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Abstract: The availability of complex rotating machines is vital for the prevention of catastrophic 

failures in a significant number of industrial operations. Reliability engineering theories stipulate 

that optimising the mean-time-to-repair (MTTR) for failed machines can immensely boost 

availability. In practice, however, a significant amount of time is taken to accurately detect and 

classify rotor-related anomalies which often negate the drive to achieve a truly robust 

maintenance decision-making system. Earlier studies have attempted to address these limitations 

by classifying the poly coherent composite spectra (pCCS) features generated at different machine 

speeds using principal components analysis (PCA). As valuable as the observations obtained 

were, the PCA-based classifications applied are linear which may or may not limit their 

applicability to some real-life machine vibration data that are often associated with certain degrees 

of non-linearities due to faults. Additionally, the PCA-based faults classification approach used in 

earlier studies sometimes lack the capability to self-learn which implies that routine machine 

health classifications would be done manually. The initial parts of the current paper were 

presented in the form of a thorough search of the literature related to the general concept of data 

fusion approaches in condition monitoring (CM) of rotation machines. Based on the potentials of 

pCCS features, the later parts of the article are concerned with the application of the same features 

for the exploration of a simplified two-staged artificial neural network (ANN) classification 

approach that could pave the way for the automatic classification of rotating machines faults. This 

preliminary examination of the classification accuracies of the networks at both stages of the 

algorithm offered encouraging results, as well as indicates a promising potential for this enhanced 

approach during field-based condition monitoring of critical rotating machines. 

Keywords: rotating machines; condition monitoring; data fusion; artificial neural networks; poly 

composite spectra 

 

1. Introduction 

Reliability and maintenance professionals in modern day industries are often faced with an 

incredible task of ensuring almost failure-free operations of highly critical plant assets that are often 

characterised with several failure modes as a result of their complexities. For so many decades, 

different maintenance strategies have been applied for managing such critical industrial assets, 

ranging from breakdown maintenance (BM), whereby interventions are made after a failure has 

occurred, to planned preventive maintenance (PPM) that assumes a fixed maintenance program 

based on predefined time intervals [1–5]. However, as the level of competitiveness increases, the 
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compromises of BM and PPM maintenance philosophies have become intolerable which triggered 

the migration towards condition based maintenance (CBM) [6–8] strategies that can adequately 

cope with random failure patterns. Unlike BM and PPM that are based on failure occurrence and 

predefined operating time respectively, CBM maintenance strategy only initiates maintenance 

interventions (i.e., repair or replace) based on indications that the operating conditions of the 

monitored assets have deviated from their normal levels. 

According to the reviews conducted by several researchers [9–12] on the CBM techniques 

commonly applied for classifying faults associated with rotor-bearing systems in a wide range of 

industries, vibration-based condition monitoring (VCM) methods are quite mature owing to their 

ability to allocate distinct fault diagnostic signatures to individual rotating machine fault. 

Amplitude spectrum analysis is one of the most commonly applied rotating machine VCM methods 

in practise due to its relative computational simplicity. However, the loss of phase information 

associated with the computation of the power spectrum density (PSD) often leads to its 

combination with other conventional VCM approaches including rotor orbits analysis [13], full 

spectrum analysis [14–17], etc. This integration of multiple VCM approaches sometimes 

complicates the entire fault finding process. Efforts aimed at overcoming these deficiencies have led 

to the application of higher order spectra (HOS) [18–22], where both amplitude and phase 

information are retained. Other researchers have also attempted to standardise rotating machines 

fault diagnosis by incorporating artificial intelligence (AI) techniques such as artificial neural 

networks (ANN) [23–25] and support vector machines (SVM) [26–28]. 

While the research and practical contributions of the currently applied VCM approaches for 

rotating machine faults classification are quite commendable, most industry dominant approaches 

still entail the conduction of separate analysis at individual machine operating conditions (e.g., 

speeds and foundation flexibilities). This, therefore, makes the entire fault identification process 

laborious due to the quantity of data to be analysed at each instance. Another obvious but often 

ignored consequence of this is increased repair times and costs which may undermine the overall 

cost-effectiveness of the entire maintenance process. Hence, through the application of a multiple 

level vibration-based data fusion approach, there exist ample opportunities for simplifying the 

detection and classification of different machine faults irrespective of their operating conditions. 

