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Abstract

Background: Identification of single nucleotide polymorphisms (SNPs) associated with gene expression levels, known as

expression quantitative trait loci (eQTLs), may improve understanding of the functional role of phenotype-associated SNPs

in genome-wide association studies (GWAS). The small sample sizes of some previous eQTL studies have limited their

statistical power. We conducted an eQTL investigation of microarray-based gene and exon expression levels in whole

blood in a cohort of 5257 individuals, exceeding the single cohort size of previous studies by more than a factor of 2.

Results: We detected over 19,000 independent lead cis-eQTLs and over 6000 independent lead trans-eQTLs, targeting

over 10,000 gene targets (eGenes), with a false discovery rate (FDR) < 5%. Of previously published significant GWAS

SNPs, 48% are identified to be significant eQTLs in our study. Some trans-eQTLs point toward novel mechanistic

explanations for the association of the SNP with the GWAS-related phenotype. We also identify 59 distinct blocks

or clusters of trans-eQTLs, each targeting the expression of sets of six to 229 distinct trans-eGenes. Ten of these

sets of target genes are significantly enriched for microRNA targets (FDR < 5%). Many of these clusters are associated in

GWAS with multiple phenotypes.

Conclusions: These findings provide insights into the molecular regulatory patterns involved in human physiology and

pathophysiology. We illustrate the value of our eQTL database in the context of a recent GWAS meta-analysis of

coronary artery disease and provide a list of targeted eGenes for 21 of 58 GWAS loci.

Background

Implementation of high-resolution genotyping has led to

a wave of genome-wide association studies (GWAS) of

hundreds of phenotypes relevant to human health and

disease [1]. Yet, the vast majority of the single nucleotide

polymorphisms (SNPs) from GWAS that are associated

with clinical traits and diseases reside in non-coding re-

gions [2, 3]. This means that most disease-associated

SNPs do not directly influence protein structure or func-

tion, but instead may act on phenotypes by affecting ex-

pression of local (cis) or distant (trans) gene targets

(eGenes). Thus, characterizing the relations of DNA se-

quence to RNA expression is a critical step toward a

better mechanistic understanding of disease, and ultim-

ately toward improvements in diagnosis, prevention, and

treatment. This endeavor begins with analysis of variation

in messenger RNA (mRNA) expression levels associated
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with genotypic variation to identify expression quantita-

tive trait loci (eQTLs) across the human genome [4].

The measurement of transcriptome-wide expression

levels has facilitated several genome-wide eQTL studies

[1, 4–8]. The sample sizes of some earlier eQTL studies,

however, may have limited their statistical power [9], al-

though a recent study [8] utilized a cohort of more than

2000 individuals and a previous study [5] used multiple

cohorts totaling over 5000 individuals in meta-analysis.

Of note, prior studies did not report results trans-eQTLs

genome-wide. We report results of a microarray-based

genome-wide eQTL study, considering both cis and

trans elements, in whole blood samples from over 5000

participants in the Framingham Heart Study (FHS) [10, 11],

a multi-generational community-based prospective study.

To our knowledge, our study utilizes the largest, single-site

study to date, and reports both gene-level and exon-level

cis-eQTLs and trans-eQTLs genome wide.

Results

Characteristics of the study sample [10, 11] are provided

in Table 1. Participants in the FHS Third Generation co-

hort were about 20 years younger than those of the FHS

Offspring cohort at the time of blood collection for

RNA isolation. White blood cell counts and their pro-

portions also differed between the cohorts.

Out of 39 million imputed SNPs, we found 8.5 million

with a minor allele frequency (MAF) ≥ 0.01 and imput-

ation quality R2
≥ 0.3 (See “Methods” for further details).

Of these, we identified 2.2 million cis-eQTLs and 160

thousand trans-eQTLs at a nominal false discovery rate

(FDR) < 0.05 (Table 2). We observed no inflation of the

genomic control factor [12] (λ = 0.986). The quantile-

quantile plot can be found in Additional file 1: Figure S1.

We determined that polymorphism-in-probe effects [13],

which occur when the variable position of a poly-

morphism overlaps an expression probe (Additional

file 1: Figure S2), were generally minor, possibly affecting

up to about 9.5% of the detected eGenes (see Additional

file 1: Supplementary Methods for details). Moreover,

these potential artifacts generally could be recognized

by inspection of the individual exon-level results corre-

sponding to that gene. Only one of the top 25 cis-

eQTL-transcript cluster pairs (C9orf78, Table 4) was

flagged for this artifact and that pair was not replicated

in external datasets.

Recognizing that many of the significant eQTLs were

in linkage disequilibrium (LD) with stronger, nearby

eQTLs, we pruned our result using a stepwise linear re-

gression procedure that identified a subset of the stron-

gest, independent “lead-eQTLs” for each genetic region

(see “Methods”). We found over 19,000 independent,

lead cis-eQTLs and almost 6000 independent, lead

trans-eQTLs, targeting over 10,000 cis- and almost 6000

thousand trans-eGenes. We found an eQTL for over half

of the 17,873 measured transcript clusters (Table 2,

Fig. 1, and Additional file 1: Figure S3). Use of a stricter

nominal cutoff of FDR < 0.0005 reduced the number of

independent cis-eQTLs and the number of targeted cis-

eGenes by about 8% (Table 2). The stricter cutoff had a

much larger effect on the number of trans-eGenes, redu-

cing them by almost fivefold.

Cis-eQTLs are frequently defined as targeting expres-

sion of genes within 1 megabase (Mb) of the transcrip-

tion start site (TSS). Others have noted that cis-eQTLs

may be detected beyond the 1 Mb threshold [8]. We

modified our definition of cis-eQTLs to include all

eQTLs falling in an uninterrupted block around the TSS,

provided there are no included gaps greater than 1 Mb

in size. Trans-eQTLs were defined as those that target

genes on other chromosomes or genes outside the con-

tiguous cis- blocks (see “Methods” for details). We found

long-range cis-eQTL blocks up to 10 Mb in width, e.g.

for gene BTN3A2 on chromosome 6. Such long-range

cis-eQTLs were found for 255 transcript clusters, 75 of

which, including BTN3A2, were located in the HLA

Table 1 Demographic characteristics

Characteristic Offspring cohort
(n = 2240)

Generation 3 cohort
(n = 3017)

P value*

Males (%) 45.1% 46.8% 0.2291

Age, in years 66.4 ± 9.0 46.4 ± 8.8 1.36E-895

White blood cell count (× 103/mL)b 6.2 ± 1.3 6.0 ± 1.5 2.57E-7

Neutrophil (%)b 59.7 ± 7.9 58.7 ± 7.7 8.63E-7

Lymphocyte (%)b 27.1 ± 7.5 28.8 ± 6.9 2.20E-17

Monocyte (%)b 9.2 ± 1.9 8.6 ± 2.0 5.79E-22

Eosinophil (%)b 3.3 ± 1.6 3.1 ± 1.9 0.0039

Basophil (%)b 0.8 ± 0.2 0.8 ± 0.3 0.0019

Platelet count (× 103/mL)b 253.0 ± 36.5 247.5 ± 51.5 6.34E-6

*P values are from two-sample t-tests. For sex phenotype, the P value is from Fisher’s exact test
bCBC values are imputed based on actual measurements of 2274 samples within the Generation 3 cohort
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region of chromosome 6; 22 were identified on chromo-

some X including gene ITM2A (8.7 Mb width), and 18

were found on chromosome 3 including gene UBA7

(7 Mb width). While some blocks may result from ex-

tended LD structure in the genome, others may point to

extended patterns of regulatory sites. Our results sup-

port the conclusions of Kirsten et al. [8] who observed

cis- associations extending to up to 5 Mb. In each

contiguous region of eQTLs, we defined the “lead”

eQTL as that which displayed the strongest association

with its target transcript cluster, as defined by P value.

The lead eQTL is the most likely causal eQTL, and for

cis-eQTLs, its position relative to the TSS could be read-

ily studied. For some eQTL blocks, we found that not all

significant eQTLs were in LD with the primary lead

eQTL but that secondary, independent lead eQTLs also

Table 2 Number of independent, significant eQTL-gene pairs with number of unique eQTLs or unique genes with P value corresponding

to indicated FDR cutoff

Pair type eQTL-TranscriptCluster pairs Unique eQTLs Independent pairs Independent unique
lead eQTLs

Unique genesa

(% available)
P value cutoff

Nominal FDR < 0.05

Cis 4,285,456 2,221,013 19,613 19,239 10,327 (58%) 1.00 E-4*

Trans 216,169 91,559 6741 5749 4958 (28%) 1.41 E-7

Nominal FDR < 0.0005

Cis 3,698,429 2,008,734 17,452 17,119 9232 (52%) 1.78E-5

Trans 116,960 52,426 1464 888 1025 (6%) 8.82E-10

Available 1.521 E11 8,510,936 1.521 E11 8,510,936 17,873 (100%)

*P value cutoff corresponding to FDR. Upper bound P value for pairs retained in computation was 1E-4, therefore highest attained FDR for cis-eQTLs was 0.0024
aTranscript cluster ID is used as a proxy for genes. Only 244 genes were represented by more than one Transcript cluster IDs. Approximately 270 Transcript cluster

IDs could not be assigned to an Entrez Gene entry

Fig. 1 Genomic eQTL location vs. transcript cluster location for highly significant eQTL-gene pairs (FDR < 1E-8). Bubble size is inversely proportional to

the FDR. The largest bubble indicates FDR < 1E-100
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could be found after accounting for the primary lead

eQTL. Stepwise regression, including primary and suc-

cessive independent lead eQTLs, determined a set of

mutually independent lead eQTLs for each block (see

“Methods” for details).

Benefits of a large cohort

Use of a very large cohort size for eQTL analysis pro-

vided obvious benefits in terms of greater statistical

power for discovery. To better quantify the value of co-

hort size, we considered whether the number of eGenes

detected in our study would be detected with a smaller

cohort. We repeated the full analysis using only the FHS

Offspring cohort subset (n = 2240) and separately, only

the FHS Third Generation cohort subset (n = 3017).

