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Integrated genomic analysis reveals mutated ELF3
as a potential gallbladder cancer vaccine candidate
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Gallbladder cancer (GBC) is an aggressive gastrointestinal malignancy with no approved

targeted therapy. Here, we analyze exomes (n= 160), transcriptomes (n= 115), and low pass

whole genomes (n= 146) from 167 gallbladder cancers (GBCs) from patients in Korea, India

and Chile. In addition, we also sequence samples from 39 GBC high-risk patients and detect

evidence of early cancer-related genomic lesions. Among the several significantly mutated

genes not previously linked to GBC are ETS domain genes ELF3 and EHF, CTNNB1, APC, NSD1,

KAT8, STK11 and NFE2L2. A majority of ELF3 alterations are frame-shift mutations that result

in several cancer-specific neoantigens that activate T-cells indicating that they are cancer

vaccine candidates. In addition, we identify recurrent alterations in KEAP1/NFE2L2 and WNT

pathway in GBC. Taken together, these define multiple targetable therapeutic interventions

opportunities for GBC treatment and management.
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T
he gallbladder is an important part of the biliary tract
system. Gallbladder cancer (GBC) is the most common of
the biliary tract cancers1. GBC is a highly fatal malignancy

with median survival of <1 year2–4. This is primarily due to non-
specificity of symptoms during initial stages of the disease with
patients generally presenting at an advanced stage of the cancer.
GBC often occurs in the setting of gallstones (cholelithiasis) or
chronic inflammation (cholecystitis) and is typically detected
incidentally in patients undergoing treatment for these condi-
tions1. The diagnosis is also confounded by the anatomic position
of the gallbladder and the non-specificity of the symptoms during
the initial stages of the disease1.

GBC is the 20th most common cancer worldwide with an
estimated 178,100 new cases diagnosed annually4 (http://
globocan.iarc.fr). In 2020, in the United States, an esti-
mated 11,980 new cases and 4,090 deaths due to gallbladder
cancer is expected (https://www.cancer.net/cancer-types/
gallbladder-cancer). In contrast to the general population in the
United States where GBC incidence is low, it is a more common
gastrointestinal malignancy in both Southwestern Native Amer-
icans and in Mexican Americans4. Incidence of GBC is highest in
South American countries that include Chile, Bolivia, and Ecua-
dor and Asian countries such as Korea, India, Pakistan and Japan.
Interestingly, GBC incidence is lowest in Africa1,4 (http://
globocan.iarc.fr). In addition to race, GBC incidence increases
with age and women are affected two to six times more often than
men4. Other recognized risk factors for GBC development
include the occurrence of gallstones and Salmonella infection4.

Previous molecular studies on GBC have focused on the
assessment of mutations in few candidate genes such as TP53 and
KRAS1. Recent exome sequencing of nine GBC samples of Cau-
casian origin identified TP53 as a significantly mutated GBC
gene5. Another study examined exomes from 32 GBC samples of
Chinese origin and identified TP53, KRAS, and ERBB3 as sig-
nificantly mutated GBC genes6. Further, exome sequencing and
analysis of 28 GBC patients of Japanese origin and targeted
sequencing of 51 samples of Chinese origin identified alterations
in ERBB family members7. A recent follow-up study6 reported
exome data from an additional 125 additional Chinese patients
linking frequent ERBB2/3 mutation and upregulation of PD-L1 in
GBC8. A recent study reported exome sequencing of 16 GBC
samples of Japanese origin and targeted sequencing of 30 GBC
samples that included 26 Italian and 4 Japanese patients9.

Given that GBC incidence shows strong geographic variation,
in this study we perform a comprehensive analysis of 167 GBCs
that includes patients from three geographically different regions
namely, South Korea (n= 94), India (n= 64) and Chile (n= 9).
We analyze 167 tumors from three geographically distinct parts
of the world and identify ELF3 to be a significantly mutated gene.
Given our large sample size, we find several previously unre-
ported significantly mutated GBC genes. The altered genes
include TP53, ELF3, ERBB3, CTNNB1, ARID2, CDNK2A, STK11,
SMAD4, ARID1A, EHF, KRAS, NFE2L2, PIK3CA, and PSIP1. We
further identify a class of mismatch-repair-deficient gallbladder
cancers with elevated mutation rates which are likely candidates
for immunotherapy. The ELF3 mutations are predominantly
frame-shift alterations that result in several neoantigens that are
able to activate CD8+ T-cells, confirming them as potential
cancer vaccine candidates.

Results
Genomic analysis of GBC samples. We have performed a
comprehensive genomic analysis of 213 samples that included
167 gallbladder (GBC) primary tumors, 7 GBC cell lines, 23
gallbladder tissue from cholecystitis cases (cholecystitis), 14

gallbladder tissue from gall stone cases (stone), and 2 gallbladder
polyps (polyp). Overall, we have obtained whole exome (WES)
from 206 samples (160 GBC, 23 cholecystitis, 14 stone, 2 polyps
and 7 cell lines), RNA-seq from 120 samples (115 GBC and 5 cell
lines) and low pass (<5x) whole-genome sequence (WGS) data
from 184 samples (146 GBC, 15 cholecystitis, 14 stone, 2 polyps
and 7 cell lines; Supplementary Table 1, Supplementary Data 1,
and Supplementary Fig. 1).

For 98 of the 167 GBC cases in this study we have obtained
exome, RNA-seq and low pass WGS data, making this a
comprehensive GBC genomic data set (Supplementary Table 1,
Supplementary Data 1 and Supplementary Fig. 1).

