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Abstract 

Road User Charging (RUC) is designed to reduce congestion and collect revenue for 
the maintenance of transportation infrastructure. In order to determine the charges, it 
is important that appropriate Road User Charging Indicators (RUCI) are defined. This 
paper focusses on Variable Road User Charging (VRUC) as the more dynamic and 
flexible compared to Fixed Road User Charging (FRUC), and thus is a better 
reflection of the utility of the road space. The main issues associated with VRUC are 
the definition of appropriate charging indicators and their measurement. This paper 
addresses the former by proposing a number of new charging indicators, considering 
the equalization of the charges and marginal social cost imposed on others. The 
measurement of the indicators is addressed by a novel data fusion algorithm for the 
determination of the vehicle state based on the integration of Global Navigation 
Satellite Systems (GNSS) with Dead Reckoning (DR) and road segment information. 
Statistical analyses are presented in terms of the Required Navigation Performance 
(RNP) parameters of accuracy, integrity, continuity and availability, based on 
simulation and field tests. It is shown that the proposed fusion model is superior to 
positioning with GPS only, and GPS plus GLONASS, in terms of all the RNP 
parameters with a significant improvement in availability.  
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1. Introduction  

Severe road congestion resulting from rapid urbanization, motorization and poor 
urban planning has many social, economic, and environmental consequences (Boquet, 
2011; Hu et al., 2015; Hu et al., 2016a; Hu et al., 2016b). While there are multiple 
means to address urban congestion at strategic, tactical and operational levels, Road 
User Charging (RUC) has been widely recognized as an effective way to alleviate 
congestion and raise revenue (Newbery,1988b). RUC can be categorized as Fixed 
Road User Charging (FRUC) and Variable Road User Charging (VRUC).FRUC 
charges each vehicle for using specific road segments or sub-networks regardless of 
the time spent in the charging zone and/or the travel activities; examples include 
tolled highways or bridges, and the Congestion Charging Zone (CCZ) in London 
(Ison and Rye, 2005; Richardson and Bae, 2008; Palma and Lindsey, 2011). VRUC, 
on the other hand, considers the specific road usage and related environmental and 
social impacts (Ochieng et al., 2010). Typical variable charges include distance-based 
road charging schemes for Heavy Goods Vehicles (HGV) (Cottingham et al., 2007; 
Palma and Lindsey, 2011). 

For RUC to better reflect the utility of road space and its impact on the environment 
and society, Ochieng et al. (2008, 2010) proposed the concept of Variable Road User 
Charging Indicators (VRUCI). These indicators should be measurable with the 
required levels of accuracy and integrity in order not to result in incorrect charging 
(e.g. overcharging and under-charging), missed detection and false detection. 

Currently, advanced technologies including networks of sensors and communication 
devices are widely applied in Intelligent Transportation Systems (ITS). These 
technologies including GNSS based positioning systems can be applied to meet the 
positioning and timing requirements of the location based indicators for RUC (Velaga 
and Panbourne,2014; Toledo-Moreo et al., 2010). In GNSS based RUC systems, the 
vehicle state (Positioning, Velocity and Time – PVT) or location determination 
function forms the basis for charging. In particular, the 4D positioning accuracy is a 
critical factor for identifying a vehicle’s physical position (Zabic, 2009). This is 
because the positioning ambiguity arising from height inaccuracy could lead to 
incorrect physical location of a vehicle, especially for the vehicle on or beneath the 
viaduct. The quality of the state determination can be assessed based on the RNP 
parameters of accuracy, integrity, continuity and availability (Feng and Ochieng, 2007; 
Salos et al., 2010; Velaga and Sathiaseelan, 2011). 

Research carried out by Transport for London (TfL) showed that only 58% of all the 
positioning data collected from GPS were adequate for RUC (TfL,2006), significantly 
below the requirement. However, the exploitation of new GPS signals and the 
addition of the Russian Global Orbit Navigation Satellite System (GLONASS) and in 
future the European Galileo and China’s BeiDou systems have the potential to 
improve performance through improved satellite coverage, visibility and redundancy 
for the positioning (GINA, 2010). However, as evident from extensive field tests by 



	

Zabic (2011) in Copenhagen, Denmark, the improvements from new signals and 
multiple constellations are unlikely to meet the requirements for RUC particularly in 
built environments. In such environments GNSS signal errors, weak geometry, road 
map errors and map-matching process errors have the potential to lead to vehicles 
being assigned to the wrong road segments with the consequences of incorrect 
charging (Velaga et al., 2012, Quddus et al., 2007; Toledo-Moreo et al., 2010). 

