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Qingqin Li 16, Jane A. Foster6, Sidney H. Kennedy6,13 and Gustavo Turecki 1,2

Abstract
Major depressive disorder (MDD) is primarily treated with antidepressants, yet many patients fail to respond
adequately, and identifying antidepressant response biomarkers is thus of clinical significance. Some hypothesis-driven
investigations of epigenetic markers for treatment response have been previously made, but genome-wide
approaches remain unexplored. Healthy participants (n= 112) and MDD patients (n= 211) between 18–60 years old
were recruited for an 8-week trial of escitalopram treatment. Responders and non-responders were identified using
differential Montgomery-Åsberg Depression Rating Scale scores before and after treatment. Genome-wide DNA
methylation and gene expression analyses were assessed using the Infinium MethylationEPIC Beadchip and
HumanHT-12 v4 Expression Beadchip, respectively, on pre-treatment peripheral blood DNA and RNA samples.
Differentially methylated positions (DMPs) located in regions of differentially expressed genes between responders
(n= 82) and non-responders (n= 95) were identified, and technically validated using a targeted sequencing
approach. Three DMPs located in the genes CHN2 (cg23687322, p= 0.00043 and cg06926818, p= 0.0014) and JAK2

(cg08339825, p= 0.00021) were the most significantly associated with mRNA expression changes and subsequently
validated. Replication was then conducted with non-responders (n= 76) and responders (n= 71) in an external cohort
that underwent a similar antidepressant trial. One CHN2 site (cg06926818; p= 0.03) was successfully replicated. Our
findings indicate that differential methylation at CpG sites upstream of the CHN2 and JAK2 TSS regions are possible
peripheral predictors of antidepressant treatment response. Future studies can provide further insight on robustness of
our candidate biomarkers, and greater characterization of functional components.

Introduction
Antidepressants are considered an effective treatment

option for major depressive disorder (MDD), a severe
affective disorder that is currently deemed to be the

leading cause of global disability1. However, treatment
selection is clinically subjective, response is determined by
trial and error, and objective patient improvement is dif-
ficult to distinguish from the placebo effect2. On average,
4 weeks are required for a notable response to treatment,
and 6 weeks are required for symptom remission3. In
addition to the long period of symptom evaluation, the
uncomfortable side effects of antidepressants greatly
contribute to noncompliance with treatment. Around
60% of patients fail to respond to initial interventions,
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whereas 20–30% of these patients do not respond despite
multiple attempts4,5. Thus, a treatment paradigm that
reliably matches patients with effective antidepressants as
early on as possible would minimize their suffering, and
avoid adversities associated with selecting appropriate
medications. Predictive biomarkers for antidepressant
response could greatly benefit clinical practice by
decreasing the duration of evaluating drug efficacy6.
MDD is heterogeneous in symptom presentation and

treatment response, and environmental factors have been
shown to influence the onset, course and duration of ill-
ness7. Epigenetic modifiers of gene expression are key
mediators of environmental effects on the genome. As
such, exploring epigenetic mechanisms as possible pre-
dictors of treatment response is appealing, as they are
better at reflecting the interaction of genetic and envir-
onmental factors. The most investigated and best char-
acterized epigenetic modification in clinical studies is
DNA methylation8. DNA methylation is defined by the
addition of a methyl group typically to cytosine bases, and
predominantly at those directly followed by a guanine
(CpG dinucleotide sites). Differential methylation has
been associated with life experiences such as drug abuse9,
early childhood trauma10, and chronic stress11, all of
which are predisposing factors for MDD.
DNA methylation-based biomarkers have already been

successfully utilized for clinical evaluation of neurodeve-
lopmental disorders12, multiple types of cancer13 and
cardiovascular disease14. To date, only a few studies have
investigated differential DNA methylation as a predictor
biomarker at specific candidate loci that were previously
associated with treatment response15–17, but no genome-
wide study has been conducted.
Genome-wide analyses offer a non-biased experimental

approach to identify novel candidates. To our knowledge,
this is the first genome-wide differential DNA methylation
conducted to identify possible predictors of anti-
depressant response. We compared responders (RES) and
non-responders (NRES) to an eight-week escitalopram
treatment. In addition, to investigate the possible func-
tional role of identified methylation biomarkers, we also
analyzed genome-wide differential gene expression. This
information was used to select differentially methylated
positions (DMPs) for further analyses.

