CA0

and CA03 used in the process model are 10% smaller than the
values used in the filter equations and the controller. The
available manipulated inputs include the rate of heat input into
reactor one, Q1, subject to the constraint �Q1� � 2.333 � 106

kJ/h, the rate of heat input into reactor two, Q2, subject to the
constraint �Q2� � 1.167 � 106 kJ/h and a duplicate backup
heating configuration for reactor two, Q3, subject to the con-
straint �Q3� � 1.167 � 106 kJ/h.

The primary control configuration consists of the manipu-

lated inputs Q1 and Q2, while the backup configuration is
comprised of manipulated inputs Q1 and Q3. As before, qua-
dratic Lyapunov functions of the form Vk � xTPkx are used for
controller design, where Pk is a positive-definite symmetric
matrix that satisfies the Riccati inequality ATPk 
 PkA �
Pkbkbk

TPk � 0 for A and b obtained via linearization of the
system around the desired steady-state with x � [T1 �
T1s CA1 � CA1s T2 � T2s CA2 � CA2s]	, and are not
reported here for the sake of brevity. The controller design
yields a stability region estimate with c1

max and c2
max both

approximately equal to 9.4. Note that all the information about
the stability region is completely contained in the values of
c1

max and c2
max, and the computation of these values is sufficient

for the task of implementing the proposed method to the
four-state system in this example. Specifically, the presence of
the closed-loop state in the stability region can be ascertained
by simply evaluating the value of the Lyapunov-function and
checking against the value of cmax (for example, V( x) � c1

max

implies that x � �1).
Note that unlike the single reactor example, each control

configuration consists of more than one manipulated input,
which necessitates designing filters that detect as well as isolate
faults. To this end, fault detection and isolation filters are
designed that are dedicated to each manipulated input in the
control configurations. The filter designs for Q1 and Q2 in the
primary control configuration take the form

dT̃1

dt
�

F0

V1
�T0 � T̃1� � �

i�1

3
���Hi�

�cp
Ri�CA1, T̃1� �

Q1

�cpV1

r1 � T̃1 � T1 (17)

dT̃2

dt
�

F0

V2
�T1 � T̃2� �

F3

V2
�T03 � T̃2�
�

i�1

3
���Hi�

�cp
Ri�CA2, T̃2�


Q2

�cpV2

r2 � T̃2 � T2 (18)
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As can be seen, the fault-detection and isolation filter for Q1

includes a state T̃1 whose dynamics are a copy of the model
state, however, the dynamics are evaluated using the state
measurements together with using T̃1 in place of T1. The value
of the manipulated variable is also calculated in the same
manner. For example, Q1 in the filter is computed using (T̃1,
CA1, T2, CA2). The filters for the other manipulated inputs are
designed similarly. Note that due to the presence of measure-
ment noise and disturbances, the values of the residual are
nonzero even in the absence of faults, therefore, faults are
declared only if the value of the residual exceeds a nonzero
threshold value, where the threshold is obtained by evaluating
the maximum value of the residual in the absence of faults to
account for the effects of uncertainty and measurement noise.

In the first scenario the ability to detect a fault in the
presence of multiple disturbances and noise is demonstrated.
The reactors, as well as the fault detection filter for the first
control configuration are initialized at the desired steady state

T1(0) � 388.57 K, CA1(0) � 3.591 kmol/m3, T2(0) �
433.96 K and CA2(0) � 2.881 kmol/m3. For the sake of
brevity, we show here only the evolution of T2 and of the
residuals. As can be seen in Figure 16a, the controller main-
tains the closed-loop trajectory near the desired steady-state
until heating jacket two (Q2) fails 40 min after reactor startup.
If a fault-detection filter is not in place, and the fault is not
detected, closed-loop stability is not achieved (dotted lines in
Figure 16a). The fault-detection filter design of the form of
Eqs. 17–18, however, detects this fault, when the value of
residual r2(t) becomes greater than the threshold value of 2.0

Figure 12. Evolution of the residual for (a) the first con-
trol configuration, and (b) the second control
configuration.

