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Abstract 

Hydro-economic modelling is an established field of research that takes a multi-disciplinary 

approach to analysing water resources. This approach can be used to analyse water 

policies, assess impacts of changing climate conditions and explore synergies between 

water users, amongst other applications. Hydro-economic models have been applied mainly 

to agricultural and urban water uses. The mining industry, despite being a relevant user in 

several catchments worldwide, has rarely been included and the modelling challenges that 

arise in mining applications have not been investigated. The aim of this project was to 

develop a hydro-economic model in the upper Aconcagua River in central Chile, in order to 

understand how this approach may support catchment-scale water decision making in 

regions where mining is an important user. 

A literature review on the hydro-economics of mining highlighted several features that make 

the mining sector a special case. One of the most important was the large differences in 

both CAPEX and OPEX between this sector and alternative users of water. This means that 

the set of metrics used to compare the economic value of water between sectors is of 

particular importance, in order to avoid being biased toward the mining user. The literature 

review also highlighted the issues of developing water resources models with limited climate 

observations, as in the case of the many remote regions where mine projects are located.  

To address the problem of climate data, the project compared methods for interpolating 

point observations of precipitation and temperature in the upper Aconcagua River Basin, 

where precipitation and temperature spatial gradients are high and there is a lack of high 

elevation measurements. It was found that a relatively simple method that merges the 

WorldClim datasets (which are available worldwide) with available point observations 

worked well for the case study, and may support the development of similar models in 

comparable regions, even when there are few or no climate gauges available. 

A conceptual semi-distributed model in the WEAP software, was used as the water 

resources component of the upper Aconcagua River hydro-economic model (HEM). The 

calibration involved the comparison of flows, snow water equivalents and hydro-power 

energy generation, so as to minimise error compensation as much as possible. The 

economic analysis included four water users: mining, agriculture, hydro-power and urban 

users. The coupling was done using Python scripts that connected WEAP with the economic 

functions allowing automatic, constant feedback between components, without sacrificing a 

detailed representation of both components.  
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Three metrics were used to analyse water users in the HEM: total value of water (with and 

without mining), shadow value of water and water scarcity cost. These three metrics provide 

different viewpoints from the water users in the catchment, and thus all of them are important 

to take into account in decision making processes. 

Three sets of scenarios of potential applications of the HEM were analysed using the HEM. 

The first explored how changes in climate conditions may affect hydrology, coverage of 

user’s demand for water, and the economic metrics. This scenario helped understanding the 

added value of a detailed representation of hydrological processes in the catchment, as it 

showed how small increases in temperature would generate changes in snow melting 

periods that may not be harmful, and even beneficial in some cases, to all water users. 

The second scenario analysed the impacts of including minimum flow requirements in the 

catchment to improve the ecological condition of the river. Results showed that defining the 

magnitude of the restrictions and defining their location are equally important. It was 

highlighted that in this case study, the restrictions in the upper parts of the catchment had 

the largest economic impact, as they affected mining and hydro-power users mostly. 

Finally, the HEM was used to analyse the shared benefits of a mine tailings water recycling 

project in the catchment. It was found that the economic value of the project for agriculture, 

urban and hydro-power users may not be very large, because of the allocation rules for the 

additional water. However, the exercise illustrated how HEMs can be used to valuate the 

economic contributions that the mining industry can provide to other users by taking a 

catchment scale approach. This is of particular importance, as this sector tries to improve 

relations with communities and to demonstrate its contribution to sustainable  development 

of regions. 

It is concluded that HEM can provide useful insight into water resources management in 

mining regions, although the set of metrics used have to be carefully selected as to properly 

take a catchment scale approach. It was also found that it is important to do a detailed 

representation of the water resources component, particularly when analysing areas where 

snow melt is a relevant hydrological process and when exploring the impacts of changing 

climate conditions. Finally, it was also shown that this tool may be used in the broader 

context of improving the mining water performance, an enhancing the relations with other 

water stakeholders in the catchment. 
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1. Introduction 

Conflicts for access to water resources between different users (e.g. mining and 

agriculture), are an issue in many parts of the world (Young and Loomis, 2014, Morgan 

and Orr, 2015, Grafton et al., 2011). These conflicts tend to arise when the demand 

for water exceeds the available supply, when different users require water at different 

times (Rivera et al., 2016), and when discharges of poor quality water affect other 

users (Baresel et al., 2006, Younger and Wolkersdorfer, 2004). 

The mining industry, a significant consumer and potential polluter of water, is often at 

the centre of conflicts. Some of the triggers of these conflicts, including water scarcity 

and surplus (Northey et al., 2014, Barrett et al., 2014), and the negative impacts of 

mining on water quality (Kuipers et al., 2006, Lovingood et al., 2004, Amezaga et al., 

2010, Dold, 2014), have received attention from researchers. However, water 

resources management with a catchment scale approach in mining regions has 

received less attention (ICMM, 2012, Kunz and Moran, 2014).  

A regional scale approach should include water resources supply and demand 

modelling, in order to provide detailed information that facilitates planning and 

operational decision-making by users and government agencies. An economic 

assessment of the latter is desirable in order to better simulate users behaviour when 

facing drought, and to facilitate the comparison of the benefits and costs of strategies 

to improve water resources management. This PhD project integrates mining water 

uses into a regional hydro-economic model to achieve this goal. 

The term ‘hydro-economics’ may be defined as the discipline of understanding current 

and potential economic value of water, using hydrologic, economic and social 

variables, and their interaction with water allocations catchment-wide. This field of 

research has increasing prominence (Harou et al., 2009, Brouwer and Hofkes, 2008, 

Cai, 2008), partly due to the emphasis placed on water as an economic good (United 

Nations, 1992), and partly due to the increasing need for improving water management 

and promoting transparent and accountable water decision making (Morgan and Orr, 

2015).  
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Hydro-Economic Models (HEMs) are made of two components and a coupling 

methodology (see Figure 1.1). The first component addresses the physical processes 

in the hydrological cycle, demand for water, and operation of water infrastructure, 

amongst others. This includes modelling the temporal and spatial dynamics of 

precipitation, and the way it turns into runoff or groundwater, to become available for 

users. It may also include uncertainty analysis and potential future changes in climate 

conditions. 

 

Figure 1.1 – Schematic of the components of a Hydro-Economic model (Adapted from (Ossa-
Moreno et al., 2018)). 

The second component addresses the economic values that users obtain from water. 

This may go beyond market prices (WBCSD, 2013), as water abstractions can be free, 

subsidised, or rated below the real derived value. This analysis allows the exploration 

of the trade-offs between using water for mining or other purposes, including 

environmental flows (Kunz and Moran, 2014). The economic values can also be 

calculated for current and future scenarios, and they may include direct and indirect 

economic effects.  