Materials and methods
CAN-BIND-1 discovery cohort characterization

Our discovery cohort consisted of participants recruited
for the Canadian Biomaker Integration Network in
Depression (CAN-BIND-1), a multisite initiative dedi-
cated to the discovery of treatment response biomarkers,
which has been described in detail elsewhere18. Briefly,
healthy control participants and MDD patients ranging
between 18 and 60 years of age were enrolled in a

prospective 16-week trial with escitalopram with an
option of addition of aripiprazole at week 8. In this study,
we are only analyzing baseline and week 8 data and out-
comes. Healthy participants were included if they were
free of psychiatric psychopathology and with no active
medical diagnoses, and were matched for sex and age
distribution with MDD patients. Depressed patients were
excluded if they had other psychiatric diagnoses in addi-
tion to MDD, and if they had psychotic symptoms, high
suicidality or concomitant neurological disorders, if they
have already failed ≥4 pharmacological treatments for
MDD, or previously failed to respond to escitalopram.
Research Ethics Boards at all recruitment sites approved
of the study design, and consent was obtained from all
eligible participants for all procedures prior to the start of
the trial. Following screening and recruitment, MDD
diagnoses were clinically determined using the Mini
International Neuropsychiatric Interview (MINI). All
participants were assessed at baseline (W0) for symptom
severity using the Montgomery Åsberg Depression Rating
Scale (MADRS). MDD patients were administered esci-
talopram (10–20mg/d) for 8 weeks. At week 8 (W8),
MDD patients were assessed again with the MADRS.
Escitalopram response was indicated by a ≥50% decrease
in W8 MADRS scores relative to W0, and MDD patients
were classified as either a responder (RES) or non-
responder (NRES). Healthy controls underwent the same
clinical assessments and evaluations as MDD patients at
these time points, but did not receive any type of treat-
ment or placebo. The CAN-BIND-1 clinical trial was
registered with the ClinicalTrials.gov identification num-
ber: NCT01655706.
Demographic and clinical data were compared between

HC, NRES and RES samples included in final analyses.

Genome-wide DNA methylation analysis on the Infinium

MethylationEPIC Beadchip

DNA was extracted from whole blood samples obtained
from healthy controls and MDD patients at baseline prior
to treatment, using a modified version of the Qiagen
FlexiGene DNA kit. Bisulfite conversion, DNA quality
control, genome-wide methylation analysis, and initial
methylation signal detection quality control was per-
formed at the McGill University and Genome Quebec
Innovation Center (GQ). The Infinium MethylationEPIC
Beadchip was used to assess genome-wide DNA methy-
lation (Illumina, US). After accounting for attrition rates,
and DNA sample quality control, pre-processing and
analysis of raw microarray data for the remaining samples
was conducted within R (ver 3.4) predominantly using the
Chip Analysis Methylation Pipeline (ChAMP) Bio-
conductor package19, which utilizes many elements of
minfi20. Sample methylation signal QC was assessed by
plotting log median methylated and unmethylated signals.
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Samples were removed if they failed to cluster with others
or if they exhibited lower median intensities in either
signal channel. Probes with low signal detection relative to
control probes, probes with <3 beads in >5% of samples,
cross reactive probes, non-CpG probes, sex chromosome
probes, and probes that hybridize to single nucleotide
polymorphism sites were removed. Beta (β) values were
calculated as the ratio of methylated signal to the sum of
unmethylated and methylated signals at each CpG site,
and subsequently normalized. log2 transformed β values
were used for the remainder of pre-processing steps as
recommended by Du et al.21, but reported as β values.
Technical batches and covariates were detected using
single value decomposition analysis. Detected and known
batch effects were corrected for prior to differential
methylation analysis. Differentially methylated positions
(DMPs) were identified between NRES and RES using
linear regression methods from the limma22, with age and
sex as covariates. A 2% absolute change in average
methylation (∆β) was set as a cutoff value to decrease the
number of significant CpGs and identify sites with more
biologically relevant methylation differences. A detailed
account of our pre-processing and analysis steps for the
MethylationEPIC Beadchip are included in Supplemen-
tary Methods.

