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Abstract: Direct geo-referencing is an efficient methodology for the fast acquisition of

3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation

sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution,

we consider an integrated GNSS navigation system to provide estimates of the position

and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS)

consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner

and a reference GNSS station with known coordinates. Precise GNSS navigation requires

the resolution of the carrier phase ambiguities. The proposed method uses the multivariate

constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating

frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna

geometry to strengthen the underlying attitude model and, hence, to enhance the reliability

of rotating frame ambiguity resolution and attitude determination. The reliable estimation

of rotating frame ambiguities is consequently utilized to enhance the relative positioning of

the rotating frame with respect to the reference station. This integrated (array-aided) method

improves ambiguity resolution, as well as positioning accuracy between the rotating frame

and the reference station. Numerical analyses of GNSS data from a real-data campaign

confirm the improved performance of the proposed method over the existing method. In

particular, the integrated method yields reliable ambiguity resolution and reduces position
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standard deviation by a factor of about 0.8, matching the theoretical gain of
√

3/4 for two

antennas on the rotating frame and a single antenna at the reference station.

Keywords: global navigation satellite system (GNSS); attitude determination; multivariate

constrained integer least-squares (MC-LAMBDA); carrier phase ambiguity resolution; direct

geo-referencing; laser scanner

1. Introduction

The acquisition and interpretation of three-dimensional (3D) spatial data are important assets for

scientific and industrial applications, such as 3D city modeling, facility management, construction

engineering, navigation and forensic investigations. Direct geo-referencing, which does not require

dedicated control points, is an efficient methodology for the fast acquisition of 3D spatial data by means

of a 3D laser scanner. It can be performed either using additional backsight targets [1–4] or using

external sensors [5–8]. The latter requires the fusion of spatial data acquisition sensors and navigation

sensors, such as Global Navigation Satellite System (GNSS) sensors. In this contribution, we consider

an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of

a 3D laser scanner.

The use of GNSS for geo-referencing has been explored in various studies. Direct geo-referencing is

demonstrated using GNSS integrated with inertial sensors [9,10] and a digital compass [5]. In this work,

we explore pure a GNSS-based navigation solution as in [8,11]. In [11], a single rotating antenna is used

to provide a post-processing navigation solution. As in [7,8], the proposed multi-sensor system (MSS)

consists of multiple GNSS antennas rigidly and symmetrically mounted on the frame of a rotating laser

scanner and a reference GNSS station with known coordinates.

The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA)

method [12–17] for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA

makes use of known antenna geometry to strengthen the underlying attitude model, enabling reliable

instantaneous ambiguity resolution and attitude determination of the rotating frame. The reliable

estimation of rotating frame ambiguities is consequently utilized to enhance the positioning of the

rotating frame. This array-aided positioning method [15,18–20] naturally yields the estimates of the

rotating frame center (centroid of antennas’ reference points) and improves ambiguity resolution, as well

as the positioning accuracy of the relative position between the rotating frame and the reference station.

The numerical studies considered in this contribution include performance analyses of the proposed

method with GNSS data from two real data campaigns. Comparison studies using epoch-by-epoch

processing and filtering confirm the improved performance of the proposed method over the existing

method from [8]. This contribution is organized as follows: Section 2 describes the multi-sensor

system considered and defines the problem. Section 3 describes our attitude determination and filtering

approaches for the rotating frame. Section 4 describes the array-aided positioning and filtering methods

for the positioning of the rotating frame. Section 5 presents real data analyses demonstrating the
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improved performance of the proposed method. Finally, Section 6 contains the summary and conclusions

of this contribution.

2. Background

The multi-sensor system (MSS) considered for geo-referencing in this contribution consists of a laser

scanner and two GNSS antennas/receivers. As shown in Figure 1a, the laser scanner is the core sensor

of the MSS, which rotates about its vertical axis with a constant angular velocity. GNSS receivers are

connected to two eccentric GNSS antennas, which are mounted such that the centroid of the antenna

reference points (ARPs) coincides with the scanner rotating axis. In addition to these GNSS receivers, it

is assumed to have a nearby reference GNSS station with a known position (Figure 1b). During the data

acquisition, the MSS makes a complete 360 degree rotation about its vertical axis, collecting both laser

and GNSS measurements, which are synchronized through a GNSS receiver event marker.

