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Abstract. This paper describes an integrated, high-resolution dataset of hydro-meteorological variables (rainfall

and discharge) concerning a number of high-intensity flash floods that occurred in Europe and in the Mediter-

ranean region from 1991 to 2015. This type of dataset is rare in the scientific literature because flash floods

are typically poorly observed hydrological extremes. Valuable features of the dataset (hereinafter referred to as

the EuroMedeFF database) include (i) its coverage of varied hydro-climatic regions, ranging from Continental

Europe through the Mediterranean to Arid climates, (ii) the high space–time resolution radar rainfall estimates,

and (iii) the dense spatial sampling of the flood response, by observed hydrographs and/or flood peak estimates

from post-flood surveys. Flash floods included in the database are selected based on the limited upstream catch-

ment areas (up to 3000 km2), the limited storm durations (up to 2 days), and the unit peak flood magnitude.

The EuroMedeFF database comprises 49 events that occurred in France, Israel, Italy, Romania, Germany and

Slovenia, and constitutes a sample of rainfall and flood discharge extremes in different climates. The dataset

may be of help to hydrologists as well as other scientific communities because it offers benchmark data for

the identification and analysis of the hydro-meteorological causative processes, evaluation of flash flood hy-

drological models and for hydro-meteorological forecast systems. The dataset also provides a template for the

analysis of the space–time variability of flash flood triggering rainfall fields and of the effects of their esti-

mation on the flood response modelling. The dataset is made available to the public with the following DOI:

https://doi.org/10.6096/MISTRALS-HyMeX.1493.

Published by Copernicus Publications.
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1 Introduction

Flash floods are triggered by high-intensity and relatively

short-duration (up to 1–2 days) rainfall, often of a spatially

confined convective origin (Gaume et al., 2009; Smith and

Smith, 2015; Saharia et al., 2017). Due to the relatively small

temporal scales, catchment scales impacted by flash floods

are generally less than 2000–3000 km2 in size (Marchi et al.,

2010; Braud et al., 2016). Given the large rainfall rates and

the rapid concentration of streamflow promoted by the topo-

graphic relief, flash floods often shape the upper tail of the

flood frequency distribution of small- to medium-size catch-

ments. Understanding the hydro-meteorological processes

that control flash flooding is therefore important from both

scientific and societal perspectives. On the one hand, eluci-

dating flash flood processes may reveal aspects of flood re-

sponse that either were unexpected on the basis of less in-

tense rainfall input or that highlight anticipated but previ-

ously undocumented characteristics. On the other hand, im-

proved understanding of flash floods is required to better

forecast these events and manage the relevant risks (Hardy et

al., 2016), because knowledge based on the analysis of mod-

erate floods may be questioned when used for forecasting

the response to local extreme storms (Collier, 2007; Yatheen-

dradas et al., 2008).

However, the small spatial and temporal scales of flash

floods, relative to the sampling characteristics of typical

hydro-meteorological networks, make these events particu-

larly difficult to monitor and document. In most of the cases,

the spatial scales of the events are generally much smaller

than the sampling potential offered by even supposedly dense

raingauge networks (Borga et al., 2008; Amponsah et al.,

2016). Similar considerations apply to streamflow monitor-

ing: often the flood responses are simply ungauged. In the

few cases where a stream gauge is in place, streamflow moni-

toring is affected by major limitations. For instance, peak wa-

ter levels may exceed the range of available direct discharge

measurements in rating curves, causing major uncertainties

in the conversion of flood stage data to discharge data. In

other cases, stream gauges are damaged or even wiped out

by the flood current: in these cases, only part of the hydro-

graph (usually a segment of the rising limb) is recorded.