The coupling methodology merging the two components involves the definition of 

spatial and time scales, the type of links between components, and other model design 

decisions (Cai et al., 2006). Furthermore, the links between components may be 

constrained by legal frameworks that restrict the allocation, trade and use of water, 

and other external conditions. Depending on the modelling requirements there may be 

trade-offs between components (Bekchanov et al., 2015). For instance, detailed water 
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availability estimates may only be possible with high spatial resolution hydrological 

models. Such spatial detail, however, may be cumbersome for the economic analysis, 

which is often undertaken in a more aggregated scale. This highlights the existing 

challenge of defining an optimal combination of components. 

Common outputs of HEMs include economic metrics such as the total value of water 

for users in the catchment, water scarcity cost (i.e. the value of the volume required 

not to make water the constraining resource for users) and shadow values1 (Harou et 

al., 2009, Medellín-Azuara, 2006, Cai et al., 2006). These values may be useful for 

comparing degrees of water conflict between users, as they can contribute to 

assessing the potential level of satisfaction with determined allocations of water under 

different scenarios. 

Although similar models have been explored by researchers to analyse agriculture, 

urban water supply, flood management and hydro-power (Harou et al., 2009, 

Bekchanov et al., 2015), relatively little has been done for mining. Bearing in mind the 

special characteristics of mining such as large revenues, potentially large 

environmental impacts, high social scrutiny, presence in remote areas with poor 

climate monitoring, etc., relevant and material challenges still exist when including 

mine water use in HEMs. 

This project will address some of these challenges by developing a HEM that includes 

mine water use. To achieve this, concepts and features from HEMs will be first 

discussed in the literature review, outlining what should and should not be applied for 

mining taking into account the characteristics of this industry. Then, some of the 

challenges highlighted in that section will be addressed in the model, including issues 

with the lack of input climate data in remote mining regions, simulation of complex 

hydrological process and economic modelling of water users.  

                                            

1 Shadow value or Shadow price or Accounting price, as defined in YOUNG, R. A. & LOOMIS, J. B. 
2014. Determining the economic value of water: concepts and methods, RFF Press Routledge., is “The 
value used in social or public economic analysis when the market price is unknown or judged not to be 
an appropriate measure of economic value”. This is usually estimated as the price users are willing to 
pay or give up, in order to obtain an additional unit of the good being valued. 
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1.1. Research question and hypothesis 

The overall research question of this PhD project is: Can hydro-economic models help 

with the analysis of water conflicts and to support effective water resources 

management, in catchments with mining projects? 

The hypothesis in turn is that despite the differences between mining and other users, 

and the lack of previous case studies, HEMs can be applied to the regions where this 

industry operates, and they can provide valuable insight to facilitate more informed 

water decision making. 

This research could be approached from a purely planning stance to analyse 

greenfields, or from a planning and operating point of view for brownfields. Although 

both alternatives are relevant, it was decided to analyse the latter through a case study 

with an existing mining project in full operation. The former option represents an 

opportunity for future research. 

1.2. Specific research questions and objectives  

The research question was broken down into specific questions that will be answered 

in the chapters of this document.  

 How applicable are established hydro-economic modelling concepts for 

analysing regions with mining projects, and what type of metrics should be 

used? (Chapter 2) 

 How can climate data in remote regions, where mining is often located, be 

complemented with alternative datasets to facilitate the development of HEMs? 

(Chapter 4) 

 What is the added value of a detailed representation of the water resources 

component in a HEM, compared to more simple approaches? (Chapter 5) 

 How can both components of the HEM be merged without oversimplifying or 

over aggregating any of them? (Chapter 6) 

 What type of insights could HEMs provide to water decision makers in mining 

regions, and could them help calculating the shared benefits of water resources 

between users in these regions? (Chapter7) 

A set of objectives associated to each chapter is also included. 
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 Identifying the key challenges in applying hydro-economic models to mining 

regions and defining a set of metrics suitable for catchment scale approaches 

(Chapter 2). 

 Facilitating the development of HEMs in remote mining regions by analysing 

alternatives to point measurements as climate data inputs (Chapter 4). 

 Developing a HEM for a region with mining presence without oversimplifying 

the water resources component (Chapter 5 and 6).  

 Using the HEM to understand the sensitivity of the catchment and its water 

users to changes in:  

o Climate conditions (Chapter 7). 

o Environmental flow requirements (Chapter 7). 

 Using the HEM to analyse the catchment-wide benefits of infrastructure 

alternatives to reduce water scarcity in the region (Chapter 7). 

1.3. Limitations in the scope of this research 

It is acknowledged that water resources decision-making is not only influenced by the 

outputs of models like the one in this project, but also by other factors such as those 

shown in Figure 1.2. Some of these, like the macro-economic variables, are more often 

analysed through Computable General Equilibrium (CGE) type of HEMs (van Heerden 

et al., 2008). However, CGEs tend to be undertaken at coarser spatial scales and tend 

to simplify the water resources component, thus, shifting the focus of the analysis to 

the economic realm. In addition, other factors in Figure 1.2 like water quality analysis 

could be included in future versions of the HEM. 

Furthermore, although methods for the appraisal of ecosystem services are being 

refined (Cardoso, 2015, Li et al., 2011), many outputs of these analyses still have 

considerable ranges of uncertainty. In addition, other dimensions of anthropocentric 

value delivered by water systems (e.g. spiritual values) are still difficult to monetise.  

Thus, the non-market values associated with water, although they should still be part 

of water decision making in mining regions, are outside the scope of the HEM.  
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Figure 1.2 – Example of components inside water resources decision making frameworks. 

This means that the aim of the HEM developed in this project is not to encompass all 

possible aspects of the water decision making process. The key innovation here is to 

provide multi-disciplinary insights that support water resources management, and 

facilitate more informed decision making in mining catchments. 

The target audience for this thesis comprises hydrological modellers, water resources 

modellers and economic modellers, and the greatest value from it may be delivered to 

professionals with all three backgrounds. Similarly, the outputs of the model are 

expected to support the work of mining water professionals who seek to better 

understand the users surrounding their projects, and the effects of their regional water 

stewardship2 on those users. 

However, this work also aims to help independent observers (e.g. governments or 

NGOs) better analysing the relationship between mining and other users, and how 

water conflicts can be mitigated or exacerbated by external factors and different water 

                                            

2 Water stewardship is understood as going beyond an efficient use of water, as it also includes 
collaborating with governments, other water users and communities to take a catchment scale approach 
in water decision making, in order to protect water resources. 
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management strategies. Finally, they results may also be used by other users to 

understand how synergies can be built with their counterparts in other sectors. 

