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Abstract

Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and 

survival rates for these cancers remain dismal. Here we performed a comprehensive molecular 

analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. 

Beyond known histopathological and epidemiologic distinctions, molecular features differentiated 

oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal 

squamous cell carcinomas resembled squamous carcinomas of other organs more than they did 

oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal 

squamous cell carcinomas, but none showed evidence for an aetiological role of human 

papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 

and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly 

amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the 

chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be 

considered a single disease entity. However, some molecular features, including DNA 
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hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data 

provide a framework to facilitate more rational categorization of these tumours and a foundation 

for new therapies.

Oesophageal cancers have 5-year survival rates of 12–20% in Western populations1,2 and 

cause the deaths of over 400,000 people worldwide annually3. Oesophageal cancer is 

classified by histology as adenocarcinoma (EAC) or squamous cell carcinoma (ESCC)4. 

EAC incidence has increased several fold in Western countries in recent decades5, occurs 

predominantly in the lower oesophagus near the gastric junction, and is associated with 

obesity, gastric reflux and a precursor state termed Barrett’s oesophagus. Rising EAC rates 

are paralleled by increasing incidences of proximal stomach cancer6. ESCCs predominate in 

the upper and mid-oesophagus and are associated with smoking and alcohol exposure in 

Western populations. In non-Western countries, risk factors for ESCCs are less established.

The appropriate demarcation between gastric and oesophageal adenocarcinomas and the 

classification of adenocarcinomas spanning the gastroesophageal junction (GEJ) remain 

unresolved7–9, and there is debate regarding the utility of histological distinctions4. To 

improve oesophageal cancer classification, we performed a comprehensive molecular 

analysis of 164 oesophageal tumours, 359 gastric adenocarcinomas and 36 additional 

adenocarcinomas at the GEJ. We evaluated approaches for categorizing oesophageal 

tumours and identified molecular features and candidate pathways that define molecular 

subgroups and offer potential therapeutic targets.

Sample collection and molecular characterization

We addressed the challenge of clinically distinguishing oesophageal and gastric 

adenocarcinomas through review of adenocarcinomas originating near the GEJ, using 

anatomic data and histopathologic criteria, to categorize tumours by oesophageal, gastric or 

indeterminate origins (Fig. 1a, Supplementary Table 1, Supplementary Fig. 1.1). We 

identified 90 ESCCs, 72 EACs (61 definite oesophageal and 11 probable oesophageal), 36 

GEJ carcinomas of indeterminate origin, 63 gastric GEJ carcinomas (15 definite gastric and 

48 probable gastric), 140 gastric carcinomas of the fundus or body, and 143 gastric antral or 

pyloric carcinomas. We were unable to localize 13 gastric adenocarcinomas more narrowly 

within the stomach, and 2 oesophageal tumours were undifferentiated carcinomas.

Fresh-frozen tumour samples from patients who were not previously treated with 

chemotherapy or radiation therapy were obtained from multiple countries with informed 

consent and local Institutional Review Board approval. Germline DNA was collected from 

blood or nonmalignant oesophageal mucosa. Genetic material was subjected to whole-

exome sequencing, single-nucleotide polymorphism (SNP) array profiling to evaluate 

somatic copy-number alterations (SCNAs), DNA methylation profiling and mRNA and 

microRNA sequencing. DNA from 51 oesophageal cancers was subjected to low-pass (6–8 

× coverage) whole-genome sequencing. Reverse-phase protein array proteomic analysis was 

performed on 113 tumours.
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Molecular separation of ESCC and EAC

We evaluated the 164 oesophageal carcinomas using integrated clustering of SCNA, DNA 

methylation, mRNA and microRNA expression data using iCluster10. Both independent and 

integrated analyses from each molecular platform revealed separation between squamous 

cancers and adenocarcinomas (Fig. 1b; Extended Data Fig. 1 a–e). Gene expression analysis 

(Extended Data Fig. 2) revealed that EACs showed increased E-cadherin (CDH1) signalling 

and upregulation of ARF6 and FOXA pathways, which regulate E-cadherin11. By contrast, 

ESCCs exhibited upregulation of Wnt, syndecan and p63 pathways, the latter being essential 

for squamous epithelial cell differentiation12. These data suggest the presence of lineage-

specific alterations that drive progression in EACs and ESCCs.

Somatic genomic alterations in oesophageal cancer

We evaluated somatic genomic alterations separately in ESCC and EAC using MutSig13 to 

search for genes with significantly recurring mutations (Extended Data Fig. 3a, b). In ESCC, 

we identified significantly mutated genes, TP53, NFE2L2, MLL2, ZNF750, NOTCH1 and 

TGFBR2, consistent with previous studies14–20. In EAC, we identified significant 

mutations in TP53, CDKN2A, ARID1A, SMAD4 and ERBB2, as reported previously21. 

These findings are consistent with the prominence of CDKN2A and TP53 mutations in 

dysplastic Barrett’s oesophagus, a precursor to EAC. Similarly, we analysed SCNA data 

with GISTIC22 to define recurrently amplified and deleted regions (Extended Data Fig. 4; 

Supplementary Table 2). Although EAC and ESCC shared some recurring SCNAs, we 

confirmed substantial differences in patterns of alterations between the diseases19,23. 

SCNAs that were recurrent in EAC (but absent in ESCC) included amplifications containing 

VEGFA (6p21.1), ERBB2 (17p12), GATA6 (18q11.2) and CCNE1 (19q12), and deletion of 

SMAD4 (18q21.2). Recurring focal SCNAs in ESCC included amplifications of SOX2 

(3q26.33), TERT (5p15.33), FGFR1 (8p11.23), MDM2 (12q14.3), NKX2-1 (14q13.2) and 

deletion of RB1 (13q14.2). We found novel focal deletions at 3p25.2 in ESCC, 

encompassing the negative regulator of the Hippo pathway VGLL4 and autophagy factor 

ATG7.

Combined mutation and SCNA data revealed frequent alterations in cell cycle regulators 

(Fig. 2). Inactivation of CDKN2A and amplification of CCND1 were present in 76% and 

57% of squamous tumours, respectively; and additional ESCCs had amplification of CDK6 

or loss of RB1. Patterns of cell-cycle dysregulation differed in EACs, where CCND1 was 

amplified in only 15% of tumours, but we observed more common amplification of CCNE1. 