GBC mutational profile. We obtained WES data on 160 GBC
(152 patient-matched paired tumor/normal GBC and 8 unpaired
GBC) from India (60), Korea (91), and Chile (9). Also, we
obtained WES data for 7 GBC cell lines. In addition, we surveyed
pre-cancerous gallbladder tissue samples from 23 cholecystitis
cases, 14 gallbladder stones, and 2 gallbladder polyps by WES
(Supplementary Table 2 and Supplementary Data 2–8). Samples
were sequenced at an average coverage of 93x and tumor/normal
relationships were confirmed using exome sequence data (Sup-
plementary Data 2 and Methods). Principal component analysis
(PCA) using the germline variants from the matched normal
revealed that the samples clustered into groups based on their
population of origin (Fig. 1a and Supplementary Fig. 2). The six-
cell lines derived from patients of Japanese ancestry and one from
a Korean patient clustered with the Korean samples consistent
with a north east-Asian genetic profile (Fig. 1a and Supplemen-
tary Fig. 2). Amongst the patient-matched paired tumor-normal
GBC samples, a total of 21,439 protein-altering somatic muta-
tions were identified, including 17,475 missense, 1215 nonsense,
26 stop loss, 22 start lost, 419 essential splice-site mutations, and
2282 indels (Supplementary Table 2 and Supplementary Fig. 3). A
majority of the mutations (92%; 19,757/21,439) were novel and
were not reported in COSMIC.v7010 (Supplementary Table 2).
Using RNA-seq data, we confirmed the expression of 8,706
protein-altering somatic variants identified by WES (Methods,
Supplementary Table 2, Supplementary Data 3 and 4).

Both cholecystitis and gallstones (cholelithiasis) are believed to
lead to precancerous lesions by inducing dysplastic changes in the
pathogenesis of GBC1. We sequenced tissue from areas
surrounding the inflamed sites in the gallbladder tissue from
patients with chronic cholecystitis (n= 23), or gallbladder stones
(n= 14) and gallbladder polyps (n= 2) together designated ‘GB-
other’. We found significantly fewer somatic protein-altering
mutations with a median of 1 (range 0–90) for cholecystitis and a
median of 0.5 (range 0–2) for GB-other compared to a median of
65 (range 0–4,867) in GBCs (Fig. 1b and Supplementary Data 5).
We next looked for cancer-associated somatic alterations using a
combination of exome and low pass WGS data and found
mutations or copy loss in 30% (7/23) of cholecystitis samples
(Fig. 1c). The alterations included PIK3R2, CHD1, TP53, and
CDKN2A. Consistent with this, we found alterations in TP53,
CDKN2A, PIK3R2, and CHD1 in GBC (Supplementary Data 3
and Supplementary Fig. 4). Previously, TP53 and CDKN2A have
been implicated as GBC drivers5–7. Though not previously
implicated in GBC, CHD1 is a known gastric cancer driver and
PIK3R2 is frequently mutated in endometrial cancers11–13. In
contrast to cholecystitis samples, somatic alterations in the ‘GBC-
other’ group were not detected.

We found the median mutation rate in GBC to be between that
of hepatocellular carcinoma (HCC) and colorectal cancers
(COADREAD; Fig. 1d). However, we found three outlier samples
with very high mutation burden. We tested these samples for
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microsatellite instability (MSI) using the MANTIS14 (see Meth-
ods) and found that they were positive for MSI. Consistent with
this, all the three samples had a high mutation burden (>1000
protein-altering mutations) (Fig. 1e). We confirmed that these
samples carried deleterious mutations in known mismatch repair
genes (Fig. 1e). Interestingly, the outlier mutational status of the
MSI positive samples was similar to that of mismatch repair-
deficient colorectal cancer (COADREAD), endometrial carcinoma
(UCEC), and stomach adenocarcinoma (STAD) (Fig. 1e).

To understand the mutational processes that contribute to the
development of GBC we identified and cataloged the possible 96
base substitution types taking into account the possible eight base
pair somatic changes (C > T, T > C, C > A, C > G, T > A, and T >
G) and the flanking 5’ and 3’ base context, as previously
described15. The substitution frequencies between GBC samples
from India, Chile and Korea were similar and was consistent with
the frequency pattern observed in a set of 29 GBCs from Japan7

(Supplementary Fig. 5). Using non-negative matrix factorization,
as described previously (see Methods), we identified six
prominent mutational signatures (Supplementary Figs. 5 and

6a, b). The strongest correlates included age (C > T mutations at
NpCpG sites), an APOBEC signature (dominated by C > T and C
> G mutations at TpCpN sites), and an MSI signature. These
findings are consistent with previously identified processes in
gallbladder and ampullary cancers7,16,17. When we compared the
mutation profile to 8 other cancer types, we found it clustered
most closely to head and neck squamous cell carcinoma
(Supplementary Fig. 7).

Mutated genes and their significance in GBC. Exome sequen-
cing identified protein-altering somatic mutations in 10,224 genes
and of these 4750 (46%) were mutated in at least two patients. We
found recurrent mutations in 102 chromatin-modifying genes,
including NSD1, ARID1A, SETD2, and PBRM1, 187 protein
kinases, including TTN, ERBB2, ERBB3, STK11, and LATS1, and
73 G-protein coupled receptors including CELSR1/2/3, CHRM3,
and GRM1. Using Polyphen18, we found that 55% (11,716/
21,439) of protein-altering mutations were predicted to be dele-
terious or high impact mutations. In contrast, only 11% (233,524/

a b c

0.2 0.3 0.4

MSI score

PMS2:splice

PMS2:R421Q

MSH2:Q493*,

MSH3:E434K

GB Ca Cholecystitis GB Other

PIK3R2

CHD1

TP53

CDKN2A

PC1

10,000

N
u
m

b
e
r 

o
f 
p
ro

te
in

-a
lt
e
ri
n
g
 m

u
ta

ti
o
n
s

1000

100

10

1

A
M

L

K
IC

H

T
H

C
A

P
R

A
D

M
E

S
O

L
G

G
G

B
M

B
R

C
A

M
M

P
A

A
D

G
B

M

O
V

K
IR

C

U
C

E
C

H
C

C

C
O

A
D

R
E

A
D

H
N

S
C

S
T

A
D

E
G

C

L
U

A
D

B
L

C
A

S
C

L
C

L
U

S
C

G
B

C

P
C

2

1

10

100

1000

WT Mutation

Chile

India

Korea

Cell line

Deletion

N
u
m

b
e
r 

o
f 
p
ro

te
in

-a
lt
e
ri
n
g
 m

u
ta

ti
o
n
s

1

10

100

1000

N
u
m

b
e
r 

o
f 
p
ro

te
in

-a
lt
e
ri
n
g
 m

u
ta

ti
o
n
s

d e

Fig. 1 Genetic variation in GBC and non-GBC samples. a Principal Component Analysis of germline variants of GBC and non-GBC samples colored based

on country of origin. b Box plot depicting the number of protein-altering mutations in GBC (n= 148), Cholecystitis (n= 9) and GB-other (n= 8)

samples containing mutations (1 or more). Boxes indicate the interquartile range (IQR); center line, median; whiskers, lowest and highest values within 1.5x

IQR from the first and third quartiles, respectively. c Quilt plot showing mutations in key cancer-associated genes in cholecystitis samples. Each column

represents a sample. d Number of protein-altering somatic mutations in GBC compared to mesothelioma66 and 21 other cancer types. e MSI score

determined by MANTIS plotted against the total number of protein-altering mutations for each GBC sample. Samples are colored based on country of

origin as in panel a. MMR gene mutations identified are indicated next to the MSI positive samples.
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2,122,090) of the protein-altering germline variants from this
study were predicted to have a functional impact.

