
428 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 31, NO. 2, APRIL 2016

Integrated Fault Location and Power-Quality Analysis
in Electric Power Distribution Systems

A. A. P. Bíscaro, Member, IEEE, R. A. F. Pereira, M. Kezunovic, Fellow, IEEE, and
J. R. S. Mantovani, Member, IEEE

Abstract—This paper presents amethodology for automated dis-
turbance analysis and fault location on electric power distribu-
tion systems using a combination of modern techniques for net-
work analysis, signal processing, and intelligent systems. New al-
gorithms to detect, classify, and locate power-quality disturbances
are developed. The continuous process of detecting these distur-
bances is accomplished through statistical analysis and multilevel
signal analysis in the wavelet domain. The behavioral indices of
the current and voltage signals are extracted by employing the dis-
crete wavelet transform, multiresolution analysis, and the concept
of signal energy. These indices are used by a number of indepen-
dent Fuzzy-ARTMAP neural networks, which aim to classify the
fault type and the power-quality events. The fault location is per-
formed after the classification process. A real life three-phase dis-
tribution system with 134 nodes—13.8 kV and 7.065 MVA—was
used to test the proposed algorithms, providing satisfactory results,
attesting that the proposed algorithms are efficient, fast, and, above
all, intelligent.
Index Terms—Fault location, neural networks, pattern classi-

fication, power distribution, power quality (PQ), wavelet trans-
forms.

I. INTRODUCTION

T HE economic and technological growth currently experi-
enced increasingly require higher demand for energy and

greater efficiency of the electricity sector. This rapid growth
has created good opportunities for research and development of
new products and services that meet the new reality of utilities
and customers [1]. Currently, energy is viewed as a product and
not only as a service and, like every product, becomes quan-
tified by its characteristics, such as quality, price, and accessi-
bility. In modern societies, loads are much more sensitive to
power-quality (PQ) events [2], [4], that is, variations and voltage
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drops. Therefore, the control and analysis of PQ [3]–[6] pro-
vided to customers by the electricity utilities become even more
important and necessary.

The main goal related to the operation of an electric power
system is the continuous supply of energy, reliability, and min-
imal outages. Reference [7] provides best practices for moni-
toring PQ, presenting a consistent description of electromag-
netic phenomena typically observed in power systems.

In Brazil, there is a growing concern to standardize the quality
control of electricity services. As a result, there is a govern-
ment resolution [8] approving the procedures for operating elec-
tric power distribution systems, establishing the goals for the
electric utilities with respect to the performance evaluation of
their systems through measures of reliability, and setting the
limit values to be accomplished and periodicity of performance
assessments.

Faults occurring in distribution systems affect PQ in terms of
service continuity and propagation of disturbances [9]. They are
responsible for disturbances in industrial production processes,
information loss, economic loss, and equipment breakdown,
among others. An efficient fault location (FL) quickly and
accurately helps minimize the time needed to find the problem
and repair the system, speeding the power-supply re-establish-
ment through the network restoration [10]. In addition, it helps
reduce the costs of maintenance and operation. The system
restoration can be performed with greater efficiency and speed
when the fault location is known or, at least, can be estimated
with good accuracy.

The fault-location program plays an important role in the
short-term planning operation of electric distribution networks,
reducing downtime and, hence. increasing the operational relia-
bility of the distribution system. In the literature, a lot of works
that propose different techniques to fault location on electric
distribution systems [1], [11]–[20] can be found. In [11], [12],
and [17], fault-location algorithms based on the phasors of fun-
damental frequency of voltages and currents measured at the
feeder root node are proposed, as well as an apparent impedance
computation. Iterative algorithms that compute the fault dis-
tance based on fundamental frequency phasors of voltages and
currents measured at the feeder root node, as well as diagnosis
and analysis of waveforms matching along with rejected loads
after the fault clearing are proposed in [13]–[15]. In [18], the
performances of 10 fault location methods for power distribu-
tion systems have been compared. The analyzed methods use
only measurements of voltage and current at the substation. Fun-
damental components of prefault and during fault are used in
these methods to estimate the apparent impedance viewed from
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the measurement point. Deviation between prefault and during-
fault impedance, together with the system parameters, are used
to estimate the distance to the fault point. Reference [20] pro-
poses a fault-location technique that explores the voltage sag
measurement and fundamentals of the short-circuit theory by
using measurements from smart meters installed at the primary
network.