Genome-wide mRNA gene expression analysis on the HT-

12 Beadchip

Baseline whole blood samples were obtained from HC
and MDD participants in EDTA tubes containing Leu-
koLOCK filters (ThermoFisher, USA). Total RNA was
extracted from filtered leukocytes using a modified ver-
sion of the LeukoLOCK Total RNA Isolation System
protocol, and treated with DNase to remove genomic
DNA. RNA was converted to cRNA, and sent to GQ for
further QC and analysis on HT-12 v4 Expression
Beadchips (Illumina, USA). Pre-processing steps and
differential gene expression analysis were performed in
R using the limma Bioconductor package22. Only the
subset of samples that appeared in our DNA methylation
analysis were included. Probe signal detection, normal-
ization, and filtering were conducted prior to differential
expression analysis. Probes with a detection p-value
<0.01 in at ≥20% of samples were retained. To assess
differential expression, linear regression analyses on log2
transformed values was performed with age and sex
accounted for as covariates. A detailed account of pre-
processing and differential expression analysis is inclu-
ded in Supplementary Methods. Only probes with
≥±0.1 ∆logFC values between NRES and RES were
included for further investigations. Genes that contained
differentially methylated CpGs with average ∆β ≥ 2%,
and that appeared in our differential expression analysis
were identified.

Targeted bisulfite sequencing for validation of genome-

wide findings

Differentially methylated CpGs with an ∆β ≥ ±2%
methylation and located in differentially expressed gene
regions with a logFC ≥ 0.1 were selected for validation
with targeted bisulfite sequencing on the Illumina MiSeq
platform23. NRES and RES DNA samples were bisulfite
converted using the Epitect 96 Bisulfite kit (Qiagen, USA)
as per manufacturer’s guidelines. Primers were designed
with the Methyl Primer Express software (ThermoFisher
Scientific). All samples were ensured to have an optimal
molarity of 2 nM prior to being loaded onto the MiSeq
platform with the V3 600 cycle kit (Illumina, US).
Methods. Specific details for primer design and amplicon
library preparation are included in Supplementary
Methods. Upon retrieving raw sequencing data, Trim-
momatic (v.0.35) was used to trim adaptor sequences24.
Reads with phred scores <20 were removed and aligned
with Bowtie 2 (v 2.1.0)25. Methylated and non-methylated
CpG signals were extracted to calculate the level of
methylation at our sites of interest. Results were analyzed
using one-tailed t-tests. Correlation of microarray and
sequencing methylation values was assessed with Pearson
correlation coefficients.

Replication within the Douglas biomarker study

Replication was conducted using the Douglas Bio-
marker Study cohort, which was similarly designed to our
discovery cohort. Participants were recruited at the
Depressive Disorders Program at the Douglas Mental
Health Institute, McGill University (Montreal, QC), and
consisted of an 8-week antidepressant treatment for MDD
patients randomly selected to receive either densvenla-
faxine (serotonin and norepinephrine reuptake inhibitor;
SNRI) or escitalopram (selective serotonin reuptake
inhibitor; SSRI). Hamilton Depression Rating Scale
(HAM-D) scores were used to assess symptom severity at
baseline and W8, where a ≥ 50% relative decrease in
HAM-D scores at W8 denoted a response. Genome-wide
methylation analysis on the Infinium MethylationEPIC
Beadchip was conducted at Illumina. Sample descriptive
data were statistically analyzed similarly to what was
described previously for our discovery cohort. We used
the same pipeline described previously to analyze differ-
ential methylation, with additional covariate corrections
made for antidepressant type. We compared differential
methylation at our three probes of interest between MDD
patients and psychiatrically healthy controls to ascertain
whether our findings were specific to antidepressant
response. After identifying our three CpGs of interest, we
compared methylation level of healthy controls at those
sites specifically to the methylation levels of non-
responders and responders respectively using two-tailed
t-tests accounting for equal variance.
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ROC curve analysis

Receiver-operating characteristic (ROC) curve analyses
were performed to assess the ability of our successfully
replicated CpG site cg06926818 to discriminate between
non-responders and responders to antidepressant treat-
ment. Discovery and replication cohort methylation levels
at cg06926818 for responders and non-responders were
utilized within SPSS to calculate sensitivity, specificity and
confidence intervals of their respective ROC curves.
Analysis of the ROC coordinates determined the area
under the curve (AUC), which was used to assess pre-
diction accuracy. AUC significance was determined using
a p-value threshold of p < 0.05.