The call for better observations of flash flood response has

stimulated the development of a focused monitoring method-

ology in the last 15 years over Europe and the Mediterranean

region (Gaume et al., 2004; Marchi et al., 2009; Bouilloud et

al., 2009; Calianno et al., 2013; Amponsah et al., 2016). This

methodology is built on the use of post-flood surveys, where

observations of traces left by water and sediments during a

flood are combined with accurate topographic river section

survey to provide spatially detailed estimates of peak dis-

charges along the stream network. However, the important

thing to note here is that the survey needs to capture not only

the maxima of peak discharges: less intense responses within

the flood-impacted region are important as well. These can be

contrasted with the corresponding generating rainfall inten-

sities and depths obtained by weather radar re-analysis, thus

permitting identification of the catchment properties control-

ling the rate-limiting processes (Zanon et al., 2010). The

large uncertainty affecting indirect peak discharge estimates

may be constrained and reduced by comparison with peak

discharges obtained from hydrological models fed with rain-

fall estimates from weather radar and raingauge data (Am-

ponsah et al., 2016). Post-flood surveys typically start im-

mediately after the event and are carried out in the follow-

ing weeks and months (Gaume and Borga, 2008), during the

so-called Intensive Post-Event Campaigns (IPEC, in the fol-

lowing), before possible obliteration of field evidence from

restoration works or subsequent floods.

The aim of this paper is to outline the development of

the EuroMedeFF dataset, which organises flash flood hydro-

meteorological and geographical data from 49 high-intensity

flash floods, whose location stretches from the western and

central Mediterranean, through the Alps and into Continen-

tal Europe. The database includes high-resolution radar rain-

fall estimates, flood hydrographs and/or flood peak estimates

through IPEC, and digital terrain models (DTMs) of the con-

cerned catchments. Collation of the EuroMedeFF dataset is

a challenging task (Borga et al., 2014), due (i) to the lack of

conventional hydro-meteorological data which characterises

these events (owing to the small spatio-temporal scales at

which these events occur), and (ii) to the fact that extreme

events are, by definition, rare. Collecting rainfall and flood

data by means of opportunistic post-flood surveys required

the mobilisation of a group of researchers (ranging in size

from 5 to more than 20 persons) for an extended period of

time (ranging from a few days to some weeks). In addition to

this, high-quality weather radar estimates of extreme events

such as the ones triggering flash floods are not easy to gather,

due to the number of sources of error affecting radar esti-

mation under heavy precipitation and in rough topography

environments (Germann et al., 2006; Villarini and Krajevski,

2010). Owing to these reasons, the EuroMedeFF dataset of

49 flash flood events comprising high-quality radar rainfall

estimates, flood hydrographs, surveyed flood peaks at un-

gauged sites, and digital terrain models is simply unprece-

dented in size in Europe and in the Mediterranean in terms of

(i) number of events, (ii) variety of provided data, and (iii) the

degree of integration. Given the quality and resolution of the

rainfall input, the archive provides unprecedented data to ex-

amine the impact of space–time resolution in the modelling

of high-intensity flash floods under different climate and en-

vironmental controls. Since results from previous modelling

studies are quite mixed, much of the knowledge being either

site-specific or expressed qualitatively, the availability of the

EuroMedeFF data archive may open new avenues to synthe-

sise this knowledge and transfer it to new situations.

The criteria for the EuroMedeFF database development

and a summary table and spatial locations of the collected

flash floods are presented in Sect. 2. Section 3 describes the
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components of the flash flood datasets, whereas the methods

used to generate the rainfall and discharge datasets are pre-

sented in Sect. 4. Section 5 discusses the main features of

the dataset, based on climatic regions and the two method-

ologies for discharge data collection (stream gauges and in-

direct estimates from post-flood analysis). General remarks

on the scientific importance of the EuroMedeFF database are

provided in the Conclusions section, whereas a link to the

freely accessible EuroMedeFF database is provided in the

Data Availability section.

2 Criteria for EuroMedeFF database development

The EuroMedeFF database includes data from high-intensity

flash flood events from different hydro-climatic regions in

the Euro-Mediterranean area. To be included in the dataset,

the following data availability was ensured: (i) digital ter-

rain model (DTM) of resolutions 5–90 m of the impacted

region/catchment; (ii) weather radar rainfall estimation with

high spatial and temporal resolutions, and (iii) discharge data

from stream gauges and/or post-flood analyses. Rainfall data

are provided at a time resolution of 60 min or less and as

“best available rainfall products” (i.e. estimates which in-

clude the merging of radar and raingauge estimates).