CDKN2A was inactivated in 76% of EACs by mutation, deletion or epigenetic silencing. 

These data reveal a potential role for inhibitors of cell cycle kinases for treatment, especially 

in ESCC.

We found frequent alterations of receptor tyrosine kinases and downstream signalling 

mediators, particularly in EAC. In ESCCs, we identified amplification or mutation of EGFR 

in 19% of tumours and alterations of PIK3CA, PTEN or PIK3R1, all of which are believed 

to activate the PI3K pathway, in 24% of tumours. EACs had a wider range of potentially 

oncogenic amplifications, most commonly of ERBB2, which was altered in 32% of EACs, 
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but in only 3% of ESCCs. Although clinical trials that led to approval by the US Food and 

Drug Administration of the ERBB2-directed antibody trastuzumab were limited to gastric 

and GEJ adenocarcinomas24, ERBB2-positive EACs are routinely treated off-label with 

trastuzumab. Notably, we found mutations of ERBB2 in four tumours lacking ERBB2 

amplification, suggesting that more patients may benefit from ERBB2-directed therapy. 

Transcriptome data identified six cases with ERBB2 amplification that expressed a fusion 

transcript in which exon 12 of ERBB2 was fused to the 3′ untranslated region of 

neighbouring gene JUP (Supplementary Fig. 3.1; Supplementary Table 3). Because this 

fusion transcript omits the ERBB2 transmembrane and tyrosine kinase domains, its potential 

functionality is unclear. Other EACs showed amplification of KRAS, EGFR, IGF1R or 

VEGFA.

Additional analysis identified dysregulation of the TGF-β pathway and less frequent 

CTNNB1 (β-catenin) activation, both more common in EAC than ESCC. We found that 6% 

of ESCCs (but no EACs) had inactivating alterations of PTCH1, as previously described15, 

suggesting activated hedgehog signalling. ESCC tumours, like other squamous cancers, had 

amplifications of chromosome 3q, focused on the SOX2 locus25. Genes that encode SOX2 

or squamous transcription factor p63, also on chromosome 3p, were amplified in 48% of 

ESCCs. Moreover, mutations in ZNF750 and NOTCH1 in ESCCs may similarly modulate 

squamous cell maturation15–20. In EACs, however, we found frequent amplifications of 

genes that encode GATA4 and GATA6 developmental factors, as described in gastric 

adenocarcinomas26,27 and (for GATA6), experimentally validated in EAC28.

Both EAC and ESCCs showed alterations of chromatin-modifying enzymes (Supplementary 

Fig. 3.2). Alterations affecting SWI/SNF-encoding genes ARID1A, SMARCA4 and 

PBRM1 were more common in adenocarcinomas, whereas ESCCs contained more frequent 

alterations in histone-modifying factors KDM6A (UTX), KMT2D (MLL2) and KMT2C 

(MLL3). Therefore, although many of the same pathways were somatically altered in EACs 

and ESCCs, the specific genes affected were dissimilar, probably reflecting distinct 

pathophysiology and suggesting different therapeutic approaches. These data caution against 

performing clinical trials in mixed populations of EACs and ESCCs.

Molecular subtypes of oesophageal SCC

Integrative clustering of ESCC data using iCluster revealed two classes, denoted iCluster 1 

and iCluster 2 (Fig. 3a). Within iCluster 2, we identified a group of tumours with shared 

features including mutations in SMARCA4 (encoding the SWI/SNF factor BRG1), 

increased DNA methylation (Fig. 3a, rightmost samples) and relatively unaltered SCNA 

profiles (Fig. 3b). We designated the distinct set of tumours with these features as subtype 

ESCC3, thus dividing ESCCs into three molecular subtypes: ESCC1 (n = 50), ESCC2 (n = 

36) and ESCC3 (n = 4).

ESCC1 was characterized by alterations in the NRF2 pathway, which regulates adaptation to 

oxidative stressors including some carcinogens and some chemotherapy agents. Mutations in 

NFE2L2 (NRF2), are associated with poor prognosis and resistance to 

chemoradiotherapy29. Alterations were seen in NFE2L2, in genes encoding proteins that 
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degrade NRF2 (KEAP1 and CUL3), and in ATG7, encoding an NRF2 pathway autophagy 

factor30,31 (Fig. 3c). ESCC1 had a higher frequency of SOX2 and/or TP63 amplification 

(Fig. 3c, Extended Data Fig. 5). ESCC1 gene expression resembled the classical subtype 

described in The Cancer Genome Atlas (TCGA) studies of lung SCC32 and head and neck 

SCC (HNSCC)33 (Extended Data Fig. 6), which possess similar somatic alterations. ESCC1 

showed higher rates of YAP1 (11q22.1) amplification and VGLL4/ATG7 deletion, 

suggesting activation of Hippo.

ESCC2 showed higher rates of mutation of NOTCH1 or ZNF750 (Extended Data Fig. 5), 

more frequent inactivating alterations of KDM6A and KDM2D, CDK6 amplification, and 

inactivation of PTEN or PIK3R1. We found greater leukocyte infiltration of ESCC2 tumours 

and higher levels of cleaved Caspase-7 protein (Extended Data Fig. 7), the latter implying 

enhanced potential for XIAP-directed agents to facilitate apoptosis34. The gene with the 

lowest P value for the methylation difference between ESCC1 and ESCC2 was the 

immunomodulatory molecule BST2 (ref. 35) (P=3 × 10−4, Fisher’s exact test; 

Supplementary Table 4), which showed less methylation and higher expression in ESCC2 

(Extended Data Fig. 7), suggesting potential for BST2 inhibition.

ESCC3 tumours showed no evidence for genetic deregulation of the cell cycle and had TP53 

mutations in only one of four samples. All samples in ESCC3, however, sustained alterations 

predicted to activate the PI3K pathway (Extended Data Fig. 5), and three of four possessed 

somatic alterations of KMT2D/MLL2 in addition to SMARCA4. Analysis of the TCGA 

HNSCC data set revealed no tumours with profiles analogous to ESCC3, suggesting this 

class of squamous tumours may be confined to ESCC.