The current study is an extension of an earlier study [29] on multi-sensors and multi-operating 

conditions data fusion based rotating machine faults classification, using poly coherent composite 

higher order spectra components, mainly poly coherent bispectrum (pCCB) and trispectrum 

(pCCT). While both studies are based on multi-stage data fusion, the current study explores the 

self-learning abilities of ANNs so as to enhance the prospects of developing a truly automatic VCM 

faults classification approach that was impossible with the linear principal components analysis 

(PCA)-based approach adopted in the earlier study. An ANN was chosen for the classification stage 

of this study owing to its suitability for complex systems that are often characterised by instability 

and non-linearity [30,31]. 

2. Overview of Data Fusion for Faults Detection and Classification 

In practice, routine condition monitoring (CM) activities often entail the periodic measurement 

of various operational parameters including vibration, temperature, airflow, speed, pressure, 

energy consumption, sound, wear debris, etc., at predefined intervals, commonly referred to as the 

CM task interval. The measured CM parameters are then separately analysed and trended 

overtime, so as to detect the emergence of incipient machine faults. While previous advanced signal 

processing approaches have successfully propagated the knowledge and ability of reliability 

experts to different the conditions of industrial machines, they often rely on human experience 

which can be subjective in some cases [32,33]. With the concept of data fusion however, similar 

activities that incorporate far more operational parameters can be performed automatically and 

consistently irrespective of the experience levels of industrial machines’ owners. For instance, Yang 

et al. [34] established the relationship between temperature profiles and fatigue damage of a reactor 

pressure vessel by proposing a model for quantifying the stress-strain and fatigue failure from the 
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observed temperatures, which can prove very useful for the CM of rotating machines operating 

under extreme temperatures, such as the cement plant rotary kilns or steam turbines. Similarly, 

Avdelidis and Almond [35] conducted a study on the application of temperature profiles (thermal 

imaging) for determining and monitoring the integrity of aircraft structure anchor points using 

conventional aluminium alloys and carbon fibre reinforced plastic skins. 

Another useful parameter for rotating machine CM is the wear particle distribution obtained 

from lubricating oils. Lubricating oils perform various vital functions in rotating machines 

including the prevention of metal-to-metal contact between critical machine components, cooling 

agents for hot surfaces, transport systems for additives that enhance resistance of metal surfaces to 

wear, as well as the movement of wear particles and contaminants away from the contact surfaces 

of vital machine components. Through a careful analysis of the types, sizes, shapes, and 

composition of wear particles, insights about the health of rotating machines can be obtained [36]. 

Based on this premise, the study conducted by Peng and Kirk [37] showed that boundary features 

such as particle size distribution and shape were adequate for identifying cutting, spherical, and 

rubbing wear particles, but contained insufficient information for detecting laminar, fatigue chunk 

and extreme sliding wear particles. 

Other researchers [38–41] have explored the use of power characteristics for monitoring 

changes in the operating conditions of critical rotating machines. For instance, Hameed et al. [38] 

provided a comprehensive review of CM techniques for wind turbines, where it was shown that 

accurate information on the overall condition of the rotor (a very important component of the wind 

energy converter) can be obtained by trending the relation between wind speed and active power 

output of the wind energy converter (WEC). The study [38] also showed that the use of higher 

order signal processing tools (bispectrum and bicoherence) [18–22] for detecting the presence or 

absence of phase coupling between the frequency components of the electrical power signal when 

classifying the WEC as faulty or healthy is very possible.  

Despite the significant advances achieved through the separate applications of the CM 

parameters, accurate analysis of all parameters would require the services of a well-experienced 

and highly versatile CM analyst. Also, the complexity of separately processing and analysing 

individual CM parameters is enormous. However, with the current emphasis on sensor reduction 

and management of big data [42], providing a holistic view of an entire rotating machine through 

combinations of several sets of a particular CM parameter (e.g., vibration measurements from 

several bearings) or combinations of different CM parameters (e.g., vibration and temperature 

measurements from several bearings) will significantly simplify CBM. Such approaches are often 

referred to as data fusion, data integration or data combination.  