Overall (Additional file 1: Table S1), we found that as

the sample size dropped by roughly half, the number of

unique cis-eGenes fell roughly proportionately, while the

number of trans-eGenes declined to a much greater de-

gree. Conversely, we concluded that our large sample

size allowed for detection of many novel cis- and trans-

eGenes. We found that our full cohort allowed detection

of roughly 60% more cis-eGenes than did either smaller

cohort. The full cohort detected three times to five times

more trans-eGenes than did the smaller cohorts. It is

clear that even with the current large cohort size, we

have not yet detected all cis-eQTLs. We also found that

the number of lead eQTLs (primary and secondary) per

detected eGene increased using the full cohort (Addi-

tional file 1: Table S1). This demonstrates the power of

the larger cohort to detect possible multiple SNPs on

the pathways affecting expression.

As an example of the biological relevance of increasing

the number of detected eGenes, consider the SNP

rs1354034, a very strong GWAS hit for platelet count and

platelet volume [14]. Using the full cohort, we detected

136 trans-eGenes that are targeted by variation at this

locus. At least 27 of these genes are indeed known to be

platelet-specific [15]. Analysis restricted to the smaller

FHS Offspring cohort alone detected only 30 transcript

clusters, 11 of which are platelet specific. Thus, increasing

the sample size to include both FHS cohorts more than

doubled the list of platelet-related genes. Further, when we

consider the overlap of detected eQTLs with the GWAS

catalog (see “Clinical relevance,” below), we found that

restricting the analysis to the smaller cohort reduced the

overlap by 33%. Thus, the full, large cohort clearly has

greater power to annotate clinically relevant SNPs.

Replication and validation

We assessed our results by three methods: (1) internal

validation; (2) replication of previously published results

(replication rate); and (3) the proportion of our results

seen in earlier published studies (validation rate). Splitting

our large sample into two roughly equally sized cohorts

demonstrated an internal replication rate of 75% for

cis-eQTL-transcript cluster pairs and 41% for trans-

eQTL-transcript cluster pairs at the gene level, with 100%

of the replicated pairs showing the same direction of

change in expression (Additional file 1: Table S2).

We were able to replicate high proportions of eQTLs

published in two previous eQTL studies even though

they used different expression platforms. We replicated

69% of eligible cis-eQTL and 62% of trans-eQTL-tran-

script cluster pairs reported by Westra et al. [5] and 66%

of cis-eQTL and 29% of trans-eQTL-transcript cluster

pairs reported by Liang et al. [6]. We were able to repli-

cate 59% of cis- and 56% of trans- results from a more

recent study that used RNA-sequencing (RNAseq)

methodology to report lead eQTLs [7]. These rates are

13 and 300,000 times the expected rates, for cis- and

trans-eQTLs, respectively. The P values for these rates

are <1E-200. We were able to replicate 36% of eligible

cis-eQTL-transcript cluster pairs and 5.2% of trans-

eQTL pairs from the largest, homogenous eQTL study

available to date [8]. The replication rates are 78 and

30,000 times the expected rates, for cis-eQTLs and

trans-eQTLs, respectively. The replication rates for the lat-

ter study might have been attenuated because of differences

in RNA source (peripheral blood mononuclear cells versus

whole blood) and use of different expression platforms

(Illumina HTarray versus the Affymetrix Exon array).

We explored external validation of our independent

eQTL-transcript cluster pairs in two published studies

and in seven datasets across multiple tissues in the

NCBI Molecular QTL Repository [2, 4–6] (referred to as

“Multiple studies” in Table 3) and in two more recent

studies [7, 8] (see “Methods” for details). As expected,

the cis external validation rates (Table 3) were lower

than our internal validation rates. For Multiple Studies,

we validated 54% of eligible lead cis-eQTL-transcript

cluster pairs from our study, but only validated 2% of

lead trans-eQTL results. The direction of effect matched

in 89% of validated pairs. The RNAseq-based eQTL

study of Battle et al. [7] reported only the lead variant

for each targeted transcript. Since we did not expect per-

fect alignment with our lead eQTLs, we relaxed our

matching criteria to count situations where our lead

eQTL was in strong LD (R2 > 0.8) with their lead variant.

Using this approach, we achieved external validation for

25% of our lead cis-eQTL-eGenes pairs but only for 4%

of our lead trans pairs. When comparing our results

with those of Kirsten et al. [8] using the same approach,

we validated 58% of our eligible, independent lead cis-

eQTLs and 6% of our trans-eQTLs. We observed that

85% of lead cis-eQTLs and 93% of lead trans-eQTLs

validated by Kirsten et al. [8] also showed the same

direction of effect as did our study. The detection rate
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and validated detection rate is dependent on the number

of available probesets for the transcript, rising to a plat-

eau when more than about 20 probesets are available

(Additional file 1: Figure S4). Imperfect validation rates

reflect a combination of factors: the potentially novel

discoveries in our dataset as a result of the larger homo-

geneous sample size, the use of multiple genotyping

chips of lower density in the comparison studies, the

lack of imputation in one other study, differences among

populations, and difficulties in accurately comparing

transcript expression levels measured with different

platforms.

The top 25 lead cis-eQTL and trans-eQTL transcript

cluster pairs, ranked by percent of variance explained

(R2), are presented in Table 4. Illustrative box-plots for a

cis-eQTL and a trans-eQTL are given in Fig. 2. For the

top cis-eQTL gene pair (rs12231872 with CLEC12A)

more than half of the variation in expression of the

eGene was explained by the cis-eQTL. Likewise, the top

trans-eQTL (rs6592965) explained over 22% of the vari-

ation in expression of the corresponding trans-eGene

(SLC38A5). Interestingly, ten of the 25 (or 40%) top cis-

eQTLs were in significant LD with or were themselves

GWAS hits (at P < 5E-8), providing support for the idea

that genetically determined effects on gene expression

have phenotypic consequences. Perhaps more note-

worthy is the finding that 17 of the 25 (68%) top trans-

eQTLs were also either GWAS hits or in significant LD

with GWAS hits. Again, this supports the notion that

not just cis-eQTL but also trans-eQTL effects may ex-

plain the mechanism of action of these genetic variants.

We found external validation for 18 of 25 (72%) top cis-

eQTL-eGene pairs in at least one of four published data-

sets [5–8], a high rate that perhaps should be expected

for such prominent associations. We found evidence of

external validation for only six of 25 (24%) top trans-

eQTL pairs, perhaps because few published studies have

reported full genome-wide trans-eQTL results.

The Affymetrix Exon Array provides expression mea-

surements at the transcript cluster level, but also for in-

dividual exons within the transcript cluster. At the exon

level (Additional file 1: Table S3), we detected many of

the same cis-eQTLs for individual probesets of the same

genes identified at the gene-level. The top exon-level

trans-eQTLs also duplicated many of the results seen at

the gene-level, including many trans-eQTLs found to be

part of trans-eQTL blocks or clusters (discussed in detail

below). However, the percentage of variance of expression

levels of these exons explained by their trans-eQTLs is

generally much higher than that for the corresponding

gene-level results, probably because the gene-level analysis

averages over multiple exons that demonstrate consider-

able variation.

Enrichment of lead eQTL location relative to gene

structure and neighborhood

A major goal of eQTL studies is to identify true gene

transcription regulatory elements. Previous analyses

[5, 7, 8] have shown a strong dependence of eQTL

position relative to the TSS and transcription end sites

(TES) of each gene. We analyzed 8475 protein-coding

eGenes with identifiable gene structure and without

suspicion of polymorphism-in-probe effects, to iden-

tify preferences for locations of all significant eQTLs

and of the lead eQTL. We found that lead eQTLs are

frequently (for 35% of eGenes) found in the tran-

scribed region of the gene, a ninefold enrichment

compared to elsewhere in the 2 Mb region centered

on the TSS (Additional file 1: Table S4). The lead

eQTL is also frequently (38%) in the upstream cis-

intergenic region, but less often than expected. The

lead eQTL is less frequently (28%) in the downstream

cis-intergenic region (Additional file 1: Table S4). The

distance from upstream lead eQTLs to the TSS follows

a multi-exponential decay curve with a median dis-

tance of about 27 kb. The distance downstream from

the TES to the lead eQTLs follows a similar multi-

exponential distribution with a slightly longer median

distance of about 31 kb. A graphical representation of

the observed distribution of lead eQTL locations is

given in Additional file 1: Figure S5. Within the tran-

scribed region, exonic locations are highly enriched

(25 fold) for lead eQTLs, more so than for intronic lo-

cations (12-fold). The first exon and the 5’- UTR are

Table 3 Number of independent, significant pairs validated in previous studies

Pair type Comparison study Eligible lead eQTL-gene pairsa Validated pairsa (rate) Expected pairs (rate)

Cis Multiple studies [2, 4–6] 10,584 5700 (54%) 90 (0.8%)

Battle et al. [7] 11,466 2911 (25%) 10 (0.08%)

Kirsten et al. [8] 11,179 6503 (58%) 919 (8%)

Trans Multiple studies [2, 4–6] 1777 40 (2%) 0.0007 (0%)

Battle et al. [7] 2596 102 (4%) 0.0001 (0%)

Kirsten et al. [8] 2337 135 (6%) 0.03 (0%)

aSee “Methods” and Additional file 1: Supplementary Methods for details

P values (comparing Validated to Expected pairs are based on Poisson distribution) are all <1E-200
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Table 4 Top 25 non-redundant gene level cis-eQTL and top 25 trans-eQTL-transcript cluster pairs

eQTL marker position Rs ID Transcript cluster ID Trans Chr Gene symbol R2 Beta Cluster number

Top Cis-eQTL pairs

12:10118747 rs12231872 3404530 R 12 CLEC12A 57% −0.15 [G]

15:48596713 rs74011998 G 3593065 15 SLC12A1 56% −0.15 [T]

5:96252589 rs2910686 H G 2821347 R 5 ERAP2 55% −0.11 [T]

1:207280764 rs12063500 G 2377165 R 1 C4BPA 54% −0.32 [C]

6:31238135 rs1050317 G 2948887 6 50% −0.3 [A]