Three criteria have been considered for the development

of the EuroMedeFF database.

i. Flood magnitude. A unit peak discharge of

0.5 m3 s−1 km−2 (this parameter is termed Fth) is

considered as the lowest value for defining a flash flood

event. This means that, for an event to be included in

the database, at least one measured flood peak should

exceed the value of Fth. The authors are aware that,

depending on climate and catchment size, a unit peak

discharge of 0.5 m3 s−1 km−2 can correspond to a

severe flash flood (for instance, in the inner sector

of the alpine range) or a moderate flash flood (for

instance, in many Mediterranean basins). A value of

0.5 m3 s−1 km−2 can be considered as a lower threshold

for flash floods across a variety of climates and studies

(Gaume et al., 2009; Marchi et al., 2010; Tarolli et al.,

2012; Braud et al., 2014). For the sake of simplicity, we

adopted the same value of Fth in all the studied regions.

Since the identification of the flash floods included in

the database is primarily driven by the local observed

impact, for most floods the lowest unit peak discharge

is much higher than Fth.

ii. Spatial extent. The upper limit for a catchment impacted

by the flood is 3000 km2 (this parameter is termed Ath).

The same meteorological event may have triggered mul-

tiple floods (e.g. September and October 2014 floods in

France which have affected several catchments of about

2000 km2 – Ardèche, Cèze, Gard, and Hérault). In this

case, we report several events for the same date, corre-

sponding to different specific catchments with areas less

than Ath.

iii. Storm duration. The upper limit for the duration of the

flood-triggering storm is up to 48 h (this parameter is

termed Dth). The rainfall duration is identified by defin-

ing a minimum period duration with basin-averaged

hourly rainfall intensity less than 1 mm h−1 over the im-

pacted catchment to separate the time series in consis-

tent events. The methodology is similar to Marchi et

al. (2010) and Tarolli et al. (2012), where the duration

is defined as “the time duration of the flood-generating

rainfall episodes which are separated by less than 6 h of

rainfall hiatus”. We made this threshold explicit to re-

duce subjectivity. Here, the minimum duration depends

subjectively on hydro-climatic settings and basin size.

The reported Dth is the duration of the rainfall respon-

sible for each event flood peak, separated from other

rainfall events that may have occurred before or af-

ter the main event depending on the characteristics of

the largest involved catchment. In a number of cases

in which the features of the flash flood response were

specifically affected by wet initial soil moisture condi-

tions, rainfall data are provided for a longer period than

the storm duration. This enables us to account for an-

tecedent rainfall in the analyses.

In general, the preliminary selection of flash floods was

based on rainfall data (amount, intensity) from meteorolog-

ical agencies and qualitative field recognition of flood re-

sponse. This led to the exclusion of a number of low-intensity

events. Post-flood reconstruction of peak discharge was car-

ried out for events that passed this preliminary screening.

Several of these events were not included in the dataset be-

cause they failed to meet the requirements in terms of flood

magnitude, spatial extent and storm duration. Given these

constraints, the EuroMedeFF database includes 49 high-

intensity flash floods: 30 events in France, 7 events each in

Israel and in Italy, 3 events in Romania, and 1 event each in

Germany and in Slovenia.

Figure 1 shows the location of the basins impacted by the

flash floods included in the data archive and provides infor-

mation on the basic features, such as timing of occurrence

over the year, size of the largest affected river basin and

highest unit peak discharge. The figure shows that the tim-

ing of the floods varies gradually from the south-west, where

the floods occur mainly in the September to November sea-

son, to the east, where the floods occur mainly in the period

from autumn to late spring. The shift in seasonality is paral-

leled by a decreasing basin size and unit peak discharge from

south-west to east. These findings are supported by the work

of Parajka et al. (2010), who analysed the differences in the

long-term regimes of extreme precipitation and floods across

the Alpine–Carpathian range, and of Dayan et al. (2015),

who analysed the seasonality signal of atmospheric deep con-

vection in the Mediterranean area.

www.earth-syst-sci-data.net/10/1783/2018/ Earth Syst. Sci. Data, 10, 1783–1794, 2018
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Figure 1. Location of the flash floods in the central and western Mediterranean, the Alps, and Inland Continental Europe; inset is the eastern

Mediterranean (Israel). The length of the arrow represents the area of the largest basin. Colour indicates the magnitude of the largest unit

peak discharge. Direction represents the timing of the flash flood occurrence.