ESCC subtypes showed trends for geographic associations: tumours from Vietnamese 

patients, the only Asian population studied, tended to be ESCC1 (27 out of 41 = 66%; P = 

0.09, Fisher’s exact test), and more tumours derived from Eastern European and South 

American patients were ESCC2 (P = 0.118, Fisher’s exact test). All four ESCC3 tumours 

were derived from patients from the USA and Canada (P = 0.001, Fisher’s exact test). 

Tumours from Vietnamese patients were enriched in NFE2L2 mutations (Fig. 3c); 24% in 

the Vietnamese cohort (10 out of 41) versus 6% in other patients (3 out of 49; P = 0.017, 

Fisher’s exact test). This association of NFE2L2 mutations with Vietnamese patients 

suggests a common oxidative stressor or genetic predisposition. Patients from East Asia 

have common variants in alcohol-metabolism genes ALDH2 and ADH1B36, which are 

associated with ESCC risk36, but we could not investigate their association with NFE2L2 

mutations as all Vietnamese patients had such variants (Supplementary Fig. 3.3).

In comparison to EAC, ESCCs showed enrichment of C> A substitutions and APOBEC 

(apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) signatures (P = 7 × 

10−7 and 5 × 10−5, respectively, by Wilcoxon rank-sum test). The C>A mutational signature 

is associated with smoking and chewing tobacco37, but did not correlate with ESCC 

subgroups or clinical variables in our sample set. However, when we restricted the analysis 

to lifelong nonsmokers, the C>A signature was significantly higher in our Vietnamese 

population (P = 0.013, Wilcoxon), suggesting a role for tobacco chewing. The APOBEC 

signature was overrepresented in ESCC2 (Fig. 3d, P = 0.03, Kruskal–Wallis test) and 
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enriched in patients from Ukraine and Russia (P = 0.01, Wilcoxon rank-sum test). ESCC 

tumours lacked the predilection for A>C transversions at AA dinucleotides seen in EAC 

(Supplementary Table 5).

We evaluated whether the human papilloma virus (HPV), which has a pathogenic role in 

cervical SCC and HNSCC, also contributes to ESCC, as has been reported38. Comparison of 

ESCC mRNA sequencing data to TCGA HNSCC data found that ESCC HPV transcript 

levels resembled HPV-negative HNSCC tumours (Fig. 3e). These data do not support an 

aetiologic role for HPV in ESCC.

EAC in relation to gastric cancer

Given the uncertainty regarding appropriate demarcations of EAC relative to both gastric 

cancer and ESCC, we analysed both EAC and ESCC relative to the cancer types that occur 

nearest to the oesophagus, HNSCC and gastric adenocarcinoma. Analysis of mRNA 

expression, DNA methylation and SCNA data demonstrated that ESCC had a stronger 

resemblance to HNSCC than to EAC (Fig. 4a). Similarly, EACs more closely resembled 

gastric cancer than they did ESCC. In our previous TCGA study27, we classified gastric 

tumours into four subtypes on the basis of having (1) Epstein-Barr virus (EBV) infection, (2) 

microsatellite instability (MSI), (3) chromosomal instability (CIN) and (4) genomic stability 

(GS), a group largely comprised of the diffuse histologic type. When we evaluated EACs 

jointly with gastric cancers, we observed that EACs and CIN gastric cancers jointly formed a 

group distinct from EBV, MSI or GS tumours (Extended Data Fig. 8). Evaluating all 

gastroesophageal adenocarcinomas (GEAs), we found increasing prevalence of CIN moving 

proximally with 71 of 72 EACs classified as CIN (Fig. 4b). No EACs were positive for MSI 

or EBV. However, among GEJ adenocarcinomas that were not clearly of oesophageal origin, 

we identified MSI-positive and EBV-positive tumours.

The enrichment of CIN in EAC suggested that comparisons of EAC with gastric cancers 

would be confounded by non-CIN tumours nearly exclusively in the stomach. We therefore 

sought to find features that could differentiate EAC from CIN gastric cancers by analysis of 

the 288 CIN GEAs (GEA-CIN; Fig. 1a). We found clear similarity between chromosomal 

aberrations in gastric CIN tumours and EAC (Fig. 4c), with stronger similarity between EAC 

and CIN gastric cancers than between those of EAC and ESCC. Clustering of GEA-CIN 

data from individual platforms (Extended Data Fig. 9) and by integrative clustering revealed 

no consistent separation of EACs and CIN gastric cancers, thus arguing against classifying 

these as distinct diseases (Extended Data Fig. 10). As misannotation of tumours near the 

GEJ could enhance the apparent similarity of EACs and CIN gastric tumours, we repeated 

our analysis after excluding equivocal GEJ cases, but saw no definitive separation of EAC 

and CIN gastric adenocarcinomas (Supplementary Fig. 7.1).

However, clustering of DNA methylation data revealed a progression of DNA methylation 

features from proximal to distal GEA-CIN tumours (Fig. 5a). Samples in cluster 1, those 

with the most frequent hypermethylation, were enriched in the oesophagus or proximal 

stomach/GEJ (Fig. 5b). The proportion of cancers showing more frequent DNA 

hypermethylation (that is, clusters 1 or 2) was significantly higher among EACs than among 
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gastric CIN cancers (70% versus 30%, respectively; P = 1.0 × 10−8, Fisher’s exact test). By 

contrast, cluster 4, with the lowest rates of hypermethylation, included more distal stomach 

cancers (Fig. 5b). Unlike hypermethylated gastric CpG island methylator phenotype 

tumours, no GEA-CIN tumours exhibited epigenetic silencing of MLH1, consistent with 

their MSI-negative status, but they showed a higher propensity for epigenetic silencing of 

CDKN2A, (Supplementary Table 6, Fig. 5c). Additional genes silenced in cluster 1 included 

MGMT and CHFR, for which methylation has been associated with responses to alkylating 

agents and microtubule inhibitors, respectively39,40.