1.4. Clarification on Jargon 

The concept of “Water Demand” has a double meaning in the water economics and 

water resources management literature. In the former, it represents a function of price 

that describes the volume of water that users are willing and able to buy at a particular 

price through a water demand curve. On the other hand, in water resources 

management it is used more loosely, to describe the volume of water that a user (or 

user group) considers to be sufficient in a specific context. The latter is different from 

water consumption, which is the volume of water that users receive. 

In order to avoid confusion, in this document it was decided to use “Water Demand” 

in the water economics sense only, and use alternative concepts like “Volume of 

Water Demanded” or “Demand for Water” for the water resources management 

meaning. 

  



28 
 

 

Statement of contribution to the paper published in Chapter 2 

 

Contributor Statement of Contribution 

Author Juan Ossa-Moreno Conception and Design (90%) 

Analysis and Interpretation (80%) 

Drafting and Production (75%) 

Author Neil McIntyre Conception and Design (5%) 

Analysis and Interpretation (10%) 

Drafting and Production (5%) 

Author James Smart Analysis and Interpretation (5%) 

Drafting and Production (5%) 

Author Saleem Ali Analysis and Interpretation (5%) 

Drafting and Production (5%) 

Author Diego Rivera Drafting and Production (5%) 

Author Upmanu Lall Drafting and Production (5%) 

Author Greg Keir Conception and Design (5%) 

 

  



29 
 

2. Literature Review 

This chapter summarises the main findings of the literature review and is presented 

as a publication in an academic journal. A full version of this paper is included in the 

appendix and the details of the reference are as follows: 

Ossa-Moreno, J., McIntyre, N., Ali, S., Smart, J., Rivera, D., Lall, U. and Keir, G. (2018) 

The Hydro-economics of Mining. Ecological Economics, 145, 368-379. 

It was not the scope of this review to do an exhaustive listing of available hydro-

economic models, as this can be found in Harou et al. (2009) and Bekchanov et al. 

(2015), but to analyse literature on the applicability of hydro-economic models in 

mining catchments. Specifically the following were covered:  

 The features of mining regions that make them challenging for hydro-economic 

modelling.  

 The applicability of current hydro-economic concepts to mining.  

 The potential opportunities from analysing mining through hydro-economic 

models.  

The key findings of the review are as follows: 

1. Mining has several differences (e.g. capital intensity, longevity of projects, 

social scrutiny) compared to other uses of water, and this calls for carefully 

analysing the metrics and methods used in HEMs, before using them in mining. 

2. It is difficult to find one only metric that is useful to analyse all aspects of the 

value of water within a catchment scale approach, thus the use of a group of 

them may be the best alternative. This is particularly important for mining 

regions, as the sums of money involved in this industry may bias some metrics 

towards benefitting the mining user only. 

3. Total revenues and revenues per volume of water consumed are relatively easy 

to calculate for mining users, but it is often more difficult to define net revenues 

as costs are difficult to calculate due to the confidentiality in the industry. Coarse 

estimations or industry-wide averages are sometimes the only alternatives. 
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4. Applying marginality concepts to define the economic value of water for mining 

is still to be tested academically, but these tools can be applied for alternative 

users, which is helpful for catchment scale approaches. 

5. Willingness to pay and opportunity cost analyses are useful tools to assess the 

environmental impacts of mining. However, while the former may be more 

accurate, the latter are often easier to apply. 

6. The current lack of HEM applications for analysing mining hinders critical 

assessment of the metrics and methods used to analyse mining demand for 

water, and the opportunities for catchments with mining projects to better 

manage their water resources. This is the key justification of this project, and 

based on this, it will be developed a case study to provide evidence to develop 

insights in this topic. 

7. Climate and hydrological input data are key to develop HEMs that do not 

oversimplify the water resources component, and this can be an obstacle for 

analysing several mining regions remotely located, within poorly monitored 

catchments. This calls for the development of improved methods and the use 

of alternative datasets.  

8. Before developing a HEM in a mining region, several considerations should be 

taken into account to tailor the design of the model to the scope of the analysis. 

9. Mining has very often been a source of water conflicts between alternative 

water users, either because mining has not fully recognised the importance of 

water for other users, they have not accurately forecasted how their decision 

making will affect others, or because they have rarely tried to take a catchment-

wide vision to manage their water infrastructure. HEMs in mining regions may 

represent an opportunity to address this, as they take a catchment scale 

approach that involves all the main economic users, allowing to quantify trade-

offs of different water allocations and identify strategies to improve water 

resources management. 

This review has defined the roadmap for this PhD project, as the model that will be 

explained in future Chapters addresses many, although not all, of the points 

discussed. In some cases, a trade-off between a broader analysis covering more 

features had to be balanced with the desire of producing a quantitative and not overly 

complex model. Many features not included in the model are discussed throughout the 
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published paper referenced at the beginning of this chapter, and it is mentioned how 

future works could address them. The literature review of the methods to analyse 

climate variables and the hydrological model is presented in other sections. A full 

version of the academic publication related to this chapter can be found in Appendix 

A. 
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3. The Case Study – the Aconcagua River 

This chapter provides an overview of the catchment while further details on hydrology, 

volumes of water demanded, and other features are provided in future chapters. 

The Aconcagua River is located in Central Chile in the Valparaiso region (see Figure 

3.1 and Figure 3.2). As most rivers on the western slopes of the Andes, this one is 

relatively short (compared to those on the eastern slopes), and starts in the mountains 

in the border between Chile and Argentina. Then, it flows west to discharge into the 

Pacific Ocean near the city of Concón. 

 

Figure 3.1 – Global location of the case study. 

 

Figure 3.2 – Detailed view of the Aconcagua River and the upper section, which is the main 
focus of this project. 
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3.1. Overview of Climate and Hydrology 

Central Chile is a semiarid region with a yearly average precipitation of around 350 

mm, most of which falls between April and September as frontal rainstorms. The South 

Pacific Anticyclone hinders the occurrence of precipitation in the region in the austral 

summer, but it retreats during the winter (Falvey and Garreaud, 2007). There is also 

inter-annual variability in the region related to El Niño and La Niña phases, with the 

former usually generating above-average precipitation during winter, and the latter the 

opposite effect (Montecinos and Aceituno, 2003).  

Topography in the catchment oscillates from coastal areas to mountains up to around 

6000 m above sea level in the Andes, with coastal ranges in between. The whole area 

of the catchment is approximately 7300 km2, and it is divided in five sections as shown 

in Figure 3.3. The upper section of the River (1st Section) will be used as the case 

study of this project, although the water resources component will be run up to the 

DGA3 flow gauge Rio Aconcagua en Chacabuquito (see Chacabuquito area in 

Figure 3.2). 