Investigating effects of blood cell heterogeneity

Heterogeneity of white blood cell types has potential
confounding effects on DNA methylation measurements
based in peripheral blood samples26. To address the
possibility of confounding effects of blood cell composi-
tion, complete blood cell counts were obtained from each
patient during the trial. One-way ANOVA tests were used
analyze all three comparison groups for any effects of
blood cell proportions on our main results.

Results
CAN-BIND cohort characterization

An overview of our research methodology is presented
in Fig. 1. In our discovery cohort, 211 depressed patients

and 112 healthy controls were initially recruited for the
clinical trial. From these, 34 depressed patients and 10
healthy controls had to be excluded from further analyses
because of unsuccessful completion of the trial, or poor
DNA sample quality. One healthy control was removed
due to poor methylation signal detection QC. Down-
stream analysis proceeded with 101 healthy control and
177 depressed subjects. Using differential MADRS scores,
95 NRES and 82 RES were identified within the MDD
group.
For the remaining HC, NRES and RES samples, psy-

chiatric and social demographics (including previous
number of major depressive episodes, family history of
psychiatric illnesses, age of MDD onset, highest level of
education obtained, yearly income, marital status, and
ethnicity) are provided in Table 1. No significant differ-
ences in age, gender, level of education, yearly income,
marital status, ethnicity, number of previous major
depressive episodes and age of MDD onset were noted
between HC, NRES and RES groups. Significant differ-
ences were noted between all three groups for the fol-
lowing categories: MADRS scores at baseline (F=
1362.46, p < 0.05), MADRS scores at Week 8 (F= 466.17,
p < 0.05) and family history of psychiatric illness (F=
36.04, p < 0.05). Post-hoc analyses revealed significant
differences between HC and drug-treated groups for both
baseline and post-treatment MADRS scores (p= 5.10E-9
for both comparisons). However, no significant

Fig. 1 Process of research design
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Table 1 CAN-BIND-1 sample demographics

HC NRES RES Statistical analysis

n 101 95 82

Gender—n (%) F= 0.44, p= 0.64

Male 38 (37.6) 39 (41.1) 28 (34.1)

Female 63 (62.4) 56 (58.9) 54 (65.9)

Avg. Age 32.8 36 35 F= 1.85, p= 0.16

Std. Dev. 10.5 13.17 12.2

Std. Error 1.04 1.35 1.35

Avg. MADRS T0 0.9 30.5 29.3 F= 1362.46, p < 0.05a

Std. Dev 1.74 5.48 5.43 HC vs. NRES p= 5.10E-9

Std. Error 0.17 0.58 0.61 HC vs. RES p= 5.10E-9

NRES vs. RES p= 0.181

Avg. MADRS T8 1.1 23.9 7.9 F= 466.17, p < 0.05a

Std. Dev 2.20 7.30 4.99 HC vs. NRES p= 5.10E-9

Std. Error 0.23 0.75 0.55 HC vs. RES p= 5.10E-9

NRES vs. RES p= 5.10E-9

Education F= 1.18, p= 0.31

High school 0 3 4

High school diploma 11 16 12

Bachelor’s 48 25 16

Master’s 10 5 11

PhD 7 0 0

College (no degree) 8 28 18

Associate degree 10 16 19

Professional degree 7 1 0

Prefer no answer 0 1 2

Income F= 1.47, p= 0.232

$0–24,999 14 19 18

$25,000–50,000 15 17 21

$50,000–75,000 22 20 10

$75,000–99,999 13 9 9

$>100,000 19 14 15

Prefer No Answer 18 16 9

Marital status F= 0.98, p= 0.379

Never Married 55 49 50

Married 39 29 21

Divorced/Sep./Widowed 7 16 11

Prefer no answer 0 1 0

Ethnicity F= 0.15, p= 0.864

Caucasian 70 66 58

Ju et al. Translational Psychiatry           (2019) 9:254 Page 5 of 12



differences between NRES and RES groups were noted for
baseline MADRS scores (p= 0.181). Expectedly, we noted
significant differences between NRES and RES post-
treatment MADRS scores (p= 5.10E-9). There was a
significant difference between HCs and drug-treated
groups for a family history of psychiatric illness (p=
5.13E-9) but not between NRES and RES (p= 0.994).