In order to address the issues of Variable Road User Charging Indicators (VRUCI) 
and inadequate vehicle state estimation performance, this paper proposes a new 
definition of VRUCI and an integrated Particle Filter (PF) based 
GPS/GLONASS/DR/road segment information data fusion algorithm for VRUC. 

2. Variable Road User Charging Indicators 

The RUC indicators should capture all aspects of the utility of road space. 
Furthermore, they should as far as possible be independent and measurable. Using 
these criteria, Ochieng et al. (2010) identified the nine indicators listed in Table 1. 

Table 1 Variable Road User Charging Indicators (VRUCI)  

VRUCI 
Geographic Area 

Road Class 
Distance Travelled 

Pollutant Emissions 

Vehicle Occupancy 
Driver Behaviour 

Time of Trip 
Duration of Trip 
Traffic Density 

The geographic area and road class data are required to capture the spatial variations 
in the utility of road space. The real time travel information including travel distance, 
time of trip and duration of trip account for the temporal aspects of the use of road 
space. The traffic density data are needed to charge vehicles according to real network 
conditions (i.e. free flow or congested). The pollutant emissions are required to 
capture the impact of emissions on the environment and health. The effect of noise 
pollution should be included in addition to exhaust emissions. Furthermore, the 
indicator ‘driver behavior’ cannot be measured directly as it is affected by many 
factors, such as speed, acceleration, braking, gear changes, clutch pedal press. And 
these factors can be detected and measured related to the state of the car 
(Rendon-Velez et al., 2011). In practice, therefore, the factors that influence driver 
behavior should be measured separately. Furthermore, as the VRUC should be related 
to the amount of road use at the vehicle and traveler levels, vehicle occupancy should 
be included as an indicator. Therefore, Table 2 presents an improved list of indicators. 



	

Table 2 Improved Variable Road User Charging Indicators (Improved VRUCI)for a 
Comprehensive Charging System 

VRUCI (Ochieng et al., 2010) Improved VRUCI (Measurable) 

Geographic Area Geographic Area 
Road Class Road Class 

Distance Travelled Distance Travelled 
Time of Trip Time of Trip 

Duration of Trip Duration of Trip 
Traffic Density Traffic Density 

Pollutant Emissions Exhaust Emissions 

Noise 

Vehicle Occupancy Vehicle Occupancy 
Driver Behavior Speed 

 Acceleration 

Braking 

 Gear Change 

 Clutch Pedal Press  

Besides the requirement for the indicators to be measurable, correlation should be 
accounted for in order to ensure independence. Therefore, two or more correlated 
variables can be combined into one factor in order to create an improved set of 
uncorrelated indicators. The approach based on the consideration of marginal social 
cost (Newbery, 1990) is used here to select independent indicators. According to 
Newbury (1990), there are four types of costs when a vehicle is travelling: road 
damage, congestion, accident externalities and environmental pollution. Therefore, 
the best charging scheme is where the charges equate to the marginal social cost each 
driver imposes on others. Based on this assumption, a charging scheme should be 
considered to be justified if the indicators influence these four costs. 

The road damage caused by vehicles is manifest in the form of increased roughness of 
the surface (Newbery, 1988a). This degree of damage depends on the characteristics 
of the vehicle and type of the road (paved or unpaved). For the indicators related to 
the road damage, road class is a variable indicator and should be ‘measured’ in real 
time. The vehicle type, on the other hand, for a certain type of vehicle, is a constant. 
For example, HGV can be considered as a kind of vehicle type indicator and the road 
damage charging contains the constant charging for the vehicle type “HGV” and other 
additional variables charging, such as travel distance etc. Hence, the only variable 
indicator associated with the cost of road damage is the road class. 

According to Noordegraaf et al. (2009), congestion pricing is mainly specified as a 
differentiation in time and place. Thus the variable indicators for congestion cost are 
distance travelled, time of trip, duration of trip and traffic density. In addition, the 
charge should be closely related to the amount of road use and thus the vehicle 
occupancy is also a factor that needs to be considered. 