6:32576341 rs9271093 G 4048241 R 6 HLA-DRB5 50% −0.45 [A]

22:42498204 rs12157818 3947310 R 22 C22orf32 49% 0.16 [C]

6:26354100 rs67509210 G 2899333 R 6 BTN3A2 48% 0.19 [G]

7:150480007 rs1985881 3079172 R 7 TMEM176B 48% −0.17 [C]

4:6697822 rs3822260 H G 2717078 4 S100P 48% 0.24 [C]

22:45744854 rs8136319 3948543 R 22 FAM118A 48% −0.2 [G]

6:167382449 rs434093 G 2984884 R 6 RNASET2 48% 0.12 [T] 21

1:17421764 rs2076613 2398820 1 PADI2 47% 0.08 [T]

X:109206541 rs2499412 3987029 X TMEM164 47% 0.11 [G]

4:47858518:ATAG_ 2768273 4 NFXL1 47% −0.1 [R]

5:64858687 rs432206 H 2859667 R 5 CENPK 47% −0.14 [C]

7:150478052 rs6464101 H 3031624 R 7 TMEM176A 47% −0.15 [G]

1:109706880 rs647294 H 2350489 R 1 KIAA1324 47% 0.14 [G]

6:32575544 rs9271061 G 4048265 R 6 HLA-DRB1 46% −0.55 [T]

5:102118794 rs2431321 H 2822215 R 5 PAM 46% −0.08 [T]

6:32603854 rs9272302 G 2903219 R 6 HLA-DRB6 46% −0.77 [C]

7:26952139 rs2960785 H 3042610 R 7 SKAP2 46% 0.08 [C]

1:43265985 rs2816599 2409069 R 1 CCDC23 45% −0.31 [C]

9:132588337 rs7470675 3227121 S 9 C9orf78 45% 0.17 [T]

7:75247329 rs1186222 3057370 R 7 HIP1 45% 0.09 [C]

Top Trans-eQTL Pairs

7:50427982 rs6592965 G 4007437 R X SLC38A5 22% 0.09 [G] 25

17:44026739 rs242562 H G 3767230 17 LRRC37A3 20% 0.16 [G]

3:30722412 rs3773654 3638566 15 PEX11A 16% –0.18 [G]

1:58992071 rs7520008 2414558 1 DAB1 12% 0.04 [T]

3:50078541 rs9814664 H G 3981931 X ZCCHC13 12% 0.11 [T] 9

7:50427982 rs6592965 G 2520069 R 2 C2orf88 11% 0.1 [G] 25

1:248039451 rs3811444 H G 3357237 R 11 JAM3 11% 0.08 [C] 4

3:49978069 rs6772095 H G 4024310 X SOX3 11% 0.06 [C] 9

16:69973655 rs4985461 2876543 5 TIFAB 11% –0.08 [G]

7:50427982 rs6592965 G 3724505 17 MYL4 9% 0.08 [G] 25

21:44473062 rs11700748 H G 3416019 12 PRR13 9% 0.1 [C] 56

5:50106439 rs32396 H G 2359431 1 LCE1F 8% 0.08 [G]

11:617537 rs2740380 G 3864107 19 PSG7 8% 0.13 [T]

3:49971514 rs7613875 H G 3693591 16 PRSS54 8% 0.06 [C] 9

3:50008566 rs6446189 G 3939154 22 RAB36 8% 0.05 [A] 9

3:56849749 rs1354034 H G 3724545 R 17 ITGB3 8% –0.08 [T] 10

11:108623805:CTAT_ 3504617 13 SKA3 8% –0.1 [R]
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especially enriched for lead eQTLs (45-fold) while

other exons, the 3’-UTR, the first intron and subse-

quent introns (21-fold, 20-fold, 11-fold, and 8-fold, re-

spectively) show lesser degrees of enrichment

(Additional file 1: Table S4). Thus, it is clear that lead

cis-eQTLs act preferentially through regulatory ele-

ments within the first exon, within the 5’-UTR or near

the TSS. We also analyzed just the secondary lead

eQTLs which show independent significant associa-

tions with about half of the targeted transcript clus-

ters. Again, the 5’-UTR again was maximally enriched

(30-fold) in these lead eQTLs. The pattern of enrich-

ment was nearly identical but somewhat weaker than

that for the primary lead eQTLs, This shows that sec-

ondary lead eQTLs also convey important information re-

garding functional sites.

Enrichment of lead eQTLs at regulator sites

To further explore the regulatory sites, we compared

our results to RegulomeDB [16], a summary of evidence

for a regulatory role for each SNP, based on DNAase

hypersensitivity, transcription factor binding sites, and

biochemically characterized regulatory promoter regions.

Specifically, we tested whether our lead cis-eQTLs exclud-

ing those targeting polymorphism-in-probe transcripts)

were enriched for regulatory roles (i.e. low RegulomeDB

scores) compared to other cis-SNPs within 1 Mb of each

transcript start site, having no such evidence. Results,

summarized in Additional file 1: Table S5, show strong

enrichment of regulatory evidence for all (primary

and secondary) lead cis-eQTLs (sevenfold enrich-

ment, P < 1E-89). The primary lead cis-eQTLs alone

showed a stronger enrichment (eightfold, P < 1E-69),

but with a minor attenuation in significance level.

This result suggests that lead eQTLs are indeed

identifying regulatory sites and that the primary lead

eQTLs are the most likely regulatory position in a

given neighborhood. Only a barely significant, two-

fold excess of lead trans-eQTLs were found with low

RegulomeDB scores, suggesting that at most a modest

fraction of trans-eQTLs are acting at known regulatory

sites.

Clusters of trans-eQTLs

Some trans-eQTLs are associated with multiple distant

transcripts and can be grouped into compact genomic

blocks or clusters (see “Methods”). Although such “regu-

latory hotspots” can arise from confounding factors such

as batch effects [17], we used methods that reduce or

avoid such spurious associations (see “Methods”). At the

gene level, we identified 59 distinct clusters of trans-

eQTLs, each targeting a set of six to 141 distant tran-

scripts (Table 5, Fig. 3). Studying the targets of these

clusters may illuminate the functional roles of these

eQTLs. For example, such trans-eQTL clusters may be a

result of downstream consequences of a variant within a

haplotype block [18]. The most prominent trans-eQTL

clusters are on chromosomes 3 and 17 (Clusters 10, 51,

and 52) and are associated with expression of platelet-

specific genes, such as CTTN, HIST1H3H, and MMD

[15, 19, 20]. SNPs in these clusters were reported to be

associated in GWAS [4] with platelet count and mean

platelet volume (e.g. rs1354034 and rs12485738 on

chromosome 3; rs10512472 and rs16971217 on chromo-

some 17) [21]. Variation in platelet count or volume

would likely cause changes in the proportion of RNA de-

rived from platelets in the whole blood sample and thus,

variation in the apparent expression levels of platelet as-

sociated genes. We found 13 platelet-related GWAS

clusters (Table 5, Additional file 1: Table S6), many of

which also had target gene sets enriched with platelet-

Table 4 Top 25 non-redundant gene level cis-eQTL and top 25 trans-eQTL-transcript cluster pairs (Continued)

17:33875262 rs8073060 H 3089102 R 8 EPB49 7% –0.05 [T] 51

3:56849749 rs1354034 H G 2735759 4 MMRN1 7% –0.07 [T] 10

11:55113534 rs75905900 G 3329983 11 PTPRJ 7% –0.05 [A]

6:170847101 rs75159687 2390976 1 LINC00115 7% –0.13 [T]

22:50027210 rs5769712 3581090 14 TMEM179 7% 0.06 [C] 58

7:50427982 rs6592965 G 3714729 R 17 MAP2K3 7% –0.05 [G] 25

22:50027210 rs5769712 3203199 9 TAF1L 6% 0.07 [C] 58

3:56849749 rs1354034 H G 2476510 2 LTBP1 6% –0.06 [T] 10

R2 - Percentage variance explained

Marker position is annotated as chromosome number:location in hg19 coordinate

Beta is regression estimate (log base 2 expression difference per dosage of effect allele), with effect allele in brackets. [R] refers to the reference allele for an

indel polymorphism

H = HapMap SNPs

G = in LD with GWAS SNPs as recorded in the NHGRI GWAS catalog

R = In LD with SNP replicated in at least one of the databases associated with references GTEx [1], Westra et al. [5], Liang et al. [6], Kirsten et al. [8]

All 25 cis-eQLTs and 25 trans-eQLTs are internally validated and have consistent sign of expression change

S = SNP-in-probe problem likely inflates R2
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specific genes. In addition, Cluster 1 may contain an un-

discovered platelet-associated variant, as it is associated

with enrichment for platelet-related genes.

We also identified several trans-eQTL clusters that

target trans-eGenes related to other blood cell types. For

example, seven clusters (17, 18, 25, 49, 51, 54, and 59;

Table 5) appear to target expression of six to 27 genes

specific to CD71+ early erythrocytes or reticulocytes

[21] (significantly enriched, Fisher’s exact test P values

1.8E-33 to 1.2E-7). Of these, three (Clusters 17, 18, and

25 on chromosomes 6 and 7) contain SNPs with known

associations in GWAS with red blood cell traits, including

hematocrit and hemoglobin (e.g. rs668459 on chromo-

some 6 [22] and rs12718597 on chromosome 7 [23]).

Thus, these clusters may arise from effects of the genetic

variant on hematopoiesis or related pathways.

Fourteen of the clusters include eQTL-gene pairs that

have been observed in previous studies [5–8] of whole

blood or the peripheral blood mononuclear cells

(PBMC) fraction (Table 5, Column 8), including Clusters

4, 6, 10, 11, 17, 18, 25, 29, 33, 34, 35, 38, 39, and 51.

Eight of the 13 previously mentioned GWAS platelet-

related clusters are among these. Another, Cluster 6,

targets 18 trans-eGenes (seven previously validated) and

contains GWAS hits for blood-related diseases and

traits. Two more (Clusters 11 and 29) show enrichment

of neutrophil-specific target genes. Clusters 18 and 25

include GWAS SNPs for mean corpuscular volume (e.g.

rs668459 and rs12718597, respectively) and are enriched

in reticulocyte specific target genes. Finally Cluster 35

with eight trans-eGenes, of which three are validated

(Table 5, Additional file 1: Table S7), includes GWAS

hits for melanoma and response to metformin, but the

relationship of these eight genes to either phenotype is

unclear.