Differential methylation analysis

Pre-processing of raw data for retained samples was
conducted within R using ChAMP and 679,362 CpG
probes were retained for downstream analysis. We iden-
tified 2571 significantly DMPs (p < 0.05, q= 0.1); however,
this included DMPs with very small differences in
methylation (i.e. ∆β < 0.5%). Therefore, a ∆β ≥ ±2% cutoff
was applied to identify 303 DMPs with methylation
changes that are more likely to be biologically relevant
(Supplementary Table 1).

Differential mRNA expression analysis

Sixteen thousand three hundred seventy eight mRNA
probes were retained and assessed for differential mRNA
expression with linear regression analyses. A cutoff of
logFC ≥ ±0.1 was used to eliminate gene probes with low
levels of differential expression, resulting in 2009 retained
probes. The remaining expression probes were overlapped

with DMP probes with the intent to identify DMPs that are
more likely to affect cis gene expression.

CpG selection and validation

We overlapped the list of genes identified from our
303 significant DMPs with genes targeted by 2009 HT-12
probes to select DMPs for validation. Sixteen DMPs were
located within genes that appeared on our list of 2009
expression probes (Supplementary Table 2), and all but
two DMP probes overlapped with unique genes (Table 2).
Of these 16 CpGs, CHN2 and JAK2 were the most sig-
nificant differentially expressed genes after multiple test-
ing corrections (q= 0.05). Thus, cg23687322 (CHN2; p=
1.93 × 10−4, q= 0.08, ∆β=−0.05), cg06926818 (CHN2;
p= 9.67 × 10−5, q= 0.07, ∆β=−0.04) and cg08584037
(JAK2; p= 3.14 × 10−4, q= 0.09, ∆β=−0.02) were
selected for targeted validation. All three CpG probes
were located within 1500 bp of the TSS of their respective
genes, and responders were observed to have relative
decreased methylation compared to non-responders.
Validation was conducted with 92 NRES and 83 RES

samples. Targeted bisulfite sequencing of CpG probes
within CHN2 (cg23687322, p= 0.0016 and cg06926818,
p= 0.0058) and JAK2 (cg08584037, p= 0.0009) (Fig. 2a–c
and Supplementary Table 3). The level of CpG methyla-
tion assessed by targeted bisulfite sequencing and

Table 1 continued

HC NRES RES Statistical analysis

Black 3 4 3

Hispanic 3 5 4

Asian 18 12 11

Other 4 4 6

Prefer no answer 3 4 0

Psych. family history F= 36.04, p < 0.05a

Yes 21 66 57 HC vs. NRES p= 5.13E-9

No 75 28 25 HC vs. RES p= 5.13E-9

Prefer no answer 5 1 0 NRES vs. RES p= 0.994

Previous MDE p= 0.29

Yes (n= 1) N/A 94 81

No N/A 0 1

Prefer no Answer 1 0

Avg. age of MDD onset N/A 22 19.8 F= 1.88, p= 0.17

Std. dev N/A 11.17 9.27

Std. error N/A 1.17 1.04

Demographics for our discovery cohort. One-way ANOVA values comparing controls, non-responders and responders are displayed in the last column for all
characteristics except for “Previous MDE”, where t-test results from comparing NRES and RES are displayed
NRES non-responder, RES responder, MADRS Montgomery Asberg Depression Rating Scale, MDEmajor depressive episode
aTukey’s HSD post-hoc analysis results are also noted for characteristics with significant ANOVA results
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microarray methods were significantly correlated (p <
0.0001) with relatively high Pearson correlation coeffi-
cients for all three CpG probes (cg23687322, r= 0.87;
cg06926818, r= 0.84; cg08584037, r= 0.72; Fig. 2d–f).

Blood cell heterogeneity

The individual proportion of lymphocytes, monocytes,
neutrophils, eosinophils and basophils did not have any
specific, significant effects on our primary findings (Sup-
plementary Table 4).

Replication in the Douglas biomarker study cohort

Thirty one HC, 76 NRES, and 71 RES samples from the
Douglas Biomarker Study cohort were used for replicating
our methylation findings at cg23687322, cg06926818 and
cg08584037 between RES and NRES. Detailed sample
characterization of the replication cohort is provided in
Table 3.
In CHN2 gene regions, differential methylation at

cg06926818 (p= 0.027, ∆β=−0.03) was successfully
replicated. There was no significant difference in methy-
lation at cg06926818 when comparing healthy controls to
NRES (p= 0.74) and to RES (p= 0.21). Although of
similar magnitude and direction, differential methylation
at cg23687322 did not reach significance in this cohort

(p= 0.17, ∆β=−0.03). We did not replicate the
cg08584037 position in JAK2 (p= 0.59, ∆β=−0.003).