	

The main variable indicator for accident cost is driver behavior and it appears as 
speed, acceleration, braking, gear change and clutch pedal press. However, the gear 
change and clutch pedal press indicators are correlated to the acceleration indicator. It 
is a fact that when you acclerate an manual transmission car, you need to take your 
foot off the accelerator, depress the clutch, change the gear and then the acceleration 
added, in all, you should change the proper gear level in according to how fast you are 
going. In addition, the acceleration indicator is highly correlated to noise, exhaust 
emission and speed. As we know, there is a very good correlationship between 
acceleration and speed. Acceleration is defiend as the  rate of change of velocity of 
vehicle with respect to time, while the speed is measured in the same physical units of 
measurement as velocity, but does not contain an element of direction. In terms of the 
correlationship between acceleration and exhaust emission, Ericsson (2001) tested 30 
driving familes for two weeks in Västerås, Sweden and indicated that rapid 
acceleration (>1.5 m/s2 ) resulted in a significant increase in the emission of HC, 
NOx and CO2. Rakha and Ding (2003) indicated that the aggressiveness of a vehicle 
stop, as represented by the vehicle's acceleration and deceleration level, does have a 
significant impact on vehicle emission rates. Specifically, HC and CO emission rates 
are highly sensitive to the level of acceleration when compared to cruise speeds in the 
range of 10 to 120 km/h. Furthermore in terms of the correlationship between the 
acceleration and the noise emission, Ouis (2001) pointed out that engine noise and 
vehicle exhaust noise are the two main sources of a vehicle noise. The data from the 
urban traffic experiment have shown that sudden accelerations have negative effects 
on traffic noise control (Waters, 1970). Therefore, by considering the correlations of 
these indicators, only the speed indicator, noise and braking indicators are selected. In 
addition, traffic density is an independent factor in the occurrence of incidents and 
accidents (af Wåhlberg 2004), and is included in the list of indicators. 

The exhaust emissions of vehicles contain NOx, CO, CO2, HC and PM. These 
emissions and noise have a negative effect on the environment. Thus RUC should be 
levied according to their environmental pollution cost. Table 3 presents the variable 
road user charging indicators that are measurable, independent and capture the utility 
of road space. 

Table 3 Variable Road User Charging Indicators (Measureable and Marginal Social 
Cost Based Low-Correlation VRUCI) for a Comprehensive Charging 
System 

Cost Type 
Identified VRUCI (Measurable and 

Marginal Social Cost based 
Low-correlation) 

Road Damage Cost Road Class 
Congestion Cost Distance Travelled 

 
Time of Trip 

Duration of Trip 
Vehicle Occupancy 



	

Traffic Density 
Accident Externalities Cost Traffic Density 

Speed 
Braking 

Environmental Pollution 
Cost 

Geographic area 
Exhaust Emissions 

   Noise 

Some of the indicators in Table 3 including road class, distance travelled, time of trip, 
duration of trip, and traffic density, can be determined from on-board positioning and 
motion sensors. In the following section, an integrated algorithm is designed to 
improve the current performance of the positioning sensors to underpin the 
measurement of the relevant variable road user charging indicators. The indicators 
that can be determined directly from the vehicle state estimation information include 
time of trip, duration of trip and speed. The indicators that can be derived, inferred 
from or require the state estimation information include road class, traffic density, 
geographic area, vehicle occupancy, braking, exhaust emissions and noise. Road class 
could be extracted by matching the state to the road network database. Traffic density 
is basically the number of vehicles unit distance of a road (n/L), which can also be 
expressed as the inverse of the average spacing of the number of vehicles, n, on the 
road segment. Geographic area can be determined based on the estimated state of the 
vehicle map matched to the road network spatial database. Although measurable using 
on-board sensors, it is important to determine the time at which the vehicle occupancy 
changes. Braking can be detected by the pedal pressure sensor. However, that data 
must be spatially and temporally referenced for behavioral and impact (e.g. an 
accident) analyses data of braking happen is also crucial to the accident identification. 
Exhaust emissions and noise can be measured by specific sensors. However, it is 
important that the pollutant species data are spatially and temporally referenced to 
determine the location and time of emission.  

Overall, the performance of the positioning system is critical to the measurement of 
the VRUC indicators. In the following section, an integrated algorithm is designed to 
improve the current performance of the positioning sensors, which is the underpinning 
technology for the VRUCI measurement. 

3. Data Fusion Algorithm for the Measurement of VRUCI 

The ability of locating and tracking a vehicle in space and time is fundamental to 
charge for real road use (Ochieng et al. 2010). The technology chosen to determine 
the state of each vehicle in real-time is therefore, critical. GNSS-based applications 
can provide real-time positioning information, which is fundamental for road user 
charging schemes. In this section, the required navigation performance for RUC and a 
novel data fusion algorithm exploiting GNSS, Dead Reckoning (DR) and road 
segment information are presented. The performance of the algorithm is tested using 



	

simulated and real data. 