We assessed the mutated genes for their significance using a q-
score metric19. Our analysis identified 25 significantly mutated
GBC genes that included CTNNB1, ELF3, TP53, ERBB2, ARID2,
ERBB3, STK11, CDKN2A, SMAD4, ARID1A, KRAS, EHF,
PIK3CA, BRAF, ACVR2A, PSIP1, NFE2L2, CHRM3, ZNF107,
SMARCA4, APC, NF1, KAT8, MAP2K4 and HIST1H2AG (Fig. 2a;
q-score ≥ 1.1; FDR ≤ 8%; Supplementary Table 2 and Supplemen-
tary Fig. 8a–d). This list includes well-known oncogenes,
CTNNB1, ERBB2, ERBB3, KRAS, PIK3CA, BRAF, and NFE2L2,
tumor suppressors, TP53, ARID2, STK11, CDKN2A, SMAD4,
SMARCA4, ARID1A, APC, NF1, and MAP2K4, and less well-
established cancer-associated genes such as ELF3, EHF, ACVR2A,
PSIP1, CHRM3, HIST1H2AG, KAT8, and ZNF107. Previous
studies on GBC reported TP53, KRAS and ERBB3 as significantly
mutated GBC genes (SMG)6, though low-frequency mutations
were observed in other SMG GBC genes reported in this
study6,7,20.

The ELF3, ETS-domain transcription factor, identified as
significantly mutated gallbladder cancer gene was altered in 21%

of samples (34/160) (Fig. 2b). Previously, ELF3 was reported as a
frequently mutated gene in biliary tract (3–9.5%) and ampullary
carcinomas (15%)6,7,9,16,17. ELF3 is also known to be mutated in
cervical adenocarcinomas (13%)21, bladder cancers (8%)22,
gastric cancers (4%)23, and colorectal cancers (3%)24,25. In
addition to ELF3, EHF26, another member of the ETS transcrip-
tion factor subfamily, was also found significantly mutated in 4%
of the GBC samples (7/160) (Fig. 2c).

A majority of ELF3 mutations we observed were frame-shift,
stop gained and essential splice-site mutations (73% 27/37
mutations) and they clustered in the C-terminal ETS-domain
(Fig. 2b). In addition, two essential splice-site mutations that
result in an RNA transcript that codes for a truncated ELF3
(Fig. 2d) were found. Interestingly, ELF3 mutations were more
frequent in Korean (31% 28/91) and Chilean patients (22% 2/9)
compared to GBC patients from India (7% 4/60; p value 0.0003
India vs non-Indian; Fisher’s exact test).

We observed that the ELF3 mutations co-occurred significantly
with TP53 mutations (p value= 0.01; Fig. 2e). Patients carrying
both ELF3 and TP53 mutations had a worse overall survival that
showed a trend towards significance (p value 0.0547; Fig. 2f) as
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score genes with FDR < 0.1 are indicated. Dotted orange line, FDR= 0.05, dotted red line, FDR= 0.1. Schematics showing alterations in ETS family

members (b) ELF3 and (c) EHF. d ELF3 splicing defects observed in two GBC samples. e Plot representing mutations observed in SMG genes across the

GBC samples. Each column represents a sample. f Kaplan–Meier survival plot of patients with tumor double positive for ELF3 and TP53 vs others. Log-rank

test p values are presented for each group. g Schematic showing alterations observed in PSIP1 in GBCs.
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opposed to no difference in survival in individuals with mutations
in just either one of the genes (Supplementary Fig. 8d).

In addition to the WNT pathway genes CTNNB1 and APC, the
significantly mutated genes included the chromatin-modifying
gene KAT8, tumor suppressor STK11, oncogene NFE2L2, and
ZNF107 that codes for a zinc finger protein. In addition,
ACVR2A, a serine-threonine kinase and a member of the TGF-
beta superfamily was also found to be mutated. The chromatin-
associated protein gene, PSIP1, also showed a distinct mutation
pattern with 5 of the 6 mutations (4% of samples) showing high
impact frame-shift mutations (n= 4) or a premature stop codon
(n= 1). These mutations preserved the PSIP1 H3K36me3
interacting ‘Pro-Trp-Trp-Pro’ (PWWP) domain while leading
to the loss of the region coding for the C-terminal ‘integrase
binding’ (IBD) domain (Fig. 2f). Interestingly, p52 PISP1 is a
well-characterized isoform that lacks the IBD and has been
associated with transcriptional activation and alternative spli-
cing27 and its relevance in GBC requires further investigation.
Another significantly mutated gene, CHRM3 encodes a GPCR
muscarinic cholinergic receptor. Interestingly, CHRM3 was
recently shown to mediate gallbladder contraction through a
voltage-gated Ca2+ channel28. However, the exact relevance of
the CHRM3 mutations in GBC needs further studies.

Recurrence of somatic mutations is an indication of its cancer
relevance29. We examined our data for recurrent hotspot
mutations and found 89 hotspot mutations across 73 genes (see
Methods; Supplementary Data 8). Included in the genes with
hotspots were 11 significantly mutated GBC genes. Genes with
most hotspots included TP53 (11 in 53 samples), ERBB2 (3 in
18 samples), CTNNB1 (3 in 16 samples), and ELF3 (3 in
9 samples). The ELF3 hotspot mutations included frame-shift
mutations at codons 55 (2 samples), 320 (5 samples), and 324
(2 samples, including 1 missense).