 

Figure 3.3 – Sections in the Aconcagua River. Taken from (Figueroa San Martin, 2016). 

                                            

3 Dirección General de Aguas (General Water Directorate) the most relevant government institution in 
charge of water issues in Chile. 
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The main tributaries of the river are the Blanco, Juncal and Colorado Rivers (see 

Figure 3.3), and it is after the first two merge than most people start referring to the 

river as the Aconcagua.  

3.2. Overview of Land Use and Demand for Water 

This upper section of the Aconcagua River was chosen as the case study as it contains 

mining, urban, agricultural and hydro-power users, thus allows an analysis of several 

users through the HEM. Although water conflicts exist in all sections, it was decided 

not to analyse the whole river as it was desired to focus the model on the relationships 

between mining and other users. If the whole catchment was analysed, urban, mining 

and hydro-power demand could have been diluted by the much larger agricultural 

consumption in the five sections downstream, which would have shifted the focus of 

the analysis towards the latter only.  

The upper section, and the catchment in general, is of particular importance to Chile 

due to the high number of economic activities that are developed within it, many of 

which have a relevant participation in the national economy. This contrasts with the 

arising issues of decreasing availability of water resources and the complexity to 

predict flows (Pellicciotti et al., 2007),  both of which hinder managing water resources 

in the catchment. 

3.3. The Chilean Water Policy Context 

The water legislation in Chile is mainly based on the 1981 Water Code and the 2005 

Water Reform (Hearne and Donoso, 2014, Donoso, 2015, Grafton et al., 2011, 

Thobanl, 1997), although further amendments have been undertaken in other years, 

the most recent being in 2018. Briefly, despite being considered a public good, water 

management is based on a system of Water Rights (WR - see Chapter 2), in which 

abstraction and consumption are regulated by the conditions of the WRs (Donoso, 

2015, Grafton et al., 2011).  

These rights can be traded as any other private good through a market system where 

users can buy and sell different types of WR. These includes consumptive, non-

consumptive, permanent, temporal, continuous and sporadic rights. 
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River User Committees (RUCs) are responsible for maintaining infrastructure, 

managing WRs and settling disputes between users as a first instance, although, the 

DGA and the judicial system may intervene in special cases. There is one RUC for 

every section in the Aconcagua River, but there are also Canal User Associations 

(CUAs) and Water Communities that group users in the same irrigation channel or 

nearby areas.  

Currently, the volumes of water demanded in the catchment (i.e. existing WRs) often 

exceeds the supply, and some sections were declared legally depleted (no further 

WRs can be emitted) as water has been over allocated (Hidrometria-Chile, 2012). 

During some dry periods the RUC of the first section has placed legal restrictions on 

users in the case study, in order to face the lack of water supply. In addition, during 

particularly dry periods, the DGA has intervened to settle disputes between RUCs, 

which involves defining strategies to redistribute the limited water resources available 

(Hidrometria-Chile, 2012). Furthermore, should users wanted to increase their 

production, this may further exacerbate conflicts for access to water resources (Rivera 

et al., 2016).  

These issues summarise the challenges to manage water resources in the area, and 

highlight the desirability of improved tools to better understand water from hydrological 

and economic points of view. This is particularly important in the context of an ongoing 

discussion of further reform to the water code in the last years in Chile, which amongst 

others, expects to address the challenge of restoring environmentally affected streams 

through minimum flow requirements. 

3.4. Mining Demand for Water in the Case Study 

The mining presence in the upper Aconcagua comprises one large-scale copper mine 

(Codelco Division Andina in the Blanco River). Another mine (Anglo-American Los 

Bronces) in a nearby catchment has water rights (WR) inside the upper Aconcagua as 

well (both mines are amongst the 10 largest in Chile by production). This is not a region 

with multiple mine projects (e.g. Hunter Valley in Australia or Antofagasta region in 

northern Chile), nor a region with intensive artisanal or small-scale mining, but it is a 

region with water conflicts between mining and other users. 
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As detailed in Chapter 5, the water consumption of the Andina Mine is around one 

quarter of the whole consumption from the agricultural sector. This means that 

although mining is not the largest user of water in the catchment (this mine may be the 

largest single user though), it is a very important one, thus deserves special attention 

from a hydro-economic point of view. 

A mine water balance of the Andina project is shown in Figure 3.4. It can be seen that 

the largest consumption occurs in the concentrator plant (2000 l/s), although most of 

the water used in this process comes from recycled water after the tailings are 

thickened. Water is also used in the open pit and in the copper filtration processes.  

On the other hand, there are two main outputs from the mine. The first is a 67 l/s 

discharge after the copper filtration process, which is treated before being released. 

In addition, water also ends up in the Tailings Storage Facility (TSF), as the thickening 

does not remove all the water from the tailings. The latter is the largest loss in the 

system, and this water is stored in a TSF outside of the Aconcagua in the Maipo 

catchment, where it evaporates. 

This mine site has plans to increase its production capacity, and this would involve 

increasing the supply of water. Currently, recycling of tailings water is seen as one of 

the most likely options to address this, however, most feasibility analyses have been 

focused on calculating the benefits that this project would bring to the mine only, and 

not how this could benefit the whole catchment. This and other challenges in water 

resources management in the region will be explored in Chapter 7. 
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Figure 3.4 – Mine water balance of the project inside the Aconcagua River. Taken from (Correa 
Ibanez, 2015). 
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4. Developing Improved Climate Variables for the Case Study 

This chapter describes the analysis done on climate data, to facilitate its use as inputs 

of the Hydro-Economic Model (HEM). This section is based on the following 

publication: 

Ossa-Moreno, J., Keir, G., McIntyre, N., Cameletti, M. & Rivera, D. (2018) Comparison 

of approaches to interpolating climate observations in steep terrains with low-density 

gauging networks. Hydrology and Earth System Sciences - HESS (submitted)4. 

 

The purpose of this chapter was to address one of the key challenges of implementing 

HEMs in mining regions, as highlighted in the Literature review: the lack of input data 

of acceptable quality. Although not necessarily a problem in all mining regions, this is 

a major obstacle in several of them worldwide, as mineral resources are often located 

in remote regions, and/or in countries lacking the funds to maintain high-quality 

networks of climate gauges. Several mining catchments throughout the Andes are a 

primary example. 

This is not a problem for HEMs only, but for other analyses involving climate inputs as 

well (e.g. Environmental Impact Assessments - EIA). A consequence of this is that 

modellers are sometimes forced to oversimplify the water resources component in the 

HEM. 

The objective here was to analyse different alternatives to interpolate point 

observations of climate variables, in order to select the one that better reproduced the 

climate dynamics in the catchment, and to support this by including alternative 

supporting datasets. Although results are specific for the case study, the methodology 

can be replicated elsewhere as the selected datasets are available worldwide. 