Figure 1. Geo-referencing scenario. (a) The MSS formed by a laser scanner (blue) and two

eccentrically-mounted GNSS antennas (green) [8]; and (b) the reference GNSS station with

a known position.

(a) (b)

The objective of the navigation system is to provide the position (the centroid of ARPs) and

the pointing direction (heading) of the laser scanner. In [8], standard real-time kinematic (RTK)

positioning [21] is used to estimate individual rotating antenna positions, and then, a constrained

nonlinear filtering method, in particular an extended Kalman filter, is used to obtain the above

parameters. In this contribution, we use constrained integer least-squares (Section 3) and array-aided

positioning (Section 4), enabling improved ambiguity resolution and improved positioning accuracy.

In the following sections, we formulate a more general problem, estimating attitude angles and relative

position between two platforms with multiple GNSS antennas/receivers, which enables us to demonstrate

the potential of array-aided positioning. As shown in the following sections, array-aided positioning

utilizes the reliable estimation of rotating frame ambiguities, which are obtained from array processing

(MC-LAMBDA), improving the estimation of the relative position of the rotating frame with respect to

the given reference station.
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3. Attitude Determination

This section describes the platform processing involving attitude determination for a small-sized array

of GNSS receivers/antennas with a known local body frame antenna geometry. First, the multi-baseline

attitude model is introduced using the multivariate formulation of [12]. This formulation makes frequent

use of the Kronecker product and the vec-operator [22]. Then, we include the local body frame

antenna-geometry and show how the constrained attitude model can be solved in a step-wise manner.

3.1. The Multivariate Model

Let us consider the k-th platform equipped with a set of nk + 1 antennas simultaneously tracking

m + 1 satellites on f frequencies. The set of linearized double difference (DD) GNSS phase and code

observations obtained on the nk baselines formed by these antennas at an observation epoch forms a

multivariate Gauss–Markov model [12,19]:

E(Y k) = AZk +GBk, Zk ∈ Z
fm×nk (1)

D(vec(Y k)) = QY kY k = Pnk
⊗Qyy, Bk ∈ R

3×nk (2)

where E(·) and D(·) denote the expectation and dispersion operator, ⊗ denotes the Kronecker product,

Y k = [yk1 , . . . , y
k
nk
] the 2fm × nk matrix of nk linearized (observed-minus-computed) DD observation

vectors ykr , Zk = [zk1 , . . . , z
k
nk
] the fm × nk matrix of nk unknown DD integer ambiguity vectors zkj ,

Bk = [bk1, . . . , b
k
nk
] the 3 × nk matrix of nk unknown baseline vectors bj , G the 2fm × 3 geometry

matrix that contains the unit line-of-sight vectors, A the 2fm× fm matrix that links the DD data to the

integer ambiguities and Pnk
and Qyy the known matrices of order nk×nk and 2fm×2fm, respectively.

Here, vec(·) denotes the vec-operator, which transforms a matrix into a vector by stacking the columns

of the matrix, one underneath the other. Note that, for the simplicity of the formulation, we assumed

that all receivers/antennas track the same set of satellites. However, this restriction is relaxed in the

software implemented using MATLAB. Since the unit line-of-sight vectors of two antennas to the same

satellite on a short baseline considered in this work (≤10 km) are the same for all practical purposes, the

geometry matrix G is considered the same for different platforms, as well as for the between-platform

baseline at a given time instant.

For the stochastic model, we assumed that all receivers/antennas have similar (noise) characteristics.

However, the results in the following are also applicable for dissimilar receivers/antennas [19]. The

correlation matrix Pnk
takes care of the correlation that follows from the fact that the nk baselines share

the observations from the reference receiver. For similar receivers/antennas, it is given as:

Pnk
=

1

2

(

Ink
+ enk

eTnk

)

(3)

with Ink
the identity matrix of size nk and enk

the nk-vector of ones. Matrix Qyy takes care of the

precision of the phase and code data and is given as:

Qyy = blockdiag (Q1, . . . , Qf ) (4)

where:

Qf = 2× blockdiag (Qf :p, Qf :Φ) (5)
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with Qf :p = DT

mQ
′

f :pDm, Qf :Φ = DT

mQ
′

f :ΦDm, Q′

f :t = diag
[

(

σ1
f :t

)2
, . . . ,

(

σm+1
f :t

)2
]

, DT

m = [−em Im]

the single difference operator, “blockdiag” referring to the block diagonal matrix formed by given

arguments and “diag” referring to the diagonal matrix formed by given arguments. The factor

two in Equation (5) is due to the between-receiver difference of similar receivers. We assume

elevation-dependent noise characteristics [23] for the undifferenced observables. That is, the standard

deviation of the undifferenced observable can be written as:

σsf :t = σf :t0

(

1 + af :t0 exp

(

−θs

θf :t0

))

(6)

where θs is the elevation angle of satellite s and σf :t0 , af :t0 and θf :t0 are the elevation-dependent

model parameters.