Target genes of trans-eQTL clusters may suggest

mechanism of action

Clusters might arise as a result of factors other than

changes in proportion of blood cell types. Examination

of the sets of target genes of trans-eQTL clusters

(Additional file 1: Table S7) may suggest a functional

mechanism at play in the regulation of trans-eGenes.

We found examples of enrichment of genes annotated

as targets of transcription factors, as targets of micro-

RNAs (miRNAs), and for several signaling pathways

(Table 5, Gene set enrichment analysis (GSEA)). Some

trans-eQTL clusters target transcripts [24] sharing a

common promoter binding site motif [24], suggesting

that certain transcription factor pathways are modified

by genetic variants within the cluster (Additional file 1:

Table S8). For example, Clusters 10 and 51 target an

over-abundance of genes with promoter regions con-

taining motifs specific to transcription factors SP1 and

NRF1. Indeed, transcription factor SP1 has recently

been shown to regulate platelet formation in mouse

[25]. Changes in activities of these transcription factors

may mediate the effect of genetic variants in these

clusters on platelet formation and dynamics.

miRNAs may mediate effects of trans-eQTLs

miRNAs that are encoded near an eQTL and bind to a

trans-eGene might be a part of the mechanism under-

lying trans-eQTLs, as miRNAs are known to modify the

expression or degradation of their target mRNAs. GSEA

[26] of the genes targeted by each cluster revealed that

variants in several clusters target a significant number of

genes that are themselves targets of specific sets of

miRNAs (at FDR < 0.05; Additional file 1: Table S9). For

example, Cluster 51 targets the expression of 141 genes

Fig. 2 Box plots of very strong cis-eQTL or trans-eQTL-transcript cluster

pairs. a rs2499412 – TMEM164 (cis, R2 = 47%). b rs3773654 – PEX11A

(trans, R2 = 16%). y-axis: expression level in RMA units; x-axis: imputed

major allele count
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(Additional file 1: Tables S6 and S7) including 13 genes

(PPM1A, TSPAN5, APP, PIM1, COPS2, CSDE1, WDTC1,

AP2A1, CARM1, FURIN, EPB49, FAM134A, and

SH3BGRL2) known [26] to be targets of a small set of

miRNAs (miR-15A, miR-16, miR-15B, miR-195, miR-424,

miR-497), a highly significant enrichment (FDR < 0.0001).

Access to the measured miRNA expression data from the

same whole blood samples [27] allowed us to compare the

expression levels of five of these six miRNAs (miR-497

was not measured) with expression levels of the 13 genes.

We found that all of these gene expression levels, except

CSDE1, were correlated with expression levels of each of

the five measured miRNAs (genome-wide FDR < 0.001).

In addition, 119 of the 141 mRNA levels targeted by

Cluster 51 were correlated with measured levels of at least

one of these miRNAs at FDR < 0.001 (Additional file 1:

Table S9). This provides suggestive evidence that one or

more of these miRNAs may be involved in the mechanism

of action of the corresponding genetic variants.

Cluster 39 contains SNPs associated in GWAS with

almost two dozen traits or diseases (Additional file 2:

Table S10) and trans-eQTLs targeting a similar number

of distinct genes. The variant rs3184504 within SH2B3

on chromosome 12 and its proxy rs653178 lie within

this cluster and were previously observed to be cis-

eQTLs for SH2B3 and trans-eQTLs for six interferon-γ

signaling transcripts and nine toll-like receptor signaling

genes [5]. In our study, these two SNPs are associated

with the trans expression levels of four of six previously

reported [28] interferon-γ signaling genes and with five

additional genes (GBP3, GBP5, GBP7, FCGR1A, and

FCGR1B). We confirmed only one of nine previously re-

ported toll-like receptor signaling genes, possibly a result

of differences in the expression measurement platforms

employed. Also, we found a much stronger cis associ-

ation of rs3184504 with ALDH2 and OAS2 compared to

SH2B3, although the latter harbors this eQTL in its

coding region.

Comparison to published trans-eQTL blocks or clusters

A recent study of human eQTLs in blood-derived RNA

also noted extensive clusters of trans-eQTLs. Kirsten et

al. [8] reported finding almost 849 unique trans-eQTLs

with two or more targets, corresponding to about 175

loci. Our more restrictive definition of a trans-cluster re-

quiring six or more trans-targets identified 753 trans-

eQTLs in 59 loci or trans-clusters. However, the overlap

of these two approaches was not extensive. Among our

59 trans-clusters of eQTLs, we found 14 harboring

eQTLs also found by Kirsten et al. [8], with one or more

of the identical targets (Table 5, Additional file 1: Figure

S6). Of these, 12 could be readily identified as related to

platelets or red blood cell components by the GWAS

hits they contained. Of the remaining two clusters, Clus-

ter 29 contains no GWAS related traits, but includes tar-

gets related to neutrophils. Cluster 35 includes GWAS

hits for melanoma and response to metformin but is

otherwise cryptic.

Kirsten et al. [8] highlighted ten eQTLs, each in LD

with one or more GWAS hits and each with at least
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three, mostly novel, associated trans-eGenes. Of these,

one (rs10512472) falls into our Cluster 51, the second

strongest platelet-related cluster, for which we found 141

trans-eGenes including five of the nine target genes

found in their study. Overall, we provide strong support

for only one of their ten highlighted trans-clusters. This

modest level of replication might be attributable to dif-

ferences in the underlying cohorts, differences in the tis-

sue RNA source, or other technical factors, or may point

to platform-specific limitations in defining trans-clusters

themselves.

Trans-eQTLs not in clusters

Some of the trans-clusters, e.g. clusters 18 and 25, may

be the direct result of variation of cell type in the whole

blood samples, such as reticulocyte content, for which

inadequate data were available to compensate. However,

of the 5749 lead trans-eQTLs (Table 2), 90% (5212) are

not found in any of our trans-clusters, suggesting that

the majority of detected trans-eQTLs are not simply the

result of uncompensated cell type variation. Rather,

other mechanistic explanations should be sought, includ-

ing cis-expression of transcription factors or miRNAs not

measured in our assay, or other rarer transcribed mole-

cules such as long non-coding RNAs having as yet un-

identified effects elsewhere in the genome. Of the 5212

trans-eQTLs not found in clusters, 15 are found in the

GWAS catalog [14] (Additional file 2: Table S10) but only

a small fraction (15 of 5212 or 0.2%) were validated in

earlier studies, although many were internally validated.

Clinical relevance

Among 7057 SNPs that were associated (at P < 5E-8)

with 942 phenotypes in the NHGRI-EBI GWAS Catalog

[14], 3381 or 48% were significant eQTLs, related to 654

distinct phenotypes. This coverage represents two times

the number expected by chance (1696, P < 2E-16, Fish-

er’s exact test). Limiting our results to only the lead

eQTLs and variants with > 80% LD, we saw smaller but

more significant coverage of 15% (observed 1028, ex-

pected 367, P < 2E-277). Of these 1028 lead eQTLs, 922

(or 13%), were cis-eQTLs; 200 (or 3%) were trans-

eQTLs. The full list of eQTL GWAS hits is provided in

Additional file 2: Table S10. The significant coverage of

the GWAS Catalog makes our eQTL library valuable for

exploring hypotheses regarding putative functional

mechanisms.

The CARDIoGRAMplusC4D consortium completed a

GWAS meta-analysis of 60,801 coronary artery disease

or myocardial infarction (CAD/MI) cases and 123,504 con-

trols and identified 58 genomic loci associated with CAD/

MI [29]. Solid explanations for individual mechanisms of

effect, however, were provided for only a handful of these

loci. When the risk variant lies in the exon of a gene or its

UTR, it is likely that the host gene is in the effect pathway.

However, only four of the 58 CAD/MI GWAS SNPs

reside in the exons or UTRs of genes (Additional file 1:

Table S11). Two of these are missense variants (rs3184504

in SH2B3 and rs11556924 in ZC3HC1). The polymorphism

rs964184 lies in the 3’ UTR of ZPR1 and rs7528419 lies in

the 3’ UTR of CELSR2 and downstream of SORT1.

Musunuru et al. [30] demonstrated that rs12740374, a per-

fect proxy for the risk variant rs7528419, is responsible for

changes in SORT1 expression in liver and alters plasma

LDL-cholesterol levels in mouse. For 36 CAD/MI associ-

ated loci, the lead risk variants reside in intronic regions of

genes, making their contribution to the effect pathways less

clear, though expression level or transcript splicing vari-

ation might play a role. For the remaining 18 loci, the lead

risk variants fall tens to hundreds of kilobases from the

nearest gene. Several of the nearest genes, such as LDLR at

the 19p13.2 locus, encode proteins with known roles in the

biology of CAD/MI, such as lipid metabolism or regulation.

Others, such as the lead risk variant for the PMAIP1-

MC4R locus are close to known obesity risk variants.

Nikpay et al. [29] also noted that a cluster of such genes

with documented roles in vessel wall biology can be identi-

fied among their CAD/MI GWAS results.

We posit that eQTLs can aid in identifying causal

genes or pathways represented by “risk SNPs” from

GWAS. Indeed, 19 of the 58 CAD/MI risk loci were pre-

viously reported by Nikpay et al. [29], Schunkert et al.

[31], and the CARDIoGRAMplusC4D Consortium [32]

to contain cis-eQTLs for nearby eGenes. The roles of

several of the targeted eGenes have been confirmed in

animal or in vitro experiments. For example, rs264 at

8p21.3, intronic to LPL (lipoprotein lipase), correlates

with LPL expression in monocytes [32]. Mutations in

LPL cause LPL protein deficiency resulting in type 1

hyperlipoproteinemia [33]. rs264 is also strongly associ-

ated with circulating triglyceride and HDL cholesterol

levels [34].