Though rapidly gaining attention in CBM, the general concept of data/parameter fusion cannot 

be described as completely new since it dates back to the existence of human senses (i.e., taste, 

touch, sight, hearing, and smell) [43]. Humans have always combined several senses in order to 

enhance their survival rates [44]. For example, it would require a combination of vision, touch, 

taste, and possibly smell to adequately judge the quality of an edible fruit. Additionally, the 

combination of sights and sounds helps an animal detect the exact location of its prey or predator. 

Similarly, data fusion in applied sciences is built around the premise that enhanced and simplified 

descriptions of the monitored system can be achieved through a combination of different sensors 

and/or parameters [45]. Historically, data fusion techniques were mainly developed for military 

activities such as automated target recognition, battlefield surveillance and remote sensing [43]. 

However, ongoing cross-functional knowledge transfer through research has significantly 

promoted the application of the concept in other fields including CBM of rotating machines. Data 

fusion in CBM of rotating machines can be performed at sensor level (also referred to as 

multi-sensor data fusion) or at parameter level (also referred to as feature or parameter fusion).  

At sensor level, data fusion is concerned with the combination of measured data from several 

CM sensors mounted on a plant asset, so as to obtain precise and comprehensive fault detection 

features that could eventually simplify and/or enhance the overall CBM process [46–50]. In the 

context of rotating machine (e.g., wind or steam turbine) CBM, multi-sensor data fusion can be 
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approached by either fusing data acquired by similar sensors measuring same CM parameters (e.g., 

the fusion of vibration signals measured by four similar accelerometers installed on the bearings of 

a rotating machine) or data acquired by different sensors measuring different CM parameters. 

Irrespective of whether data acquired by similar or different CM sensors are fused, the process will 

usually lead to the generation of a unique health monitoring indicator (HMI) that can be trended 

over time and eventually used to define the appropriate planned maintenance interval for the 

monitored rotating machine. It is very common to perform sensor level data fusion prior to the 

extraction of the parameters or features that will be used for actual fault diagnosis. On the contrary, 

feature or parameter level data fusion requires that the fault diagnosis features or parameters (e.g., 

crest factor, RMS, 1x amplitude, pCCB, pCCT, kurtosis, etc.) embedded in the signals measured by 

individual CM sensors are separately extracted prior to fusion. Such a process becomes very useful 

during the faults classification of rotating machines that operate at different speeds (e.g., power 

generation turbines). Presently, most of the applications of data fusion for rotating machine faults 

diagnosis in the literature focus on the independent application at sensor or parameter levels which 

could again increase the complexity of the process when dealing with multiple speeds machines. 

Hence the development of an integrated approach that combines both multiple sensor and multiple 

parameters could be very valuable. 

3. Integrated Data Combination Approach 

The integrated data combination method for automatic fault classification of rotating machines 

involves the combination of both sensor and parameter levels of data fusion. Figure 1 provides a 

schematic illustration of the proposed integrated approach while details of the mathematical 

computations performed at both stages are respectively provided in Sections 3.1 and 3.2. 
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Figure 1. A schematic representation of the integrated data combination approach. 

3.1. Stage 1: Sensor Level Data Fusion Using PCCB and pCCT 

Stage 1 of the process is concerned with the fusion of measured vibration data (i.e., primary 

data) from multiple VCM sensors (say “q” number of sensors) installed on the monitored rotating 

machine, so as to develop single pCCB and pCCT fault diagnostic features (i.e., secondary data) 

that adequately represent the dynamic behaviour of the entire machine. Equations (1)–(4) provide 

further elaborations on the mathematical computations which have been extensively discussed in 

an earlier study by Yunusa-Kaltungo et al. [29, 51–52]: 
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the coherence [53] between bearings 1–2, 2–3, 3–4, …, (q − 1)–q. SpCCS(fk)  represents the 

poly-Coherent Composite Spectrum (pCCS) at frequency, fk. Equations (2) and (3) respectively 

show the computations of pCCB and pCCT fault diagnosis features, while XpCCS
r  is the poly 

coherent composite FT for a certain segment ‘r’ of the measured vibration data from ‘q’ bearing 

locations at a certain frequency, fk, which was computed as [29,52]: 
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3.2. Stage 2: Feature Level Data Fusion Using ANN 