3.1.Required Navigation Performance for RUC  

For the RUC scheme, GMAR (2010) has proposed a framework to measure the 
performance of GNSS-based road use metering systems at the service level. The 
quantitative and testable performance metrics have been derived, for testing and 
comparing the GNSS based metering products and services, including charging 
integrity and charging availability. However, the required navigation performance 
metrics are still to be derived from the service requirements and standardized.  

At the technology level, accuracy, integrity, continuity and availability are the main 
parameters to capture the performance of a navigation system (Ochieng et al. 2003). 
Accuracy refers to the statistical distribution of position errors, velocity errors or 
speed errors (Peyret et al. 2015). Integrity is defined as the ability of a system to 
provide timely and valid warnings if the position errors exceed a certain alarm limit 
(Ochieng et al. 2003). Continuity risk is the probability that a navigation service 
available at the start of a specific operation is interrupted during the period of 
operation (Flament et al. 2010). Before selecting an appropriate navigation system to 
track vehicle location over time, an assessment of the candidate systems is required.  

Although appropriate RNP values for RUC are still to be agreed, the targets in 
Ochieng et al. (2010) and Feng and Ochieng (2007) are adopted in this paper: 
accuracy 5m (95%); integrity risk 10-7, alarm limit 12.5m and availability 99.7%. 

 

3.2.Algorithm Design 

The designed integration algorithm has the merit of combing the vehicle positioning 
estimation with the lateral displacement estimation related to the road segment, which 
is critical for the RUCI measurements. The data fusion is based on a Particle Filter 
(PF) and precise motion models. The positioning and dynamic data from GNSS and 
DR sensors and road segment related information are input into the algorithm to 
estimate in real-time the positioning and attitude parameters. The PF is a 
non-parametric recursive Bayes filter, which uses a number N of weighted samples to 
approximate the probability density. It is designed to provide accurate and high 
integrity positioning and vehicle dynamic state estimation for the RUCI measurement. 
The steps for the particle filtering process are presented in the following sub-sections. 
 

3.2.1. State Vector Definition 

In the designed fusion algorithm, the state vector is presented in (1), where, x, y are 
the X-axis and Y-axis coordinates of the vehicle in the local coordinate system, h is 
the height coordinate of the vehicle in the local coordinate system. v is the vehicle’s 
velocity along the heading, h is the vehicle’s heading angle, ω is the vehicle’s yaw 
rate, a is the vehicle’s acceleration along the heading, β is the angle between the road 



	

segment and the local coordinates, d is the vehicle’s lateral displacement within the 
road segment which is calculated to be the minimum distance between [x,y] and the 
road central line. The road centerline data is a set of points collected to represent the 
road centerline. 

𝑋 = (x y h v θ ω a β d)!        (1) 

The state vector (1) is composed of two sub-state vectors, motion vector (2) and 
geometry vector (3). 

𝐴(𝑡) = (x y h v θ ω a)!        (2) 
𝐵(𝑡) = (β d)!          (3) 

The parameters vary in time and the particles for each parameter within the state 
vector (1) during the operation of the PF are expressed as: 
X!
!(𝑡 = 0…𝑛; 𝑖 = 1…𝑛) (4) 

Where, X!
! represents the parameters in the state vector (1) with the particle number 𝑖 

at the time epoch 𝑡. The details of the initialization of the particles X!
!  for (2) and (3) 

are discussed below.  

The filter begins with the initialization of the particles x!
! ,𝑦!

!
 and ℎ!

!  in (4). The 
sphere region for the generation of particles is defined based on the GNSS a posteriori 
solution statistics. The mean value of the first accepted GNSS point is set as the origin 
and the standard deviation value is set as the radius of the sphere. The local coordinate 
variables x!

! ,𝑦!
!
 and ℎ!

!  are randomly created following a Gaussian distribution. The 
initial heading velocity v!

!  is 0 as the static initial status of the vehicle is assumed. As 
there is no information of the initial heading, the values of   θ are assumed as 
uniformly spread through the whole range of 360 degrees. The initial ω and a values 
are set as 0. 