ROC curve analysis

ROC analysis with AUC calculations for cg06926818
between non-responders and responders were used to
assess their potential predictive value as biomarkers in
both discovery and replication cohorts (Fig. 3). The AUC
for the ROC curve of cg06926818 was 0.66 in our dis-
covery cohort (p= 0.0003, C.I.= 0.58–0.74) and 0.59 in
our replication cohort (p= 0.05, C.I.= 0.50–0.69). The
ROC curves for cg23687322 and cg08584037 are dis-
played in Supplementary Fig. 1.

Discussion
This study represents the first genome-wide differ-

ential methylation analysis of antidepressant response in
clinically depressed patients. We identified significantly
differentially methylated CpGs associated with anti-
depressant response through a genome-wide method in
peripheral blood samples retrieved prior to receiving
10–20 mg of escitalopram treatment. We applied a
stringent ∆β cutoff and incorporated associated differ-
ential gene expression data in order select DMPs with a
functional component. This allowed us to identify
cg23687322, cg06926818 and cg06926818 located in
CHN2 and JAK2 gene regions as our candidate pre-
dictors of response.
Differential methylation levels at all three of our CpGs of

interest were relatively low. This presents the question of
whether there was a true distinction between comparison
groups. However, small differential values are commonly
reported in studies of psychiatric disorders27–29 and these
subtle differences are thought to reflect the complex
etiology and course of multifactorial illnesses such as
MDD. For psychiatric diseases overall, biomarkers will
likely be established by collectively considering a panel of
multiple differential findings rather than through the
standard method of identifying high fold changes of one
specific observation. Additionally, many other social and
lifestyle factors, such as dietary habits30, smoking history31

and chronic stress32, are shown to have specific effects on
the methylome landscape, and were not accounted for as
covariates in our analysis. We were ultimately able to
validate and correlate our microarray-based findings
through targeted bisulfite sequencing, and replicated dif-
ferential methylation at cg06926818. Future genome-wide
methylation studies will provide additional information on
the robustness of our biomarker candidates.
All three CpGs of interest were located in promoter

regions of their respective genes, specifically within
1500 bp upstream of the transcription start site. Increased
DNA methylation at CpGs in promoter regions, in par-
ticular, is usually associated with a decrease in mRNA