3.2. The Body-Frame Antenna-Geometry as Multivariate Constraints

The strength of the above model can be improved by including information about the geometry of the

antenna configuration. The known body-frame antenna-geometry can be included into the above model

through the parametrization:

Bk = RkBk
0 , Rk ∈ O

3×qk (7)

with the unknown 3 × qk orthogonal matrix Rk (RkTRk = Iqk), O3×qk denoting the set of orthogonal

matrices of size 3 × qk and the known qk × nk matrix Bk
0 = [bk0,1, . . . , b

k
0,nk

] describing the known

geometry of the antenna configuration in the body frame. Here, qk is the degree of geometrical

independence of the GNSS baselines, for example, qk = 1 for co-linearly installed antennas, qk = 2

for co-planarly installed antennas and qk = 3 for antennas not installed in a single plane. For qk = 3,

Rk is related to the Euler attitude angles ϑ = [φ θ ψ]T as follows:

R(ϑ) =







cθcφ −cψsφ + sψsθcφ sψsφ + cψsθcφ

cθsφ cψcφ + sψsθsφ −sψcφ + cψsθsφ

−sθ sψcθ cψcθ






(8)

with φ the heading, θ the elevation, ψ the bank and where sα = sin(α) and cα = cos(α). Note that for

q < 3, only the first q columns of R are defined. For example, for a linear antenna array (q = 1), only

the first column is defined, and hence, only heading and elevation are estimable. For q > 1 (an array

with more than two antennas that are not in a straight line), all three angles are estimable.

Substitution of Equation (7) into Equation (1) leads to the constrained GNSS attitude model [19,24]:

E(Y k) = AZk +GRkBk
0 Zk ∈ Z

fm×nk (9)

D(vec(Y k)) = QY kY k = Pnk
⊗Qyy Rk ∈ O

3×qk (10)

Our objective is to solve for the attitude matrix Rk in a least-squares sense, thereby taking the integer

constraint on matrix Zk ∈ Z
fm×nk and the orthonormality constraint on matrixRk ∈ O

3×qk into account.

Hence, the least-squares minimization problem that will be solved reads:

min
Zk∈Z

fm×nk ,Rk∈O
3×qk

∥

∥vec
(

Y k − AZk −GRkBk
0

)∥

∥

2

Q
Y kY k

(11)
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with || · ||2Q = (·)TQ−1(·). This is a mixed integer nonlinear least-squares problem that does not permit

a closed-form solution. We now describe how Equation (11) can be solved.

3.3. The Real-Valued Float Solution

The float solution is defined as the solution of Equation (11) without the constraints. When we ignore

the integer constraint on Zk and the orthonormality constraint on Rk, the float solutions Ẑk and R̂k and

their variance-covariance matrices are obtained from solving the system of normal equations:

[

QẐkẐk QẐkR̂k

QR̂kẐk QR̂kR̂k

]

−1 [

vec(Ẑk)

vec(R̂k)

]

= AT

kQ
−1
Y kY kvec(Y

k) (12)

with:
[

Q
Ẑk ˆ

Zk QẐkR̂k

QR̂kẐk QR̂kR̂k

]

=
(

AT

kQ
−1
Y kY kAk

)

−1
, Ak =

[

Ink
⊗ AT

Bk
0 ⊗GT

]T

The Zk-constrained solution of Rk and its variance-covariance matrix can be obtained from the float

solution as follows:

vec
(

R̂k(Zk)
)

= vec(R̂k)−QR̂kẐkQ−1
ẐkẐkvec

(

Ẑk − Zk
)

(13)

QR̂k(Zk)R̂k(Zk) = QR̂kR̂k −QR̂kẐkQ−1
ẐkẐkQẐkR̂k

=
(

Bk
0Pnk

−1Bk
0

T
)

−1

⊗
(

GTQ−1
yyG

)