3.2.2. Prediction 

The prediction for (2) is based on vehicle kinematic motion models. Constant 
acceleration (CA) and Constant Turn Rate and Acceleration (CTRA) models, shown 
to provide reasonable approximation of motion, are used on straight/curved roads 
(Tsogas et al., 2005; Sun et al., 2015a; Sun et al., 2015b; Sun et al., 2016). Thus, for 
every particle in (2), the prediction models are applied during the filtering processing 
as in equation (4). 

x!!!
!

y!!!
!

v!!!
!

θ!!!
!

ω!!!

!

a!!!
!

=

x!
!
+ ∆!

!

y!
!
+ ∆!

!

v!
!
+ ∆!

!

θ!
!
+ ∆!

!

ω!
!
+ ∆!

!

a!
!
+ ∆!

!

        (4) 

Equation (5) is used for the prediction of the parameters in (3) based on the geometry 
relationship of the road segment.  



	

𝛽!!!
!

𝑑!!!
!

=
𝛽!
!

𝑑!
!
+ sin 𝛽!

!
∆!
!
− cos (𝛽!

!)∆!
!

      (5) 

Where, ∆!
!
∆!
!
∆!
!
∆
θ
!
∆!
!
∆!
!

 are transition parameters calculated based on different 

vehicle motion models. 

3.2.3. Update of Filter 

For every input sample, the prediction cycle is applied. The filter update procedure is 
initiated by the validity test of the input sample. Once the validity is confirmed, the 
update of the particles in the prediction cycle ensues.  

The test is based on the parameter 𝑑!, i.e. 𝑑!
!
< 3𝐻𝑅 for validity, where 3𝐻𝑅 is 3 

times a half of the road width (1.5 times of the road width). The reason for 
specifying 3𝐻𝑅 as the limit for the lateral displacement is that for a moving vehicle, 
it is not possible to suddenly move into a non-adjacent road within 1s. For example, 
for a vehicle on a 7m width road, if |𝑑!

! | is greater than 3𝐻𝑅 = 10.5m, then the 
position predicted based on the particle is on the non-adjacent road, which is 
unrealistic. If 𝑑! 

! is within this defined interval, the particle is considered to be valid 
and the parameter prediction for the next epocht+1is undertaken.  

The validity of the predictions should also fulfil the condition that only the predicted 
position for a particle 𝑖is still within the road width limits. Therefore, for every 

predicted 𝑑!!!
!  , if it complies with 𝑑!!!

!
< 3𝐻𝑅 , then the predicted 𝑑!!!

!  is 

considered as valid and other predicted parameters in equation (1) are accepted also. 

If the predicted 𝑑!!!
! does not satisfy 𝑑!!!

!
< 3𝐻𝑅, then the other predictions based 

on this particle are invalid and the weighting of this particlew!

!is set to zero. The 
validity of GNSS is then tested after every prediction cycle. 

3.2.4. Normalization and Resampling 

The weights of the particles are modified after every update phase and the 
normalization and resampling test phases of a PF are re-launched. 

4. Simulation 

The estimated positioning performance based on the PF with Constant Acceleration 
(PFCA) and PF with Constant Turn Rate and Acceleration (PFCTRA) models for 
simulated straight and curved roads are compared. The focus of the simulation test 
here was to capture the characteristics of the operational environment (i.e. open sky, 
suburban and urban). And with a GNSS simulator, the test can easily generate and run 
many different scenarios to verify the performance of the developed algorithm. 
Clearly, other characteristics that would require a larger dataset can be simulated as 
well. However, because of the availability data, effort was directed to the analysis of 



	

performance based on real-world data. The simulated GNSS data over a period of ten 
minutes, are generated by the Spirent GNSS simulator, the DR data and road segment 
data are created by the MATLAB software. In total 3 representative simulation test 
cases are created (Table 4). Test Case 1 represents a road with the open sky; Test 
Case 2 represents a highway with vehicle flows; Test Case 3 represents a light 
woodland area. The three positioning alternatives, data fusion PF algorithm, 
GPS/GLONASS and GPS only are analyzed for each test case. The vehicle speed is 
specified as 70km/h for the highway and 50km/h for the other roads.  

Table 4 Simulation Test Cases 

Test Cases Time Duration (s) Simulation Environment 
Test Case 1 600 Open Sky 
Test Case 2 600 Highway with Vehicle Flows 
Test Case 3 600 Light Woodland Area 

The analysis of the simulation results in terms of satellite coverage, accuracy, 
integrity, continuity and availability are presented in the following sub-sections. 