A priori, it was desired to develop interpolated datasets of precipitation and 

temperature at a relatively high spatial and temporal resolution, to avoid climate inputs 

                                            

4 As of May 2019, this paper has been accepted as a HESS Discussion paper and is available at: 
https://www.hydrol-earth-syst-sci-discuss.net/hess-2018-505/ 
Also, the reviewers provided feedback and the paper was re-submitted after addressing their 
comments. The final decision is pending. 

https://www.hydrol-earth-syst-sci-discuss.net/hess-2018-505/
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being a limiting factor in the development of the HEM. For reasons related to the 

economic component and the coupling methodology, which will be addressed in 

subsequent chapters, the HEM used climate inputs with a coarser resolution than the 

results in this chapter (see Chapters 5 and 6). This required aggregating climate 

results, sacrificing some of the value of the methods and alternative datasets tested 

here. 

Nevertheless, it was decided to include the full explanation of the analysis of climate 

variables in this Chapter, in order to provide evidence of the results found, as HEMs 

in other catchments may benefit from the use of the interpolation approaches or the 

alternative datasets tested. 

The Chapter includes a brief review of literature on interpolation of climate variables, 

and a description of the input data and the methodologies used. Then, results are 

presented and discussed. Finally, some closing remarks are included to explain how 

the data generated will be used in the development of the HEM. 

4.1.  Interpolation of climate variables in mountain regions – Literature 

Review 

Climate variables such as temperature and precipitation are key inputs for hydrological 

modelling and water resources management. Generally, spatial interpolation of point 

observations is a necessary part of developing the climate inputs of models. Many 

interpolation approaches perform well for gentle terrains, however, their accuracy and 

precision decreases in mountain areas (Wu and Li, 2013, Frei, 2014, Buytaert et al., 

2006).  

As highlighted by Dorninger et al. (2008), challenges include observation errors, 

anisotropic climate patterns and sensitivity of results to density and location of 

observations. Strongly non-linear relations between temperature and altitude may be 

related to physiographic features (Stahl et al., 2006), to cold-air trapped in enclosing 

hill ranges (Frei, 2014), and also to the presence of glaciers (Ragettli et al., 2014). For 

precipitation, non-linearity can be related to physiographic features (Daly et al., 2008), 

to the interaction between topography and rain-storms (Falvey and Garreaud, 2007, 

Garreaud, 2013) and to summertime convective precipitation events (Viale and 

Garreaud, 2014).  
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The Andes Cordillera in South America is an example of a steep terrain with complex 

weather conditions. This mountain range is an important source of natural resources, 

including water for agriculture, mining and other industries. The stream-flows in the 

region are highly variable in both time and space (Pellicciotti et al., 2007, Mernild et 

al., 2017, Montecinos and Aceituno, 2003, Viale and Garreaud, 2014), therefore under 

such circumstances, quality of spatial climate data is a key issue when modelling water 

resources (Zambrano-Bigiarini et al., 2016, Mernild et al., 2017).  

This challenge is further complicated by the lack of gauges (i.e. when compared to 

mountain regions in Europe or North America), particularly at high elevation points. As 

a consequence, several hydrological and water resources models in some regions of 

the Andes, such as central Chile, have applied deterministic interpolation approaches 

such as Lapse Rates (LR) (Ragettli and Pellicciotti, 2012, Ragettli et al., 2014, Vicuña 

et al., 2011, Stehr et al., 2008, Correa-Ibanez et al., 2017) to define climate inputs. 

Although easy to apply, LR in hydrological applications is usually a linear or logarithmic 

regression using elevation as the only covariate (Ragettli and Pellicciotti, 2012), and 

hence does not aim to maintain the spatial correlation between observations or to fully 

explore the spatial dynamics of the climate variables. Therefore, there is an increasing 

interest in the use of improved interpolation approaches together with alternative 

sources of data, beyond point observations, such as satellite and other gridded 

products (Manz et al., 2016, Zambrano-Bigiarini et al., 2016, Dinku et al., 2010, 

Hobouchian et al., 2017, Demaria et al., 2013). 

In the Andes, Álvarez Villa et al. (2011) tested four stochastic interpolation approaches 

in Colombia and found that Kriging with External Drift (using long term averages of the 

Tropical Rainfall Measuring Mission - TRMM as the drift term) had the best 

performance, with RMSEs between 519 and 866 mm, however this analysis was 

restricted to annual precipitation estimates.  

In Castro et al. (2014) the authors developed a deterministic method that separated 

the analysis of occurrence and magnitude of events, and that took into account the 

influence of topography (i.e. slope orientation and wind direction) to interpolate daily 

precipitation values in a catchment in central Chile. The authors found that this method 

outperformed inverse distance weighting (IDW) and other simple methods. This 

analysis was restricted to gauges below 1000 masl thus conclusions may not be valid 
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for higher elevation points. This is a common limitation in the south Andes where there 

are few gauges above this elevation.  

In Manz et al. (2016) the authors analysed a database of 735 gauges in Bolivia, Peru, 

Colombia and Ecuador (including 455 gauges above 1000 masl in the tropical Andes) 

and merged them with the Tropical Rainfall Measuring Mission Precipitation Radar 

product (TRMM 2A25). The authors used deterministic (including IDW of residuals 

between monthly precipitation observations and satellite estimates) and Kriging 

methods (including KED using mean monthly TRMM 2A25 values as the external drift 

term). It was found that for this case study, KED had the best performance amongst 

the Kriging methods, that the overall performance of Kriging methods was similar to 

the interpolation of residuals to estimate monthly precipitation values, and that this 

interpolation of residuals was less sensitive to low gauge densities. In that study 

performance was assessed using leave-one-out cross validation of the gauges, using 

metrics such as RMSE, and runoff ratios. 

A broader review of the performance of satellite products for estimating precipitation 

in the Andes and other mountain areas (Nikolopoulos et al., 2013, Thiemig et al., 2012, 

Dinku et al., 2014), suggests that in these regions, satellite products tend to be good 

at detecting precipitation (except in very dry areas (Zambrano-Bigiarini et al., 2016, 

Manz et al., 2016)) and its overall spatial variability. However, they struggle to 

accurately predict the magnitudes of the events, particularly during extremely dry (e.g. 

in the north of Chile (Zambrano-Bigiarini et al., 2016)) or extremely wet regions (e.g. 

western slopes in the Colombian Andes (Dinku et al., 2010)), and for daily and subdaily 

resolutions (Dinku et al., 2010, Manz et al., 2016, Thiemig et al., 2012).  