We performed a comprehensive eQTL analysis of

these 58 CAD/MI risk loci by intersecting the published

GWAS SNPs with the significant eQTLs in our study

and identified candidate causal genes for 21 (36%) of the

risk SNPs. Eleven CAD/MI risk SNPs or a SNP in strong

LD with them, were also lead eQTLs in our study. An-

other ten CAD/MI risk SNPs were found to be signifi-

cant eQTLs, but not the lead eQTL at that locus (see

“Methods”). We confirmed that ten genes at nine loci

mentioned in Nikpay et al. [29] were targeted by cis-

eQTLs, specifically at the ABO, IL6R, LDLR, LPL, REST-

NOA1, SORT1, SWAP70, UBE2Z, and VAMP5-VAMP8-

GGCX loci (Additional file 1: Table S12). These cis-eQTLs

were highly significant, with P values ranging from

4 × 10−5 to <10−300 and often coincided with or were

in extremely strong LD with a lead eQTL in our
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study. However, since our study was based on RNA

derived from whole blood, failure to confirm previously

observed eQTLs may stem from the tissue specificity of

expression control [1].

Among the 58 GWAS SNPs for CAD/MI, we found 24

more cis-eQTL-eGene pairs (Additional file 1: Table S12)

not mentioned by Nikpay et al. [29]. The strongest (P <

1E-455) eQTL, rs1412445, is in the third intron of LIPA

(lipase A) transcript variant 1 and was a cis-eQTL for

LIPA expression. This eQTL was described by Wild et al.

[35] who attributed its effect on CAD through endothelial

dysfunction. Lipase A catalyzes the hydrolysis of choles-

teryl esters and triglycerides. Mutations can result in LAL

deficiency, a disease leading to dyslipidemia and choles-

teryl ester storage disease [33]. A link of LAL deficiency to

premature heart disease and stroke has also been reported

[36]. The second strongest of these eQTLs is rs149268645

in the WDR12 locus, a perfect proxy of the risk lead vari-

ant for the CAD/MI risk variant rs6725887. This eQTL

targets FAM117B (P < 1E-80), although it is not a lead

eQTL for this gene. Another perfect proxy cis-eQTL at

this locus (rs149846585) targets expression of CARF (or

ALS2CR8, P < 1E-40) and is the lead eQTL for that gene.

The third strongest (P < 1E-53) eQTL, rs11191582, is in

strong LD with the risk variant rs11191416 in the

CYP17A1-CNNM2-NT5C2 locus and targets the expres-

sion of NT5C2, although the eQTL is not the lead eQTL

for that gene. NT5C2 was recently described as a cis-

eQTL target in the context of aneurysm susceptibility

[37]. At this same locus, our cis-eQTL, rs4409766 target-

ing AS3MT was also found by Pierce et al. [38] in the con-

text of arsenic metabolism. Our cis-eQTL rs17115100

targeting WBP1L was also found for this locus (Additional

file 1: Table S12). We also identified potentially novel,

strong cis-eQTLs for SNF8 and ATP5G1 at the UBE2Z

locus, and OAS2 at the SH2B3 locus where the CAD/MI

GWAS risk SNP was in very strong LD with our lead

eQTL (Additional file 1: Table S12).

Two very strong cis-eQTLs were confirmed at the

VAMP5-VAMP8-GGCX locus, targeting cis-eGenes

VAMP8 and GGCX. The CAD/MI risk SNP rs7568458

was in tight LD with our lead eQTL for VAMP8 and for

GGCX. The gene GGCX codes for a protein that

carboxylates glutamate residues of vitamin K-dependent

proteins and in turn can affect coagulation and may pre-

vent of vascular calcification and inflammation [33].

Thus, a hypothetical causal pathway leading to inflam-

mation may be triggered by variants at this locus, in

particular through variation in one or both cis-eGenes.

The lead CAD/MI risk SNP at the VAMP5-VAMP8-

GGCX locus (rs7568458) was also in tight LD with

trans-eQTLs targeting five eGenes (CASP5, DPEP3,

CRISPLD2, SLC26A8, PKN2; Additional file 1: Table S12).

The trans-eGene, CASP5, expression level was previously

shown to be associated with blood pressure [39]. The

VAMP5-VAMP8-GGCX locus itself coincides with our

trans Cluster 7 (Table 5). The top GSEA term for the

eGenes in this cluster was “neutrophils” (Table 5) suggest-

ing that the trans-eGenes associated with this cluster are

associated with altered neutrophil concentration or activ-

ity. Thus, possibly multiple causal pathways may operate

here, one through cis-eQTL activity on VAMP8 and

GGCX, and another through one or more of the trans-

eGenes such as CASP5.

The CAD/MI GWAS risk SNP rs3184504 at the

SH2B3 locus is in tight LD with a cis-eQTL targeting the

expression of OAS2 and SH2B3, and also is in tight LD

with trans-eQTLs targeting 16 trans-eGenes (Additional

file 1: Table S12). The SH2B3 locus coincides with our

trans Cluster 39 (Table 5). The Top GSEA categories for

the 17 trans-eGenes in Cluster 39 include interferon sig-

naling, cytokine signaling, and immune system (Table 5).

The SH2B3 CAD/MI GWAS risk SNP resides in a

GWAS hot spot, showing strong associations with nu-

merous diseases and phenotypes including red blood cell

traits, platelet volume, and eosinophil counts, as well as

CAD, blood pressure, and stroke [14]. Using the same

eQTL data, Huan et al. [39] extensively studied lead

variant rs3184504 in the context of blood pressure and

found SH2B3 to be a “key driver” gene of a blood pres-

sure gene regulatory network. They found that many of

the trans-eGenes for rs3184504 were themselves signifi-

cantly related to blood pressure. It is interesting to note

that one of these hypertension-related trans-eGenes,

ATP2B1, is also a cis-eGene of the lead CAD/MI GWAS

risk SNP at the ATP2B1 locus (Additional file 1: Table S12).

Thus, the pathways implicated in hypertension at the

SH2B3 locus may intersect with pathways at the

ATP2B1 locus.

We were able to confirm that REST is a target of a cis-

eQTL in the REST-NOA1 locus on chromosome 4. How-

ever, we also observed that the CAD/MI GWAS SNP at

this locus, rs17087335, is in tight LD with lead trans-

eQTLs targeting expression of trans-eGenes GDAP1

(ganglioside induced differentiation associated protein

1 on chr 8; P < 1E-20) and CACNA1E. (calcium voltage-

gated channel subunit alpha1 E on chr 1; P < 1E-7,

Additional file 1: Table S12). We speculate that these

trans-eQTLs may point to a molecular mechanism

underlying this CAD/MI risk locus.

Molecular QTL browser

To make our results more user-friendly and accessible,

we have made them freely available via the NCBI Mo-

lecular QTL Browser (https://preview.ncbi.nlm.nih.gov/

gap/eqtl/studies/), which serves as a resource for data on

association between genetic variation and molecular

phenotypes. The browser links our results to multiple
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resources including eQTLs identified in other studies.

Importantly, users may specify P value cutoffs and other

filtering criteria. Users of the Molecular QTL Browser

may conduct targeted studies of specific genes based on

prior evidence or may wish to do meta-analysis of mul-

tiple eQTL studies, where more permissive P value cut-

offs may be appropriate. To support meta-analysis and

other comparisons across primary studies, the integrated

data resource allows for cross-dataset searches and

filtering based on genome location or functional an-

notation (Fig. 4).

Discussion
We provide the largest, single study and database of cis-

eQTLs and trans-eQTLs to date. We considered several

examples of the potential implications of our results for

interpreting GWAS findings. Our results also can be

used to guide functional studies such as targeted gene

knockout experiments and studies of miRNA expression

in follow-up of GWAS results. We have illustrated how

extensive cis-eQTL and trans-eQTL data can be used to

augment GWAS analysis of a complex disease (CAD/

MI). Of the 58 recently reported lead risk variants for

CAD/MI [29], we show that 21 contain cis-eQTLs tar-

geting 34 genes. Four additional risk variants are trans-

eQTLs targeting 24 eGenes. Thus, eQTL analysis can

provide a rich resource for defining putative causal path-

ways of risk variants determined in GWAS.

Our genome-wide trans-eQTL results provide a new

richness of detail regarding trans-eQTL clusters and

their putative relations to various transcription factors

and miRNA targets. Another group [8] recently also car-

ried out a genome-wide trans-eQTL analysis, providing

a basis for comparison of our complete trans-eQTL

results. However, their use of a different tissue (PBMC-

derived RNA rather than whole blood), use of a different

expression platform (an Illumina array rather than the

Affymetrix Human Exon Array), and imputation to a dif-

ferent SNP set (HapMap II rather than 1000 Genomes),

limit the value of comparisons and explain the low rate

of validation (6%).

Although many of the trans clusters may have resulted

from uncompensated variation in cell type in the whole

blood samples, some clusters could not be so easily ex-

plained. Moreover, a large majority (90%) of the lead

trans-eQTLs did not appear in any cluster, including

nine of our top 25 lead trans-eQTLs. Thus, we have

identified a large number of trans-eQTL whose mechan-

ism of action is likely not simply due to cell proportion,

but through other mechanisms possibly involving miR-

NAs, transcription factors, long non-coding RNAs, or as

yet unidentified transcribed molecules.

Fig. 4 Screenshot of NCBI molecular QTL browser
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The exon-level expression data permitted us to iden-

tify more precisely cases of polymorphism-in-probe,

where the genetic variant is directly detected by the ex-

pression array and might easily be interpreted as an as-

sociated change in overall gene expression. The same

exon-level expression data facilitated a search for spli-

cing variants influenced by genetic sequence (sQTLs)

[40]. However, the additional noise inherent in the exon-

level analysis offsets to some degree the benefits of the

additional resolution offered by measuring exon-specific

expression.