To further understand specific mutation patterns, we per-
formed a meta-analysis by comparing all the somatic mutations
identified against a list of high confidence hotspot mutations
identified in a comprehensive pan-cancer analysis30. We
identified 65 meta-hotspot mutations across 22 genes (Supple-
mentary Data 9). The most common genes identified in GBC
were TP53 (22 in 40 samples), ERBB2 (5 in 19 samples), and
CTNNB1 (5 in 18 samples, primarily concentrated around codons
32–45). Amongst the most common mutations across all cancers
that also occurred in GBCs were KRAS G12/G13 (5 samples),
PIK3CA H1047/E545/E542 (6 samples) and NRAS Q61 (1 sam-
ple). Other mutations of interest included ERBB3 (2 meta-
hotspots in 7 samples) carrying activating mutations at V104 and
D29731. Interestingly, the four BRAF meta-hotspots, G466A (1),
G469V (1), D594G (2), G596R (1), observed in 5 samples did not
involve the canonical V600 codon. The NFE2L2 (5 meta-hotspots
in 5 samples) mutations were primarily concentrated around
amino acid positions 29–34. We also found samples containing
CDK4 R24C, BCL2L12 R18W, RAC1 A178E, and XPO1 E571K
mutations, previously reported in other tumor types30.

Splicing, expression and copy number alterations in GBC. We
performed t-SNE analysis of RNA-seq data from 115 GBC and
identified two main clusters designated as cluster A and B
(Supplementary Fig. 9). Cluster A is characterized by high
expression of mitochondrial genes and also showed high levels of
apoptosis-related gene such as BAX, BAD, FASTK, and NOXA1.
Further, expression of PTEN, SMAD4, NF1, and NF2 was low in
cluster A compared to samples in cluster B. Interestingly, samples
in cluster B had marked upregulation of oncogenes such as BRAF,
KRAS, and CBL. Several histone encoding genes were also upre-
gulated in cluster B. We also found upregulation of NPAT and

GONL4 in cluster B. NPAT is a key co-activator of histone
transcription and GON4L is involved in biogenesis of the histone
locus bodies and a known NPAT binding partner32. Additionally,
cell cycle regulators such as SPDYE1 and SPDYE2 were also
highly expressed in cluster B. Also upregulated in cluster B were
transcripts for TP53 modulators ATM and MDM4.

We performed de novo prediction of splice variants from 115
GBCs and 4 cholecystitis samples to identify tumor-specific
splicing events. We considered 835 candidate cancer-associated
genes and filtered out splice variants expressed in a dataset of
9155 normal samples33. We identified 62 candidate protein-
altering splice variants in 24 samples. They included recurrent
variants in ELF3 (n= 2) (Fig. 2d), an alteration each in KEAP1
and NFE2L2 (exon 2 deletion) (Supplementary Data 10). The
exon 2 deletion in NFE2L2 variant was previously described in
squamous cell carcinoma34 and is known to result in the loss of
interaction with the negative regulator KEAP1, NFE2L2 stabiliza-
tion, induction of a NFE2L2 transcriptional response, and
KEAP1/NFE2L2 pathway dependence.

We performed copy number analysis using low pass WGS data
from 146 GBC samples. ERBB2 was frequently amplified in 13%
(19/146) of the GBCs. We confirmed overexpression of ERBB2 in
68% (13/19) of the GBCs with amplification (Supplementary
Fig. 10). Furthermore, we found one sample (GBC138) with
EGFR amplification and corresponding increased EGFR expres-
sion (Supplementary Fig. 10). We also found amplification of
MET (GBC061), KRAS (GBC009), and NRAS (GBC001). These
genes also showed elevated expression in the corresponding
samples (Supplementary Fig. 10). Chromosome 12 showed a
distinct recurrent amplification in 6 samples involving YEATS4,
RAB3IP, and FRS2. We found expression of these genes to be
elevated in these samples (Supplementary Figs. 11 and 12).
Among genes that showed copy loss were CDKN2A/B (14/146),
SMAD4 (3/146), FHIT (11/146), BAP1 (7/146). PBRM1 (3/146)
and PTEN (2/146) and this correlated with lower expression of
these genes in the corresponding samples (Supplementary
Fig. 13).

Gene fusions in GBC. Analysis of RNA-seq data identified 23
gene fusion events in our GBCs (Supplementary Table 3). In one
sample, we found a fusion involving PTPRK and RSPO (Sup-
plementary Fig. 14) that led to overexpression of RSPO3. This
gene fusion product is known to promote and potentiate WNT
signaling24. Also, we found a recurrent fusion involving two
patient tumors where exon 1 of GSK3A was fused in-frame to
exon 3 of CDC42EP1, resulting in a transcript coding for GSK3A
lacking the kinase domain (Supplementary Fig. 15a). A gene
fusion involving PTEN and LIPA (LIPA-PTEN) leading to
removal of the sequence encoding the PTEN Tensin C2 domain
was identified in a patient tumor (Supplementary Fig. 15b).
Another GBC sample carried an SLC12A7-TERT fusion that
resulted in overexpression of TERT (Supplementary Fig. 15c). We
also found an in-frame GRB7-LASP1 fusion resulting in elevated
LASP1 expression (Supplementary Fig. 15). Upregulated LASP1
has been linked to malignant phenotype in cholangiocarcinoma35.