Table 2 Sixteen gene probes identified from differential

expression analysis that contained significant DMPs with Δ

β ≥ ±2%

Probe_ID Gene AveExpr t p.val FDR logFC

ILMN_1772540 ATMIN 5.694 −2.338 0.020 0.08 −0.105

ILMN_2223720 ATMIN 7.142 1.749 0.081 0.11 0.150

ILMN_1730291 ATP1B1 5.207 2.141 0.033 0.08 0.113

ILMN_3244172 CD52 11.269 −2.231 0.027 0.08 −0.161

ILMN_2403237 CHN2 6.391 −2.775 0.006 0.05 −0.139

ILMN_1774110 CHN2 5.326 −2.094 0.037 0.08 −0.112

ILMN_2140799 FAM24B 5.469 −2.113 0.036 0.08 −0.109

ILMN_1728799 FBP1 7.394 −1.747 0.082 0.11 −0.107

ILMN_3246953 FTSJD2 6.601 −2.046 0.042 0.08 −0.101

ILMN_1683178 JAK2 7.110 −2.754 0.006 0.05 −0.126

ILMN_1695812 KRT72 5.715 −0.988 0.324 0.34 −0.137

ILMN_2216815 MAP7 5.656 1.718 0.087 0.11 0.127

ILMN_2075794 NLRP8 11.263 1.478 0.141 0.16 0.205

ILMN_1737252 NRG1 5.664 −1.476 0.141 0.16 −0.169

ILMN_1693341 SNRPN 7.368 1.935 0.054 0.09 0.122

ILMN_1671442 WDR43 5.423 −2.380 0.018 0.08 −0.102

Fourteen unique genes overlapped between our differential methylation and
differential expression analyses. Fold change (FC) is in reference to RES
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expression. However, our data showed that responders
exhibited relative decreases in both DNA methylation and
mRNA expression at all three CpG sites compared to
non-responders. Possible explanations for these findings
include the action of other regulatory elements, such as
enhancers and DNA methyl-transferases, which may be
exerting additional secondary effects on gene expression
and methylation. In addition, 3D chromatin structure may
have regulatory effects on gene expression, particularly
through distant, trans-acting mechanisms. For example,
insulators can prevent an enhancer from activating a
promoter through long-range interactions with other
regulator elements33. Finally, the combined expression of
multiple loci on separate chromosomes, and their sub-
sequent interactions can also activate or repress opposing
epigenetic states34. Overall, the complex regulation
between methylation and expression implied through our
findings likely reflects the intricate relationship between
predisposing genetic factors and environmental effects on
MDD etiology, symptom severity and variation in treat-
ment response.
Differential CHN2 methylation has not been directly

assessed in the context of treatment response or MDD,

but it has is implicated in disorders that often co-occur
with MDD or depressive symptoms, such as substance
abuse35, ADHD36 and psychosis37. CHN2, or β2-chi-
maerin, maps to chromosome 7p15.3 and encodes for a
GTP-ase activating protein predominantly expressed in
the pancreas and brain37. In the brain, CHN2 observed to
have a role in neurodevelopmental hippocampal axon
pruning. From animal-based studies, adult hippocampal
neurogenesis has been observed to be stimulated by
antidepressant administration38,39, and additionally
shown to be a prerequisite for a behavioural response to
all major antidepressants40. Thus, it is possible that dif-
ferential baseline methylation levels at cg23687322 and
cg06926818 within CHN2 could therefore reflect the
epigenetic regulation of certain molecular processes in the
brain, such as hippocampal neurogenesis, that are
required for eliciting antidepressant response.
JAK2, or Janus kinase 2, maps to chromosome 9p24.1

and encodes for an intracellular, non-receptor tyrosine
kinase. Upon activation of JAK tyrosine kinase activity, a
family of transcription factors called STATs (signal
transducer and activators of transcription) are further
activated to initiate downstream regulatory activity41.

Fig. 2 Differential Methylation between NRES and RES at cg23687322, cg06926818 and cg0858437 assessed through EPICarray analysis,

correlated with values assessed through targeted bisulfite sequencing. Bar graphs show % methylation of NRES and RES detected through
targeting bisulfite sequencing methods at cg23687322 (p= 0.0009), cg06926818 (p= 0.0058) and cg08584037 (p= 0.0009). Scatterplots show
correlation of methylation levels assessed by EPIC microarray and targeted bisulfite sequencing platforms for cg23687322, cg08339825 and
cg08584037. R Pearson correlation coefficient
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Similarly, to CHN2, differential methylation at JAK2 may
also have functional regulatory effects on hippocampal
neurogenesis that could be associated with antidepressant
response. Ketamine, an acutely acting antidepressant,
reverses stress-induced learning deficits in adult rats and
increases Arc levels (a synaptic plasticity consolidating
protein) only in the presence of JAK2. Furthermore,
phosphorylated JAK2 colocalizes with Arc in dendritic
spines, showing evident JAK2/STAT signaling during
synaptic plasticity events42. However, JAK2 also has
important functions in an inflammation, which is
important to consider in the context of depression and
treatment response. It has a non-redundant role in cyto-
kine receptor signaling pathways, which mediate

components of innate and adaptive immunity43. Increased
peripheral inflammation has been associated with poorer
response to antidepressant medication44, and inflamma-
tory components associated with JAK/STAT signaling43

(i.e. interleukin-6; IL-6 and C-reactive protein; CRP) have
been as treatment response predictor biomarkers45. Dif-
ferential methylation in JAK2 is possibly a secondary
indicator to the underlying variation of patient inflam-
mation levels that predict response. Moreover, the use of
SSRI or SNRI antidepressants are also associated with
changes in levels of inflammation46. Serotonin and nor-
epinephrine moderate differential cytokine production,
and a chronic imbalance between the two can modify the
ratio of cytokine types47. These differential effects of

Table 3 Douglas biomarker study replication cohort characteristics

HC NRES RES Statistical analysis

n 31 76 71

Gender—n (%) F= 0.78, p= 0.47

Male 15 27 28

Female 16 (52) 49 (64.5) 43 (60.6)