−1
(14)

Using the above estimators, the original problem in Equation (11) can be decomposed as:

min
Zk∈Z

fm×nk ,Rk∈O
3×qk

∥

∥vec
(

Y k − AZk −GRkBk
0

)∥

∥

2

Q
Y kY k

=
∥

∥

∥
vec

(

Êk
)
∥

∥

∥

2

Q
Y kY k

+ min
Zk∈Z

fm×nk

(

∥

∥

∥
vec

(

Ẑk − Zk
)
∥

∥

∥

2

Q
ẐkẐk

+ min
Rk∈O

3×qk

∥

∥

∥
vec

(

R̂k(Zk)−Rk
)∥

∥

∥

2

Q
R̂k(Zk)R̂k(Zk)

)

(15)

with Êk = Y k − AẐk −GR̂kBk
0 being the matrix of least-squares residuals. Note that the first term on

the right-hand side is constant, as it does not depend on the unknown matrices Zk and Rk.

3.4. The Integer Ambiguity Solution

Based on the orthogonal decomposition (15), the multivariate constrained integer minimization can

be formulated as:

Žk = arg min
Zk∈Z

fm×nk

Ck(Zk) (16)

where:

Ck(Zk) =
∥

∥

∥
vec(Ẑk − Zk)

∥

∥

∥

2

Q
ẐkẐk

+
∥

∥

∥
vec

(

R̂k(Zk)− Řk(Zk)
)∥

∥

∥

2

Q
R̂k(Zk)R̂k(Zk)

(17)
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with:

Řk(Zk) = arg min
Rk∈O

3×qk

∥

∥

∥
vec

(

R̂k(Zk)−Rk
)∥

∥

∥

2

Q
R̂k(Zk)R̂k(Zk)

(18)

The ambiguity objective function Ck(Zk) is the sum of two coupled terms: the first weighs the

distance from the float ambiguity matrix Ẑk to the nearest integer matrix Zk in the metric ofQẐkẐk , while

the second weighs the distance from the conditional float solution R̂k(Zk) to the nearest orthonormal

matrix Rk in the metric of QR̂k(Zk)R̂k(Zk). Unlike with the standard LAMBDA method [25], the search

space of the above integer minimization problem is non-ellipsoidal, due to the presence of the second

term in Ck(Zk). This second term is a consequence of having the orthonormality constraints rigorously

included. The evaluation of Ck(Zk) requires the computation of a nonlinear constrained least-squares

problem (18) for every integer matrix in the search space. In the MC-LAMBDA method, this problem is

mitigated through the use of easy-to-evaluate bounding functions [17].

3.5. The Ambiguity Resolved Attitude Solution

Finally, we obtain the integer ambiguity-resolved attitude solution by substituting Žk into

Equation (13), thus giving R̂k(Žk). The sought-for attitude angles ϑk
(

Žk
)

are then given by

the reparametrized solution of Equation (18). Using a first order approximation, the formal

variance-covariance matrix of the attitude angles is given by:

Qϑkϑk ≈
(

JT

Rk,ϑkQ
−1

R̂k(Zk)R̂k(Zk)
JRk,ϑk

)

−1

(19)

where JRk,ϑk is the Jacobian of ϑk(Rk).

3.6. Attitude Filtering

The epoch-by-epoch MC-LAMBDA attitude solution is further processed using an unscented Kalman

filter (UKF) [26]. For a leveled platform (i.e., for small θ and ψ), the kinematic equations of the attitude

angles are given as [27]:

αi = Fαi−1 + vαi−1 (20)

where the state vector αi =
[

φi φ̇i θi θ̇i ψi ψ̇i

]T

consists of attitude angles and angular rates, and the

state transition matrix F is given as:

F = I3 ⊗

[

1 T

0 1

]

(21)

where T is the sampling interval. The process noise vαi−1 has a zero mean normal distribution with

variance-covariance matrix Qvαvα,i−1, which is given as:

Qvαvα,i−1 = diag
(

[σ2
φ, σ

2
θ , σ

2
ψ]
)

⊗

[

T 3/3 T 2/2

T 2/2 T

]

(22)
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with σφ, σθ and σψ the process noise standard deviations. The observation model reads:

ζi = h(αi) + wαi (23)

with ζi given by
(

R̂k(Žk)
)

at epoch i. The nonlinear observational function h(αi) is defined by

Equation (8), and the observation noise wαi is assumed to have a zero mean normal distribution with

covariance matrix Qwαwα,i, which is given by QR̂k(Žk)R̂k(Žk) at epoch i.