Table 1 reports summary information of the EuroMedeFF

database. In the table, each event is labelled as an “EventID”,

which comprises the impacted catchment/region and the year

of occurrence, e.g. ORBIEL1999 (cf. event 1 in Table 1).

The “EventID” is used in the archive to uniquely identify

the event. The table is ordered first on a country basis, fol-

lowed by the date of flood peak for each country, from past

to most recent events. For each of the 49 events, the table

reports the river basin and the country, the date of the flood

peak, the climatic region, the number of river sections for

which discharge data are available (in terms of both indirect

post-flood estimates and streamgauge-based data), with in-

dications of the sections with streamgauge information, the

range of basin area for the catchments closed at the studied

river sections, the storm duration, the range of unit peak dis-

charges and the indication of earlier works on the event. In a

few cases, more than one flash flood event is reported for the

same river basin.

We used the Budyko diagram (Budyko, 1974) to charac-

terise the climatic context of the catchments included in the

EuroMedeFF database (Fig. 2). The Budyko framework plots

the evaporation index (i.e. the ratio of mean annual actual

evaporation to mean annual precipitation, AET / P ) versus

the aridity index (i.e. the ratio of mean annual potential evap-

otranspiration to mean annual precipitation PET / P ). The

mean values of these variables were calculated for each river

basin, so the number of points plotted in Fig. 2 is smaller than

the total number of flash floods in the database. Figure 2 also

reports the empirical Budyko curve (dotted curve; Budyko,

1974), which fits well with the upper envelope (continuous

curve) of the data included in the data archive. Not sur-

Figure 2. Budyko plot for the study basins (P : mean annual precip-

itation, AET: mean annual actual evapotranspiration, PET: mean an-

nual potential evapotranspiration). In case of multiple nested catch-

ments, only data for the largest one are reported.

prisingly, the catchments under Arid or Arid-Mediterranean

climate display typically water-limited conditions, with the

aridity index, PET / P > 1. Continental, Alpine and Alpine-

Mediterranean catchments lie in the energy-limited sector of

the Budyko plot, with aridity index, PET / P < 1, indicating

wet climate. Mediterranean catchments often display water-

limited conditions, although less severe than catchments un-

der Arid and Arid-Mediterranean climate.
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3 The EuroMedeFF dataset

The EuroMedeFF dataset consists of high-resolution data on

rainfall, discharge, and topography. The information in the

data archive is categorised into three main groups: generic,

spatial, and discharge data.

3.1 Generic data

The “Readme” text file contains generic data on the date of

the flash flood occurrence, the name of the impacted catch-

ment and the country and administrative region of the catch-

ment. Detailed generic information on the spatial data (DTM

and radar) and discharge data (flood hydrographs and IPECs)

are also elaborated in the file. Also, the coordinate systems

and grid sizes of the spatial data, and the time resolutions

and reference of the radar and flood hydrographs, are sum-

marised.

3.2 Spatial data

i. Topographic data. Digital terrain model (DTM) with

a grid size of 5–90 m. For each event, DTM data

are provided in compressed ASCII raster files, with

label “EventID_DTMXX”, where XX is the grid

size in metres. The DTM is provided in the lo-

cal country coordinate system, with a file (DT-

MXX_WGS84_LowLeft_corner) reporting the coordi-

nates of the lower left corner in the WGS84 coordinate

system. All the data relative to one country are in the

same coordinate system.

ii. Radar rainfall data. Corrected and raingauge-adjusted

radar rainfall data are provided with a 1 km or less grid

size and temporal resolution appropriate for the flood

(typically 60 min or less). For each event, radar data are

provided in compressed ASCII raster files, with label

“EventID_RADAR”. Radar data are provided, consis-

tent with the DTM data, in the local country coordinate

system with a file (Radar_WGS84_LowLeft_corner) re-

porting the coordinates of the lower-left corner in the

WGS84 coordinate system. At least, all the data rela-

tive to one country are in the same coordinate system.

The time reference for the radar data is provided as

yymmddHbMb − yymmddHeMe, with Hb, Mb referring

to the beginning and He, Me to the end of the considered

time period.