We evaluated the GEA-CIN tumours for somatic features that could differentiate EACs from 

gastric CIN tumours (Fig. 5c). EACs had higher rates of mutation of SMARCA4 and 

deletion of tumour suppressor RUNX1, but lower APC mutation rates relative to gastric 

tumours, suggesting a less prominent role for Wnt/β-catenin in EAC. Copy-number analysis 

revealed higher rates of deletions of putative fragile site genes FHIT or WWOX, suggestive 

of differences in the underlying genomic instability between distal and proximal GEA-CIN 

tumours. Analysis of oncogenes identified subtle distinctions, with VEGFA and MYC 

amplifications being more common in EACs. Although additional samples will be required 

to refine understanding of the progressive gradations of features from the distal stomach to 

the oesophagus, these data indicate that gastric and oesophageal CIN tumours lack absolute 

dichotomizing features and do not appear to be distinct tumour types.

Discussion

These analyses call into question the premise of envisioning oesophageal carcinoma as a 

single entity. These molecular data show that histological subtypes of EAC and ESCC are 

distinct in their molecular characteristics across all platforms tested. ESCC emerges as a 

disease more reminiscent of other SCCs than of EAC, which itself bears striking 

resemblance to CIN gastric cancer. Our analyses therefore argue against approaches that 

combine EAC and ESCC for clinical trials of neoadjuvant, adjuvant or systemic therapies 

(Supplementary Fig. 3.4).

These data also inform longstanding debates regarding appropriate demarcations of EAC 

from gastric cancer. We found that GEAs show a progressive gradation of subtypes (Fig. 6), 

with increasing prevalence of the CIN phenotype proximally, to the point that EACs appear 

to represent a disease of chromosomal instability. This CIN gradient is analogous to 

colorectal carcinomas, whereby CIN prevalence increases distally towards the rectum41. 

EAC has been considered separate from gastric cancer according to a model whereby EAC 

originates from Barrett’s oesophagus and thus is not of gastric origin. Although the origin of 

Barrett’s oesophagus remains controversial, recent mouse models suggest that Barrett’s 

oesophagus and EAC might originate from proximal gastric cells or embryonic remnant cell 

populations at the GEJ42,43. The notable molecular similarity between EACs and CIN 

gastric cancers provides indirect support for gastric origin of Barrett’s oesophagus and EAC 

and indicates that we may view GEA as a singular entity, analogously to colorectal 

adenocarcinoma. However, these similarities between EAC and CIN gastric cancers do not 

indicate that all CIN GEAs are indistinguishable. Indeed, differences in more proximal 

GEAs should be expected, given their distinct epidemiology, rapid increase in Western 
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countries, and inverse association with Helicobacter pylori. Continued exploration of the 

molecular characteristics of EAC might not absolutely differentiate them from CIN gastric 

cancers, but may reveal additional features that are enriched in this variant of GEA.

METHODS

Data reporting

No statistical methods were used to predetermine sample size. The experiments were not 

randomized and the investigators were not blinded to allocation during experiments and 

outcome assessment.

Specimen collection and staging

Tissue source sites (TSS) are listed in Supplementary Information S1.1. Oesophageal 

tumours were collected and shipped to a central Biospecimen Core Resource (BCR) 

between 1 December 2011 and 23 December 2013. Samples were obtained from patients 

who had received no previous chemotherapy or radiotherapy for their disease. Each frozen 

primary tumour specimen had a companion normal tissue specimen (blood or blood 

components, including DNA extracted at the TSS). Adjacent nontumourous oesophageal 

tissue was also submitted for a subset of patients.

Cases were staged according to the American Joint Committee on Cancer 7th edition staging 

system44. Pathology quality control was performed on each tumour and adjacent normal 

tissue specimen (if available) from a frozen section slide to confirm that the tumour 

specimen was histologically consistent with oesophageal cancer and that the adjacent tissue 

specimen contained no tumour cells. Tumour samples with ≥ 60% tumour nuclei and ≤ 20% 

necrosis were submitted for nucleic acid extraction.

Nucleic acid processing and qualification

DNA and RNA were co-isolated, and quality was assessed at the central BCR as described 

previously (supplementary S1.1 in ref. 27). A custom Sequenom SNP panel or the 

AmpFISTR Identifiler (Applied Biosystems) was used to verify that tumour DNA and 

germline DNA representing a case were derived from the same patient. RNA was analysed 

through the RNA6000 Nano assay (Agilent) to determine an RNA Integrity Number, and 

only analytes with an integrity number ≥ 7.0 were included. Only cases yielding a minimum 

of 6.9 μg of tumour DNA, 5.15 μg of RNA and 4.9 μg of germline DNA were included.

The BCR received tumour samples with germline controls from a total of 322 oesophageal 

cancer cases, of which 185 qualified, on the basis of BCR pathology review and molecular 

characteristics. Distribution and quality control of cases is shown in Supplementary Fig. 1.1. 

Of the 185 cases that qualified, 171 cases were used for genomic analysis, as 14 cases were 

excluded after independent pathology review (described in ‘Expert pathology review’, 

below) or discovery of clinical or molecular disqualifiers.

Of the 171 qualifying cases, matched nontumourous oesophageal tissue was available for 58 

cases. Samples with residual tumour tissue after extraction of nucleic acids were considered 

for proteomics analysis. When available, a 10- to 20-mg piece of snap-frozen tumour 
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adjacent to the piece used for molecular sequencing and characterization was submitted for 

reverse-phase protein array analysis. We compared these 171 oesophageal adenocarcinomas 

to 388 similarly characterized gastric adenocarcinomas (Supplementary Fig. 1.1).

Microsatellite instability assay

Microsatellite instability (MSI) in qualified oesophageal adenocarcinoma tumour-derived 

DNA samples was evaluated by the BCR at Nationwide Children’s Hospital, Columbus, 

Ohio, USA. MSI-mono-dinucleotide assay was performed to test a panel of four 

mononucleotide repeat loci (polyadenine tracts BAT25, BAT26, BAT40 and transforming 

growth factor receptor type II) and three dinucleotide repeat loci (CA repeats in D2S123, 

D5S346 and D17S250) as previously described27.

Expert pathology review

All cancers included in this study were secondarily reviewed by an Expert Pathologists’ 

Committee that consisted of seven experienced gastrointestinal pathologists (R.O., S.McC., 

Z.Z., J.K., L.T., M.B.P. and J.W.). A centralized virtual pathology review system was 

constructed using an Aperio slide scanner housed at the BCR at Nationwide Children’s 

Hospital. Typically, two frozen sections flanking the tumour tissue from which all material 

was extracted for this study and one additional high-quality formalin-fixed paraffin-

embedded tissue section were scanned and reviewed. Two committee members reviewed all 

cases before inclusion into the study. For cases with discrepant results, a tiebreaker reviewer 

was assigned.