Figure 13. Evolution of the closed-loop (a) temperature
(solid line), estimate of temperature (dash-
dotted line), and the temperature profile gen-
erated by the filter (dashed line) and (b) concen-
tration (solid line), estimate of concentration
(dash-dotted line) and the concentration pro-
file generated by the filter (dashed line) under
the switching rule of Eq. 14 subject to failures
in control systems 1 and 2 in the absence of a
fault-detection filter.
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at 40.79 min (see Figure 16c) while r1(t) (Figure 16b) remains
below the threshold of 2.0, allowing the detection and isolation
of the fault. While at the time of the failure (t � 40 min), the

state of the closed-loop system is within the stability region of
the backup-configuration, by the time that the failure is de-
tected (at t � 40.79 min), operation of reactor 2 in an
open-loop fashion (for 0.79 min) results in the closed-loop state
moving out of the stability region of the backup configuration
(V2 � 73.17 � c2

max � 9.4) and stability is not guaranteed
after switching. However, it is possible that stability may still
be achieved by using the fallback configuration. In particular,
having been alerted by the fault-detection filter of the occur-
rence of the fault, the supervisor activates the fallback config-
uration (with Q1 and Q3 as the manipulated inputs, solid lines
in Figure 16a) and is able to drive the system to the desired
steady state and enforce closed-loop stability.

Detection of faults in the presence of process disturbances
and noise is clearly possible using the methodology above. In
order to guarantee stability after switching, however, the dis-
turbances acting on the system should be reduced or the con-
straints on the control action should be relaxed to enlarge the
closed-loop stability region. In the second scenario, the ability
to detect a fault in the presence of noise and a single distur-
bance (in contrast to two disturbances in the first scenario),
then switch to a fallback configuration with guaranteed stability
is demonstrated. In this case, the measurements of temperature
and concentrations are again assumed to contain noise of
magnitude 1 K and 0.1 kmol/m3, respectively. Also, the con-
centration of A in the inlet stream CA03 used in the process
model is 10% smaller than the values used in the filter equa-
tions and the controller.

The reactors, as well as the fault detection filter for the first
control configuration are initialized at the desired steady state
T1(0) � 388.57 K, CA1(0) � 3.591 kmol/m3, T2(0) �
433.96 K, CA2(0) � 2.881 kmol/m3. As can be seen in Figure
17a, the controller maintains the closed-loop trajectory near the

Figure 15. Flow diagram showing two CSTRs operating
in series.

Figure 14. Manipulated input profiles under (a) control
configuration 1, (b) control configuration 2,
and (c) control configuration 3 under the
switching rule of Eq. 14 subject to failures in
control systems 1 and 2 in the presence (solid
lines) and absence (dashed lines) of a fault-
detection filter.
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desired steady-state until heating jacket two (Q2) fails 40 min
after reactor startup. If a fault-detection filter is not in place,
and the fault is not detected, closed-loop stability is not
achieved (dotted lines in Figure 17a). The fault-detection filter
design of the form of Eqs. 17–18, however, detects this fault,
when the value of residual r2(t) becomes greater than the
threshold value of 2.0 at 41.33 min (see Figure 17c) while r1(t)
(Figure 17b) remains below the threshold of 2.0, allowing the
detection and isolation of the fault. In this scenario, by the time
that the fault is detected, the state of the closed-loop system
resides within the stability region of configuration two (V2 �
8.03 � c2

max � 9.4). Therefore, the supervisor activates the
fallback configuration (with Q1 and Q3 as the manipulated
inputs, solid lines in Figure 17a) and the control system is able
to drive the process to the desired steady state and enforce
closed-loop stability.

Conclusions

In this work, an integrated fault-detection and fault-tolerant
control (FDFTC) structure, for nonlinear processes with input
constraints subject to control actuator failures, was presented.
Under the assumption of full state feedback, the FDFTC struc-
ture comprised of (1) a family of control configurations, each
with a stabilizing feedback controller and an explicitly charac-
terized stability region, (2) a fault-detection filter that detects
faults by comparing the fault-free behavior of the closed-loop
states with their actual behavior, and (3) a high-level supervisor
that orchestrates switching between the control configurations,
based on the stability regions, once a fault is detected. When
measurements of the full state were not available, a nonlinear
observer with sufficiently fast convergence properties was in-
corporated into the FDFTC structure to generate appropriate
state estimates that were used to implement the state feedback
controllers, the fault-detection filter and the switching logic. It
was shown that by properly tuning the observer parameters and

Table 1. Process Parameters and Steady-State Values for
the Chemical Reactors of Eq. 16