As earlier mentioned, most rotating machines operate at various speeds. In stage 2, efforts are 

made to significantly reduce the fault diagnosis element of VCM by eliminating the common 

practice of performing separate analysis at individual machine speeds. Hence, the secondary pCCB 

and pCCT data generated in stage 1 (using Equations (1)–(4)) at different machine speeds are then 

fused together (i.e., feature/parameter level fusion) using ANN, so as to develop an automatic but 

simplified multiple speeds and multiple sensors faults diagnosis approach. Initial research attempts 

by Yunusa-Kaltungo et al. [29] have been directed towards the generation of pCCB and pCCT 

features that were then classified using the well-known principal components analysis (PCA) 

technique. While the observations recorded from the earlier work were quite encouraging, it was 

envisaged that the linear nature of PCA [9] could limit its robustness especially when dealing with 

complex rotating machine faults that sometimes possess nonlinearities.  

Inspired from the biological nervous system, ANN has been widely used in pattern 

recognition, classification and other machine learning problems [9]. Unlike linear classification 

techniques such as PCA which have been immensely used to simplify the detection and 

classification of rotating machines conditions in previous studies [29], ANN is capable of handling 

nonlinear and complex systems efficiently which is mainly due to the adoption of the human brain 

structure for its pattern [9,54]. Additionally, ANN approaches have high tolerance for noisy data 

and have the capabilities to successfully classify patterns from data not necessarily used in their 

training. Other advantages of ANN include its ability for adaptive learning, self-organisation and 

real time operation [9]. These features have motivated the use of ANN in diverse fields including; 

medicine [55–57], information technology [58,59] and meteorology [60–63]. Though limited, some 

researchers have also explored the application of ANN-based approaches for the detection and 

classification of rotating machine faults especially bearings [64,65] and gearboxes [66–68]. However, 

current body of literature indicates that very few studies [69,70] have been done to address the 

detection and classification of other perennial causes of industrial rotating machine faults such as 

shaft misalignment, shaft cracks, shaft rubs, bent shaft, unbalance, machine looseness, etc.  

A typical ANN structure comprises of three main layers namely; the input layer, one or more 

hidden layers and the output layer. Each of the layers is characterised by one or more nodes 

referred to as neurons. The numbers of input and output variables determine the number of 

neurons in the input and output layer respectively. The number of hidden layers in a typical ANN 
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structure and the number of neurons associated with each hidden layer depends on the complexity 

of the problem. The matrix of outputs � is given by Equation (5): 

� = ��(����(��� + ��) + ��)  (5) 

�� ∈ ℜ�� × ��  is the �th layer weight matrix, �� and �� are the number of inputs to layer � 

and neurons in layer � respectively, �� ∈ ℜ�� is the bias vector associated with layer �, and �� is 

the transfer function associated with layer � which corresponds to the activation function for the 

output layer. The ANN used in the current study is based on multi-layer perceptron (MLP) using 

back propagation algorithm which adjusts the parameters to minimise a cost function.  

Pattern classification with ANN can be performed using various approaches, including 

one-against-one (OAO), one-against-all (OAA) and all-against-all (AAA). In the OAA approach, 

each pattern associated with a class �  is trained against all other classes � where  � ≠ � . For 

instance, a three-class pattern classification would involve training patterns associated with class 1 

against those from class 2 and 3. Similarly, patterns associated with class 2 are trained against those 

from class 1 and 3. Finally, patterns associated with class 3 are trained against those from class 1 

and 2. The number of neural networks required for OAA equals (� − 1) where � represents the 

total number of classes. In OAO approach, patterns associated with class � are trained against 

patterns belonging to class � for all  � ≠ � . Using the same 3-class example, a total of three 

networks will be trained. In the first network, patterns in class 1 will be trained against patterns in 

class 2. The second network will involve the training of patterns in class 1 against patterns in class 3 

while the third network involves patterns in class 2 against 3. The number of neural networks 

required for OAO is �
�(��1)

2
� where � also represents the total number of classes. AAA involves 

training a single neural network to classify all pattern classes.  

