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Institute of Computer Science and Engineering

University of Karlsruhe
Haid-und-Neu-Straße 7, 76131 Karlsruhe, Germany

{asfour,azad,knoop,dillmann}@ira.uka.de

Abstract—In this paper we present a framework for grasp
planning with a humanoid robot arm and a five-fingered hand.
The aim is to provide the humanoid robot with the ability of
grasping objects that appear in a kitchen environment. Our
approach is based on the use of an object model database that
contains the description of all the objects that can appear in the
robot workspace. This database is completed with two modules
that make use of this object representation: An exhaustive offline
grasp analysis system and a real-time stereo vision system.
The offline grasp analysis system determines the best grasp for
the objects by employing a simulation system, together with
CAD models of the objects and the five-fingered hand. The
results of this analysis are added to the object database using
a description suited to the requirements of the grasp execution
modules. A stereo camera system is used for a real-time object
localization using a combination of appearance-based and model-
based methods. The different components are integrated in a
controller architecture to achieve manipulation task goals for
the humanoid robot.

I. INTRODUCTION

The attention of the robotics community has been drawn

more and more to humanoid robots in the last years. Their

design, building and applications addresses many interesting

research challenges: biped walking, human-robot interaction,

autonomy, interaction with unstructured and unknown envi-

ronments, and many others. Among them, the development of

manipulation skills is of utmost importance and one of the

most complex.

One of the main challenges that humanoid developers have

to face when considering manipulation issues is the design of

robot hands and arms. In the case of hands for humanoids

their design is guided by the need of a great versatility, which

means a large number of fingers and degrees of freedom, the

reduced size and the human-like appearance. A constant issue

has been to design human-size light arm/hand systems either

focusing on a pure mechanical approach [1] or taking some

anthropomorphic and biological inspiration [2]. A recent work,

Domo, has focused on the design of compliant and reliable
humanoid arms able to run for days in a secure way for

humans [3]. The limited size of robot hands complicates the

dispositions of the joint actuators. The solution usually comes

from the use of novel actuation systems, pneumatic or fluidic

[4] or cable driven [5].

In order to deal with manipulation tasks in human-centered

environments, an intensive use of sensor information, par-

ticularly visual and tactile, within closed control loops is

indispensable. Visual information has been used mainly to

identify and apprehend the pose and shapes of objects [6],

[7]. Especially relevant for dexterous manipulation tactile

information has been used to reach stable grasps through finger

gating or for controlling whole body grasping [8]. Several

control architectures were proposed for manipulation tasks.

Their main goals are to coordinate a set of behaviors implied

by manipulation [9], to introduce learning in the sensor motor

coordination [10], and to get inspiration from biology findings

[2].

The work presented in this paper is part of long term

German Humanoid Project, which goal is to develop a robot

aimed to assist humans in tasks of everyday life [11]. To reach

these goals, many complex abilities and characteristics are

included: Humanoid shape, multimodality and the ability to

cooperate with humans and learn. In the aspect of manipula-

tion it includes the ability to learn from demonstration and to

use high level cognitive models of objects and tasks.

In this paper we present an integrated approach for grasp

planning. The central idea of this system is the existence of a

database with the models of all the objects present in the robot

workspace. From this central fact we develop two necessary

modules: a visual system able to locate and recognize the

objects (Sec. III), and an offline grasp analyzer that provides

the most feasible grasps configuration for each object (Sec.