F0 � 4.998 m3/h
F1 � 4.998 m3/h
F3 � 4.998 m3/h
V1 � 1.0 m3

V2 � 0.5 m3

R � 8.314 KJ/kmol � K
T0 � 300.0 K
T03 � 300.0 K
CA0 � 4.0 kmol/m3

CA03
s � 3.0 kmol/m3

�H1 � �5.0 � 104 KJ/kmol
�H2 � �5.2 � 104 KJ/kmol
�H3 � �5.4 � 104 KJ/kmol
k10 � 3.0 � 106 h�1

k20 � 3.0 � 105 h�1

k30 � 3.0 � 105 h�1

E1 � 5.0 � 104 KJ/kmol
E2 � 7.53 � 104 KJ/kmol
E3 � 7.53 � 104 KJ/kmol
� � 1000.0 kg/m3

cp � 0.231 KJ/kg � K
T1

s � 388.57 K
CA1

s � 3.59 kmol/m3

T2
s � 433.96 K

CA2
s � 2.88 kmol/m3

Figure 16. Two reactors in series scenario one: (a) temper-
ature profile of reactor two with reconfiguration
(solid line) and without reconfiguration (dotted
line), (b) Q1 residual profile, and (c) Q2 residual
profile (note fault detection at time t � 40.79 min).
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modifying the implementation of the filter, the effect of the
estimation error on the filter’s residual could be decoupled
from the effect of faults, thus preventing unnecessary false
alarms. Finally, simulation studies were presented to illustrate
the main ideas behind the proposed method, as well as to
successfully demonstrate an application in the presence of
model uncertainty and measurement noise.
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Appendix

Proof of Theorem 1: We split the proof of the theorem in
two parts. In the first part we show that the filter detects a fault
if and only if one occurs, and in the second part we establish
closed-loop stability under the switching rule of Eq. 8.

Part 1: Let x�Ti
f� :� xTi

f and w�Ti
f� :� wTi

f, and consider

ẇ�Ti
f� � ẋ�Ti

f� � f� xTi
f� � g� xTi

f��ui� xTi
f� � mi�Ti

f�� � � f�wTi
f�

� g�wTi
f�ui�wTi

f�� (A1)

with mi(Ti
f) � 0. Since wTi

f � xTi
f, we have that

f� xTi
f� � g� xTi

f��ui� xTi
f� � mi�Ti

f�� � � f�wTi
f� � g�wTi

f�ui�wTi
f��

� g� xTi
f�mi�Ti

f� (A2)

Furthermore, since g�xTi
f� � 0, we have that

ẇ�Ti
f� � ẋ�Ti

f� � g� xTi
f�mi�Ti

f� � 0 (A3)

if and only if mi(Ti
f) � 0. Since wTi

f � xTi
f � 0 and ẇ(Ti

f) �
ẋ(Ti

f) � 0 if and only if mi(Ti
f) � 0, we have that

w�Ti
f
� � x�Ti

f
� � 0 (A4)

or

r�Ti
f
� � �w�Ti

f
� � x�Ti
f
�� � 0 (A5)

if and only if mi(Ti
f) � 0.

Part 2: We prove closed-loop stability for the two possible
cases; first if no switching occurs, and second if a switch occurs
at a time Ti

s.
Case 1: The absence of a switch implies ri(t) � 0. Further-

more, ri(t) � 0f x(t) � w(t). Since x(0) � w(0) � �i, and
control configuration i is implemented for all times in this case,
we have that asymptotic closed-loop stability is achieved.

Case 2: At time Ti
s, the supervisor switches to a control

configuration j for which x(Ti
s) � �j. From this time onwards,

since configuration j is implemented in the closed-loop system
for all times, and since x(Ti

s) � �j, closed-loop stability
follows. This completes the proof of Theorem 1.
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Proof of Proposition 2: From the continuity of the function
Vi�, we have that for any positive real number em,i, there
exists a positive real number �i such that � x � x̂� � em,i f
�Vi( x) � Vi( x̂)� � �i f Vi( x) � Vi( x̂) 
 �i. Since �i can
be made small by choosing em,i small, it follows that given any
positive real number �b,i, there exists a positive real number,
e*m,i, such that for all em,i � (0, e*m,i], �i � �b,i. Now, let �s,i

be any positive real number that satisfies �s,i 
 �i � �b,i. Then
if � x � x̂� � em,i � e*m,i and Vi( x̂) � �s,i, we have Vi( x) �
Vi( x̂) 
 �i � �s,i 
 �i � �b,i. This completes the proof of
the proposition.