4.1.Satellite Coverage 

Satellite coverage is measured in terms of the number of visible satellites, which 
together with the user-satellite geometry are pre-requisites for positioning. Generally, 
three satellites are required for 2D positioning (longitude and latitude) and time 
determination, and a minimum of four satellites are required for 3D positioning 
(longitude, latitude and height) and time determination. For the road user charging 
service, especially in the graded roads, height accuracy is critical for the correct 
identification of the location of a vehicle. 

The level of coverage is assessed here for positioning with GPS only and 
GPS/GLONASS. The numbers of visible GPS and GPS/GLONASS satellites in the 
three test cases are shown in Figure 1. It can be seen that there are always more than 
four satellites for both the GPS only and GPS/GLONASS constellations in these three 
test cases. In addition, by comparing with the simulation performance in the open sky 
test case, the number of visible GPS only and GPS/GLONASS satellites are lower in 
the highway (signal attenuated caused by proximate vehicles) and the light woodland 
test cases (signal attenuated caused by trees). Overall, the visibility of 
GPS/GLONASS satellites for positioning and time determination is significantly 
higher than that of GPS only. 



	

 
Fig.1 Numbers of Visible GPS and GPS/GLONASS Satellites in the Three Test Cases 

4.2.Accuracy 

In the simulation, the horizontal positioning results from GPS only, GPS/GLONASS 
and the data fusion PF algorithm, are compared with the reference trajectory to 
determine if the accuracy requirement of 5m (95%) accuracy can be fulfilled. A 
comparison of the position fixes from GPS only, GPS/GLONASS and the data fusion 
PF algorithm are shown in Figure 2. It is shown that the fusion model estimated 
results improve the accuracy of the positioning significantly compared to the GNSS 
only scenarios in these three test cases. The 95% percentile accuracy in the open sky 
test case is 1.24m (95%) for the data fusion PF algorithm and 2.11m (95%) for the 
GPS/GLONASS scenario. The corresponding value for the GPS only is 2.53m (95%). 
In the highway test case, the positioning accuracy is 2.03m (95%) for the data fusion 
PF algorithm, 2.74m (95%) in the GPS/GLONASS scenario, and 3.27m (95%) for 
GPS only. In the light woodland test case, the positioning accuracy is 4.82m (95%) 
for the data fusion PF algorithm, 8.34m (95%) for GPS/GLONASS and 10.31m (95%) 
for GPS only. Overall, the data fusion PF algorithm has significantly improved the 
positioning accuracy than the other GNSS only scenarios. 

 



	

 

 
Fig.2 Comparison of the GPS Only, GPS/GLONASS and Data Fusion PF Algorithm 

with Respect to Reference 

4.3.Integrity 

Integrity is linked to mission (e.g. safety) criticality. In order to determine this 
parameter, redundant measurements are required (Ochieng, Flament 1996). Therefore, 
for 4D positioning at least five satellites should be available with good geometry for 
integrity monitoring. In the open sky test case, the number of satellites visible more 
than five for the whole simulation period for GPS only and GPS/GLONASS. In the 
highway test case, signal attenuate caused by the vehicle flows resulted in the 
visibility of at least five satellites being 94.31% of the time for GPS only and 96.83% 
for GPS/GLONASS. In the light woodland test case, more than five satellites are 
always visible during the simulation period for the GPS only and GPS/GLONASS 
scenarios. 

In addition to redundancy, for safe operation the position error should not exceed the 
alarm limit of 12.5m. In particular, in the open sky test case, all the position fixes 
satisfy the alarm limit requirement for the data fusion PF algorithm, GPS/GLONASS 
and GPS only scenarios. In the highway test case, all the position fixes are within the 
alarm limit for the data fusion PF algorithm. However, the corresponding values for 
the GPS/GLONASS and GPS only scenarios are 98.67% and 97.33% respectively. In 
the light woodland test case, all the position fixes are within the alarm limit for the 
data fusion algorithm, while only 88.67% and 93.83% of the position fixes in the for 
GPS only and GPS/GLONASS, respectively are within the alarm limit. Overall, only 
the data fusion PF algorithm estimations can meet the alarm limit requirement in all 
these three scenarios. 