In a comprehensive analysis of precipitation estimates from satellite products in Chile, 

Zambrano-Bigiarini et al. (2016) found that the satellite product PGFv3 exhibited the 

best overall performance for the country, followed by CHIRPS, TMPA 3B42V7 and 

MSWEPv1.1. The authors mention that the superior performance of PGFv3 is likely 

due to the bias-correction of this product, which uses several gauges from Chile. The 

authors also found that for most products, the performance in central Chile was 

superior to that in the north of the country (the driest region), that better results were 

achieved during the wet season and that errors were lower in areas below 1000 masl.  



43 
 

In a similar analysis using three satellite products with long historical data records 

(CHIRPS, TMPA and PERSIANN-CDR) to estimate precipitation and monitor droughts 

in Chile, Zambrano et al. (2017) found that there were no major differences in the 

performances of the three products except in the southern most part of the country 

where PERSIANN-CDR highly underestimated values. The authors also confirmed 

that errors are lower during the wet season and in relatively humid parts of the country. 

In these two papers there was no interpolation or merging of satellite products and 

gauge data, but the authors recommended site-specific analyses before using satellite 

products in hydrological models. Furthermore, the authors also mentioned the 

limitations due to the lack of observations at higher elevation points. 

In Alvarez-Garreton et al. (2018) authors describe CR2MET (DGA, 2017), a gridded 

product for Chile, which includes precipitation and temperature. This dataset was 

developed based on logistic (for precipitation occurrence) and linear (for precipitation 

magnitudes and temperature) regressions using covariates such as topography, 

slope, ERA-Interim reanalysis variables (Balsamo et al., 2015) and in the case of 

temperature, MODIS satellite data were also used. Estimates of both variables on a 5 

km grid were generated, however, performance metrics, particularly at high elevation 

gauges, were not reported. There are few other analysis of temperature interpolation 

in the Andes, compared to other regions (Frei, 2014, Wu and Li, 2013). However, there 

are global gridded datasets such as WorldClim (Hijmans et al., 2005), which are based 

on regressions using observations from around the world (further details of this product 

are given in Section 4.2.3). 

This review highlights that there is still a lack of knowledge of how to interpolate point 

observations at high elevations in the sparsely gauged sub-tropical Andes, and how 

this process can be supported on a catchment-specific basis by using alternative 

sources of data. Furthermore, it is not clear what approaches are more suitable for 

merging different datasets under these conditions (e.g. deterministic or stochastic), 

particularly when compared to simple alternatives such as LR often used to support 

hydrological and water resources models in this region. 

It is not in the scope of this chapter to compare several stochastic interpolation 

methods such as in Nerini et al. (2015) or Álvarez Villa et al. (2011); rather the chapter 

selects one stochastic methodology (see Section 4.3.1) as representative of a 
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complex, computationally expensive approach, for comparison with simple 

deterministic alternatives. 

4.2. Case Study and Input Data 

The Aconcagua River is an important source of water in Central Chile (Pellicciotti et 

al., 2007). The source is located in the Andean mountains near the border of Chile 

and Argentina, and the river flows west towards the Pacific Ocean. Topography 

fluctuates from coastal areas to peaks of approximately 5900 m above sea level. The 

catchment has an area of approximately 7500 km2; however, the upper section, which 

is the subject of this research, is only around a third of this and includes the Andean 

mountains and a portion of the central valley (see Figure 4.1). 

 

Figure 4.1 – Temperature and precipitation gauges in the catchment with available data during 
the period of analysis. Further details of the gauges are provided in the Appendix. Taken from 

(Ossa et al., 2018). 

4.2.1. Climate Settings 

Climate within the Aconcagua catchment is Mediterranean, close to semi-arid 

conditions (Ohlanders et al., 2013). Annual average precipitation is approximately 350 
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mm, however, most of this is concentrated during the austral winter (frontal rainstorms 

during June, July and August), when the South Pacific Anticyclone retreats from the 

region (Falvey and Garreaud, 2007, Montecinos and Aceituno, 2003). This is 

complemented by occasional convective storms (Garreaud et al., 2009, Viale and 

Garreaud, 2014). Furthermore, precipitation is also highly influenced by the orographic 

effects on the windward slope of the Andes (Viale and Garreaud, 2015). The 

occurrence of solid or liquid precipitation is determined by the location of the zero 

isotherm during winter, however, above 3000 masl, low temperatures prevail and 

precipitation is mostly snowfall. This thermal regime allows a relevant presence of 

snowpack and glaciers (e.g Juncal Norte) (Janke et al., 2017, Ohlanders et al., 2013).  

There is considerable inter-annual variability related to El Niño and La Niña phases 

(ENSO) (Garreaud et al., 2009). La Niña is an anomalous cooling of the southeastern 

Pacific leading to dry conditions in Central Chile when the Pacific Anticyclone 

strengthens, while wet conditions occur during El Niño (Montecinos and Aceituno, 

2003, Pellicciotti et al., 2007). Inter-decadal variability related to the Pacific Decadal 

Oscillation may also affect the case study, although the causes and impacts of these 

low-frequency fluctuations are less understood than those of ENSO (Garreaud et al., 

2009). 

Streamflow peaks at the beginning of the austral summer, although it remains high 

between late spring and summer (Pellicciotti et al., 2007) (i.e. the dry season). This 

means that during this period almost all runoff comes from snowmelt and glacier melt, 

although the contribution from the latter seems to be relevant during very dry years 

only (Ohlanders et al., 2013). 

4.2.2. Precipitation and Temperature Gauges 

Observations of daily average temperature and precipitation in the catchment were 

sourced from the Chilean General Water Directorate (DGA) and the Chilean 

Meteorological Directorate (DMC), through the Chilean Centre for Climate and 

Resilience Research. Most of these gauges are located in lowlands, whereas the 

mountain areas are sparsely monitored with the only available gauges sourced from 

mine projects in the area. Amongst these high-elevation gauges operated by mining 

companies, there are two that record liquid and solid precipitation (sites 27 and 17, 
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see the Appendix for more details). The latter were transformed to snow water 

equivalents (SWE) before being analysed here. 

This data were complemented with information from Universidad de Chile (Ohlanders 

et al., 2013) (available for some months only) and with measurements done by ETH-

Zurich in the 2008-2009 summer season (sites 21-23 and 30-41 in Figure 4.1) (Ragettli 

and Pellicciotti, 2012, Pellicciotti et al., 2010). The latter was available during a very 

short period, but the measurements were done nearby a major glacier and in a 

different sub-catchment from the one where the private companies installed their 

gauges. Thus, they provide valuable information to test the interpolation approaches.  

A total of 42 gauges were used in the project, 18 of them measured precipitation and 

24 measured temperature. The 42 gauges covered 41 sites, with one site (site 27) 

having both temperature and precipitation gauges. The locations of the temperature 

and precipitation gauges are shown in Figure 4.1, while further details of the gauges 

(including the periods with information available and the percentage of missing values) 

are provided in the Appendix.  