All oesophageal cancers were categorized as squamous or adenocarcinoma, according to the 

World Health Organization Classification of Tumours of the Digestive System, 4th edition45. 

Nine cases were excluded on the basis of pathology review, including four cases where 

quality control identified inadequate material for analysis, two cases where only noninvasive 

neoplasm was observed, and two cases where the neoplasm was unclassifiable on the basis 

of the material available for review. As part of this review, an additional 77 gastric 

adenocarcinomas that had not undergone pathology review as part of this group’s original 

published analysis were also subject to pathology re-review as performed previously27.

Clinical staging was assessed44 by two reviewers according to criteria for each tumour type 

(ESCC or EAC). T, N and M status and tumour grade (0, 1, 2 or 3) were based on pathology 

reports from the TSS.

Anatomic subclassification of adenocarcinomas involving the GEJ

All adenocarcinomas (oesophageal or gastric) from the TCGA collections that had a 

potential origin near the GEJ were further reviewed to refine their anatomic location. 

Pathology reports were obtained from the TSSs with the original gross pathology description 

of the tumour at resection or endoscopic biopsy. Two independent clinical reviewers 

reviewed each TSS pathology report. Tumours were classified as oesophageal, probable 

oesophageal, indeterminate, probable gastric or gastric, according to criteria outlined in 

Supplementary Information S1.2. For downstream analyses, the oesophageal and probable 

oesophageal were grouped together, as were the gastric and probable gastric.
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Somatic copy-number analysis

Analysis of SCNAs was performed on the basis of DNA profiling of each tumour or 

germline sample on Affymetrix SNP 6.0 at the Genome Analysis Platform of the Broad 

Institute as previously described46. As part of this process of copy-number assessment and 

segmentation, regions corresponding to germline copy-number alterations were removed by 

applying filters generated from either the TCGA germline samples from our ovarian cancer 

analysis or from samples in this collection. Analysis of recurrent broad and focal SCNAs 

was performed with the GISTIC 2.0 algorithm22 with clustering performed in R, on the basis 

of Euclidean distance using thresholded copy number at recurring alteration peaks from 

GISTIC analysis using Ward’s method, both as previously reported27. Allelic copy number 

and purity and ploidy estimates were calculated using the ABSOLUTE algorithm47. 

Tumours were classified as having high chromosomal instability, SCNA-high, if they 

possessed at least one arm-level loss (apart from that of 18p, 18q or 21, which were 

recurrent in tumours of both low and high copy-number events) and otherwise as SCNA-low. 

Chromosomal arms were considered altered if at least 80% of the arm was lost or gained 

with a relative log2 copy ratio change of at least 0.15 (Shih et al., unpublished observations). 

This method of classifying copy number instability has 93% concordance with previously 

described copy-number clustering27.

DNA methylation

Genomic DNA (1 μg per sample) was bisulfite-modified, subjected to quality control, and 

analysed using the Illumina Infinium DNA methylation platform, HumanMethylation450, as 

detailed in Supplementary Information S2. Data files generated are listed in Supplementary 

Information S2.3.

CDKN2A epigenetic silencing calls

CDKN2A (also known as p16INK4) epigenetic silencing calls were made using both DNA 

methylation and RNA-seq data. CDKN2A DNA methylation status was assessed in each 

sample based on the probe (cg13601799) located in the p16INK4 promoter CpG island. 

p16INK4 expression was determined by the log2(RPKM+1) level of its first exon (chr9: 

21974403–21975132). The epigenetic silencing calls for each sample were made by 

evaluating a scatterplot showing an inverse association between DNA methylation and 

expression as described in Supplementary Information S2.

DNA sequence analysis

Exome and full-coverage whole-genome sequencing was split between two sequencing 

centres. Samples that were submitted to TCGA as stomach adenocarcinomas (that is, STAD, 

as labelled by the TSS) were sent for sequencing at the Broad Institute. Samples labelled as 

oesophageal cancers (that is, ESCA) were sequenced at Washington University. Each centre 

was responsible for generating BAM files from both tumour and normal DNA samples with 

additional filtering to remove likely artefacts of the sequencing process. From these BAM 

files, four different TCGA analysis sites performed distinct mutation and insertion/deletion 

detection procedures. The results of these distinct mutation-calling efforts were integrated to 
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generate a common mutation annotation file for subsequent analysis. See Supplementary 

Section S3.1.

Broad Institute sequencing

Whole-exome sequencing of 0.5 to 3 μg of DNA from tumour and normal blood samples 

was performed as previously described32 using the Agilent SureSelect Human All Exon V5 

kit, followed by 2 × 76-bp paired-end sequencing on the Illumina HiSeq platform. For 

whole-genome sequencing, 2 × 101-bp reads were sequenced on the same platform. Read 

alignment and processing were performed using the Burrows–Wheeler Aligner (BWA) and 

Picard at the Broad Institute (http://broadinstitute.github.io/picard/) as previously 

published27. Alignments were first subjected to quality control using ContEst48 to avoid 

misannotation of tumour and germline DNA samples, or cross-contamination between 

tumour samples. Only samples with less than 5% estimated cross-contamination were 

analysed further.

Washington University sequencing

Whole-exome sequencing and whole-genome Illumina libraries were constructed as 

described previously49 using Nimblegen SeqCap EZ Human Exome Library v3.0 combined 

with additional 120-mer IDT custom probes, targeting DNA from cancer-related viruses (for 

example, HPV, EBV) and sequenced in multiple lanes of Illumina HiSeq 2000 flow cells to 

achieve a minimum coverage of 20× across 80% of coding target exons. Each lane or sub-

lane of data was aligned using BWA v0.5.9. to GRCh37-lite + accessioned target 

viruses(ftp://genome.wustl.edu/pub/reference/GRCh37-lite_WUGSC_variant_2/).

Identification of somatic mutations and insertion/deletions

The BAM files (for exome sequencing) were used for mutation calling at four different 

analysis centres: Broad Institute, Washington University, University of California at Santa 

Cruz and British Columbia Cancer Agency (as detailed in Supplementary Methods S3.1).