The use of the above constant-velocity model [28] reflects the fact that the frame is rotating at a

constant rate. For the two-antenna scenario considered in real-data analyses (Figure 2), only heading and

elevation angles are estimable. Hence, a reduced state space model consisting of only heading, elevation

and their rates is used in Section 5. The recursive filter is initialized with two-point initialization [28]

and propagated with process noise standard deviations of σφ = 0.01◦s−
3
2 and σθ = 0◦s−

3
2 (i.e., dead

reckoning filtering for elevation constraining to horizontal 1D rotation).

Figure 2. Multi-sensor experiment set-up on the roof of the building of the Geodetic Institute

(Messdach), Leibniz Universität Hannover, Germany. The MSS is mounted on Pillar 5,

while the reference station is located on Pillar 8. (a) Location; and (b) the MSS used in

the experiments.

(a) (b)

4. Integrated Positioning

This section describes the between-platform processing involving relative positioning between two

platforms equipped with arrays of GNSS receivers/antennas. The array-aided positioning described in

the following is a novel positioning concept improving between-platform positioning using an array

of antennas on the platforms [15,18–20]. Unlike the formulations in [18–20], the formulation in this

contribution explicitly considers different numbers of antennas on the reference and user platforms.

Unlike the parameter space formulation in [15], the current contribution considers a simplified,

double-difference observation space formulation elegantly demonstrating the advantages of array-aided

positioning. First, the combined observation model for all independent baselines among all receivers

on both platforms is described. Then, we describe attitude-bootstrapping, showing how platform arrays

improve the between-platform baseline estimate.
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Let us consider two platforms carrying n1 + 1 and n2 + 1 receivers/antennas. The functional and

stochastic models for the between-platform baseline formed by the first antennas (pivot antennas) read:

E(y12) = Az12 +Gb12 z12 ∈ Z
fm (24)

D(y12) = Qyy (25)

where y12 is the between-platform double-difference observables, z12 is the unknown between-platform

double-difference ambiguities and b12 is the unknown between-platform baseline. Note that atmosphere

delays are not considered in this formulation, as troposphere delays and ionosphere delays can be ignored

for the short baseline (<10 km) considered in this work. However, these atmosphere delays must be

taken into account for general long baseline scenarios [19]. In standard positioning, the LAMBDA

method yields the optimal estimates for the ambiguities and, hence, for the baseline.

4.1. Integrated Between-Platform Model

By combining between-platform observables in Equation (24) and platform array observables in

Equation (9), the functional and stochastic models of the integrated system read:

E (Y ) = AZ +GR B0 (26)

D (vec(Y )) = P ⊗Qyy (27)

where Y = [Y 1 Y 2 y12] is the combined observation matrix, R = [R1 R2 b12] ∈ R
3×(q1+q2+1)

is the combined rotation matrices and between-platform baseline, Z = [Z1 Z2 z12] ∈ Z
fm×nt is the

combined ambiguity matrix, B0 = blockdiag (B1
0 , B

2
0 , 1) is the combined local geometry matrix and:

P =







Pn1 0 1
2
en1

0 Pn2 −1
2
en2

1
2
eTn1

−1
2
eTn2

1






(28)

is the combined correlation matrix with nt = n1+n2+1. The above system consists of attitude models of

both platforms with unknowns Zk and Rk and the between-platform baseline model with unknowns z12

and b12. Even though these three subsystems do not have any parameter in common, they are correlated

as in Equation (28), due to the use of common observations from pivot antennas.

4.2. Attitude Bootstrapping

The attitude bootstrapping method [18,19] uses a decorrelation technique to decouple the

combined system in Equation (26), such that the subsystems still yield the optimal solution. Using

decorrelation matrix:

D =







In1 0 0

0 In2 0

−1
2
eTn1

P−1
n1

1
2
eTn2

P−1
n2

1






⊗ I2fm (29)

The decorrelated system reads:

E (Y ′) = AZ′ +GR ′B0 (30)

D (vec(Y ′)) = P ′ ⊗Qyy (31)
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where Y ′ =
[

Y 1 Y 2 y
′12
]

is the decorrelated observation matrix, R ′ =
[

R1 R2 b
′12
]