4. Experimental Arrangement 

In order to practically demonstrate the applicability of the proposed integrated data 

combination approach, measured vibration data were acquired from a laboratory-scale rig. The rig 

consists of two shafts with similar diameters of 20 mm but vary in length (i.e., 1000 mm and 500 

mm in length respectively). The longer shaft is connected to the shorter by a rigid coupling at one 

end and to a 0.75 kW electric motor at the other end through the aid of a flexible coupling. Three 

similarly dimensioned balance discs were mounted across the length of the two rigidly-coupled 

shafts (see Figure 2). The first and second balance discs were fitted on the 1000 mm shaft at 

distances of 300 mm from the flexible coupling and 190 mm from bearing 2 respectively. The third 

disc on the other hand was mounted on the 500 mm, mid-way between bearings 3 and 4. The entire 

rotor-disc assembly was then supported by four flexible flange mounted anti-friction bearings.  
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Figure 2. Experimental assembly (a) machine conditions (b) multiple speed rig (c) signal 

conditioning, PC, data acquisition system and motor speed controller. 

5. Organisation of Measured Vibration Data 

The current integrated multi-sensor and multi-feature data combination approach is concerned 

with a simplified detection and classification of common rotor-related faults in multiple-speed 

rotating machines, thereby eliminating the need for separate analysis at individual speeds. On the 

experimental rig shown in Figure 2, vibration sensors (1 per bearing pedestal) were used to acquire 

20 sets of vibration data under 6 distinct machine conditions (see Table 1) at three different speeds 

20 Hz (s1), 30 Hz (s2) and 40 Hz (s3) thereby yielding a total of 360 datasets. The first machine 

condition is the relatively healthy condition and has been referred to as the reference condition 

(RC). In addition to RC, five faulty conditions (FC1–FC5) were also considered, namely; bent shaft 

(FC1), shaft misalignment (FC2), loose bearing (FC3), shaft crack (FC4), and rubbing shaft (FC5). 

Under each of the machine conditions described in Table 1 and for each dataset, the acquired 

vibrations signals were post-processed using 10,000 Hz sampling frequency; 16,384 number of 

Fourier transform (FT) data points; 95% overlap; 148 number of averages and 0.6104 Hz frequency 

resolution. Further details of the experimental rig used for this study can be obtained from an 

earlier study conducted by Yunusa-Kaltungo et al. [29].  

Table 1. Experimentally simulated machine conditions. 

Machine Condition Abbreviation Severity and Location 

Healthy with residual 

misalignment 
RC Possible residual misalignment at couplings 

Bent shaft FC1 3.4 mm run-out was created at the centre of the 1000 mm long shaft 

Shaft misalignment FC2 0.4 mm mild steel shim beneath both sides of bearing 1 pedestal 

Loose bearing FC3 Loose bearing 3 threaded bar nuts 

Cracked shaft FC4 
4 mm (depth) × 0.25 mm (width) breathing crack on the 1000 mm long 

shaft, at 160 mm from bearing 1 (i.e., near electric motor) 

Rubbing shaft FC5 
Partial rub using 2 Perspex blades (top and bottom dead centres of the 1000 

mm shaft), at 275 mm from bearing 1 (i.e., near electric motor) 
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Based on Equations (1)–(4), two pCCB (B11 and B12) and two pCCT (T111 and T112) features 

were computed for each of the measured vibration datasets (i.e., primary datasets) at the different 

machine speeds. The computed features for all datasets at different machine speeds for all machine 

conditions (e.g., �11(��,1),�1
, �12(��,1),�1

, �111(��,1),�1
, etc.) were then used to create a feature matrix 

(�) of secondary datasets for classification using ANN.  
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6. Observations and Discussions 

Day-to-day VCM of rotating machines in the industry could be an arduous activity, especially 

when dealing with critical plant assets. A significant amount of the time and efforts exerted on this 

crucial activity is sometimes spent on analysing data related to unchanging machine conditions. In 

order to optimise the existing and commonly used approach to VCM of rotating machines in 

practice, the current technique performs its ANN-based faults classification in two distinct but 

related stages. In the first stage, five OAA networks (ANN1–ANN5) were trained between RC and 

each of the FCs (i.e., ANN1 represents the network between RC and FC1; ANN2 represents the 

network between RC and FC2, etc.). All five networks operate in parallel to classify the machine as 

healthy or faulty based on the secondary data. A typical rotating machine is classified as healthy 
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and remains so only if all ANNs return a healthy status else it is classified as faulty. The five ANNs 

were trained using resilient back-propagation learning algorithm with tan-sigmoid and linear 

transfer functions for the hidden and output layers respectively. The secondary datasets for each 

machine condition (i.e., RC and FCs) were divided into three parts; 70% for training, 15% for 

validation and the remaining 15% for testing.  