IV). The results provided by these modules are stored and used

by the control system of the humanoid to decide and execute

the grasp of a particular object. We emphasize that this paper

describes a first step towards a complete humanoid grasping

system. At this stage the use of object and hand models

allows the fast development and test of multiple interactive

manipulation skills. In the long-term it is desirable, and is our

purpose to develop grasping and manipulation strategies able

to deal with unmodelled and unknown objects.
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II. SYSTEM OVERVIEW

Since the robot has to work in an environment mostly

designed for humans, the approach of the whole project has

been to build a anthropomorphic arm/hand system that allows

to imitate the way humans perform these activities. ARMAR,

our humanoid robot, has 23 mechanical degrees-of-freedom

(DOF). From the kinematics control point of view, the robot

consists of five subsystems: Head, left arm, right arm, torso

and a mobile platform [12]. The head has 2 DOFs arranged as

Fig. 1. The humanoid robot ARMAR with the 5-finger hands

pan and tilt and is equipped with a stereo camera system and a

stereo microphone system. Each of the arms has 7 DOFs and

is equipped with 6 DOFs force torque sensors on the wrist.

Each hand has five fingers and 11 DOFs (3 for the thumb and

2 for the other four fingers) driven by fluidic actuators [4].

A functional description of the grasp planning system

described in this paper is depicted in figure 2. It consists of

the next parts:

• The global model database. It is the core of our ap-
proach. It contains not only the CAD models of all the

objects, but also stores a set of feasible grasps for each

object. Moreover, this database is the interface between

the different modules of the system.

• The offline grasp analyzer that uses the model of the
objects and of the hand to compute on a simulation

environment a set of stable grasps (see Sec. III). The

results produced by this analysis are stored in the grasps

database to be used by the other modules.

• A online visual procedure to identify objects in stereo
images by matching the features of a pair of images with

Fig. 2. Overview of the system.

the 3D prebuilt models of such objects. After recognizing

the target object it determines its location and pose. This

information is necessary to reach the object. This module

is described in detail in section IV.

• Once an object has been localized in the work-scene,

a grasp for that object is then selected from the set of

precomputed stable grasps. This is instanced to a partic-

ular arm/hand configuration that takes into account the

particular pose and reachability conditions of the object.

This results in an approaching position and orientation.

A path planner reaches that specified grasp location and

orientation. Finally, the grasp is executed. These modules

are not described in this paper since they are still under

development.

III. OFFLINE GRASP ANALYSIS

In most of the works devoted to grasp synthesis, grasps

are described as sets of contact points on the object surface

where forces/torques are exerted. However, this representation

of grasps presents several disadvantages when considering

their execution in human-centered environments. These prob-

lems arise from the inaccuracy and uncertainty about the

information of the object. Since we have models of the

shapes of the objects this uncertainty comes mainly from the

location of the object and inaccuracy in the positions of the

mobile humanoid. Usually, the contact-based grasp description

requires the system be able to reach precisely the contact

points and exert precise forces.

It is possible to include inaccuracy in the force/torque

models, but this paper faces this problem from a different

approach. In our approach grasps are described in a qualitative

and knowledge-based fashion. Given an object, a grasp of that

object will be described by the following features (see Fig. 4):

• Grasp type: A qualitative description of the grasp to
be performed (see Fig. 3). The type of the grasp has

practical consequences since it determines the grasp exe-

cution control, i.e.: the hand preshape posture, the control

strategy of the hand, which fingers are used in the grasp,

the way the hand approaches the objects and how the

contact information of the tactile sensors is interpreted.

• Grasp starting point (GSP): For approaching the object,
the hand is positioned at a distant point near it.

• Approaching direction: Once the hand is positioned in
the GSP it approaches the object following this direction.

The approaching line is defined by the GSP and the
approaching direction.

• Hand orientation: the hand can rotate around the ap-
proaching direction. The rotation angle is a relevant

parameter to define grasp configuration.

It is important to note that all directions are given with

respect to an object centered coordinate system. The real

approach directions result from matching of this relative

description with the localized object pose in the workspace

of the robot.

A main advantage of this grasp representation is its practical

application. A grasp can be easily executed from the informa-
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(a) Hook (b) Cylindrical (c) Spherical (d) Pinch (e) Tripod

Fig. 3. Hand preshapes for the five types of grasp.

Fig. 4. Schematics with the grasp descriptors

tion contained in its description, and is better suited for the

use with execution modules like arm path planning. Moreover

this representation is more robust to inaccuracies since it only

describes starting conditions and not final conditions like a

description based in contacts points.