∈

R
3×(q1+q2+1) is the combined rotation matrices and between-platform baseline after decorrelation,

Z′ =
[

Z1 Z2 z
′12
]

is the combined ambiguity matrix after decorrelation and:

P ′ = blockdiag (Pn1 , Pn2 , η) (32)

with:

y
′12 = y12 −

1

n1 + 1

n1
∑

r=1

y1r +
1

n2 + 1

n2
∑

r=1

y2r (33)

z
′12 = z12 −

1

n1 + 1

n1
∑

r=1

z1r +
1

n2 + 1

n2
∑

r=1

z2r (34)

b
′12 = b12 −

1

n1 + 1

n1
∑

r=1

R1b10,r +
1

n2 + 1

n2
∑

r=1

R2b20,r (35)

η =
nt + 1

2(n1 + 1)(n2 + 1)
(36)

This decorrelation keeps the platform processing intact as in Equation (16) and only alters the

between-platform model. As a result of decorrelation, the ambiguities in Equation (34) may not be

an integer. However, once platform ambiguities are determined reliably using MC-LAMBDA with

decoupled platform models in Equation (30), the model for the between-platform baseline can be

rearranged as:

E(y
′′12) = Az12 +Gb

′12 z12 ∈ Z
fm (37)

D(y
′′12) = ηQyy (38)

where:

y
′′12 = y

′12 +
1

n1 + 1

n1
∑

r=1

Az1r −
1

n2 + 1

n2
∑

r=1

Az2r (39)

Due to the reduction of variance-covariance by a factor of η, this model yields improved ambiguity

resolution and baseline estimation compared to the standard positioning model in Equation (24). That

is, the use of array-aided positioning reduces the variance-covariance matrices of the float ambiguities

and ambiguity-fixed baseline estimators by a factor of η. For the rotating frame with two antennas and

a single antenna at the reference station in Figure 1, the variance reduction factor is η = 3
4
. Note that

the between-platform baseline estimate in Equation (35) corresponds to between-centroids of antenna

arrays, naturally yielding the parameter of interest for the geo-referencing system in Figure 1. The

unconstrained mixed-integer least-squares problem defined in Equations (37) and (38) can be solved

efficiently using the LAMBDA method [25] providing ambiguity-fixed baseline estimate b̌
′12(Ž′) and

associated variance-covariance matrix Qb̌
′12(Ž′)b̌

′12(Ž′).
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4.3. Baseline Filtering

The epoch-by-epoch baseline solution in Section 4.2 is further processed to obtain the filtered

estimates for the center of the MSS (Figure 1a). Unlike the previous method in [8], which uses

constrained nonlinear filtering for antenna positions, the integrated method in Section 4.2 yields

estimates of the center position, which is assumed to be stationary for a rotating, leveled frame. Hence,

dead reckoning (linear) Kalman filtering yields the filtered estimates for the stationary center position.

The kinematic equation reads:

βi = βi−1 + vβi−1 (40)

where the state vector βi = b
′12
i consists of position components. The process noise vβi−1 has a zero mean

normal distribution with variance-covariance matrix Qvβvβ ,i−1, which is given as:

Qvβvβ ,i−1 = diag
(

[σ2
bx
, σ2

by
, σ2

bz
]
)

(41)

with σbx , σby and σbz the process noise standard deviations. Since the center position of the rotating

frame is stationary, a dead reckoning filter is used (i.e., σbx = σby = σbz = 0, which is equivalent to the

recursive least-squares estimation of constant parameter vector b
′12). The observation model reads:

ξi = βi + wβi (42)

with ξi given by b̌
′12(Ž′) at epoch i. Observation noise wβi is assumed to have a zero mean normal

distribution with covariance matrix Qwβwβ ,i, which is given by Qb̌
′12(Ž′)b̌

′12(Ž′) at epoch i.

5. Analyses

For numerical analyses, we used the data from a static and a kinematic experiment on the roof of the

Geodetic Institute (Messdach) building, Leibniz Universität Hannover, Germany. The MSS is mounted

on Pillar 5 (cf. Figure 2) and equipped with a terrestrial laser scanner (TLS) Z+F Imager 5006 and

two LEIAX1202GG GNSS antennas about 0.6 m apart. These antennas are connected to two JAVAD

TRE G3TH DELTA GNSS receivers. The reference station is located on Pillar 8 (about 20 m from

the MSS and equipped with a JAVAD TRE G3TH DELTA GNSS receiver and a LEIAR25.R3 LEIT

antenna. For the kinematic experiment, we also considered another reference station equipped with a

LEICA GRX1200 GNSS receiver and a LEIAR25.R4 LEIT antenna and located about 6 km away from

the MSS.