Table 2 provides details of the parameters considered while implementing the OAA aspect of 

the diagnosis. Each of the 5 networks (ANN1–ANN5) has four input and two output neurons. In 

addition to the input and output layers, each network is also associated with one or more hidden 

layers. For instance, the 4–20–2 shown in Table 2 for ANN1 indicates that the network is associated 

with one input layer of four neurons, one hidden layer of 20 neurons and one output layer of two 

neurons. Similarly, the 4–15–10–2 for ANN5 indicates that the network is associated with one input 

layer of four neurons, two hidden layers of 15 and 10 neurons and a single output layer of two 

neurons. The sensitivity and specify parameters indicate the ability of the ANN to accurately 

distinguish between pattern classes. In this case, the minimum sensitivity and specify values are 

0.95 and 0.97 respectively. ANN1 and ANN3 achieved 100% classification using one hidden layer 

due to clear distinctions between the signatures of FC1, FC3 and RC. On the other hand, ANN2, 

ANN4, and ANN5 required two hidden layers each to achieve very good classification which is 

expected for more complex patterns.  

Table 2. ANN properties for OAA ANNs trained. 

Parameters 
Properties 

ANN1 ANN2 ANN3 ANN4 ANN5 

Network Structure 4–20–2 4–15–15–2 4–20–2 4–60–60–2 4–15–10–2 

Fit (%) 

Training 100 99.6 100 99.7 100 

Validation 100 99.4 100 99.7 100 

Testing 100 99.4 100 99 94.4 

Sensitivity 1 0.95 1 0.97 0.98 

Specify 1 1 1 0.97 1 

As earlier stated in Table 1, RC is associated with some residual misalignment due to the 

impracticability of achieving perfect machine alignment in reality. This inherent residual 

misalignment therefore generates a certain degree of similarity between the vibration signatures of 

RC and FC1. Similarly, machine vibration due to misalignment (FC1) and crack (FC4) faults are 

generally known to excite similar higher order harmonics of the rotating speed(s). Finally, 

significant amount of wear was observed on the Perspex discs used for simulating FC5. Hence, there 

was no guarantee that the rub was continuous throughout the duration of FC5 data collection. This 

therefore implies that primary data collected under no rub condition could be similar to those of 

RC. In general, this first stage of faults diagnosis is strictly concerned with the overall status (i.e., 

healthy or faulty) of the monitored rotating machine, regardless of the fault type.  

Once the first stage of the algorithm specifies the presence of a fault, further diagnosis to 

determine the particular fault type is then performed with an AAA network at the second stage. 

The same learning algorithm and transfer function used for the networks in stage 1 were also used 

for the AAA network. The secondary datasets were also divided into three parts for training (70%), 

validation (15%) and testing (15%). However, the level of complexity at this stage is relatively 

higher since it involves a comparison between all faults classes. Hence the network was 

characterised by three hidden layers with each of them containing 50 neurons. The percentage fit 

for training, validation and testing were obtained as 97%, 98% and 94%, respectively. The accuracy 

of the AAA network classification can be estimated using the receiver operating characteristics 

(ROC) curve. An ROC curve is a plot of operating locations that indicate likely compromise 

between true positive rate (sensitivity) and false positive rate (specificity) [71]. The area under the 

curve (AUC) is a measure of the performance of the classifier. The larger the AUC value of a 

classifier, the better its performance. Hence, a perfect classifier would be associated with an AUC 
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value of 1. According to Figure 3, the approximate AUC values for FC1–FC5 are 1, 0.999, 0.992, 0.986, 

and 0.992 respectively. This indicates very good classification performance.  

 

Figure 3. ROC plot for the AAA network. 