Our findings on cis-eQTL patterns are generally con-

sistent with previous findings. We were able to validate

54–58% of our lead cis-eQTL results compared to other

studies using microarrays. For a study using next-

generation sequencing, the validation rate dropped to

25%. Only about 3–6% of our lead trans-eQTL results

could be found in previous studies, possibly reflecting

the need for very large sample size when generating

trans results or the dependence on the specific expres-

sion platform and tissue being studied. Conversely, we

were able to replicate a substantial proportion of previ-

ously published eQTL results (up to 69% for cis and up

to 10% for trans-eQTL-gene pairs). Two previous studies

[5, 6] have the limitation of combining, via imputation,

genotypes from multiple platforms, which might lead to

variation in imputation quality across SNPs. We used a

single platform with approximately 550 K markers and

successfully imputed 8.5 million SNPs. The study of

Liang et al. [6] used two less dense genotyping platforms

having approximately 100 K and 300 K markers; thus, it

is not surprising that we found many more eQTLs espe-

cially in regions where our denser genotyping array pro-

vided better marker coverage. The genotype array used

in the RNAseq-based study [7] was denser than our

genotyping array, but the authors did not impute results

to the denser 1000 Genomes SNP set. We were able

both to replicate and extend the impressive findings of

Westra et al. [5]. In our Cluster 39, which contains the

highly pleiotropic GWAS SNP rs3184504, Westra et al.

[5] observed multiple gamma interferon signaling genes

and multiple toll-like receptor signaling genes as tar-

gets of this trans-eQTL. We were also able to identify

this strong trans-eQTL and extend its associated

transcript list to five additional interferon signaling

genes.

The strengths of our study include its large sample

size, expression measurement carried out in a single

laboratory with rigorous quality control, use of imput-

ation to a dense set of 1000 Genomes SNPs, and extensive

attention to controlling for artifacts in the expression data.

As a consequence, we found that a substantial proportion

of published GWAS SNPs associated with traits or

diseases are themselves lead eQTLs for nearby (13%)

or distant (3%) genes. We determined that our full

sample size detected 60% more target genes than did

a subset of about half the original size, showing that

many previously undetected eQTLs and target tran-

scripts are probably newly detected with our study

and that even more eQTL-eGene pairs remain to be

discovered.

The very large proportion of variance explained (R2)

values for the strongest eQTLs (up to 57% for cis and

up to 22% for trans, Table 4), pointing to the very large

influence that these variants can have on expression

levels. Such high R2 values may also arise due to

polymorphism-in-probe instances, but we used an ef-

fective procedure for detecting such cases. Of course, it

is possible that as yet undiscovered SNPs exist on

probes and are responsible for some of these extreme

R2 values.

A further strength of our study is that the expression

array contains far more probes and probesets than the

arrays used in some other eQTL studies. For example,

the array used in the meta-analysis of Westra et al. [5]

(Illumina Human HT12) contains about 49,000 probe-

sets, whereas the gene expression platform of this

study, the Affymetrix Human Exon Array, contains

almost six times more probesets. The additional

probesets allow for the detection of expression

changes along the entire length of the transcript, rather

than primarily near its 3’ end. These extra probesets also

give added protection against polymorphism-in-probe

artifact by averaging across the many probes for each

transcript.

In addition to conducting this large genome-wide

eQTL study, we have created a public resource of cis-

eQTLs and trans-eQTLs at the gene and exon level. Our

results are based on a much larger cohort than any pre-

vious public eQTL resource, and therefore reflects a

higher degree of precision and specificity of eQTLs,

eGenes, and eQTL-eGene pairs.

We acknowledge several limitations of our study. The

homogeneity of the FHS population may limit the

applicability of our results to populations of different

ancestries. Lack of population diversity might also in-

crease the size of LD blocks and thereby limit the reso-

lution with which true regulatory sites can be identified.

Despite statistical adjustments for imputed blood cell

counts, our eQTLs might still reflect cell type admixture

effects and might not be comparable to results obtained in

other tissues. RNAseq-based methods for determining

gene expression offer even higher resolution and may not

be subject to the same biases accompanying microarray

measurements. However, agreement of our study with a

recent RNAseq-based study [7] was comparable to the

level of agreement seen with several other microarray-

based studies.
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Conclusions
Despite these limitations, our results provide an exten-

sive resource of cis-eQTLs and trans-eQTLs at the gene

and exon level and this information may be useful for

elucidating the biological underpinnings of many GWAS

SNP associations with disease traits. Our eQTL database

will facilitate better understanding of novel pathways

and associations across the human genome, which may

contribute to new approaches for the detection, treat-

ment, and prevention of diseases.

Methods

Study participants

Recruitment procedures and clinical characteristics of

participants from the FHS Offspring [10] and Third

Generation cohorts [11] have been reported previously.

Samples for this study came from 2770 individuals who

attended the eighth Offspring cohort examination cycle

(2005–2008) and 3341 individuals who attended the

second examination cycle (2006–2009) of the Third

Generation cohort. Protocols for participant examina-

tions and collection of genetic materials were approved

by the Boston Medical Center Institutional Review Board.

All participants gave written, informed consent.

Isolation of RNA from whole blood, preparation, and

hybridization

Fasting peripheral whole blood samples (2.5 mL) from

FHS participants were collected during examination

in PAXgene™ tubes (PreAnalytiX, Hombrechtikon,

Switzerland), incubated at room temperature for 4 h

for RNA stabilization, and then stored at −80 °C.

Total RNA enriched with miRNA was isolated from fro-

zen PAXgene blood tubes by Asuragen, Inc., according to

the company’s standard operating procedures for auto-

mated isolation of RNA from 96 samples in a single batch

on a KingFisher® 96 robot. Tubes were allowed to thaw for

16 h at room temperature. After centrifugation and wash-

ing to collect white blood cell pellets, cells were lysed in

guanidinium-containing buffer. Organic extraction was

performed prior to adding binding buffer and magnetic

beads in preparation for the KingFisher run. The purity

and quantity of total RNA samples were determined by

absorbance readings at 260 and 280 nm using a Nano-

Drop ND-1000 UV spectrophotometer. The integrity of

total RNA was qualified by Agilent Bioanalyzer 2100

microfluidic electrophoresis, using the Nano Assay and

the Caliper LabChip system.

Preparation of complementary DNA from RNA

RNA samples of 50 ng were amplified using the WT-

Ovation Pico RNA Amplification System (NuGEN, San

Carlos, CA, USA) as recommended by the manufac-

turer in an automated manner using the genechip

array station (GCAS). In brief, first strand complemen-

tary DNA (cDNA) was prepared using a unique first

strand DNA/RNA chimeric primer mix and reverse

transcriptase. In the second step, DNA/RNA Hetero-

duplex Double Stranded cDNA was generated which

served as the substrate for SPIA amplification – a lin-

ear isothermal DNA amplification process developed

by NuGEN. In the third step, amplified DNA along

with RNA was treated with RNase H to degrade the

RNA in the DNA/RNA heteroduplex at the 5’ end of

the first cDNA strand which then served as the initi-

ation site for the next round of cDNA synthesis. The

process of SPIA DNA/RNA primer binding, DNA rep-

lication, strand displacement, and RNA cleavage is re-

peated, resulting in rapid accumulation of microgram

amounts of SPIA cDNA. An aliquot of the SPIA cDNA

was used for quantitative polymerase chain reaction

(qPCR) analysis.

Target labeling and hybridization onto Affymetrix

Genechips

Three micrograms of the amplified cDNA from the WT-

Ovation Pico amplification step were processed with the

WT-Ovation Exon Module in GCAS to produce sense

strand ST-cDNA following the manufacturer’s (NuGEN,

San Carlos, CA, USA) procedure; 5 μg ST-cDNA was

fragmented and labeled with the FL-Ovation™ cDNA

Biotin Module using a proprietary two-step fragmenta-

tion and labeling process. The first step is a combined

chemical and enzymatic fragmentation process that

yields single-stranded cDNA products in the base range

of 50–100 . In the second step, this fragmented product

is labeled via enzymatic attachment of a biotin-labeled

nucleotide to the 3-hydroxyl end of the fragmented

cDNA generated in the first step. Hybridization, wash-

ing, and laser scanning of Affymetrix Human Exon 1.0

ST microarrays were performed according to the manu-

facturer’s protocol (Affymetrix, Santa Clara, CA, USA).

Hybridization was performed at 45 °C overnight,

followed by washing and staining using FS450 fluidics

station. Scanning was carried out using the 7G GCS3000

scanner.

Affymetrix human exon 1.0 ST microarray platform

This platform consists of approximately 6 million 25

base probes, grouped into about 300,000 four-probe pro-

besets, each designed to target an exon of a transcript.

Multiple probesets are grouped together to represent a

set of transcripts from a single gene (called a transcript

cluster). Transcript clusters are annotated to genes in a

nearly one-to-one fashion. Transcript clusters have from

one to several hundred probesets, depending on the

length of the transcript, and form the basis of our
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analysis here. Of the 12,396 transcript cluster IDs which

are found to be eGenes (either cis- or trans-), only 244

are in a many-to-one relationship with an EntrezGene

and 282 no longer map to an Entrez gene entry. Thus, a

transcript cluster level analysis may be considered a

proxy for a gene-level analysis.

Microarray data collection, quality control, and data

adjustment

The intensity values for each gene chip were collected

using the robust multi-chip average (RMA) method

available in the Affymetrix Power Tools (APT) [41] Soft-

ware version 1.12.0 (Affymetrix). A total of 287,329

Refseq-core [42] probesets representing 17,873 distinct

genes from 6111 samples were extracted from the APT,

based on NetAffx annotation version 31 [43]. Samples

were excluded based on three factors: (1) values for a

quality control (QC) metric, all_probeset_rle_mean ≥ 0.7

[44]; (2) chromosome Y-linked gene expression did not

agree with reported sex; and (3) when a DNA/mRNA

sample pair mix-up is apparent, based on the top 395

eQTLs with minor allele frequency (MAF) ≥ 0. The

remaining 5626 samples with satisfactory results consti-

tuted the study samples and were again normalized with

RMA, retaining only core-level probesets. We deter-

mined that many artifacts in the expression data could

be reduced by adjusting for chipping batch, various tech-

nical factors provided by Affymetrix APT program for

each array hybridization, and for the first principal com-

ponent (PC1) determined from the centered and unscaled

RMA data. The technical adjustment factors were: all_

probeset_mean, all_probeset_stdev, neg_control_mean,

neg_control_stdev, pos_control_mean, pos_control_stdev.

all_probeset_rle_mean, all_probeset_mad_residual_mean,

and mm_mean. In addition, we adjusted by Probeset-

GroupDiff, which partially accounts for the non-random

layout of probes on the Affymetrix Exon Array.