The static experiment was conducted on 4 October 2011, for about six hours with the collection of

GPS data at a rate of 1 Hz. In the kinematic experiment on 7 October 2011, we collected GPS data

for five subsequent rotations (about an hour) at a rate of 10 Hz. For all of our analyses, we used the

elevation-dependent stochastic model with the parameters given in Table 1.
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Table 1. Elevation-dependent stochastic model parameters defined in Equation (6).

Frequency (f )

Code Phase

σf :p0

(cm)

af :p0
θf :p0

(deg)

σf :φ0

(mm)

af :φ0
ǫf :φ0
(deg)

L1 and L2 15 5 20 1 5 20

5.1. Static Data

This section presents the analyses of the static data demonstrating the benefits of using the knowledge

of antenna geometry for attitude determination and array-aided positioning. Figure 3 shows the

satellite visibility: the skyplot, the number of satellites and the position dilution of precision (PDOP)

values. With a 10◦ elevation cut-off, we have a moderate GPS satellite geometry (PDOP < 3) during

the experiment.

Figure 3. GPS satellite visibility during the static experiment with a 10◦ elevation cut-off.

(a) The number of satellites and position dilution of precision (PDOP); and (b) skyplot.
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Table 2 summarizes the empirical instantaneous integer ambiguity resolution success rate for attitude

determination, indicating the advantage of using MC-LAMBDA for the case of single-frequency

processing. Similarly, Table 3 demonstrates the improved success rate performance of the proposed

array-aided positioning with two antennas/receivers on the frame. Note that further improvement is

possible by having more antennas/receivers.



Sensors 2014, 14 12727

Table 2. Empirical instantaneous ambiguity resolution success rate (%) for attitude

determination using static data (0.6-m baseline).

Processing LAMBDA MC-LAMBDA

Single-frequency 90.4 100

Dual-frequency 100 100

Table 3. Empirical instantaneous ambiguity resolution success rate (%) for baseline

estimation using static data (20-m baseline).

Processing Standard Positioning Array-Aided Positioning

Single-frequency 85.8 90.0

Dual-frequency 100 100

Figure 4 depicts the scatter plot of the ambiguity-fixed attitude angles, while Figure 5 shows the

plots (scatter plot of the horizontal components and time series of the down component) for the

ambiguity-fixed baseline estimates. Tables 4 and 5 summarise the corresponding empirical standard

deviations. Note that, once the ambiguities have been resolved, the precision of the attitude solution

is driven by the high precision of the carrier phase observations [16]. That is, the accuracy of the

unconstrained attitude solution (using the LAMBDA method) is comparable to that of the constrained

solution (using the MC-LAMBDA method), provided that ambiguities are correctly fixed. However, the

knowledge of the antenna geometry plays an important role by strengthening the underlying model and,

hence, improving the ambiguity resolution (see Table 2). In the case of baseline estimation (Table 5),

the proposed method yields slightly improved estimates, due to the integrated processing with an array

of antennas.

Figure 4. Scatter plot of the ambiguity-fixed attitude angles using epoch-by-epoch

processing of the static data (0.6-m baseline).
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Figure 5. North-east scatter plot of the ambiguity-fixed baseline estimation using static data

with epoch-by-epoch processing (20-m baseline).
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Table 4. Empirical angular standard deviation (deg) for the attitude determination using the

epoch-by-epoch processing of the static data (0.6-m baseline).

Heading Elevation

0.24 0.38

Table 5. Empirical position standard deviation (mm) for baseline estimation using the

epoch-by-epoch processing of the static data (20-m baseline).

Processing Method North East Up

Standard positioning 3.4 2.1 5.1

Array-aided positioning 2.8 1.6 4.4

5.2. Kinematic Data

This section presents the analyses of the kinematic data comparing the proposed method with the

existing method. These dual-frequency GPS data analyses aim to compare the estimation of the

parameters of interest for geo-referencing, namely the heading and center point of the rotating frame.