Mutated ELF3 neoantigen peptides activate CD8+ T-cells.
Recent advances in cancer immunotherapy have led to impressive
survival benefit for patients in some cancers36,37. Understanding
the neoantigens arising from somatic mutations and the com-
position of tumor immune microenvironment will provide
opportunities for immunotherapy in GBC. With this as a goal,
from a set of 1301 somatic single nucleotide variants (SNVs) and
240 somatic indels expressed in our GBC samples we predicted
high-affinity MHC Class I binding neoantigen peptides (IC50 <
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500 nm) (Supplementary Data 11). This resulted in an average of
15 (range 0–51) neoantigens per patient (Fig. 3a). Multiple
neoantigens corresponding to mutated TP53, ELF3, CTNNB1,
ERBB2, ARID1A, and CDKN2A were predicted. These genes were
mutated in at least 4% of the GBC patients (range 4–17%, n=
5–19 from 115 exome/RNA-seq samples; Fig. 3b). Among these,
ELF3 had the highest number (n= 9) of predicted neoantigens

resulting from frame-shift mutations in GBC. A similar trend was
observed for TP53 in which 5 of the 9 high affinity HLA binders
were frame-shift mutations. Additionally, recurrent mutations in
ERBB2 also contributed to potential neoantigenic peptides. The
presence of potential antigenic peptides from recurrent somatic
mutations in GBC suggests that these peptides can serve as
potential common cancer vaccine candidates.
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To test the relevance of these predicted neoantigens, we selected
13 mutant peptides and the corresponding wild-type (WT)
sequences from ELF3 (6), CTNNB1 (2), ERBB3 (3), and TP53
(2). We tested these peptides for their ability to activate CD8+ T-
cells using HLA-matched healthy donor PBMCs. Antigen-specific
activation of CD8+ T-cells was assessed by intracellular IFN-γ
production using FACS (IFNG-APC (1:100), Biolegend, Cat. No.
502512; Supplementary Fig. 16). Two mutant ERBB2 peptides,
S310Y and S310F, and three ELF3 peptides, Y19fs, L73fs and
V345fs were found to activate CD8+ T-cells (Fig. 3c, d).

To determine clonotypic changes and activation of CD8+ T-
cells in response to the mutant peptides, we perfomed transcrip-
tome-coupled single-cell T-cell receptor (sc-TCR) sequencing. In
this experiment, ELF3 Y19fs was expressed as a minigene in
dendritic cells and incubated with CD8+ T-cells (see Methods).
TCR sequence analysis revealed CD8+ T-cell clonal expansion
when incubated with ELF3 Y19fs mutant expressing dendritic
cells. However, we did not detect these TCR sequences in the
empty vector control treated cells, indicating that they were
specific to the ELF3 Y19fs mutant. The clonally expanded T-cells
identified contributed to 8% of the total T-cells in the assay (n=
670) (Fig. 3e and f). Overlaying the single-cell transcriptome data
on the clonally expanded T-cells showed that ELF3 Y19fs induced
3-fold higher levels of IFN-γ transcript in the expanded T-cells
compared to empty vector control (Fig. 3g–j). Though some
clonal expansion of T-cells was observed in empty vector control,
the most frequent clonal sequence represented 2% of the total T-
cells (n= 178) (Fig. 3e and f; Supplementary Data 12). Impor-
tantly, the level of IFN-γ was undetectable in these cells (Fig. 3j).
Consistent with these findings, the abundance of the
CDR3 sequences identified by single-cell sequencing correlated
well with those found in the PMBCs treated with the mutant
ELF3 peptide (Fig. 3k).

In addition to the immunogenic ELF3 peptides detected in this
study, we found TP53 G154V peptide to also be immunogenic as
it resulted in a 2.5-fold increase in clonal amplification of T-cells
as assessed by TCR sequencing (Supplementary Fig. 17). These
findings taken together suggest that the neoantigenic peptides
derived from ELF3, ERBB2, and TP53 have the potential for use
as cancer vaccines either alone or in combination with checkpoint
inhibitors in GBC patients.

MHC I genotype-linked immunoediting is thought to select
against specific cancer driver mutations38. We assessed if the
differences in ELF3 mutation rates between Korean and Indian
samples could in part be explained by immunoediting, given the
differences in the MHC I alleles in these populations39. We
performed a neoantigen prediction and binding simulation
comparing the specific immunoedited alleles in the two
populations (see Methods). We found a slightly higher, albeit
significant, percentage of ELF3 neoantigen binding amongst the
Indian alleles (43%) when compared to the Korean alleles (41%;
OR= 1.1, n= 2168 vs n= 1060, FET p value 0.03) suggesting
that immune editing may contribute to the observed regional
ELF3 mutation rates.

We performed TCR analysis on bulk RNA-seq data (see
Methods and Supplementary Fig. 18) to assess the differences in
the T-cell repertoire in ELF3, ERBB2, and TP53 mutated GBC
samples. We did not observe significant differences in Shannon
Entropy of TCR repertoire diversity between samples carrying the
specific neoantigens generating mutations that were tested
experimentally in the T-cell activation assay (Supplementary
Fig. 18a). However, we did observe a trend for decreased Shannon
Entropy of TCR repertoire in ELF3 frameshift mutant samples
suggestive of TCR selection. To further power this analysis, we
included samples with any frame shift mutation (n= 90) versus
those without any frameshift (n= 25) mutations. Here we

observed a significantly lower Shannon entropy (p= 0.0008) on
the TCR repertoires suggesting that perhaps some TCR selection
had occurred in these samples (Supplementary Fig. 18b).

GBC immune microenvironment. Tumor-infiltrating lympho-
cytes (TILs) and macrophages have been proposed as a prog-
nostic marker in patients with different cancer types40,41. They
can also affect the efficacy of checkpoint inhibitors42. We used
RNA-seq data to analyze for presence of TILs and macrophages
using the xCell package43 (Supplementary Data 13; see Methods)
and identified 5 distinct clusters (Fig. 4a). Cluster 1 had sig-
nificantly higher levels of CD8+ T-cells (p value <0.05; Fig. 4b)
and expression of LAG-3 (p value <0.05), a T-cell suppressor
marker (Fig. 4c). PD-L1 was also higher on average when com-
pared to the other clusters but it was not statistically significant
(Supplementary Fig. 19a). Further, the cluster types were not
significantly prognostic (Supplementary Fig. 19b; p value= 0.45),
in part perhaps because of the small number of samples in the
clusters. There were no distinctive mutation patterns amongst the
five clusters (Supplementary Fig. 19c). Cluster 4 showed a higher
level of endothelial cell signature (Fig. 4d). As only two patients in
cluster 4 had survival data available, we examined the endothelial
score based on quartiles. Patients in the highest endothelial cell
quartile had a significant reduction in survival (p value= 0.024)
(Fig. 4e). Concordant with this the microvascular (mv) gene
signature, scores for lymphatic (ly), and endothelial cells are
highly correlated (R2= 0.9; Fig. 4a).