Several additional data adjustments were considered

beyond the technical covariates described above. We

tested the effects of: (1) including 40 PCs on the un-

adjusted data; (2) including 20 PEER factors [45] on the

unadjusted data; (3) including 20 PEER factors on the

adjusted data; and (4) including 40 surrogate variables

[46] on the un-adjusted data. The internal validation rate

for cis-eQTLs (Additional file 1: Table S2) was greatest

when 20 PEER factors were used with the adjusted

data and this approach was selected as the method of

choice.

Genotyping platform and SNP imputation

Of the 5626 microarray samples passing quality controls,

5257 were previously genotyped using the Affymetrix

500 K and MIPS 50 K platforms [47, 48]. From a total

number of 549,781 genotyped SNPs, we removed

137,728 genotyped SNPs on the following filtering cri-

teria: Hardy–Weinberg Equilibrium (HWE) P value < 1E-6

(22,018 SNPs), call rate < 96.9% (48,285 SNPs), MAF < 0.01

(66,063 SNPs), map mismatch from Build 36 to Build 37

(82 SNPs), missing a physical location (428 SNPs), number

of Mendelian errors > 1000 (25 SNPs), residing outside

of chromosomes 1–22 or X (786 SNPs), and duplicates

(41 SNPs). This leaves the remaining 412,053 SNPs as

input to Minimac [49], an implementation of genotype

imputation software, MACH [50]. The 1000-Genomes

“cosmopolitan” SNP set [51] was used as the imput-

ation reference platform. Minimac’s GIANT 1000 Ge-

nomes Imputation protocol was used, with the SNP

phasing options of: −rounds 20 –states 200 –phase –sam-

ple 5, yielding a total of 39,315,185 SNPs. Of these, we

chose SNPs with imputed quality score (R2) ≥ 0.3 and

MAF ≥ 0.01, leaving a total of 8,510,936 SNPs for analysis

of cis and trans association, all in hg19 coordinates. The

genotyping data are available in dbGaP under study

phs000342.v13.p9 (http://www.ncbi.nlm.nih.gov/projects/

gap/cgi-bin/study.cgi?study_id=phs000342), which is

under the umbrella of the overall FHS study of

phs000007.

We performed a principal component analysis (PCA)

with 521 unrelated FHS participants (Additional file 1:

Figure S7) along with HapMap individuals (CEPH with

Northern and Western European ancestry (CEU, Pink),

Yoruba from Ibadan, Nigeria (YRI, Red), Han Chinese

from Beijing (CHB), and Japanese from Tokyo (JPT).

The samples which entered the eQTL study are shown

in Additional file 1: Figure S7. The program smartpca

from the EIGENSOFT package was used to perform the

PCA [52]. PCs for additional FHS participants were

computed from the PC weights derived from that

analysis.

We also charted the effect of imputation R2 on

validation rates for that eQTL (Additional file 1:

Figure S8). Validation rate rises nearly linearly with

imputation R2 from about 58% (R2 < 35%) to ~69%

(R2 > 85%). However, since the overall average imput-

ation R2 for this set is 94%, the lowered validation

rate for lower quality imputation has little impact on

the final result.

Whole blood cell counts

Of the 5257 samples, 2181 from the Third Generation

cohort had whole blood complete blood cell counts

(CBCs, Beckman Coulter, Brea, CA, USA). The cell

counts of the remaining samples were imputed using a

partial least squares (PLS) prediction based on the gene

expression data. Cross-validated estimates of prediction

accuracy (R2) for the CBC components (WBC, RBC, plate-

let, neutrophil percent, lymphocyte percent, monocyte
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percent, eosinophil percent, and basophil percent) were

0.61, 0.41, 0.25, 0.83, 0.83, 0.81, 0.89, and 0.25, respectively.

We conducted comparisons between results of using

imputed cell counts and those when using measured

ones and did not find significant difference. Thus, we

used measured cell counts when available and imputed

ones when not.

Statistical analysis

An eQTL is defined to be any SNP with a significant as-

sociation to the expression level of some transcript.

The analysis required two phases: first, using the

mixed-effect modeling package pedigreemm [53] of R

version 3.0.1, we removed from the expression data (for

5626 samples) the effects of sex, age, platelet count,

white blood cell whole count, and imputed differential

count (percentages of lymphocytes, monocytes, eosino-

phils, and basophils), while accounting for reported fa-

milial relationships, and collected the residuals. Next, we

computed 20 factors using a Bayesian framework to infer

hidden confounding factors (PEER [45]) on the residua-

lized gene expression data. These PEER factors, along

with sex, age, and imputed effect allele dosage were used

fit to the ResidualizedExpression, in an additive linear

model for the 5257 samples:

ResidualizedExpression ¼ Mean þ Sex þ Age
þ Peer1 þ … þ Peer20
þ EffectAlleleDosage

The model fit was repeated for all 1.5 × 1011

SNP:transcript cluster pairs. The algorithm was imple-

ment using Graphical Processing Units (GPUs) to ac-

celerate the computation. We collected the effect

estimate (β), T-statistics, R2, log10 P values, and log10

of Benjamini–Hochberg’s [54] FDR for EffectAlleleDosage,

after accounting for the other covariates, for each associ-

ation with P values < 1E-4. The FDR computations for cis

and trans were performed separately. To check for the in-

fluence of possible apparent inflation of P values in just

the 2 Mb cis regions, we used the method of Devlin and

Roeder [12] to adjust the P values such that the genomic

control factor λ becomes 1.0. The FDR values for the de-

clared significant cis-eQTLs rose only slightly, but did not

exceed the stated cutoff of 5%.

Enrichment P value calculation

In calculating “enrichment,” i.e. observed number di-

vided by expected number, we accounted for the LD

structure of the available 8.5 million SNPs by first “pruning”

to obtain a set of independent SNPs. Expected num-

bers were obtained from the relevant 2 × 2 contingency

tables, using the pruned set as the basis of comparison,

thereby insuring that counts were from nearly independent

observations. The pruning was accomplished by first

ordering SNPs by the minimal P value of that SNP

with any gene in the eQTL database, followed by all

remaining insignificant SNPs. Starting with the first

SNP on the list, we prune subsequent SNPs with

LD > 0.3. We then consider the second remaining list

member and prune the rest of the list, and so forth until

we reach the end of the list. The LD was computed

between pairwise SNPs within the FHS dataset. This

resulted in a set of about 279,310 independent SNPs.

Definition of cis-eQTL, trans-eQTL, primary lead eQTL, and

secondary lead eQTLs

An SNP-transcript cluster pair is considered cis if the

SNP resides within 1 Mb of the TSS on the same

chromosome or if the SNP resides in a contiguous block

of eQTLs which includes the TSS. A contiguous block of

eQTLs targeting a single transcript cluster is a set of sig-

nificant eQTLs on the same chromosome with no in-

ternal gaps greater than 1 Mb. Such blocks ranged in

size up to 10 Mb. eQTLs that fall in blocks which did

not contain the TSS for its target transcript cluster were

defined as “trans.” The “lead eQTL” is the strongest

eQTL, judged by P value for association, in its block. A

secondary lead eQTL may be found for a particular

block (and particular transcript) by fitting the regression

model:

ResidualizedExpression ¼ Mean þ Sex

þ Age þ Peer1 þ … þ Peer20

þ EffectAlleleDosage primary lead eQTLð Þ

þ EffectAlleleDosage test SNPð Þ

for each test SNP in the current block that has low LD

correlation to the primary lead eQTL (R2 < 0.36). If the P

value for the coefficient of the best test eQTL is less

than 0.0001, we define this as a secondary lead eQTL.

This process is iterated, adding successive secondary

lead eQTLs to the regression model until no more low-

linkage SNPs are left or the P value of the test SNP is

above 0.0001. This method is similar to one suggested

by Powell et al., but allows the effects of all eQTLs to be

re-estimated at each step of the regression [55].

Internal replication analysis

Results were replicated in two phases: (1) internal repli-

cation using two subgroups within the FHS overall study

set; and (2) external replication based on published

eQTL datasets. In the internal replication stage, we used

the FHS Offspring cohort as the discovery dataset and

the FHS Third Generation cohort as the replication

dataset. We ran the exact same statistical analysis on

each dataset and required that the pair satisfy FDR < 5%

in both the discovery and replication datasets to be con-

sidered replicated. Since both datasets used the same
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platforms for genotyping and expression, matching

markers and transcripts (or probesets) were done

directly using the marker ID or the transcript cluster ID.

External replication and validation analysis

Calculation of external replication rates required that

the eligibility of a published eQTL-transcript cluster pair

be determined. For Westra et al. [5] and Liang et al. [6],

we matched markers reported in those studies by their

identifiers or their exact genomic positions, to the avail-

able markers in our study. We matched their transcript

probes by overlap of their exact genomic start and end

addresses with the Affymetrix transcript clusters. Repli-

cation rate, then, is the ratio of previously reported re-

sults that are found in our study to the previous results

eligible to be replicated in our study. For Battle et al. [7],

only gene-symbol not genomic location was reported,

which was matched to the annotated gene-symbol for

the Affymetrix transcript cluster. For Kirsten et al. [8],

transcripts were defined by Entrez IDs, which were

matched to the annotation of the Affymetrix transcript

cluster ID.

Calculation of validation rates starts with determin-

ation of which of our eQTLs and which of our tran-

scripts were eligible to be measured in the published

study. Validation rate is the number of eligible lead

eQTL-transcript cluster pairs in our results which are

also validated in the published study divided by the

number of eligible pairs. Validation is asserted when we

can find a SNP:transcript cluster pair in the external

study where the SNP has > 80% LD correlation with our

lead eQTL. For Multiple Studies [2, 4–6], we considered

a pair to be validated if it was validated by any one of

the studies. Since we did not have access to a complete

list of SNPs or of transcripts, measurement of which

passed quality control in each external study, we had to

make some assumptions about eligibility. To be eligible,

we required the SNP Rs ID or the SNP genomic address

to match exactly, and that the SNP be included in

HapMap version 3. We also required that the probes of

the transcript on the external study to overlap the

probes on the Affymetrix transcript cluster, without

regards to the annotated gene-symbols. More details are

included in Additional file 1: Supplementary Methods.