7. On-Site Operation of the Proposed Integrated Fault Detection Algorithm 

Let us assume that the routine health monitoring plan for a typical rotating machine such as a 

wind or steam turbine includes the measurement of rotor vibrations from its bearings at several 

speeds, based on different loading requirements. The raw vibration data measured form all 

measurement locations will then undergo appropriate signal conditioning and conversion into a 

digital form for it to be stored onto the computer, which then forms the primary data. Contrary to 

the currently dominant industry-based VCM practice of separately analysing the vibration datasets 

acquired from each bearing at each machine speed which also necessitates the construction of 

numerous amplitude spectra, the initial stage of the proposed faults diagnosis process 

automatically combines all such individual spectra to generate a single composite spectrum that 

adequately provides a representation of the entire dynamic behaviour of the monitored turbine at 

that speed. The same exercise will then automatically recur at subsequent speeds which lead to the 

generation of 4 faults diagnosis features at each speed (i.e., B11, B12, T111, and T112). Since the data 

combination is based on higher order frequency domain data fusion, each of the faults diagnosis 

parameters (secondary data) generated is associated with amplitude and phase information, 

thereby increasing the ability of the algorithm to adequately differentiate faults.  

The multi-sensor/multi-speed secondary data then passes through several OAA networks for 

the sole aim of classifying the monitored machine as healthy or faulty. With specific reference to the 

experimentally simulated example of 6 machine conditions (i.e., five faults and a relatively healthy 

reference condition) at three separate speeds considered in this paper, this would require five 

parallel OAA networks. In order to obtain a feedback guaranteeing the operation of such a machine 

under healthy status, all five OAA networks must simultaneously provide a no-fault feedback; 

otherwise further diagnosis is then triggered to ascertain the exact kind of machine fault. If a fault 

status is indicated, an AAA network is then used to determine the exact type of machine fault. It is 

vital to note that the ability of the algorithm to effectively classify rotating machine conditions 

significantly hinges on both the quality and quantity of previously available data for training and 
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validation. Despite this, the proposed integrated method is a streamlined and computationally 

efficient data-driven learning system as it eliminates the multiple sensors and speeds elements 

associated with most current industry-based rotating machines VCM methods. Another benefit of 

the proposed algorithm lies in its flexibility especially with regards to permitting the inclusion of 

new faults diagnosis features or faults. In order to foster better visualisation and understanding, 

Figure 4 provides a summarised process flowchart for the proposed faults diagnosis algorithm.  

 

Figure 4. Proposed fault diagnosis algorithm flowchart. 

8. Conclusions 

The availability of rotating machines such as steam and wind turbines is crucial for the 

sustainability of the energy industry. A significant fraction of the mean-time-to-repair (MTTR) these 

machines is associated with faults diagnosis. The detection and classification of rotating machine 

faults using vibration-based condition monitoring (VCM) techniques is well established in practice. 

However, currently dominant VCM approaches often involve independently analysing numerous 

measured vibration data at different speeds, which in turn complicates faults diagnosis and delays 

maintenance decision-making. Pioneering efforts aimed at simplifying fault detection using poly 

coherent composite spectra features have been solely based on the application of linear 

classification techniques such as principal components analysis (PCA). While useful observations 

were recorded from the PCA-based studies, it may not be suitable for accurately classifying all 

“real-life” machine conditions due to the nonlinearities associated with their measured vibration 

signals.  

The current study focuses on the development of an integrated approach to fault detection 

using a combination of frequency domain data fusion and artificial neural networks (ANN). Just as 

performed in earlier studies, the frequency domain data fusion aspect of the algorithm combines 

measured vibration data from several measurement locations (e.g., bearing pedestals) for different 
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machine speeds. The multi-staged ANN algorithm initially applies a one-against-all (OAA) 

network to examine the presence of a fault and if none exists, the machine is passed okay to 

continue running. On the other hand, if the feedback from the first stage of the ANN indicates the 

presence of a fault, then an all-against-all (AAA) network is used to detect the exact kind of fault so 

as to recommend the appropriate maintenance action. In an era where academia and industry are 

constantly searching for cost-effective ways of developing autonomous maintenance strategies, this 

proposed integrated approach can potentially contribute towards the achievement of such 

strategies especially owing to its ability to easily accommodate new features and faults.  
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