It is important to notice too, that this approach involves the

existence of an execution module able to reach a stable grasp

from the given initial conditions. This module will require the

uses of sensor information, tactile or visual, to complete the

grip. This module is out of the scope of this paper.

A. Grasp types

Cutkosky describes 16 different grasping hand postures for

human hands [13]. The taxonomy described by Cutkosky is

very complete and present many grasps that could be hardly

executed by our anthropomorphic five-fingered hand attending

to its mechanical limitations. Hence, we have made a selection

of the most representative grasps that can be executed with

our hand. These are three power grasps: hook, cylindrical

and spherical and prismatic; and two precision grasps: pinch

and tripod (see Fig 3). For this selection we have considered

that the only finger with abduction/adduction mobility is the

thumb, being thus the only one able to change its opposition

with respect to the other fingers.

• Hook grasp: In this grasp the hand opposes the gravity.
All fingers, but the thumb, form a hook that would

enclose a cylindrical shaped object. The palm might

exert force opposing the fingers. The thumb does not

participate in any case.

• Cylindrical grasp: All fingers close around a cylindrical
object. The thumb opposes completely the other four

fingers.

• Spherical grasp: All fingers close around a ball-shaped
object. The thumb is disposed in a way that it maximizes

the area covered by the fingers.

• Pinch grasp: The grasp is characterized by the opposition
of the thumb and index finger tips. The rest of the

fingers do not participate. This is appropriate to grasp

thin objects.

• Tripod grasp: In this case the grasp is conformed by the
opposition of the thumb fingertip against the index and

middle finger tips. This grasp is useful to grasp small

objects.

Precision grasps only imply contacts on the finger tips,

while power grasps use contacts on the whole hand surface,

finger tips, phalanxes, and palm. This difference is relevant

for the design of the execution controller. Roughly, for the

execution of a power grasp the hand approaches the object

until it makes contact, and then closes the fingers. However,

in the case of precision grasps, the fingers have to close at a

certain distance so that only the finger tips make contact with

the object.

An important aspect when considering an anthropomorphic

hand is how to relate the hand with respect the grasp starting

point (GSP) and the approaching direction. For this we define

for the hand the grasp center point (GCP). It is a virtual point

that has to be defined for every hand and that is used as

reference for the execution of a given grasp. Figure 4 depicts

the parameterization of a grasp. The GCP is aligned with the

GSP of the grasp. Then the hand is oriented and preshaped

according to the descriptors of the grasp. Finally, it moves

along the approaching line.

B. Methodology of the analysis

An important characteristic in our system is that there

exists a 3D CAD model for every objects that appears in the

workspace. This allows for extensive offline analysis of the

different possibilities to grasp an object, instead of focusing

on fast online approaches. To accomplish this we have also

built a computer 3D model of the hand.

We perform an extensive analysis for each object that

consists of testing a wide variety of hand preshapes and ap-

proach directions. This analysis is carried out on a simulation

environment where every tested grasp is evaluated according

to a quality criterion. The resulting best grasps for each object

are stored in order to be used during online execution of the

robot.
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We use GraspIt! [14] as grasping simulation environment It

has some very convenient properties for our purposes such

as the inclusion of contact models and collision detection

algorithms, and the ability to import, use and define object

and robot models.

Our approach to compute stable grasps on 3D objects is

inspired by a previous work by Miller et al. using GraspIt!

[15]. The offline analysis follows four steps to find the grasps

for a given object:

1) The shape of the object model is approximated by a set

of basic shape primitives (boxes, cylinders, spheres and

cones). There are many ways to obtain these primitive

approach. GraspIt! doesn’t provide any procedure to

produce them. We assume that the primitive description

of the objects is part of the model of an object.

2) A set of candidate grasps is generated automatically for

every primitive shape of the object description. A grasp

candidate consists of a hand type, a grasp starting point,

an approach direction and a hand orientation. For every

primitive there exists a set of predefined grasp types and

approaching directions [15].