KEAP1/NFE2L2 pathway involvement in GBC. KEAP1/
NFE2L2, a cellular pathway for sensing and responding to oxi-
dative stress, is frequently mutated in human cancers. We iden-
tified several patients with alterations in the transcription factor
NFE2L2 (n= 11) and its negative regulators KEAP1 (n= 3) and
CUL3 (n= 3) (Fig. 5a–c). Most NFE2L2 alterations (6/11) were
found in the N-terminal region required for interaction with
KEAP1. Loss-of-function mutations in KEAP1 or activating
mutations in NFE2L2 can result in the activation of 27 NFE2L2
downstream target genes, which can be used as a gene signature
summarized in a pathway activation score34. Application of the
gene signature to tumors with available RNA-seq data identified a
group of samples that showed elevated expression for most target
genes, classifying patients into NRF2+ (score >15) and NRF2-
patients. Hierarchical clustering based on the 27 signature genes
segregated the two groups (Fig. 5d). Patients with mutations in
pathway genes NFE2L2, KEAP1, and CUL3 were overrepresented
in the NRF2+ group (n= 6/14 NRF2+ vs n= 2/87 NRF2-
patients, P < 6 × 10–5, two-sided Fisher’s Exact Test). To search
for additional genes that may be involved in pathway activation,
we considered significantly mutated GBC genes or known cancer-
associated genes recurrently mutated in our data set and tested
for overrepresentation among NRF2+ patients. Among 232 genes
tested ARID2 was the most enriched mutated gene (p= 0.00074,
FDR= 0.13). A recent report44 has shown that KEAP1/NFE2L2
pathway activation, which leads to the reduction of reactive
oxygen species, may help suppress macrophage inflammation
response. Interestingly, we observed no difference in M1 mac-
rophages but found a significantly higher level of M2 macro-
phages (Fig. 5e; p value= 0.016) in NRF2+ samples, consistent
with a suppressed macrophage environment. We also found that
KEAP1/NFE2L2 pathway activation, using RNA-seq, appears to
be a significant prognostic predictor of survival (Fig. 5f; p value=
0.049).

Pathway alterations in GBC. We integrated exome, copy number
variation and gene fusion data within pathways (Fig. 6a–f) and
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country of origin. The p53/RB1 pathway was the most commonly
altered pathway in GBC (Fig. 6f). The WNT pathway was pri-
marily being driven through activating CTNNB1 mutations
(Fig. 6a) though we also found an activating RSPO3 fusion. The
SWI/SNF pathway had frequent inactivating mutations in
SMARCA4, ARID1A, and ARID2 (Fig. 6b). We found many
therapeutically actionable mutations in the RAS/PI3K pathway
involving frequent alterations involving ERBB2, ERBB3, BRAF,
and PIK3CA (Fig. 6c). We also found frequent inactivation of the
ETS family members ELF3 and EHF (Fig. 6d). Our data
demonstrate a role for KEAP1/NFE2L2 pathway activation in
GBC (Fig. 6e).

Discussion
We have performed a comprehensive integrative genomic ana-
lysis of 167 gallbladder primary tumors, and 7 GBC cell lines.
Also, we have analyzed premalignant gallbladder tissue from 23
cholecystitis cases, 14 gallstones, and 2 gallbladder polyps. We

found somatic mutations in cholecystitis that were indicative of a
premalignant stage. Our study uncovered a class of hypermutated
GBC that carried mutations in mismatch repair genes. We report
25 significantly mutated GBC genes that include several targetable
driver genes such as ERBB2, ERBB3, KRAS, PIK3CA, and BRAF.
Importantly, several of the ERBB2 mutations observed are known
to be oncogenic and targetable45 and patients with such muta-
tions are candidates for targeted HER2 therapy. Analysis of
exome and RNA-seq data identified recurrent alterations in
KEAP1/NFE2L2 and WNT pathways. Cancer vaccines or
checkpoint inhibitors have not been approved for treating gall-
bladder cancers. We have identified neoantigens from several
mutated GBC genes including ELF3, ERBB2, and TP53 and found
that they were capable of T-cell activation indicating that they are
potential cancer vaccine candidates. Further, we have identified
GBC samples with MSI and they likely are candidates for
checkpoint inhibitor therapy46. Together these findings provide
an opportunity for testing immunotherapy in gallbladder cancer.
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Overall, our study significantly expands on previous genomic
studies providing a comprehensive genomics view of GBCs.
Specifically, we identify actionable alterations in over 20% of our
cases (Supplementary Fig. 20 and Supplementary Table 4). There
are no targeted therapies approved for GBC and current
standard-of-care for GBC involves surgery, chemo- and
radiation-therapy. Incorporating genomic analysis as part of GBC
patient care in the clinic will help improve outcomes through use
of approved targeted therapies. Also, the GBC molecular altera-
tions reported in this study and others5–9 are an opportunity for
development of new therapies.

Methods
Samples, DNA and RNA preps. In this study, we analyzed 167 human primary
GBC samples as well as 39 non-GBC samples and the corresponding matched
normal tissue in most cases using exome-seq, and/or low-pass whole-genome
sequencing and/or RNA-seq (Supplementary Table 1). Fresh frozen samples used
in the study were obtained from patients undergoing extirpative surgery for GBC.
This study was conducted with IRB approval (Pontificia Universidad Católica de
Chile IRB, Institutional Human Ethics Committee of Jiwaji University (India) and
Seoul National University Hospital IRB (Seoul)) and written patient informed
consent. Human tissue samples were de-identified prior to their shipment and
analysis and are not considered human subject research under the US Department
of Human and Health Services regulations and related guidance (45 CFR Part 46).
Basic demographic information for the patient samples in the study, where

available, is included in Supplementary Data 1. Tissue processing as well as
simultaneous extraction of high-quality genomic DNA and total RNA from the
same samples were performed as previously described47. The study also included
GBC cell lines TGBC24TKB, TGBC2TKB, G-415 (RIKEN Bio Resource Center,
Ibaraki, Japan), OCUG-1 (Health Science Research Resources Bank, Osaka, Japan),
SNU-308 (Korean Cell Line Bank, Seoul, Korea), GB-d1 (From Dr. Masao Tanaka’s
lab, Japan)48.