The period of analysis spans from September 2008 to August 2013 as the data 

obtained from the high elevation gauges was restricted to these years. Although not 

long enough to analyse long-term trends, the selected period allows testing of the 

interpolation approaches over both dry and wet years. Figure 4.2 provides an overview 

of the data by showing the monthly average temperature at four representative gauges 

over the five year period of analysis, and the monthly precipitation at three 

representative gauges throughout the same period (see Figure 4.1 for the location of 

these gauges). 
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Figure 4.2 - (A) Monthly temperature averaged over the period of analysis, 09/2008 - 08/2013, 
for four of the gauges in the catchment (B) Monthly precipitation in the period of analysis for 

three of the gauges in the catchment. The numbers in the legend correspond to those in 
Figure 4.1, while the texts in parenthesis are the names of the gauges. 330020 (527 masl), 
Saladillo (1580 masl), Lagunitas (2765.5 masl), MP (4250 masl), 05410007-8 (820 masl) and 

05403006-1 (1290 masl). Taken from (Ossa et al., 2018). 

Quality control of climate data was done by analysing double mass plots and Pearson 

correlation values with patron gauges (e.g. long-term gauges previously used by 

academic and government sources (Jacquin and Soto-Sandoval, 2013, Ragettli et al., 

2014, Correa-Ibanez et al., 2017)). This led to the exclusion of precipitation 

measurements at sites 26 and 29 (the temperature measurements at these sites did 

not show any anomaly). No further issues with data quality were noted. 

4.2.3. Spatially distributed datasets  

To complement the point observations, the Climate Hazards Group Infrared 

Precipitation with Station data (CHIRPS) satellite product (Funk et al., 2015) was used. 

Although there is a wide range of products available, this selection was done taking 

into account the good performance of this product in Chile, as reported by Zambrano-

Bigiarini et al. (2016), and its spatial resolution (0.05o pixels). Most other products (e.g. 

TMPA 3B42v7, MSWEP and PGFv3) are relatively coarse for the size of the 
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catchment (0.25 o pixels). A sample image illustrating CHIRPS' resolution compared 

to the size of the case study is presented in Figure 4.3. CHIRPS does not include 

estimates of temperature and therefore was only used to support interpolation of 

precipitation. 

The WorldClim (WC) Version 1 maps (Hijmans et al., 2005) were a further source of 

data (see Figure 4.3). WorldClim was suitable due to its spatial resolution (1 km), 

because it provides both temperature and precipitation values, and as for CHIRPS, 

because it is available worldwide and so may be used to support interpolation in any 

case study.  

WC data provide a historical average for each one of the 12 calendar months (one 

map for every month) and originates from a statistical analysis of weather observations 

worldwide between 1950 and 2000, through an algorithm included in the ANUSPLIN 

interpolation package (Hutchinson, 2004), using latitude, longitude and elevation as 

independent variables in a regression. The developers of the WC data warn about its 

potential inaccuracies in mountainous areas (Hijmans et al., 2005). Therefore, the WC 

data were used only to complement point observations or as a benchmark for testing 

other interpolation approaches. 

Although different in essence, both WC and CHIRPS can be used to complement to 

point observations to construct daily or monthly interpolated fields. None of the 

selected gauged data were used as input in the construction of WC or CHIRPS, 

furthermore the 5-year period of analysis here does not overlap with the period used 

to develop WC.  

The third spatial dataset used was a Digital Elevation Model (DEM) based on the 

Shuttle Radar Topography Mission (SRTM) (Jarvis et al., 2008), with a spatial 

resolution of 90 m. The DEM was used to define the elevation in the catchment, in 

order to use this variable in some of the interpolation approaches. Finally, although 

not spatially distributed, a multivariate ENSO (El Niño-Southern Oscillation) index was 

included to analyse the inter-annual variability of precipitation in the catchment (Wolter 

and Timlin, 2011). 
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Figure 4.3 - (A) CHIRPS precipitation for May 2009 (B) Worldclim precipitation values for May 
(long-term average). Taken from (Ossa et al, 2018). 

4.3. Interpolation of Climate Data 

A stochastic approach, a Generalised Linear Mixed Model (GLMM), was compared to 

simpler deterministic approaches: IDW and LR (Pellicciotti et al., 2014, Ragettli et al., 

2014), and one method that uses IDW to interpolate the residuals between WC maps 

and gauged values (precipitation and temperature), which from now on will be called 

WC Adjustment (WCA). A summary of all interpolation approaches including the data 

required is in Table 1. The following sections describe the methods in more detail and 

their application. 

Before using the covariates mentioned in Table 1 (e.g. WC, elevation, CHIRPS), an 

analysis of their correlation with the climate variables was done. This included plotting 

temperature and precipitation observations versus the covariates, and computing 

Pearson Correlation coefficients. 
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Table 4.1 - Summary of approaches to interpolate climate variables. 
Approach Description Input Data Advantages Disadvantages References 
IDW 
(Precipitation 
and 
Temperature) 

Interpolation based on the 
inverse of the distance 
between gauges for each 
timestep independently. 

Observations and 
distances between 
gauges 

Simple and easy to implement 
approach. 

Ignores the effects of 
elevation on the climate 
variables and does not 
include information from 
alternative datasets. 

 

LR 
(Precipitation 
and 
Temperature) 

Interpolation based on linear 
(temperature) and logarithmic 
(precipitation) regressions 
using elevation as 
independent variable, for 
each time-step 
independently. 

Observations and  
elevation of gauges 

Simple and easy to implement 
approach that takes into account the 
effects of elevation on the climate 
variables. 

Although alternative datasets 
could be included as 
covariates, in similar 
applications in nearby 
catchments it is more 
common to find elevation as 
the only independent 
variable. 

(Ragettli and 
Pellicciotti, 2012, 
Ragettli et al., 2014, 
Vicuña et al., 2011, 
Stehr et al., 2008) 

WCA 
(Precipitation 
and 
Temperature) 

Interpolation of residuals 
between observations and 
values in WC maps. Each 
time-step is analysed 
independently. 

WC Maps and 
observations. 

Simple and easy to implement. The 
effects of spatial location and 
elevation are included to some extent 
through the WC values. 

WC maps are not a 
continuous dataset but only a 
monthly long-term average. 

(Hijmans et al., 
2005) 

GLMM 
(Temperature) 

Spatio-temporal model 
whose parameters are 
estimated through 
approximate Bayesian 
inference. The model 
includes a first order 
autoregressive process with 
spatially correlated 
innovations for temperature. 

Observations, 
elevation and 
coordinate of gauges, 
and WC maps. 