3) Each grasp candidate is tested within the simulation en-

vironment. The hand is placed in the grasp starting point

and oriented according to the approaching direction and

hand orientation. Then, the hand is preshaped depending

on the grasp type.

The approach phase is different for power and precision

grasps. For power grasps, the hand moves opened along

the approach direction until it touches the object. Then,

it closes and the quality of the grasp is evaluated. If the

quality is under certain threshold then the hand opens,

backs a step amount and closes again. This sequence

is repeated until a maximum stability measurement is

reached.

However, in the case of precision grasps, a different test

is designed: 1) the hand is preshaped at the grasp starting

point , 2) it closes and the grasp is evaluated if there

exist a contact with object 3) it opens again and moves

a step forward, 4) steps 2 and 3 are repeated until it

reaches a maximum stability or a maximum number of

steps is reached. Following this procedure we ensure

that the first contacts with the object are made with the

fingertips.

The final position of the hand and the quality obtained

is stored.

4) Finally, all final grasps that are over the minimum

threshold are sorted and stored.

Part of this procedure is available in the source code of

GraspIt! [14]. However it is designed exclusively for the

Barrett Hand [16]. We have redesigned it to adapt it to our

hand model.

As a metric for evaluating the quality of a grasp we use

the magnitude of the largest worst-case disturbance wrench

that can be resisted by a grasp of unit-strength. This metric is

described in detail by Ferrari and Canny [17].

Fig. 5. Two examples of grasps produces by the grasp planning

Finally two examples of the grasps obtained for a beer bottle

and an egg are shown in Fig. 5.

C. Grasp database

All stable grasps computed for every object are stored

in a database in order to be used by execution modules.

Every grasp stored includes the grasp type, the grasp starting

point, hand orientation, approaching direction and the quality

measure obtained from the simulation. This value is used by

the other modules to select the best grasp for a given object.

IV. OBJECT RECOGNITION AND LOCALIZATION

In general, any component of a vision system in a humanoid

robot for application in a realistic scenario has to fulfill a

minimum number of requirements. In the particular context

of the grasping system presented in this paper, the main

requirements are these.

1) The component has to deal with a potentially moving

robot and robot head: The difficulty caused by this is that

the problem of segmenting objects can not be solved by

simple background subtraction. The robot has to be able

to recognize and localize objects in an arbitrary scene

when approaching the scene in an arbitrary way.

2) Recognition of objects has to be invariant to 3D rotation

and translation: It must not matter in which rotation and

translation the objects are placed in the scene.

3) Objects have to be localized in 6D (location + orien-

tation) with respect to a 3D rigid model in the world

coordinate system: It is not sufficient to fit the object

model to the image, but it is crucial that the calculated

3D pose is sufficiently accurate in the world coordinate

system. In particular, the assumption that depth can

be recovered from scaling with sufficient accuracy in

practice is questionable.

4) Computations have to be performed in real-time: For

realistic application, the analysis of a scene and accurate

localization of the objects of interest in this scene should

take place at frame rate in the optimal case, and should

not take more than one second.

A. The Limits of State-Of-The-Art Model-Based Systems

Most model-based object tracking algorithms are based on

relatively simple CAD wire models of objects, as the example
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llustrated in Figure 6. Using such models, the starting and end

points of lines can be projected very efficiently into the image

plane, allowing real-time tracking of objects with relatively

low computational effort. However, the limits of such systems

are clearly the shapes they can deal with. Most real-word

objects, such as cups, plates and bottles, can not be represented

in this manner. The crux becomes clear when taking a look at

an object with a complex shape, as it is the case for the can

illustrated in Figure 7.