The spatial data (DTM and radar) are provided in ASCII

format. The coordinates for radar and DTM data as well as

locations of streamgauge and IPEC sections are consistently

provided in both local (country-specific) and WGS84 sys-

tems. The main advantage of WGS84 is that it avoids possi-

ble conversion problems from local coordinate systems while

providing a homogeneous coordinate system throughout the

database.

3.3 Discharge data

i. Flood hydrographs. For each event, the location of

the available streamgauge stations, upstream area of

the basin draining to the station and observed hy-

drographs are provided in the Excel file “Even-

tID_HYDROGRAPHS”. The coordinates are consistent

with the local country coordinate system given for the

spatial data, and are also provided in the WGS84 co-

ordinate system. The time reference system for the hy-

drograph data are consistent with that used for the radar

data.

ii. Post-flood data. Comprehensive data on post-flood sur-

veys through IPEC are provided in the excel file “Even-

tID_IPEC”. For each section, the location of the sur-

veyed cross section, the area of the basin, the indirect

estimation method used and peak discharge estimates

are provided. When possible, the following further pa-

rameters are reported: flood peak time, wet area, slope,

roughness parameter, mean flow velocity, Froude num-

ber, geomorphic impacts (in three classes – Marchi et

al., 2016), and the estimated peak discharge uncertainty

range (Amponsah et al., 2016). Coordinates of the sur-

veyed sections are consistent with the local country co-

ordinate system given for the spatial data, and are also

provided in the WGS84 coordinate system.

4 Rainfall and discharge estimation methods

4.1 Rainfall estimation methods

Raw radar data were provided by several sources and elabo-

rated following different procedures depending on the qual-

ity and type of available radar and raingauge data, in order

to obtain the best spatially distributed precipitation estimate

for each event. In general, original reflectivity data in po-

lar coordinates have been used as raw radar data. A set of

correction procedures, taking into account the highly non-

linear physics of radar detection of precipitation, and pro-

cedures for the raingauge-based adjustment, were used. The

procedures include the correction of errors due to antenna

pointing, ground echoes, partial beam blockage, beam atten-

uation in heavy rain, vertical profile of reflectivity and wet

radome attenuation, and a two-step bias adjustment that con-

siders the range-dependent bias at yearly scale and the mean

field bias at the single event scale. Radar and raingauge rain-

fall estimates were merged using the same procedure: a mean

field bias calculated at the event accumulation scale using

rain gauges located in or around the study catchment. Addi-

tional details on the procedures can be found in Bouilloud et

al. (2010), Delrieu et al. (2014), Marra et al. (2014), Marra

and Morin (2015), Boudevillain et al. (2016), and in the ref-

erences therein.
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Table 2. Summary statistics for drainage areas for the EuroMedeFF database under different climatic regions.

No. of Mean drainage 25th–75th

Climatic regions cases area (km2) quantiles (km2)

Mediterranean 606 181 7.5–113.7

Alpine and Alpine-Mediterranean 44 150 8.6–97.2

Inland Continental 20 37.6 2.2–48.6

Arid and Arid-Mediterranean 10 148 13.5–210.7

Table 3. Summary statistics for drainage areas for the EuroMedeFF database based on the two classes of discharge assessment (stream

gauges vs. indirect methods).

Discharge assessment No. of Mean drainage 25th–75th

method cases area (km2) quantiles (km2)

Stream gauges 219 438 60–543

Indirect methods (IPEC) 461 49 6–45

For French events 7, 26 and 30 in Table 1, only rainfall

data from one local rain gauge are available. These floods

have been kept in the database because of the interest in in-

cluding flood response data for very small basins (< 1 km2)

and because the small catchment size of the Valescure basin

(4 km2) causes the absence of radar rainfall data to be less

detrimental than for floods that hit larger catchments. Note

that the available rain gauge is located within the considered

4 km2 basin. In addition, as the radar closest was quite far

from the catchment, located in a zone with complex topogra-

phy, radar data accuracy was not guaranteed.

4.2 Discharge estimation methods

Discharge data in the EuroMedeFF database derive from both

streamflow monitoring stations and post-flood indirect esti-

mates of flow peak through IPEC. Streamflow data, permit-

ting recording of flood hydrographs, thus enabling assess-

ment of not only discharge, but also time response and flood

runoff volume estimation, were checked for the uncertain-

ties affecting rating curves at high-flood stages by using hy-

draulic models and topographic data. Discharge data from

reservoir operations, water levels and use of the continuity

equation, when available, were also included in the database

after accurate quality control.