Proof of Proposition 3: Consider the system of Eq. 1 with
mi(t) � 0 under the output feedback controller of Eq. 12. From
the result of Proposition 1, we have that given x(0) � �b,i and
any positive real number Ti

b, there exists a real positive number
�*i* such that � x(t) � x̂(t)� � k1�i, for all t � Ti

b, �i � (0,
�*i*], for some k1 � 0, that is, x(t) � x̂(t) 
 O(�i), where
O(�i) is the standard order of magnitude notation. Now, con-
sider the following two systems for t � Ti

b:

ẋ�t� � f� x�t�� � gi� x�t��ui� x̂�t�� (A6)

ẇ�t� � f�w�t�� � gi�w�t��ui�w�t�� (A7)

where w(Ti
b) � x̂(Ti

b). The system of Eq. A7 is exactly the
closed-loop system under full state feedback and has an as-
ymptotically (and exponentially) stable equilibrium at the ori-
gin, for all initial conditions within �i. The system of Eq. A6
is the closed-loop system under output feedback and (from
Proposition 1) has an asymptotically (and locally exponen-
tially) stable equilibrium at the origin, for all initial conditions
within �b,i � �i and for all �i � �*i. Since x(t) � x̂(t) 

O(�i) for all t � Ti

b, we have that x(Ti
b) � x̂(Tb

i ) 
 O(�i), and
when �i � 0, the two systems of Eqs. A6–A7 become iden-
tical. Let Fi� � f� 
 gi�ui�, and x(Ti

b) � x̂(Tb
i ) 
 O(�i)

:� �(�i), where � is a continuous function that depends
smoothly on �i, then we can write

ẋ�t� � Fi� x�t�, �i�, x�Ti
b� � ���i�

ẇ�t� � Fi�w�t��, w�Ti
b� � ��0� (A8)

It is clear from the above representation that the state equations
for both the filter system and the closed-loop system, as well as
their initial conditions at Ti

b, are identical when �i � 0.

Therefore, we can use the theory of regular perturbations (see
Chapter 8 in 46) to establish the closeness of solutions between
the two systems over the infinite time interval. In particular,
since Fi� is continuous and bounded on �b,i, and the w-
system is exponentially stable, an application of the result of
Theorem 8.2 in 46 yields that there exists � �i � 0 such that for
all �i � (0, � �i], x(t) � w(t) 
 O(�i) for all t � Ti

b. We,
therefore, have that, for �i � (0, min{�*i*, � �i}], r(t) �
� x̂(t) � w(t)� � � x̂(t) � x(t) 
 x(t) � w(t)� � � x̂(t) �
x(t)� 
 � x(t) � w(t)� � (k1 
 k2)�i for all t � Ti

b. This
implies that given any positive real number �m,i, there exists
�	i � 0 such that � x̂(t) � w(t)� � �m,i for all �i � (0, �	i], for
all t � Ti

b, where �	i � min{�*i*, � �i, �m,i/(k1 
 k2)}.
To summarize, we conclude that given the set of positive

real numbers {�b,i, ��,i, �m,i, Ti
b}, there exists a positive real

number, �	i � 0, such that if �i � (0, �	i], Vi( x(0)) � �b,i,
� ỹ(0)� � ��,i, w(Ti

b) � x̂(Ti
b), the residual satisfies a relation

of the form r(t) � �m,i for all t � Ti
b. This completes the proof

of the proposition.
Proof of Theorem 2: Consider the nonlinear system of Eq.

1, under the output feedback controller of Eq. 12, and the
system of Eq. 13, where k(0) � i for some i � �, x(0) �
�b,i, w(Ti

b) � x̂(Ti
b), �i � min{�*i, �	i, �*i*}, where �*i, �*i*

were defined in Proposition 1 and �	i was defined in Proposition
3. Since we consider only faults for which r(Ti

s) � �m
i , where

Ti
s � Ti

b is the earliest time for which r(t) � �m
i , it follows

that:
(a) in the absence of such faults, no switching takes place

and configuration i is implemented for all times. Since x(0) �
�b,i and �i � �*i, asymptotic closed-loop stability of the origin
follows directly from Proposition 1.

(b) in the case that such faults take place, the earliest time a
fault is detected is Ti

s � Ti
b and we have, from Eq. 14, that k(t) �

i for 0 � t � Ti
s. From the stability of the i-th closed-loop system

established in Proposition 1, we have that the closed-loop trajec-
tory stays bounded within �b,i for 0 � t � Ti

s. At time Ti
s, the

supervisor switches to a control configuration j for which
x̂(Ti

s) � �s, j. By design, x̂(t) � �s, j f x(t) � �b, j for all
t � Ti

s � Ti
b. From this point onwards, configuration j is

implemented in the closed-loop system for all future times and,
since x(Ti

s) � �b, j, asymptotic closed-loop stability of the
origin follows from the result of Proposition 1. This completes
the proof of Theorem 2.
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