Fig. 6. Illustration of an object modeled by a wire model from [6]

The only practical way to represent such an object as a

3D model is to approximate its shape by a relatively high

number of polygons. To calculate the projection of such a

model into the image plane practically the same computations

a rendering engine would do, have to performed. But not only

the significantly higher computational cost makes common

model-based approaches not feasible, also from a conceptual

point of view the algorithms can not be extended for complex

shapes: Objects which can be represented by straight lines and

even planes have the property that each edge of the object is

represented by a straight line in the model, which are then used

for matching. As soon as an object also has curved surfaces

this is not the case anymore: the edges of the polygons do

not correspond to potentially visible edges. In [18], we show

that a purely model-based approach for arbitrary 3D object

models would take more than five minutes for the analysis of

one potential region, having a database of three objects.

Fig. 7. Illustration of a 3D model of a can

B. Our Approach

Our approach combines the benefits of model-based and

global appearance-bases methods [19] for object recognition
and localization. Recently, local appearance-based methods
using texture features have become very popular [20]–[23].

However, these methods are only applicable for sufficiently

textured objects, which is often not the case for the objects of

interest for our intended application [18].

In [18], we present a system which can build object repre-

sentations for appearance-based recognition and localization

automatically, given a 3D model of the object. An initial

estimate for the position of the object is determined through

stereo vision, while an initial estimate for the orientation is

determined by retrieving the rotation the recognized view was

produced with. Then, a number of correction calculations are

performed for accurate localization, which is explained in

detail in [18]. An outline of the overall algorithm is given

by the following steps:

1) Perform color segmentation in both images.

2) Determine color blobs with a connected components

algorithm.

3) Match the blobs in the left and right image on the base

of their properties and the epipolar geometry.

4) For each matched blob:

5) Calculate initial estimate for the position by stereo

triangulation.

6) Determine the best matching view by calculating the

Nearest Neighbor in the PCA eigenspace.

7) Determine initial estimate for the orientation by retriev-

ing the stored rotation for the recognized match.

8) Apply pose correction formulate as presented in [18].

9) Verify validity by comparing the size of the blob to the

expected size, determined on the base of the calculated

pose and the object model.

Fig. 8. Illustration of the color segmentation result for the colors red and
green

As we show in [18], our system is very robust and is able

to recognize and localize the objects in our test environment

accurately and reliably in real-time. Recognition and localiza-

tion for one potential region takes approximately 5 ms on a

3 GHz CPU, with a database of five objects: a cup, a cup

with a handle, a measuring cup, a plate, and a small bowl. An

exemplary segmentation result is shown in Figure 8; the result

of a full scene analysis is visualized in Figure 9.

V. DISCUSSION AND CONCLUSION

At this point it is important to mention the work of Kragic et

al. [6] due to the similarity in some aspects to our work. They

present a visual tracking system also able to recognize objects.

Once an object is recognized the model and pose of it is sent

to GraspIt!. A human operator uses GraspIt! visualization and
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Fig. 9. Recognition and localization result for an exemplary scene. Left: left
input image. Right: 3D visualization of the result.

analysis tools to determine a stable grasp with the Barrett

Hand. Later the grasp is executed.

On the visual part the main difference is that we are able to

deal with arbitrarily complex shaped objects, while Kargic et

al. are limited to planar-faced objects. Another main difference

to our approach is that we compute grasps automatically

and offline, without a human operator. The addition of these

features, five-fingered hands, automatic grasping synthesis, and

realistic shaped objects in a realistic environment (but with

simplified texture/colours) makes our approach more complete

and autonomous.

To conclude, in this paper we have presented an integrated

approach that includes an offline grasp planning system with

an visual object identification system. The integration of these

two modules relies on the use of an appropriate object and

grasp representation database that is also described.

However, the work presented here is only a part of a larger

manipulation system. Some modules are still required, in order

to execute any of the grasps computed. First, in any situation

several grasp candidates are possible, but only one can be

executed. A module that selects one taking into account the

task and the execution conditions is necessary. Once a grasp is

selected, an arm motion planner is necessary to move the hand

to the pregrasping location according to the grasp description

and the object pose. And finally, a module that executes the

grasp using tactile and visual feedback has to be developed

too.
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