Filtered calls from each analysis centre as described above were merged, and germline SNP 

sites reported by the 1000 Genomes project were filtered and removed. In addition, for the 

normal germline BAM, putative variants with less than 8× coverage of the reference allele or 

greater than one somatic variant-supporting read or 1% somatic variant allele fraction were 

removed. For the tumour BAM, two supporting reads and a variant allele fraction of 5% 

were required as a minimum. Filtering of putatively spurious mutation calls due to 8-

oxoguanine artefacts was performed to remove candidate mutations attributed to these 

sequencing artefacts. Further filtering removed candidate mutations that had been identified 

through sequencing of cohorts of non-neoplastic DNA samples to remove alternative 

artefacts or unfiltered germline calls. Read counts were generated for all remaining novel 

putative variants, and these variants were incorporated into the final mutation annotation file 

if they met the same minimum coverage, maximum coverage, and variant allele fraction 

requirements described above.
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Mutation annotation and significance analysis

Functional annotation of mutations was performed with Oncotator (http://

www.broadinstitute.org/cancer/cga/oncotator) using Gencode V18. Significantly recurrently 

mutated genes were identified using the MutSigCV2.0 algorithm13.

Mutation signature analysis

Mutation signature discovery was performed using Bayesian non-negative matrix 

factorization algorithm for mutation signature analysis as described in Supplementary 

Information S3.2.

Low-pass whole-genome sequencing for rearrangement identification

Genomic DNA (500–700 ng per sample) was sheared into 250-bp fragments using a Covaris 

E220 ultrasonicator, then converted to a paired-end Illumina library using KAPA Bio kits 

with Caliper (PerkinElmer) robotic NGS Suite (Partek Genomics) according to 

manufacturers’ protocols. All libraries were sequenced on a HiSeq2000 using one sample 

per lane, with a paired-end 2 × 51-bp read length. Tumour DNA and its matching normal 

DNA were usually loaded on the same flow cell. Raw data were converted to the FASTQ 

format, and BWA alignment (to hg19) was used to generate BAM files as previously 

described (supplementary S3.6 in ref. 27). Detection of structural rearrangements was 

performed using two algorithms, BreakDancer50 and Meerkat51. The set of structural variant 

calls from each tumour sample was filtered by the calls from its matched normal DNA to 

remove germline variants. Data were then re-examined using the Meerkat algorithm, which 

necessitated the identification of at least two discordant read pairs, with one read covering 

the actual breakpoint junction. Alterations found in simple or satellite repeats were also 

excluded. (Candidate fusion genes from this analysis are shown in Supplementary Table 3 

with more detailed listing of structural alterations in Supplementary Table 7.)

mRNA sequencing and analysis methods

mRNA sequence data were generated as described previously (supplementary S5.1 in ref. 

27). For combined clustering analysis of oesophageal, gastric and head and neck tumours, 

the University of North Carolina Genome Characterization Center reprocessed the stomach 

adenocarcinoma and oesophageal cancer data with their MapSplice/RSEM pipeline32. We 

generated candidate fusion events from mRNA sequence data as described previously 

(supplementary S5.4 in ref. 27), except that we used TransABySS v1.4.8 (http://

www.bcgsc.ca/platform/bioinfo/software/trans-abyss/releases/1.4.8).

To identify subtypes within our various cohorts, we used hierarchical clustering with 

pheatmap v1.0.2 in R. The input in each case was a reads per kilobase of exon per million 

reads mapped to the transcriptome (RPKM) data matrix for the top 25% most variable genes 

with mean greater than 10 RPKM. We transformed each row of the matrix by log10(RPKM

+1), then used pheatmap to scale the rows. We used ward.D2 for the clustering method and 

correlation and Euclidean distance measures for clustering the columns and rows, 

respectively. We identified genes that were differentially expressed, using unpaired two-class 

significance analysis of microarrays (samr v2.0), with an RPKM input matrix and a false 

discovery rate threshold of 0.05.
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To compare oesophageal cancer subtypes with established subtypes of HNSCC52 and lung 

squamous cell (LUSC) tumours53, centroid gene expression profiles were used to categorize 

the 90 oesophageal squamous tumours into atypical, basal, classical and mesenchymal by 

the HNSCC classification; and basal, classical, primitive and secretory by the LUSC 

classification. Of the 839 genes used for the HNSCC centroids, 809 overlapped with genes 

in the ESCC data set. Additionally, of the 209 genes used for the LUSC predictor centroids, 

202 overlapped with genes in the ESCC data set. We then generated an RPKM matrix of the 

90 ESCC tumour samples for each of these gene sets. These matrices were log2 transformed 

and median-centred. Finally, we computed the Pearson correlations between each column in 

the matrix and the HNSCC and LUSC centroids.

To evaluate oesophageal mRNA expression relative to other tumour types, we combined 

RNA sequencing by expectation maximization RSEM-normalized expression data from the 

STAD, ESCA and HNSC cohorts. Samples were ordered first by organ, then by histology 

(adenocarcinoma or squamous), then by gastric cancer classification (EBV, MSI, GS or CIN 

categories) and finally by HPV status. We selected the top 25% most variable genes (by 

coefficient of variation) within the oesophageal carcinoma sample set with mean expression 

greater than 1,000 RSEM-normalized counts. We transformed each row of the matrix by 

log10(RSEM+1), then used pheatmap to scale and cluster the rows.

microRNA sequencing and analysis

We generated microRNA sequence data as described previously (supplementary S6.1 in ref. 

27). To identify subtypes within our various cohorts, we used hierarchical clustering with 

pheatmap v1.0.2 in R. The input in each case was a reads-per-million (RPM) data matrix for 

the 303 miRBase v16 5p or 3p mature strands that had the largest variances across each 

cohort. We transformed each row of the matrix by log10(RPM+1), then used pheatmap to 

scale the rows. We used ward.D2 for the clustering method and correlation and Euclidean 

distance measures for clustering the columns and rows, respectively. For analyses comparing 

oesophageal with gastric and head and neck cancers, we used the top 25% (~300) most 

variable 5p or 3p mature strand microRNAs54 within the oesophageal carcinoma sample set. 