The task of monitoring the PQ and fault detection, isolation,
and network restoration (FDIR) may be very complicated in
a DCC environment mainly in emergency conditions, where a
large simultaneous flow of information from several monitored
substations may overwhelm the operator. This paper focuses on
an integrated approach in PQ and FL, through a reduced amount
of measuring devices allocated in the distribution network, en-
abling the continuous analysis of a wide range of power system
disturbances. The main contributions of this paper when com-
pared to other approaches of the literature [1], [10], [17], [18]
and [20] are:

• automatic detection of faults through analysis of oscillo-
graphic records of the three-phase currents, recorded at the
substation;

• fast and accurate diagnosis of the fault type and PQ events
through the combined use of the techniques, such as
wavelet transform (WT), multiresolution analysis (MRA),
and fuzzy-ARTMAP artificial neural network (ANN);

• geographic estimation of the faulty point based on
analysis of electric circuits and voltage deviations, over-
coming multiple estimation problems presented by most
techniques;

• the integration of proposed algorithms in a modular design
of the diagnostic system, which provides greater flexibility,
precision, and high reliability for the obtained results.

Section II is devoted to intelligent algorithms for fault
detection, feature extraction of behavioral indices, PQ anal-
ysis, short-circuit analysis, and fault location. The diagnosis
of fault-type and PQ events present in the waveforms is ac-
complished through the combined use of wavelet-transform
concepts [21], multiresolution analysis [22], and artificial
neural networks (ANNs) [23]. The combination of such con-
cepts in the design of the diagnostic system provides greater
flexibility, accuracy, and high reliability of the obtained results.
Section III provides tests results for all of the algorithms using a
model of an actual distribution network in Brazil. Conclusions
and references are given at the end.

II. INTELLIGENT ALGORITHMS

Regarding the detection, location, and classification of PQ
disturbances, many computational tools have been proposed and
used [16]–[20], however, none of them includes an integrated
approach, seamlessly locating and analyzing the disturbances
present in the electrical signals. The proposed approach focuses
on several key issues related to PQ and fault location, such as
dealing with limited information to locate faults, identifying
sensitivities to errors, identifying and locating permanent and
temporary faults, as well as experiencing performance improve-
ments with the use of real data from distribution systems. Fig. 1

Fig. 1. Integrated intelligent algorithm for fault location and PQ analysis.

Fig. 2. Flowchart of the disturbances detection algorithm.

shows the flowchart of the proposed integrated intelligent algo-
rithm for fault-location and PQ analysis. The main points related
to the proposed methodology, regarding the four modules, are
presented in the following subsections.

A. Module 1: Fault Detection Algorithm

The wavelet transform (WT) is a mathematical tool similar to
the Fourier transform (FT) used for signal analysis, which can
be used to extract important characteristics of different types of
disturbances. WT is a modern signal-processing technique that
overcomes the limitations of methods based on FT. Usually, the
WT of transient signals is expressed by a multiresolution de-
composition fast algorithm to decompose the signal to compo-
nents under different scales. It is equal to successively filtering
the signal with a high-pass and low-pass filter pair.

The fault detection algorithm is designed by taking into ac-
count the continuous monitoring of the current signal recorded
from a measuring system present at the substation. This module
analyzes the input signal using a sampling rate of 7.68 kHz,
having a fixed window of 128 samples/cycle with a step of 1/4
cycle. This data window is decomposed into MRA using the
fourth-order Daubechies mother wavelet (db4). The analysis is
performed for the first four levels of detail. Fig. 2 shows the
flowchart of the disturbances detection algorithm.



430 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 31, NO. 2, APRIL 2016

Fig. 3. MRA decomposition of a voltage sag.

The rules for the disturbances detection were created by ob-
serving the behavior of current signals in various situations of
system operation. Thus, detection of a disturbance is based on
the set of rules [10] presented as

if and
(1)

if or
(2)

Through statistical analysis of variance and standard devia-
tion of the sampled signal, the algorithm seeks to know the gen-
eral behavior of the signal, comparing the maximum variance
of the detail coefficients ( ) to a percentage of the standard
deviation ( ), providing greater immunity to the presence of
noise in the oscillographic records.

In order to analyze the maximum value of the detail coeffi-
cients ( ), punctual analysis is performed, facing the highest
detail coefficient with a predetermined threshold value ( ), de-
fined, and based on the operating characteristics of each system.
Fig. 3 shows a voltage sag, followed by the first (D1), second
(D2), and third (D3) levels of detail, decomposed by MRA. It
can be seen that the three first levels of detail correctly indicate
the instants of beginning and ending of the disturbance through
the illustrated peaks.