Exome capture and sequencing. Using the Agilent SureSelect Human All Exome
kit (50 Mb), we generated libraries and sequenced them on HiSeq 2500/4000
(Illumina, CA) to generate 2 × 75 bp paired-end data. We obtained a targeted mean
coverage of 93x with 93% bases covered at ≥10x (Supplementary Data 2).

RNA-seq. RNA-seq libraries were generated using TruSeq RNA Sample Prepara-
tion v2 kit (Illumina, CA) and sequenced on HiSeq 2500 and HiSeq 4000 to obtain
~63 million 2 × 75 bp paired-end (average) reads per sample.

Whole-genome sequencing. Low pass whole-genome sequencing (Illumina, CA)
data (an average of 2.3x) for tumors and matched normal samples were obtained
using whole-genome libraries were prepared according to manufacture’s instruc-
tions (Illumina, CA).

Sequence data processing. We evaluated all sequencing reads for quality using
BioConductor ShortRead package49. Sample identities were confirmed by com-
paring exome and RNA-Seq data variants for concordance. We performed an
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all-against-all sample comparison of germline variants and confirmed the patient
tumor-normal pairing.

Variant calling. Sequencing reads were mapped to UCSC human genome
(GRCh38) using BWA software50 set to default parameters. Local realignment,
duplicate marking, and variant calling of germline variants were performed as
described previously51. Strelka52 was used for somatic variant calling on tumor and
its matched normal BAM file. Known germline variants represented in dbSNP
Build 13153 or found in the ExAC database54 at an allele frequency ≥0.1% were
filtered out for all samples. The effect of all nonsynonymous somatic mutations on
gene function was predicted using PolyPhen55. Variants were annotated using
Ensembl (release 86). TCGA mutation data used in mutation rate comparison
across tumors were retrieved using the CGDSR R package from cBioPortal56,57.

Additional data QC. Sample origins were confirmed using principal component
analysis using 5709 common variants54 in exomes from this study. Samples were
colored according to their known country of origin and clustered using the first and
second principal component. Mutant variants with RNA-seq reads count ≥ 1
confirmed their expression. Significantly mutated genes had to have at least one
third of their mutations validated by RNA-seq and also have a minimum of half
their mutant calls confirmed by the MuTect somatic variant calling algorithm58.
Recurrently mutated codons that could not be confirmed by RNA-seq were
excluded from hotspot analysis, but were retained in the mutation list.

MSI status determination. MANTIS (Microsatellite Analysis for Normal-Tumor
InStability) was used to detect microsatellite instability for all paired GBC samples.
Microsatellites within the reference genome (GRCh38) were identified using
RepeatFinder, which is included in MANTIS, with default options. MANTIS was
run with the options recommended for whole-exome data: -mrq 20.0 -mlq 25.0 -mlc
20 -mrr 1 --threads 8. Samples with a score >0.35 were predicted to be MSI.

Evaluation of mutations using simulation. A database of all possible non-
synonymous mutations (~70 million) within our exome targets was generated and
classified into one of six mutation types, C:G > G:C, C:G > A:T, C:G > T:A, T:A > A:
T, T:A > C:G or T:A > G:C. We assessed the functional impact of each mutation
using PolyPhen55, SIFT59, and Condel60. Mutations were classified as deleterious
when at least two of the three methods employed showed that it had an adverse
functional impact. Monte Carlo simulations were performed to assess if the
observed ELF mutations differed from randomly generated mutations as described
previously61.

Mutational signatures. GBC exome sequence data was analyzed for the frequency
of the possible 96 mutation types as described recently15. TCGA exome data for
2437 samples from 8 other cancer from SomaticCancerAlterations Bioconductor
package and two small cell lung cancer studies62,63 was also included in the ana-
lysis. We detected a set of six common signatures using Non-Negative Matrix
Factorization across the combined data set. Using the mutSignatures (https://
cancer.sanger.ac.uk/cosmic/signatures_v2) package64 we compared our signatures
to that reported in COSMIC10 version 2. We also repeated the analysis after
removing the MSI samples (Supplementary Fig. 5).

Mutational significance and hotspot meta-analysis. We evaluated the muta-
tional significance of genes using MuSIC65. Given their outlier mutation rate, MSI
samples were excluded from this calculation. Q-scores were calculated by taking the
negative log10 of the CRT q-values produced by MuSIC and SMGs were selected
with a minimum q-score of 1. Germline variants of interest were considered for the
following genes: BRCA1, BRCA2, TP53, MEN1, MLH1, MSH2, MSH6, PMS1, and
PMS2. Hotspot meta-analysis was performed as previously described66. For the
hotspot meta-analysis, we compared GBC mutations to a previous pan-cancer
analysis identifying high-confidence recurrent somatic hotspot mutations in
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cancer30. Hotspot mutations within the data set were matched by codon position
within a gene.

RNA-seq data analysis. RNA-seq reads aligned to the human genome version
GRCh38 using GSNAP67 were used to compute the gene level expression counts.
This involved counting the number of reads aligning concordantly within a pair
and uniquely to each gene locus using gene models defined by NCBI and Ensembl
gene annotations, and RefSeq mRNA database. Variance stabilized expression
values for plotting the expression heatmaps were computed using DESeq268.
Unsupervised consensus clustering of top 400 most variable genes was performed
using the variance stabilized expression values as input to the ConsensusPlus
method implemented by the R package ConsensusClusterPlus.

Identification of transcript alterations. Analysis of splice variants was performed
using the R/Bioconductor software package SGSeq (1.8.1)69. We performed de
novo prediction of gene models from aligned RNA-seq reads for 115 tumors and 4
cholecystitis samples using default parameters. Splice variants were identified from
gene models and quantified in terms of FPKM and relative usage PSI (percent
spliced-in). PSI estimates with denominator < 10 were set to NA. Splice variants
detected in gallbladder samples were also quantified in 9155 normal human tissue
samples from the Genotype-Tissue expression (GTEx) project33. To identify
transcript alterations, we considered splice variants in 835 candidate genes and
selected those with FPKM > 2 and PSI > 0.1 in at least one gallbladder sample, and
FPKM= 0 in >99.8% of GTEx samples. Identified variants were called in gall-
bladder samples for which FPKM > 2. FPKM-based criteria were required at both
start and end of the splice variant. Alternative starts, ends and retained introns
were excluded. Effect on protein-coding potential was assessed with respect to
canonical transcript isoforms.