Figure 6 shows the satellite visibility: the skyplot, the number of satellites and the PDOP values. With a

10◦ elevation cut-off, we have a good GPS satellite geometry (PDOP ≈ 2) during the experiment.

Table 6 summarizes the root mean square (RMSE) values of the heading angle for all five rotations,

where the ground truth is determined using the fact that the frame was rotating at a constant rate and

synchronized though a GNSS receiver event marker. Since the precision of ambiguity-fixed attitude

angles is driven by the high precision of the carrier phase observations, both the proposed method and
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the previous method [8] have a similar angular accuracy. Filtering further improves the estimates. Based

on these analyses, the achievable heading angular accuracy using a 0.6-m baseline on the rotating frame

is about 0.2◦ RMSE.

Figure 6. GPS satellite visibility during the kinematic experiment with a 10◦ elevation

cut-off. (a) The number of satellites and PDOP; and (b) skyplot.
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Table 6. Heading root mean square (RMSE) (deg) for kinematic data (0.6-m baseline).

Rotation
Epoch-by-Epoch Filtering

Previous

Method

Proposed

Method

Previous

Method

Proposed

Method

1 0.24 0.20 0.20 0.16

2 0.26 0.23 0.24 0.20

3 0.23 0.16 0.21 0.13

4 0.20 0.15 0.16 0.11

5 0.20 0.17 0.16 0.14

Baseline estimation errors of epoch-by-epoch processing and filtering for the first rotation are depicted

in Figure 7, while the 3D position RMSE values for all five rotations are reported in Table 7. Here,

smoothing estimates based on all five rotations are considered as the ground truth. The apparent

improved performance of the proposed method is due to the use of novel integrated processing. Since

the proposed integrated method naturally yields the estimates of the center point (see Section 4.2),

the proposed filtering has a simple and strong dynamic model compared to the nonlinear, constrained

filtering of the existing method [8] and, hence, yields improved estimates. Based on these analyses, the
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achievable position accuracy using a 20-m baseline with two antennas on the rotating frame is about

3 mm RMSE.

Figure 7. Estimation error (mm) for kinematic data (20-m baseline) using the proposed

method: Rotation 1. (a) North error; and (b) east error.
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Finally, we considered the determination of the center point using a reference station at about 6 km

away. The baseline estimation results for this long baseline using the proposed method are provided in

Table 8. The significant increase of the position RMSE of this baseline compared to the short baseline

case in Table 7 is due to the presence of residual atmosphere delays for this long baseline. Hence, the

achievable position RMSE for this baseline is about 20 mm.
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Table 7. 3D position root mean square (RMSE) (mm) for kinematic data (20-m baseline).

Rotation
Epoch-by-Epoch Filtering

Previous

Method

Proposed

Method

Previous

Method

Proposed

Method

1 6.1 3.1 3.5 1.5

2 4.2 2.9 3.4 1.6

3 5.5 3.2 2.9 1.5

4 5.1 3.4 3.2 1.5

5 5.3 4.7 3.4 2.6

Table 8. 3D position RMSE (mm) for kinematic data (6-km baseline) processing with the

proposed method.

Rotation Epoch-by-Epoch Filtering

1 12.4 9.7

2 12.3 10.4

3 15.3 14.3

4 21.0 20.0

5 13.1 7.8

6. Summary and Conclusions

In this contribution, we explored the use of an array of GNSS antennas for attitude determination and

relative positioning for direct geo-referencing. The MC-LAMBDA method exploits the known antenna

geometry to improve the reliability of resolving rotating frame ambiguities and, hence, to improve the

reliability of the rotating frame attitude determination. Furthermore, the reliable estimation of rotating

frame ambiguities enables the strengthening of the estimation of the baseline between the rotating frame

and a reference station. Our analysis includes epoch-by-epoch processing, as well as recursive filtering.

We demonstrated the improved performance of the proposed method using data from two experiments

with a prototype MSS representing a rotating frame. The use of constrained attitude determination

and array-aided positioning increases the reliability (in terms of ambiguity resolution) and improves

the achievable position accuracy. It enables instantaneous ambiguity resolution, which is immune to

cycle slips, and, hence, enables instantaneous mapping. Furthermore, the reliability and accuracy can

further be improved by employing more antennas on the rotating frame and at the reference station.

With a sufficient number of low-cost GNSS receivers, the potential of instantaneous mobile mapping for

low-cost applications will be explored in future studies.
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