4.4.Continuity 

Continuity risk is the probability that the navigation system available at the start is 
interrupted during a specified period of operation (Ochieng, Flament 1996). This 



	

interruption and lack of guidance information occurs in these situations: lack of 
accuracy, position outage, integrity alert and false alert. As the sample is not large 
enough in these three simulation test cases, the position errors exceeding the alarm 
limit and position outages are proxies for continuity risk. From the results, there is no 
position outage problem for each simulation test case because the visible satellites are 
always more than four for all the scenarios. Since the requirement for integrity risk is 
10-7, the allowable number of interruptions is 10-7*600=6*10-5, effectively zero for 
each test case (600 positioning outputs in each test case). From the statistical analysis 
of the simulation results, no interruption exists in the open sky test case for all the 
GPS only, GPS/GLONASS and data fusion PF algorithm scenarios during the 
simulation period. In the highway test case, the numbers of interruption are 16, 8, 0 
for GPS only, GPS/GLONASS and the data fusion PF algorithm respectively. 
Therefore, it can be concluded that the proposed algorithm has the lowest continuity 
risk. In the light woodland test case, the numbers of the interruptions are 68, 37 and 0 
for GPS only, GPS/GLONASS and the proposed fusion algorithm, respectively. 
Overall, the proposed data fusion PF algorithm provides superior continuity than GPS 
only and GPS/GLONASS measurement in all the three test cases. 

4.5.Availability 

The navigation service is available if accuracy, integrity and continuity requirements 
are satisfied (Ochieng, Flament 1996). Therefore, a navigation system is available for 
the RUC scheme only if its accuracy, integrity and continuity requirements are 
satisfied. From the results statistical analysis in in terms of the accuracy, integrity and 
continuity performance for designed test cases, the service availability is 100% in the 
open sky test case, for the GPS only, GPS/GLONASS and the proposed data fusion 
PF algorithm scenarios. In the highway test case, the proposed data fusion algorithm 
service availability is 100%, while the availability for GPS only and GPS/GLONASS 
is 97.33% and 98.67% respectively. In the light woodland test case, the availability 
values for the GPS only scenario, GPS/GLONASS scenario and the new data fusion 
PF algorithm scenario are 88.67%, 93.83% and 100% respectively. From the 
simulation results, the proposed data fusion PF algorithm has the best service 
availability at 100%. The next section uses real data to verify the simulation results.  

5. Field Test Validation 

The field test is to validate the simulation results. In road transport, it is difficult to 
define the specific Period of Operation (PoP) in a similar manner to air transport. 
Thus, every positioning fix is considered as a PoP during the field test. The field test 
route was designed to be representative of the relevant spatial characteristics 
including open spaces, trees, tall buildings on one side, tall buildings on both sides, 
tunnels and bridges. Therefore, the chosen route in London was from Chiswick park 
station southbound to Heathrow Tunnel and then back to Imperial College road.	The 
total duration of the route was 90 minutes (15:00 to 16:30). The field test route is 
representative of the operational environment and consists initially of a suburban 



	

segment (Cromwell road, predominantly medium rise buildings), an urban segment 
(around the Hammersmith areas consisting of buildings and multi-grade roads) and 
open highway (from Hammersmith to Heathrow airport), shown in Figure 3. 

 

Fig. 3 Field Test Route 

For the data collection the equipment used were the Leica Viva GNSS GS15 receiver, 
mounted on the roof of the test vehicle for the Real-Time Kinematic (RTK) GPS and 
GLONASS data collection.	The position data refresh rate is 1Hz. The low cost u-blox 
DR sensor was used to output the attitude and acceleration information of the vehicle. 
The measurements from the RTK GPS/GLONASS data were combined with DR and 
road segment data in the PF. The ‘truth’ trajectory was determined using 
post-processed data from a high grade GNSS/IMU system from iMar and measured 
with a 1Hz frequency. The results for GPS only, GPS/GLONASS, and data fusion PF 
algorithm are presented below. 

5.1.Satellite Coverage 

The number of visible satellites for GPS only and GPS/GLONASS scenarios are 
shown in Figure 4. It can be seen that because of signal blockage, there were four 
occasions in which the number of GPS satellites dropped below four: the first 
from15:04 to 15:07 (signal blockage caused by trees), the second around 15:13 to 
15:22(signal blockage caused by trees), the third from 15:50 to 15:55 (signal blockage 
caused by trees and an overhead bridge), and the fourth from 16:05 to 16:10(signal 
blockage caused by the Heathrow tunnel and trees). For the GPS/GLONASS scenario, 
satellite visibility improved significantly during the field test. 