B. Feature Extraction

According to Parseval's theorem [24], the energy of a dis-
crete signal can be calculated in both time domain and fre-
quency domain as

(3)

where means the number of samples in the decomposition
level , represents the th sample coefficient of detail or
approximation, and is the oscillographic record analyzed, that
is, , , , , , or .

Since signals with PQ disturbances have large imbalances
with different frequency components, the calculation of signal
energy can be used to extract important characteristics of dif-
ferent types of disturbances. Thus, by calculating the energy of
the signals prefault and postfault, it is possible to quantify the
degree of imbalance in the operational status of the system. This
must be a good tool to evaluate, discreetly, nonstationary sig-
nals. Fig. 4 presents the flowchart of the disturbances classifica-
tion algorithm.
1) Representation of the Behavioral Indices: A relative rep-

resentation between phases is employed for the representation
of the behavioral indices [18]

(4)

(5)

where is the normalized value of the ratio between the post-
fault and prefault energies of the oscillographic record

in the level of decomposition . These representative indices
lie between and . In order to be used as an input of the
Fuzzy-ARTMAP neural networks, they need to be translated to
the domain

(6)

where represents the behavioral indices in analysis, that
is, 1, 2, 3, 4, 5, or 6. Thus, the Fuzzy-ARTMAP neural
networks responsible for the short-circuit classification have
as input some vectors composed by the behavioral indices

, which accurately characterize the phases involved in the
disturbance.
2) Representation of the Voltage Wavelet Indices: The

wavelet indices are represented by the normalized and
translated values of the difference between the prefault and
postfault energies of the oscillographic record in the level
of decomposition

(7)

where represents the maximum value related to the anal-
ysis of the voltage signals in the decomposition level , that is,

, and , , or .
Thus, the Fuzzy-ARTMAP neural networks responsible for

the classification of PQ events have as input some vectors com-
posed by the wavelet indices, which satisfactorily characterize
the PQ events.

C. Module 2: PQ Analysis

The Fuzzy-ARTMAP neural networks are self-organizing
networks that present supervised training, capable of identi-
fying/classifying data in clusters. This architecture presents two
key characteristics: 1) stability and 2) plasticity, which enable
applications in modern electric power systems. These attributes
enable continuous training to be incorporated while providing
fast diagnosis and stable learning [23].
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Fig. 4. Flowchart of the disturbances classification algorithm.

The PQ analysis module is responsible for the evaluation and
classification of events recorded in the voltages waveforms. Its
input vectors are the voltage wavelets indices calculated in the
previous subsection. The six levels of detail and the first and
sixth levels of approximations of the wavelets indices were used
as input data to compose the input vector for the ANNs.
Thus, the input vector has dimension 16, which is composed
of these eight wavelet indices approaches plus its complement

(8)

where

complement of

The output vector used in the training phase of Fuzzy-
ARTMAP neural networks is encoded. This encoding of the
input vector as well as the output vector is used for the three
voltage oscillographic records recorded, that is, for the three
phases of the system: , , and .

D. Module 3: Short-Circuit Analysis

After determining the disturbance starting time, detection,
and identification, the short-circuit diagnosis is carried out along
with the PQ analysis. This is possible due to the modular struc-
ture employed to develop the detection and classification algo-
rithms. The independency of the PQ analysis and short-circuit
analysis modules is achieved by using distinct neural networks,
independently trained.

Thus, three ANNs with different input patterns were created
and trained. The first ANN has an input vector with dimen-
sion 30, consisting of the three first behavioral indices of the
system with four levels of detail and the fourth level of approx-
imation, plus its complement

(9)

The second ANN is designed using an input vector also with
dimension 30, composed by the last three behavioral indices,

Fig. 5. Flowchart of the FL algorithm.

obtained from oscillographic records of voltages recorded at the
substation

(10)

The third ANN was designed and trained using an input
vector with dimension 60, composed of by the six behav-
ioral indices of the system, referring to the current and voltage
oscillographic records recorded at the substation.

After the execution of the detection algorithm and the clas-
sification of disturbances, which provides an overview of the
operational status of the network, the process of geographical
fault location begine, through the FL algorithm.