Different methods have been used for the indirect recon-

struction of flow velocity and peak discharge from flood

marks, such as slope area, slope conveyance, flow-through-

culvert, and lateral super-elevation in bends. Amongst these

methods, the most commonly used for the implementation of

the dataset presented in this paper is the slope conveyance,

which consists of the application of the Manning–Strickler

equation, under assumption of uniform flow, and requires

the topographic survey of cross-section geometry and flow

energy gradient, computed from the elevation difference be-

tween the high water marks along the channel reach surveyed

(Gaume and Borga, 2008; Lumbroso and Gaume, 2012).

Although the identification of river cross sections suit-

able for indirect peak discharge assessment has sometimes

proved not easy (flood marks can be hardly visible or oblit-

erated by post-flood restoration works), and discharge recon-

struction in cross sections that underwent major topographic

changes is affected by major uncertainties (Amponsah et al.,

2016), an appropriate choice of the cross sections permitted

us to achieve a spatially distributed representation of flood re-

sponse for most studied events. Specific details on the IPEC

procedures can be found in the references provided in Ta-

ble 1.

5 Discussion

Overall, 680 peak discharge data are included in the archive:

32 % (219) were recorded by river gauging stations or based

on data from reservoir operations, and 68 % (461) from IPEC

surveys. We followed the geomorphic impact-based linear er-

ror analysis of the slope conveyance discharge determination

presented in Amponsah et al. (2016) for the uncertainty as-

sessment of the IPEC peak flood estimates. Table 2 reports

the number of river sections for each of the climatic regions

and the corresponding summary statistics of the upstream

drainage area. Almost 90 % of the included discharge data

are from the Mediterranean region, which is consistent with

increasing collation and analysis of flash flood data in this

region compared to other climatic regions in Europe (e.g.

Gaume et al., 2009; Marchi et al., 2010). The area of the

basins included in the archive ranges from 0.27 to 2586 km2.

Table 2 shows that flash flooding may impact larger basins in

the Mediterranean, Alpine and Arid regions than those con-

sidered in the Inland Continental region. This supports earlier

findings from Gaume et al. (2009).

www.earth-syst-sci-data.net/10/1783/2018/ Earth Syst. Sci. Data, 10, 1783–1794, 2018
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Figure 3. Unit peak discharges versus drainage areas for the studied

flash floods. The envelope curve for the upper limit of the relation-

ship is reported.

Table 3 reports summary statistics of the upstream

drainage area for the two discharge assessment methods

(stream gauges and indirect methods). As expected, stream

gauges correspond to larger areas, whereas post-flood sur-

veys play major roles in documenting peak discharges for

smaller drainage areas (Borga et al., 2008; Marchi et al.,

2010; Amponsah et al., 2016). Nevertheless, the database

also includes discharge data from a few measuring stations

deployed in small research catchments. This allows reduction

of the uncertainty related to the estimation of peak discharge

in very small catchments (Braud et al., 2014).

The relationship between the unit peak discharge (i.e. peak

discharge normalised by the upstream drainage area) and the

upstream area was investigated for the EuroMedeFF database

to identify the control exerted by catchment size on flood

peaks (Fig. 3) and to analyse its variation among the four

main climatic regions (Fig. 4a–d). Not surprisingly, the unit

peak discharges exhibit a marked dependence on watershed

area. The envelope curve, representing the observed upper

limit of the relationship, was empirically derived as a power-

law function for all the floods as well as for the four different

main climate regions. The envelope curve representative of

all the floods is similar in shape to that reported by Gaume

et al. (2009) and Marchi et al. (2010) in previous analyses in

the same hydro-climatic context. However, the multiplier re-

ported here is larger than that reported in earlier analyses, due

to the inclusion of recent more intense cases documented in

large catchments. Inspection of the multiplier and exponent

coefficients of the envelope curves reveals that the same ex-

ponent provides a good fit for the different climatic regions,

whereas the highest multiplier is reported for the Mediter-

ranean region, with an intermediate value for the Alpine-

Mediterranean and Alpine basins, and the same lowest value

for Inland Continental, Arid-Mediterranean and Arid basins.