We transformed each row of the matrix by log10(RPM+1), then used pheatmap to scale the 

rows. For clustering the rows, we used ward.D2 and a Euclidean distance measure.

Reverse-phase protein array

Proteins isolated from tumours were used to prepare reverse-phase protein arrays with 187 

validated primary antibodies by methods described previously (supplementary S7 in ref. 27). 

Data were normalized, and clustering analysis was performed as detailed in Supplementary 

Section S4.

Pathogen analysis

We used two tools to examine whole-exome and RNA sequence data for the presence of 

microbial sequences: BBT (BioBloomTools, v1.2.4.b1) and PathSeq. Details of these 

analyses are provided in Supplementary section S5. MicroRNA data were analysed using an 

in-house pipeline as previously described (supplementary S9.2 in ref. 27).
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Pathway analysis of mRNA

We performed pathway-level analysis of gene expression to compare EAC and ESCC 

samples. Pathways, as gene-sets, were obtained from the National Cancer Institute’s 

pathway interaction database (NCI-PID)55. A P value, comparing EAC with ESCC using 

Kruskal-Wallis one-way analysis of variance by ranks, was obtained for each gene. For each 

of the 224 pathways, the gene-level p values were log-transformed and summed by using an 

approach based on Fisher’s combined statistic to yield a pathway-level composite score. The 

statistical significance of this score was then estimated empirically by similarly scoring 

10,000 randomly generated pathways for each NCI-PID pathway, with matched pathway 

size.

Integrative clustering

To discover which tumour samples shared molecular signatures across platforms, the 

following four integrative clustering approaches were used: iCluster, Multiple Kernel 

Learning k-means (MKL k-means), SuperCluster, and Clustering of Cluster Assignments 

(COCA). In the iCluster method10,56,57, subgroups were discovered through their 

representation as latent variables in joint multivariate regression. MKL k-means combines 

the k-means clustering algorithm with the use of kernels that encode the similarity between 

the samples, to define features for classifying the tumours. SuperCluster and COCA both use 

clusters derived from individual molecular platforms to form an overall categorical 

description of each sample, but they differ in details, such as the metric used to compare 

those samples. SuperCluster performs a variance adjustment such that each molecular 

platform receives equal weight, whereas the implementation of COCA employed here and 

previously (supplementary S10.2 in ref. 27) uses a weighting method that takes into account 

the granularity of the divisions within each platform-specific category. Further details on 

these methods are given in Supplementary Section S7.

Data availability

The primary and processed data used to generate the analyses presented here can be 

downloaded from the TCGA manuscript publication page, (https://tcga-data.nci.nih.gov/

docs/publications/esca_2016), and from the Genomic Data Commons (https://gdc-

portal.nci.nih.gov/legacy-archive).
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Extended Data

Extended Data Figure 1. Platform-specific unsupervised clustering analyses of oesophageal 
cancers

a–e, Unsupervised clustering of oesophageal cancers based on DNA hypermethylation (a), 

SCNAs (b), gene expression profiles (c), microRNA profiles (d) and reverse-phase protein 

array data (e) revealed strong separation between EAC and ESCC in multiple molecular 

platforms. Samples are displayed as columns. EAC, oesophageal adenocarcinoma; ESCC, 

oesophageal squamous cell carcinoma; UC, undifferentiated carcinoma.
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Extended Data Figure 2. Pathways with significant expression differences between EAC and 
ESCC

a, NCI PID pathways in which expression differs significantly between EAC and ESCC (Ps 

< 10−3, where Ps is the statistical significance of the pathway score (see Methods)) are listed. 

The colour scale shows the median (log2) expression value of significantly differentially 

expressed genes (P < 10−3) in the corresponding pathway, normalized to unit range. b, 

TP63ΔN transcript levels were measured in EAC, solid tissue normal, and ESCC samples. c, 

Median gene expression values of genes in the NCI-PID pathway ‘Validated transcriptional 

targets of the ΔN p63 isoforms’ in EAC and ESCC. Each point represents one sample, and 

the value is the median expression value of the 46 genes in the pathway.

Page 16

Nature. Author manuscript; available in PMC 2017 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 3. MutSig analyses of significantly mutated genes in EAC and ESCC

a, Plot of significantly mutated genes from the MutSigCV2 computational analysis of 

whole-exome sequencing data from EAC samples. Genes are ordered by level of 

significance (q value as plotted at right). At left is the prevalence of each mutation in the 

sample set. The coloured boxes show samples with specific mutations, with the type of 

mutation labelled by box colour, with legend at upper right. The top plot shows the number 

of mutations per sample with synonymous (Syn.) and non-synonymous (Non syn.) 

mutations plotted separately. The bottom plot shows the distribution of allelic fraction of 

mutations for the samples sequenced. b, The MutSig plot for ESCC is shown the same as for 

the EAC samples above.
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Extended Data Figure 4. GISTIC analysis of foci of recurrent amplification and deletion

These figures demonstrate foci of significantly recurrent focal amplification and deletion as 

determined from GISTIC 2.0 analysis of somatic copy number data from SNP arrays. 

Separate plots are shown for CIN-gastric cancer (left), EAC (middle) and ESCC (right). 

Each plot arrays the chromosomes from 1 (top) to X (bottom) and shows foci of significant 

amplification (left, red with scale at bottom) or deletion (right, blue with scale at top). 

Candidate targets of each focus of amplification or deletion are shown in the label for the 

respective peak. Peaks without clear targets are labelled by chromosome band. The number 

in parentheses indicates the number of genes in each peak as calculated by GISTIC. Genes 

marked with asterisks are likely drivers located adjacent to peak areas defined by GISTIC.
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Extended Data Figure 5. Comparison of somatic alterations in ESCC and HNSC subtypes

Mutations and copy-number changes for selected genes in selected signalling pathways are 

shown for the three ESCC subtypes identified in our study and the HPV-negative (n = 243) 

and HPV-positive (n = 36) subtypes that had previously been identified by TCGA in the 

HNSC study. Amplifications and deep deletions indicate a change of more than half of the 

baseline gene copies. Missense mutations were included if they were found in the COSMIC 

repository. Alteration frequencies are expressed as percentage of altered cases within each 

molecular subtype. Bottom panels show percentage of altered cases per signalling pathway 
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for each molecular subtype and percentage of altered cases per molecular subtype for each 

signalling pathway.