E. Module 4: Fault Location

The FL procedure consists of automatically determining the
geographical location of a fault by performing digital signal
processing of the waveforms of voltages and currents. They
are measured at the substation level and a minimum set of
points placed along the feeder in order to calculate the voltage
deviations. These waveforms are obtained through the use of
smart meters—protective and control equipment with intelli-
gent sensors, such as automatic switchgear, reclosers or devices
equipped with remote terminal units (RTUs).

Fig. 5 shows the flowchart of the FL algorithm developed
based on the algorithms of backward/forward sweep power flow
[25] and short-circuits analysis [26], which is proven to be ef-
ficient and appropriate for radial or weakly meshed distribution
networks, even in the presence of distributed generation.
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Besides the measurement data, the algorithm needs a data-
base containing information about the network topology, that is,
impedances of the lines sections and the power rating of distri-
bution transformers. Reference [17] explains in a more detailed
way the FL methodology. The main aspects of the FL algorithm
are presented in the following subsection.
1) Data Acquisition and Digital Signal Processing: The

digital signal processing of the currents and voltages in order
to obtain the prefault and postfault phasors of voltages and
currents, necessary for performing the FL algorithm, is carried
out through the fast Fourier transform (FFT). The sampling
of the current signals is also used to identify the fault type by
means of a Fuzzy-ARTMAP neural network that identifies the
type and the phases involved in the fault. Dedicated devices
installed along the feeder should make remote measurements
of prefault and postfault voltages available. Communication
channels should also be available for the transmission of the
measured data points to the remote processing site of the FL
algorithm.
2) Prefault Loading Estimation: The prefault power output

of the feeder is calculated using phasors of phase currents and
voltages. These phasors are used to calculate the prefault ap-
parent power supplied by the feeder, which is used to estimate
the distribution transformers load before the instance of the fault
occurrence. The load of each distribution transformer is esti-
mated based on its nominal power. Therefore, prefault complex
power of each transformer can be calculated according to the
following equation:

(11)

where is the rated power of the th transformer is
the apparent power estimated at the substation level,
is the substation power factor, is the total number of trans-
formers, and is the mean loading of the th transformer.
3) Fault Current Estimation: Fault current is estimated con-

sidering that voltages and currents at all nodes in the system
(prefault power flow) and the postfault current at SE are known.
A fault in the distribution system is treated as a load connected
to the feeder. The fault current is calculated using (12) at each
iteration and then is injected into the analyzed node

(12)

where is the postfault current measured at substation and
is the loading current of the th distribution transformer.

The use of these current injections does not require any as-
sumption regarding the fault impedance, since it does not play
a role in the fault modeling.
4) Faulty Section Estimation: Faults generally produce

voltage sags with different magnitudes; however, in some
cases, voltage sags of the same magnitude can be found. While
voltage sags can be equal, their respective phase angles are not.
Since faults are affected mainly by the resistive part of the fault
impedance, they will produce different changes in phase angles
compared to line impedances. Thus, the multiple estimation

Fig. 6. Distance between the faulty point and the candidate lines.

problem presented by most of the techniques is overcome by
using the change in phase angle along with the magnitude of
the voltage sag.

Defining and identifying the faulty section requires the com-
putation of the voltage deviations ( ) through the indica-
tion of likely faulty nodes, using the distances ( ), calcu-
lated for each line of the system with measuring devices

(13)

where is the distance between the measured and calcu-
lated faulty point for the bus , referring to the meter ,
is the voltage measured, is the phase angle measured,
is the angular coefficient, and is the linear coefficient. So the
voltage deviations are calculated using the maximum and min-
imum distances for each phase.

(14)

where is a small number to avoid division by zero, and is
the phase , , or .

Fig. 6 shows an example of the distance calculation ( )
between the faulty point and the candidate branches/lines. Thus,
the line that connects busbars 5 and 6 (red line) has the lowest
distance ( ) in relation to the measured value (yellow
point). Therefore, it is possible to sort the lines according to the
distance error found for each measuring device.

By sorting the results of (14) in increasing order and normal-
izing the maximum value in relation to found in all
samples, there is the final ranking of the fault location

(15)

Thus, (15) gives the probable classification nodes or branches
on a scale ranging from 0 to 100%, with the highest value of
corresponding to the biggest variation in .

III. CASE STUDY

A real-life three-phase distribution system with 134
nodes—13.8 kV and 7.065 MVA (Fig. 7) was used to test the
proposed algorithms [27]. The fault location is performed after
the fault detection and classification process. The proposed
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Fig. 7. Real-life three-phase distribution system [27].