Figure 5 shows the visibility of GPS and GPS/GLONASS satellites expressed as a 
percentage of the field test duration. These results indicate that the visibility of at least 
four satellites was 88.16% and 95.29% for the GPS only and GPS/GLONASS 
scenarios respectively. For integrity, the basic requirement for failure detection in 4D 
positioning should be at least five satellites (Ochieng et al., 1999). From Figure 5, the 
visibility of at least five satellites was 86.01% for the GPS only and 93.71% for 



	

GPS/GLONASS scenarios respectively. Overall, due to signal blockage the number of 
visible satellites is lower in the real field test than in the simulation results due to the 
latter’s complexity in capturing accurately the relevant spatial elements.  

 

Fig.4 Number of Visible Satellites in both GPS only and GPS/GLONASS scenarios 

 
     Fig.5 GPS and GPS/GLONASS Satellites Availability 



	

5.2.Accuracy 

The position errors arising from the use of GPS only measurements, GPS/GLONASS 
measurements and the data fusion PF algorithm are shown in Figure 6. It can be seen 
that the results for the GPS/GLONASS scenario are closer to the reference than the 
GPS only results (e.g. point 1 and point 2). Furthermore, the GPS/GLONASS 
scenario has a higher position fix density (e.g. points 3 and 4) than GPS only. The 
results from the data fusion algorithm while providing a 100% position fixing density 
(points 7 and 8) improves the accuracy significantly (points 5 and 6) compared to the 
GPS only and GPS/GLONASS scenarios.  

The 95th percentile accuracy values are 4.92 (95%) for the data fusion PF algorithm, 
7.84m (95%) for GPS/GLONASS and 13.74m (95%) for GPS only. 

Overall, the field test results confirm those from the simulation that the data fusion PF 
algorithm provides the best accuracy and meets the requirement for the measurement 
of the VRUCIs. 

 

Fig.6 Comparison of the GPS Only, GPS/GLONASS and Fusion algorithm with 
Respect to Reference in Filed Test 

5.3.Integrity 

For the integrity monitoring requirement, the number of more than five satellites for 
the GPS only and GPS/GLONASS scenarios are 86.01% and 93.7% respectively. In 
terms of the alarm limit requirement, all the position fixes are within the alarm limit in 
data fusion PF algorithm scenario, while the corresponding values for the 
GPS/GLONASS and GPS only scenarios are 97.82% and 95.12% respectively. 

From the results it is concluded that only the data fusion PF algorithm estimations can 
meet the alarm limit requirement in both simulation and field test results compared to 



	

other GNSS only scenarios. 

5.4.Continuity and Availability 

The two major issues considered in the continuity risk is the alarm limit and position 
outage. According to the continuity risk requirement, the allowable number of 
interruptions is 10-7*5400=54*10-5 (5400 possible position fixes in the field test), 
effectively zero. The position outages occur when there are less than four visible 
satellites. From the test sample and results the continuity risk is zero for the data 
fusion PF algorithm. For the GPS/GLONASS scenario, the continuity risk is 6.8%, as 
there are 254 interruptions due to position outage and 117 due to position errors 
exceeding the alarm limit. For the GPS only scenario, the continuity risk is 16.7%, as 
there are 639 interruptions due to position outage and 263 due to position errors 
exceeding the alarm limit. It should be noted that there are more position outages and 
lower accuracy positioning fixes in the field test than are in the simulation. The reason 
is that the real test environment is more complex (i.e. tunnel overfly bridge tall 
buildings and trees will result in the GNSS signal loss lock during the field test) and 
difficult reflect accurately in simulation.  

Overall, from results of the performance measured in terms of accuracy, integrity, 
continuity analysis, the proposed data fusion PF algorithm provides the best service 
availability at 100%, compared to 93.2% for GPS/GLONASS and 83.3% for GPS 
only. Therefore, based on the simulation and field tests, the proposed fusion algorithm 
can meet the RNP requirements for RUC. 

6. Conclusions 

This paper has proposed a new definition of Variable Road User Charging Indicators 
(VRUCI) by considering the equalization of the charges and the marginal social cost 
that each driver imposes on others. The indicators are measurable and are as far as 
possible independent. Because many of the indicators are related to the vehicle state, a 
Particle Filter (PF) data fusion algorithm exploiting GNSS, DR and road segment 
information has been developed for state estimation and shown to achieve the RNP 
requirements for RUC. Future work should collect more field test samples in a heavily 
built environment area for further validation of the proposed PF data fusion algorithm 
and address the integration of the European Galileo and Chinese Beidou systems in 
addition to assessing the benefits of the new GPS signals including L2C, and 
terrestrial signals of opportunity such as WiFi based positioning and map-matching. 
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