For small basin areas (1 to 5 km2), Mediterranean and Alpine

catchments are shown to experience similar extreme peaks.

Figure 5a–b show the relationship between unit peak dis-

charge based on the two discharge assessment methods and

watershed area in a log–log diagram, together with the en-

velope curves. Indirect estimates of peak discharges show

similar dependence of unit peak discharge on catchment size

to that reported in Fig. 3, showing that the information con-

tent of the overall envelope curve is dominated by the flood

obtained based on post-flood campaigns. Indeed, peak data

from streamgauging stations show a clearly different expo-

nent of the envelope curve (−0.12) when compared to post-

flood indirect peak flow estimates (and to the ones previously

shown in Fig. 3). The highest values of the peak discharge are

often missed by the gauging stations because of insufficient

density of streamgauge networks and/or damage to the sta-

tions during floods. This sampling problem is more severe in

small basins: as a consequence, both the value of the mul-

tiplier and the exponent of the envelope equation are lower

in Fig. 5a than in the plots that include post-flood peak dis-

charge estimation in ungauged streams (Figs. 3 and 5b).

6 Data availability

The EuroMedeFF dataset is publicly available and can be

downloaded from http://mistrals.sedoo.fr/?editDatsId=

1493&datsId=1493&project_name=HyMeX&q=

euromedeff (last access: 2 October 2018). The dataset

is also made available with the following unique

DOI provided by the HyMeX database administrators:

https://doi.org/10.6096/MISTRALS-HyMeX.1493 (Ampon-

sah et al., 2018).

7 Conclusions

We presented an observational dataset that provides inte-

grated fine-resolution data for high-intensity flash floods that

occurred in Europe and in the Mediterranean region from

1991 to 2015. The dataset is based on a unique collection

of rainfall and discharge data (including data from post-flood

surveys) for basins ranging in size from 0.27 to 2586 km2.

The archive provides high-resolution data enabling a number

of flash flood analyses. It allows the analysis of the space–

time distribution of causative rainfall, which may be used to

investigate methodologies for rainfall downscaling. The data

may foster the investigation of the rainfall–runoff relation-

ship at multiple sites within the flash flood environment. This

may lead to the identification of possible thresholds in runoff

generation which may be related to initial conditions, rainfall

rates and accumulations, and catchment properties. More-

over, it allows investigations to clarify the dependence exist-

ing between spatial rainfall organisation, basin morphology

and runoff response. The archive may be used as a bench-

Earth Syst. Sci. Data, 10, 1783–1794, 2018 www.earth-syst-sci-data.net/10/1783/2018/
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Figure 4. Unit peak discharges versus drainage areas based on climatic regions: (a) Mediterranean catchments, (b) Alpine-Mediterranean

and Alpine catchments, (c) Inland Continental, and (d) Arid and Arid-Mediterranean catchments. The envelope curve for each climatic region

is reported.

Figure 5. Unit peak discharges versus drainage areas based on discharge assessment methods: (a) stream gauges and (b) indirect methods.

The envelope curves for the upper limits for each method are reported.

www.earth-syst-sci-data.net/10/1783/2018/ Earth Syst. Sci. Data, 10, 1783–1794, 2018
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mark for the assessment of hydrological models and flash

flood forecasting procedures in various hydro-climatic set-

tings. The availability of fine-resolution rainfall data may be

used to better understand how rainfall spatial and temporal

variability must be considered in hydrological models for ac-

curate prediction of flash flood response. Furthermore, the

availability of multiple flash flood response data along the

river network may be exploited to better understand how cal-

ibration of hydrological models may be transferred across

events and sites characterised by different severity.

Finally, inspection of the data included in the archive

shows the relevance that indirect peak flow estimates have in

flash flood analysis, particularly for small basins. This shows

the urgency of developing standardised methods for post-

flood surveys in order to gather flood response data, includ-

ing flow types, flood peak magnitude and time, damages, and

social response. This is key to further advancing understand-

ing of the causative processes and improving assessment of

both flash flood hazard and vulnerability aspects (Calianno

et al., 2013; Ruin et al., 2014).
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