TABLE I
DETECTION OF A CURRENT DISTURBANCE IN PHASE A

technique applies to three-phase radial or weakly meshed
feeders with unbalanced loads, lateral extensions with one, two,
or three phases and presents distributed generation.

A. Fault Detection Algorithm

The disturbance detection is based on the set of rules pre-
sented in (1) and (2), which are composed by a) macroanalysis
and b) microanalysis. Through a), the signal general behavior is
examined, comparing the maximum variation of the detail co-
efficients with a standard deviation percentage, which provides
major immunity to the noise presence in oscillographies. The
threshold plays an important role for the sensitivity to a fault
because it performs punctual analysis in b), analyzing the max-
imum value of the detail coefficients ( ) and facing the highest
detail coefficient with a predetermined threshold value ( ). The
thresholds are defined by the protection engineer, based on the
operating characteristics of each system.

The evolution of a signal containing a short circuit caused by
a phase-to-ground fault of 20.0 at node 43, starting at 0.08333
s is considered to illustrate the detection of a disturbance and
its current location time. Table I presents the signal detection
window and its respective statistical analysis of variance and
standard deviation.

In this situation, the fault was detected after 0.08372 s related
to the sample number 323 of the recorded signal. This result
was found during the analysis of the 18th window sampled and
decomposed by MRA, considering the set of rules presented
in (1) and (2). This module reached 100% accuracy with high-
computing performance.

Following the detection of the disturbance in a sampled
signal, the algorithm records 10 complete cycles of this signal,
with four prefault cycles and six postfault cycles and, then,
starts the PQ analysis stage.

B. PQ Analysis

The PQ events were generated by summing the steady-state
sinusoidal waveform, which generated at a sampling rate of 7.68
kHz through Alternative Transients Program/Electromagnetic
Transients Program (ATP/EMTP) software [28], with a vector
containing the respective disorder. The disturbance amplitude is
estimated using the peak values for the voltage level of the first
approach (cA1), before and during the disturbance. The differ-
ence between such values indicates the variation in signal am-
plitude that characterizes the disturbance.

Fig. 8 shows the first version of approximation (cA1a) of a
signal containing a voltage sag in phase A of node 25. In this ex-
ample, the peak value before the disturbance has a value equal
to 10 379.07, and the value during the disturbance is equal to
8 584.06, corresponding to a variation in the disturbance ampli-
tude of 17.3%.

Thereafter, 12 ANNs were trained and used to classify the PQ
events. Thus, each measuring device needs three ANNs, one for
each phase, and the bigger the number of measurement devices,
the larger the amount of ANN required. Each ANN was trained
using a set of 11 704 simulations and then tested with the simu-
lations reported in the other measuring devices placed along the
network. The vigilance parameters and adopted for the
training of the 12 neural networks were 0.85 and 0.95, respec-
tively. The inter-ART parameter used was 0.99 and the training
rate for both networks and was 1.0.

Table II shows the operational efficiency of ANNs trained to
classify PQ events occurring in phase A. The input patterns of
these networks are composed by energy coefficients of the first
four levels of details and approximations of current and voltage
signals, and the output network presents the fault-type code and
the phases involved in the problem.

The events most frequently reported by ANNs after evalu-
ation of all networks are the ones that will prevail, and these
events will appear in the output report. The high performance
of these ANNs in the classification process of PQ disturbances
can be clearly verified.

C. Short-Circuit Analysis

The training and testing of the three ANNs responsible for
the short-circuit classification were carried out using the wave-
forms of voltages and currents simulated using ATP software,
and applying fault situations in various parts of the system, in-
serting these faults with various incidence angles and different
values of fault resistances. Table III shows the variables used in
short-circuit simulations.

After training these three ANNs with the 17 556 fault simu-
lations previously performed, in order to verify the efficiency
of the classification process, another 11 704 simulations were
performed using the variables shown in Table III, but now con-
sidering the angles of incidence of failure as being 30 and 60 .



434 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 31, NO. 2, APRIL 2016

Fig. 8. Waveform of a voltage sag in phase A of node 25.

TABLE II
OPERATIONAL EFFICIENCY OF ANNS TRAINED FOR PQ EVENTS IN PHASE A

TABLE III
VARIABLES USED IN SHORT-CIRCUIT SIMULATIONS

TABLE IV
ANNS EFFICIENCY FOR SHORT-CIRCUIT ANALYSIS

Table IV shows the efficiency of the classification process en-
countered during the tests with the three ANNs.

The high performance achieved by the three ANNs can be
clearly observed. The error for three-phase faults in relation to
the presence of ground or not was pretty much the same.