Age 47 41 39.2 F= 4.75, p < 0.05a

Std. Dev. 14.13 12.56 11.68 HC vs. NRES p= 0.07

Std. Error 2.54 1.44 1.39 HC vs. RES p= 0.01

NRES vs. RES p= 0.50

HAM-D T0 0.75 33.5 31.3 F= 321.59, p < 0.05a

Std. Dev. 1.00 6.33 6.89 HC vs. NRES p= 5.10 E-9

Std. error 0.19 0.73 0.82 HC vs. RES p= 5.10 E-9

NRES vs. RES p= 0.07

HAM-D T8 1.6 25.2 8.6 F= 206.46, p < 0.05a

Std. Dev. 2.00 7.51 5.67 HC vs. NRES p= 5.10 E-9

Std. error 0.38 0.86 0.67 HC vs. RES p= 3.00 E-6

NRES vs. RES p= 5.10 E-9

Medication F= 0.31, p= 0.58

Cipralex/SSRI N/A 35 36

Pristiq/SNRI N/A 41 35

Ethnicity F= 2.78, p= 0.07

Caucasian 25 63 54

Black 0 1 1

Hispanic 1 3 3

Asian 1 4 4

Other 2 2 9

Prefer no answer 2 3 0

Demographics for our replication cohort. One-way ANOVA values comparing controls, non-responders and responders are displayed in the last column for all
characteristics
HC healthy controls, NRES non-responders, RES responders, HAM-D Hamilton Depression Scale
aTukey’s post-HOC analysis results are displayed below significant ANOVA values

Ju et al. Translational Psychiatry           (2019) 9:254 Page 9 of 12



neurotransmitter levels on inflammation may be related
to why our JAK2 probe was not indicative of treatment
response in the replication cohort given that it involved
both SSRI and SNRI treatment. Differential methylation
at cg08584037 in JAK2 is potentially only predictive of
SSRI response, but not SNRI response due to the effects of
neurotransmitter imbalance on cytokine production.
Although we did correct for antidepressant type as a
covariate, it would be interesting to note whether differ-
ential methylation at cg08584037 in JAK2 would be
replicated in future studies that specific to SSRI treatment.
There are a number of specific limitations that should

be considered in this current study. Firstly, by applying
stringent differential methylation and expression cutoffs,
this excludes many potentially interesting sites for eva-
luation. Although differential cutoff values are valid
approaches for site selection in genome-wide approaches,
they do not take into account the subtle genetic changes
that are likely reflected by the heterogeneity of psychiatric
disease phenotypes. Secondly, the EPICarray targets spe-
cific CpGs and non-CpGs sites, and thus, other genomic
methylation sites that could play a role in antidepressant
response may not have been investigated. Thirdly, the
technical methods used for differential methylation ana-
lyses do not distinguish between hydroxymethylated
cytosines and methylated cytosines. Hydroxymethlyated
cytosines are often found in gene bodies, and all three
CpGs of interest were located in gene promoter regions48,
decreasing the likelihood that our main findings are
affected by this limitation. Further, our studies were
conducted in peripheral blood samples49–51, which may
not represent methylation processes in the brain, the
target organ of depression.

Finally, the strength of our findings demonstrated
through replication and ROC curve analysis indicate that
it may not be feasible clinically to rely on methylation at
one CpG site alone as a predictive biomarker. This is
unsurprising, given the complex nature of psychiatric ill-
ness, and the multitude of underlying genetic and envir-
onmental factors that may contribute to manifestation
and the course of disease. Thus, our results promote the
concept of multiple biomarkers (or “biosignatures”) being
used together, although our results also suggest that gene
expression may be a more powerful biomarker than
methylation.
This study is the first to conduct genome-wide differ-

ential DNA methylation analysis associated with anti-
depressant response from peripheral blood DNA samples
of MDD patients. Three DMPs were identified, and
technically validated using targeted bisulfite sequencing.
One CpG site within CHN2 was further replicated in an
independent cohort. Overall, our findings provide initial
evidence for the role of epigenetic factors in treatment,
and propose new predictors of antidepressant response.
Future studies, using larger sample sizes or longitudinal
designs with multiple timepoints should be conducted in
order to increase power of antidepressant biomarker
studies. Robustness is the most important clinical con-
sideration for biomarkers, and as more genome-wide
investigations are conducted across independent cohorts,
this will provide future opportunities for further replica-
tion and clinical consideration (especially when con-
sidered alongside other predictive biomarkers) for our
proposed predictors of treatment response.
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