Low pass whole-genome copy number analysis. The genome was divided in
10 kb bins and the number of reads in each bin provided a count for the genomic
bins. This was used to estimate copy number ratio by computing the log2 ratio of
the tumor counts with the corresponding normal sample counts and adjusting for
total number of reads for each sample. The copy number ratios were then seg-
mented using circular binary segmentation (CBS) and the segments were used to
assign a copy number log2 ratio for each gene. Recurrent genomic regions with
DNA copy gain and loss were identified using GISTIC270 using log2 copy number
ratio >0.4 and <−0.4 for gains and losses, respectively.

Gene fusion detection and validation. Putative fusions were identified using a
computational pipeline we have developed called GSTRUCT-fusion62. Only fusion
events that had at least 4 reads mapping to the fusion junction were included for
further consideration. We then further manually curated the fusion results by
removing events that are likely false positives.

Neoantigen prediction and immune editing. The seq2HLA program71 was used
to assign HLA genotypes based on RNA-seq data using a P value cutoff of 0.01.
Predicted neoantigens expression was confirmed using the RNA-seq data. The
NetMHCcons algorithm from the IEDB software suite72 was used to perform
predictions on a sliding window of 8–11mers on mutant peptide sequences and the
best affinity peptide was chosen as a representative.

We performed immune editing simulations as follows. First, for every Korean
and Indian sample, we took HLA genotypes as predicted from the seq2HLA
program and recorded the allele on two lists based on origin, HLA-India and HLA-
Korea. These lists preserved the observed frequency of HLA alleles observed. Next,
we investigated if there were differences in predicted HLA binding affinities based
on the HLA alleles observed by origin. To do this, we performed 5000 Monte Carlo
Simulations in which we randomly selected a single observed ELF3 mutation as
well as a single HLA-Korean allele from their respective list. For each Korean HLA
allele and ELF3 mutation we performed neoantigen binding affinity predictions as
described above and recorded them as binders (≤500 nm) or non-binders. We then
did the same for HLA-India alleles. We then calculated a p value for binders verses
non-binders between the two simulations using a two-sided Fisher’s Exact Test.

Testing neoantigen peptide activity. Briefly, 10 µM wild-type and mutant pep-
tides were incubated with 0.5 million PBMCs in the presence of IL-2 and IL-15 and
the incubation mixture was replenished with a fresh batch of peptide-cytokine mix
every 3-days. On day-22, PBMCs were harvested and stained for CD3 (0.125 ug/
100 ul; Invitrogen Cat. No.12003942;), CD8 (0.125 ug/100 ul; Invitrogen Cat. No.
17008742) and intracellular IFN-γ (Biolegend Cat. No. 502512; dilution 1:100).
Antigen-specific activation of T-cells was determined by FACS from the frequency
of CD3+/CD8+ T-cells expressing IFN-γ. Antigen-induced TCR repertoire analysis
was performed by subjecting a portion of the PBMC to TCR sequencing using
Immuno-SEQ assay (Adaptive Biotechnologies, WA). Unique and shared TCR
clones were identified by comparing the TCR repertoire of mutant and WT pep-
tides or DMSO controls. Neoantigens were additionally tested for immunogenicity
using a minigene assay (OncoPeptTM, MedGenome Inc., CA). Briefly, monocytes
prepared from donor PBMCs were differentiated into dendritic cells (DCs)73 and

transfected with minigenes encoding five tandem sequences of 9-mer mutant
peptides or empty vector as control. After 24 h, transfected DCs were co-cultured
with 4-fold excess of purified CD8+ T-cells for 10 days. The co-culture was re-
stimulated using autologous PBMCs electroporated with the minigene vectors and
48 h post re-stimulation, cells were stained for CD3, CD8, and intracellular IFN-γ
to determine antigen-specific activation of IFN-γ. Approximately 10,000 cells from
this assay were collected, washed and subjected to single-cell sequencing with
immune profiling to determine the gene expression profile in combination with the
TCR repertoire as per manufacturer’s instruction (10x Genomics, CA). Sequencing
results were evaluated using Loupe Cell and Loupe V(D)J Browsers (10x Genomics,
CA) to assess antigen-specific CD8 T cell clonotype induction and their corre-
sponding functional gene expression profiles.

Estimating cellular content from bulk RNA-seq data. The cellular composition of
115 tumor samples with available RNA-seq data was analyzed using xCell (R package
version 1.1.0)43. xCell incorporates a novel method to remove dependencies between
similar cell types and utilizes gene signatures for over 60 immune and stroma cell
types to estimate the enrichment of each cell type in a tissue sample. We then
performed hierarchical clustering using the pvclust R package74 using the parallel
feature and running hclust with method ward.D2 using euclidean distance mea-
surements. We then cut the tree for 5 clusters after visual inspection of the heatmap.

TCR repertoire analysis. Fastq files were trimmed to remove adapter sequences
and low-quality reads using Trimmomatic75. The clean fastq files were then ana-
lyzed using MiXCR76 to identify TCR clonotypes. Based on TCR clones, Shannon
index was calculated using R package vegan (https://cran.r-project.org/web/
packages/vegan/).

Actionable alterations in GBC. Actionable alterations were identified by com-
paring the mutations detected in the study against a list of actionable cancer gene
alterations in the OncoKB database (https://www.oncokb.org/actionableGenes).

Pathway analysis. Mutational significance of genes from the Reactome77,78

pathways in the MSigDB v4.079, modified to include NF2, was computed using the
MuSIC65 path-scan program. Integrated analysis of mutation, gene expression,
copy number variation and fusion data, limited to samples with alterations, is
shown in the quilt plots. Alteration frequencies calculation included all samples
that contained data for a given alteration type.

Data availability
The Exome, RNA-Seq and WGS data are available through the European Genome

Archive under accession EGAS00001003004 [TCR sequencing/expression data reported

in Fig. 3k, e–j can be obtained by contacting the Institutional data access committee

gDAC-gbc@gene.com under an MTA that will allow the use of the TCR sequences for

non-commercial research studies. All other relevant data are available in the article,

supplementary information, or from the corresponding author upon reasonable request.
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