D. Fault Location

The fault-location algorithm proposed to analyze the oper-
ational state of the distribution systems requires the oscillo-
graphic records of the currents and voltages from the measuring
system present at the substation (feeder root node) and the volt-
ages measured at some remote points, located along the feeder.
A sequence of random variables indexed in time with a well-de-
fined correlation structure was considered to simulate the oper-
ating conditions of a real system as a stochastic process. Table V

TABLE V
STOCHASTIC VARIABLES USED IN SIMULATIONS

TABLE VI
MEAN VALUES FOR STOCHASTIC SIMULATIONS RESULTS

shows the random variables considered in the simulations, with
their respective variation ranges.

Five-thousand faults were simulated for the distribution
system with and without the presence of DG. Table VI shows
the average values of the results obtained from the stochastic
simulations, after 5 000 simulations. The precision of the FL
algorithm must be verified by the small mean position found
in Table VI and the high mean probability presented by the
stochastic simulations.

The average time taken to locate the faulty points is less than
30 s in all cases. It can be considered to be a good computa-
tional time since the repairing time and dispatching of main-
tenance crews take much longer. Fig. 9 shows the confidence
intervals of the probabilities of faults occurrence and the posi-
tions classified by the FL algorithm, for each fault type simu-
lated. The presence of distributed generation is considered in
the calculation of power flow and short-circuit analysis, and the
fault resistance can be estimated at the end of the process by
the currents and voltages encountered after their convergence,
since the faults occurring in the system are modeled as current
injections.

For each bus, a feeder was applied with a line-to-ground fault
occurring in phase A, considering a line-to-ground resistance of
10 and medium loading modeled like constant impedance.
Fig. 10 shows the classification of buses for a fault occurring
in bus 70. The FL system had no problem classifying the fault
because the voltage deviations showed quite different values,
which shows good accuracy of the FL system.

Fig. 11 shows the sum of the actual positions of the buses
located on the classification made by the FL algorithm for a
line-to-ground fault occurring in phase A.

The number and position of measuring devices affect the per-
formance of the FL program. However, the number of mea-
suring devices that must be allocated on the network is minimal,
different from [20], which uses a greater number of measuring
devices, increasing the data traffic and computational effort, and
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Fig. 9. Confidence intervals of the probabilities of faults occurrence and the
positions classified by the FL algorithm. (a) Probability without DGs. (b) Prob-
ability with DGs. (c) Position without DGs. (d) Position with DGs.

Fig. 10. Classification of buses for a fault occurring in busbar 70.

Fig. 11. Number of buses classified by position.

whose methodology only works for distribution systems with a
high level of automation.

The efficiency and versatility of the developed intelligent al-
gorithms to locate faults and monitor PQ can be clearly ob-
served. When used together, as shown here, they provide a great
diagnosis of the operating conditions of the distribution net-
work, either operating normally or under contingencies.

IV. CONCLUSIONS

A methodology for integrated, automated diagnosis, and FL
through the combined usage of modern techniques of network
analysis, signal processing, and intelligent systems was pre-
sented in this paper. The continuous (online) process of fault
detection is accomplished through statistical analysis and di-
rect current multilevel signal analysis in the wavelet domain,
recorded at the substation. The sampling rate adopted in this

work was 7.68 kHz, representing 128 samples/cycle. This is not
a very high frequency and can be easily applied. The distur-
bance detection process is accomplished using the fourth-order
Daubechies (db4) wavelet filter in MRA. The behavioral indices
of the current and voltage signals are extracted by employing
the DWT, multiresolution analysis, and the concept of signal
energy. These proposed indices correspond to the input vectors
of a number of independent Fuzzy-ARTMAP NNs, which aim
to estimate the fault-type and PQ events present in the sampled
signal.

The FL is performed after the classification process, and it is
applicable to three-phase radial or weakly meshed feeders with
unbalanced loads, three phases, and double-line or, single-line
lateral extensions and it works with the presence of DG.

The integrated system diagnosis and FL are able to assist
the electric utility personnel in their daily job in providing im-
portant information for operation and maintenance, minimizing
the repair time, and, consequently, experiencing lesser financial
losses due to the ability for rapid fault diagnosis and restoration
to normal system operation.

The proposed methodology can be applied in online operation
to identify PQ events and is still valid even after network recon-
figuration since the Fuzzy-ARTMAP ANNs are able to perform
pattern recognition, independent of network configuration.
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