Extended Data Figure 6. Distinct clusters of ESCC

Columns indicate Pearson correlation between each of the mRNA profiles of 90 ESCC 

tumours with the centroids of the mRNA expression profiling subtypes that were developed 

for lung squamous cell carcinoma (LUSC, top) and head and neck squamous cell carcinoma 

(HNSC, bottom) gene expression analyses. Samples are in ESCC cluster order as in Fig. 3a.
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Extended Data Figure 7. Characterization of ESCC subtypes

a, We identified genes exhibiting epigenetic silencing in individual samples and compared 

the number of samples where each gene was silenced in ESCC1 and ESCC2. Genes that 

showed statistical associations between number of silenced samples and ESCC subtypes are 

shown in the table (P < 0.01, Fisher’s exact test). Two genes remained significant after 

Bonferroni correction. The panel on the right shows DNA methylation versus gene 

expression for BST2 and SH3TC1. b, A detailed analysis of BST2 DNA methylation in 

ESCC samples and non-cancer controls. c, d, The plots of (c) estimated leukocyte fraction 

and (d) levels of cleaved caspase-7 protein show the median, 25th and 75th percentile values 

(horizontal bar, bottom and top bounds of the box), and the highest and lowest values within 

1.5 times the interquartile range (top and bottom whiskers, respectively).
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Extended Data Figure 8. EACs are more similar to CIN-type gastric adenocarcinomas than to 
other gastric subtypes

a, b, Integrative clustering of platform-specific clusters for gastroesophageal 

adenocarcinomas (GEA) was performed using the SuperCluster method (a) and Clustering 

of Cluster Assignments (COCA) (b).

Page 22

Nature. Author manuscript; available in PMC 2017 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 9. Platform-specific unsupervised clustering analyses of GEA-CIN 
tumours

a–d, Shown are heat map representations of gene expression (a), microRNA (b), SCNAs (c), 

and reverse-phase protein array profiles of GEA-CIN tumours (columns) (d).
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Extended Data Figure 10. Integrative clustering of GEA-CIN samples

a, Integrative clustering by Multiple Kernel Learning: k-means (MKL k-means) yielded a 

four cluster solution, in which Cluster 4 is enriched for EAC. b, Clustering of Cluster 

Assignments (COCA), was performed for the 267 samples for which complete platform-

specific cluster information (see Fig. 5a, Extended Data Fig. 8) was available for gene 

expression, microRNA expression, DNA methylation and somatic copy number alteration 

(SCNA), and yielded three integrative clusters. Details of the methods can be found in 

Supplementary section S10.2. c, Frequency of EAC in four integrative clustering methods. 

Page 24

Nature. Author manuscript; available in PMC 2017 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Integrated clustering with iCluster and SuperCluster was performed as described in 

Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Major subdivisions of gastroesophageal cancer

a, 559 oesophageal and gastric carcinoma tumours were categorized into sample sets. CIN, 

chromosomal instability; EBV, Epstein–Barr virus; GEJ, gastroesophageal junction; GS, 

genomically stable; MSI, microsatellite instability. UC, undifferentiated carcinoma. b, 

Integrated clustering of four molecular platforms shows that oesophageal carcinomas fall 

into two molecular subtypes (iCluster 1 and iCluster 2) that are virtually identical to 

histological classes ESCC and EAC. Clinical (top) and molecular data (bottom) from 164 

tumours profiled with all four platforms are depicted.
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Figure 2. Integrated molecular comparison of somatic alterations across oesophageal cancer

Mutations and SCNAs for selected genes and CDKN2A epigenetic silencing are shown for 

EACs and ESCCs. Genes are grouped by pathways, with lines and arrows showing pairwise 

molecular interactions. Deep deletions indicate loss of more than half of gene copies. Only 

missense mutations reported in the COSMIC repository are included. Alteration frequencies 

for each gene are listed inside rounded rectangles with ESCC rates on left and EAC on right, 

with red shading denoting gene activation, and blue denoting inactivation.
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Figure 3. Distinct molecular subtypes of oesophageal squamous cell carcinoma

a, ESCCs separated into subtypes ESCC1 and ESCC2 by iCluster, with identification of an 

additional group ESCC3 having SMARCA4 mutations and reduced SCNAs. Clinical and 

molecular features are listed at top with molecular data at bottom. b, Left, DNA 

hypermethylation in ESCC3 and other ESCCs. Right, SMARCA4 mutations. c, Genomic 

alterations that affect oxidative stress and cell differentiation in ESCC subtypes with samples 

segregated by geographic origin. d, Fraction of mutations with APOBEC signature by 

subtype and geographic origin. e, Human papilloma virus (HPV) transcript levels in 

oesophageal and head and neck SCCs.
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Figure 4. Similarity of oesophageal adenocarcinoma and CIN variant of gastric cancer

a, Molecular profiles of head and neck, oesophageal and gastric carcinomas with samples 

segregated by tumour type and gastric cancers subdivided by molecular subtypes. b, 

Distribution of gastric molecular subtypes by anatomic location across gastroesophageal 

adenocarcinomas. c, Composite copy number profiles for ESCC, EAC, gastric-CIN and 

gastric non-CIN tumours with gains in red and losses in blue and grey highlighting 

differences between ESCC and EAC.
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Figure 5. Molecular features of CIN gastroesophageal adenocarcinomas by anatomic location

a, Heat map representation of consensus clustering of DNA methylation of GEA-CIN 

tumours with molecular and clinical features shown above and methylation profiles of 

normal oesophagus (n = 2) and stomach (n = 13) on the left. b, Fraction of tumours 

belonging to each methylation subgroup by anatomic location (top right) and distribution of 

tumour anatomic location by methylation cluster (bottom). c, Frequency of alterations in 

selected genes along the anatomic axis with tumour suppressor inactivation in blue and 

oncogene activation in red.
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Figure 6. Gradations of molecular subclasses of gastroesophageal carcinoma

Schematic representing shifting proportion of subtypes of gastroesophageal carcinoma from 

the proximal oesophagus to the distal stomach. The widths of the colour bands represent the 

proportion of the subtypes present within anatomic regions. Key features of subtypes are 

indicated in associated text.
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