For Battle et al. [7] eligibility for validation was deter-

mined if the SNP was on the Illumina HumanOmni1-

Quad_v1 BeadChip which interrogated 1,124,584 SNPs

and the transcript was part of the NCBI v37.2 (a.k.a.,

hg18) H. sapiens reference genome. Since Battle et al. [7]

reported only the lead-eQTL per transcript, we defined

validation if our lead eQTL was in LD with theirs at

R2 > 80%. For Kirsten et al. [8] eligibility was derived

from a file (personal communication from H. Kirsten, 8/

31/2016) of which SNPs and which EntrezIDs were used

by them in detecting significant SNP-transcript cluster

pairs. We also asserted validation if our lead eQTL was

in LD with R2 > 80% with their results.

Our definition of validation did not consider the direc-

tion of change because many studies did not report that

direction or did not report which allele was considered

as the reference. Kirsten et al. [8] did report sufficient

information to make this comparison, however. We re-

ported the mean percentage agreement for all validated

lead eQTL-transcript cluster pairs or pairs where the

eQTL was in > 80% LD with our lead eQTL.

To determine expected numbers of validated pairs

under the random assumption, each study calculated the

ratio of number of eligible detected pairs to the possible

number of eligible cis-eQTL:transcript pairs in the exter-

nal study. Then, since our lead eQTLs were independent,

we multiplied this ratio by the number of eligible pairs to

be validated. P values for the overlap of ours and previous

studies were calculated from 2 × 2 contingency tables, sep-

arately for cis- and trans-. In every case, the P values based

on Fisher’s exact test were incalculably small and were not

separately reported.

Detection rates and validation rates rose with the

number of probesets available for each transcript or

transcript cluster (see Additional file 2: Table S10),

reaching a plateau when about 21 to 25 probesets were

available. A probeset consists generally of four 25 base

probes on the Affy Exon array. A transcript cluster con-

sists of from one to several hundred probesets. Relative

validation rates also rose with increasing expression level

(Additional file 1: Figure S9), suggesting that more

highly expressed genes are more reliably detected as tar-

gets of eQTLs.

Polymorphism-in-probe analysis

When a SNP appears in the microarray probe, it may

appear to modify the expression level of that gene, but

actually only modify the binding affinity of the RNA to

the probe itself. The Affymetrix Human Exon array is

uniquely suited to detecting this artifact since it in-

cludes multiple, typically ten, probesets per gene. SNPs

affecting the binding affinity at a single probe are un-

likely to affect the affinity at other probes, so artifactual

expression changes can be detected by comparing

exon-level expression to that of the entire gene. We de-

veloped a rule to distinguish artifactual from real eSNPs

as follows. A SNP located in an Affymetrix probe was

declared to be a likely artifactual cause of significance

if: (1) the association R2 for this SNP was high, greater

than 90% of the maximal R2 achieved by the lead eQTL,

in the gene-level analysis; and (2) the R2 in the exon-

level analysis for this SNP for its exon was greater than

95% of the maximal R2 achieved by any cis-SNP for any

of the exons in this transcript cluster. In such cases, all
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eQTLs for this transcript cluster (gene) were marked as

likely artifact since most would be in linkage disequilib-

rium to some extent, with the lead eQTL.

We downloaded the golden path track from the UCSC

Genome website for the Affymetrix Exon Array probes,

probesets, and transcript cluster addresses in hg19 coor-

dinates. We performed an overlap analysis between the

probe coordinates and the addresses of SNPs with im-

puted quality score (R2) ≥ 0.3 and MAF ≥ 0.01. We

counted the number of eQTL pairs and the number of

SNPs with such an overlap.

Determination of the genomic control factor

The computation of the genomic control factor would

have required storage of at least half of all results, which

we estimated at about 4 Petabytes for our dataset. Due

to such extensive storage requirements, we rather opted

to perform transcriptome-wide eQTL analysis on a

random subsample of 100,000 SNPs at the gene level

(17,873 transcript clusters). The SNPs were selected

from those with imputed quality score (R2) ≥ 0.3 and

MAF ≥ 0.01, and also within the HapMap SNP set. We

stored only the P values arising from this analysis. We

computed the genomic control factor λ as defined by

Devlin and Roeder [12]. Let F(∙) be the upper-tail cumu-

lative distribution function of χ2 with degrees of freedom

of 1. Then λ = F−1(median(P values))/F−1(0.5).

Intersection with NHGRI GWAS catalog

We downloaded NHGRI GWAS catalog [14] on 5 June

2016 and filtered out SNP-trait pairs with P values > 5e-

8, leaving 7057 unique SNPs covering 942 phenotypes.

We intersected the GWAS SNPs with our significant

eQTLs having FDR < 0.05 and with our lead eQTLs.

Trans-eQTL cluster definition

Trans-eQTLs sometimes appeared in narrow blocks or

clusters within the genome, affecting numerous distant

transcript clusters. To formally define these clusters, we

focused only on all SNPs having six or more trans asso-

ciations and excluded all associations that resided in the

same chromosome as the SNP. We use a modified K

nearest-neighbor (KNN) algorithm [56] as follows.

Starting with the lead trans-eQTL, i.e. the SNP with the

most significant association by P value as a centroid, we

considered successive eQTLs to the left and the right of

the starting SNP (but on the same chromosome) and de-

termined whether to include each new eQTL in the

growing cluster according to its “distance” from the clus-

ter. Let A be the set of eGenes targeted by the current set

of trans-eQTLs and B be the set of target eGenes of the

neighboring eQTL. We computed the distance d between

sets A and B, where d = 1 - |A∩B|/min(|A|,|B|), where |.|

denotes the size of the set. If d < 0.7, we combined the

neighboring eQTL with the current set of eQTLs into the

cluster. Once there are no further SNPs passing the dis-

tance cutoff, the eQTLs in the current cluster were re-

corded and the algorithm restarted with the next available

eQTL in the original chromosome not yet included in

clusters. The clustering process is iterated until all SNPs

on the original chromosome were considered. The clus-

tering process builds a set or block of nearby SNPs

which are trans-eQTLs for substantially the same set

of genes.

Gene-set enrichment analysis

We performed GSEA [26] to determine putative func-

tions of the genes of each trans-cluster. We used the on-

line “Investigate Gene Sets platform GSEA” at http://

software.broadinstitute.org/gsea/msigdb/annotate.jsp, which

computes overlaps of the submitted gene lists with a library

of pre-established gene lists and provides a significance in-

dicator for the degree of overlap. We selected all categories

(C1: positional gene sets, C2: curated gene sets, C3: motif

gene sets, C4: computational gene sets, C5: GO gene sets,

C6: oncogenic signatures, C7: immunologic signatures) and

collected all categories with FDR < 0.05. We separated the

categories that correspond to promoters, transcription fac-

tors, and miRNA targets.

Enrichment analysis for CD71+ genes

We gathered from the literature 166 gene symbols that

are known to be associated with the CD71+, early eryth-

rocytes, or reticulocyte transcript [21]. We performed

one-sided Fisher’s exact test to test for enrichment only

on clusters targeting six or more genes in common with

these 166 genes.

MiRNA data collection

The profiling of the miRNA expression, as described in

a previous study [27], was performed using the quantita-

tive real-time polymerase chain reaction (qRT-PCR)

using the same PAXgene Blood RNA samples from the

same set of individuals as in the mRNA expression pro-

filing. The qRT-PCR was performed using a high

throughput qRT-PCR instrument BioMark System (Flui-

digm, South San Francisco, CA, USA). Blanking was per-

formed for quality control purposes using the BioMark

dynamic array platform and pooled samples were repeat-

edly measured for chip to chip variability, showing excellent

reproducibility and no cross-contamination. Threshold

cycle (Ct) values as measured by the qRT-PCR instrument

were used as measurements of miRNA expression levels.

Since Ct values reflect the number of amplification cycles

required for the fluorescent signal to exceed the back-

ground level, low Ct values indicate higher expression of

miRNA, with values over 27 considered as missing due to

the possible oversaturation of PCR product.
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MiRNA-mRNA co-expression analysis

The log-2 transformed miRNA Ct values were normalized

and adjusted for isolation batch, RNA concentration, RNA

quality, and 260/280 ratio (defined as the ratio of the ab-

sorbance at 260 and 280 nm; measured using a spectro-

photometer). The co-expression analyses between mRNA

expression levels and miRNA levels were performed under

linear mixed model, adjusting for age, sex, and family

structure, using the lmekin function in the kinship pack-

age [57], on samples with both miRNA and mRNA (n up

to 5357). We excluded miRNA measured in fewer than

400 non-missing values. Genome-wide Benjamini and

Hochberg’s [54] FDR was used to correct for multiple

comparisons. Only results with genome-wide FDR < 0.001

were considered. The miRNA-mRNA co-expression data-

base is described in Huan et al. [27].

Cluster miRNA enrichment analysis

To obtain miRNA targets per cluster, we performed GSEA

analysis (on miRNA target category) on transcripts tar-

geted by each cluster. We filtered the GSEA results at

FDR < 0.05. GSEA may output multiple miRNAs for one

cluster. After the GSEA analysis, we confirmed our

findings to see if the miRNA-transcript cluster pair are

indeed observed in our miRNA-mRNA co-expression

database above. We reported the number of confirmed

transcripts per cluster.
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Supplementary Methods, and 12 tables. (PDF 1844 kb)

Additional file 2: Table S10. GWAS-associated cis-eQTLs and trans-eQTLs,

that overlap with the NHGRI GWAS catalog (downloaded on 5 June

2016, filtered by association P < 5E-8). Table S10a. Overlaps with lead

eQTLs or with > 80% R2 of lead eQTL. Table S10b. Overlaps with all

significant eQTLs. (XLSX 1541 kb)
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