Takes into account multiple 
covariates, and analyses the random 
component of the climate variable 
thought a spatiotemporal model. 

Computationally expensive 
compared to the rest of the 
models. 

(Cameletti et al., 
2013, Rue et al., 
2009) 

GLMM 
(Precipitation) 

Spatio-temporal model 
whose parameters are 
estimated through 
approximate Bayesian 
inference. Precipitation is 
modelled as a spatially 
correlated variable with 
monthly dummy variables. 

Observations, 
elevation and 
coordinate of gauges, 
CHIRPS, ENSO 
index and WC maps. 

Takes into account multiple 
covariates including satellite data, 
reproduces both occurrence and 
magnitude of precipitation events, 
and analyses the random component 
of this climate variable thought a 
spatial model. 

Computationally expensive 
compared to the rest of the 
models. 

(Rue et al., 2009, 
Blangiardo and 
Cameletti, 2015) 
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4.3.1. Stochastic Approach - GLMM 

In addition to including the effects of covariates, GLMMs allow modelling of the spatio-

temporal variability of the data (after removing the effect of the covariates) by means of 

random effects (Faraway, 2016). For example, the temporal correlation of temperature 

observations in this case study was analysed through an autoregressive (AR1) term 

(although further alternatives such as random walks could also be used). Furthermore, 

spatial correlation of precipitation and temperature was modelled as random variables 

whose covariance matrix is defined by a covariance function (in this case the Matern 

Function (Minasny and McBratney, 2005)) which depends on the distance between gauges 

and some spatial parameters (as opposed to intersite dependence functions that do not take 

into account distance between observations (Yang et al., 2005)).  

In addition, inference on GLMMs is performed jointly for all the parameters, without having 

to split the estimation problem into separate steps (i.e. one for each time-step or doing the 

covariates regression first and the spatio-temporal analysis second (Hengl et al., 2003) ). 

This approach differs from Kriging methods, as it avoids using the method of moments to 

define empirical/experimental variograms (Minasny and McBratney, 2005), and the 

subsequent adjustment of a theoretical variogram through a curve-fitting exercise (Ecker 

and Gelfand, 1997, Müller, 1999), as sometimes done for Kriging applications in hydrology 

(Goovaerts, 2000, Cameletti et al., 2013). Further details of GLMMs and the different 

alternatives to model spatio-temporal variables can be found in Faraway (2016), Rue et al. 

(2009), Lindgren et al. (2011), Cameletti et al. (2013). 

The main drawback of using GLMMs with the Bayesian approach, as done here, is the 

computational requirements of the classical simulation-based methods such as Markov 

Chain Monte Carlo (MCMC) (Cameletti et al., 2011). However, here we use the Integrated 

Nested Laplace Approximation together with the Stochastic Partial Differential Equation 

approach (INLA-SPDE) (Rue et al., 2009, Lindgren et al., 2011, Cameletti et al., 2013), 

which represents a computationally efficient way to do approximate Bayesian inference on 

GLMMs (Rue et al., 2009).  

In this approach, the climate variables in the case study (temperature and precipitation) are 

assumed to be realisations (e.g. observations) of a spatio-temporal process (random field) 

of the form: 
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𝒀(𝒔, 𝒕) ≡  {𝒚(𝒔, 𝒕): (𝒔, 𝒕) ∈  𝑫 ⊆ ℝ𝟐 × ℝ}      Equation 4.1 

where 𝑠 and 𝑡 denote the spatial location and time. This process has a mean µ and 

covariance function 𝐶𝑜𝑣(𝑦(𝑠, 𝑡), 𝑦(𝑠′, 𝑡′)) = 𝜎2 𝐶((𝑠, 𝑡), (𝑠′, 𝑡′)) (Blangiardo et al., 2013, 

Cameletti et al., 2013). Assuming that climate observations, 𝒚 = {𝑦(𝑠𝑖, 𝑡), 𝑖 = 1, . . . , 𝑁, 𝑡 =1, . . . , 𝑇}, follow an exponential family probability distribution function (PDF), µ𝑖 can be 

connected to a structured additive predictor 𝜂𝑖 through a link function 𝑔( ) as shown below 

(Rue et al., 2009): 

𝒈(𝝁(𝒔𝒊, 𝒕)) = 𝜼(𝒔𝒊, 𝒕) = 𝜶 + ∑ 𝒇(𝒋)(𝒖𝒋(𝒔𝒊,𝒕)) +𝒏𝒇𝒋=𝟏 ∑ 𝜷𝒌𝒛𝒌(𝒔𝒊,𝒕) + 𝝐(𝒔𝒊, 𝒕)𝒏𝜷𝒌=𝟏   Equation 4.2 

where 𝒙 = (𝜶, {𝒇(𝒋)(. )}, {𝜷𝒌}, {𝜼(𝒔𝒊, 𝒕)}) is the vector including the Gaussian latent processes 

(i.e. the parameters describing the random field), 𝜖(𝑠𝑖 , 𝑡) is the random error component, the 𝑓(𝑗)(𝑢𝑗(𝑠𝑖,𝑡)) are functions of covariates 𝑢 and the 𝛽𝑠 are the multipliers of covariates 𝑧.  

For temperature, the model in this project was defined based on the one described in 

Cameletti et al. (2013) and Cameletti et al. (2011) for particulate matter, with daily time-

steps. This selection was done taking into account that both variables are affected by their 

values in previous time-steps, but also because both of them have a spatial correlation. The 

model is described as follows: 

𝒚(𝒔𝒊, 𝒕) = 𝒛(𝒔𝒊, 𝒕)𝜷 + 𝝃(𝒔𝒊, 𝒕) + 𝜺(𝒔𝒊, 𝒕)      Equation 4.3 𝝃(𝒔𝒊, 𝒕) = 𝒂𝝃(𝒔𝒊, 𝒕 − 𝟏) +  𝝎(𝒔𝒊, 𝒕)      Equation 4.4 

where 𝑦(𝑠𝑖, 𝑡) represents a realisation of the gaussian field (GF) 𝑌(. , . ) for site 𝑠𝑖 and time 𝑡, 𝑧(𝑠𝑖, 𝑡) = (𝑧1(𝑠𝑖, 𝑡), … , 𝑧𝑝(𝑠𝑖, 𝑡)) are the covariates (fixed effects), 𝛽𝑠 are the coefficients of 

the covariates, 𝜀 is the measurement/observation error component, both serially and 

spatially uncorrelated (𝜖(𝑠𝑖, 𝑡) ∼ 𝑁(0, 𝜎𝜖2)) and 𝜉 represents the random component in the 

model. The latter is defined as a first-order autoregressive (AR) component with spatially 

correlated innovations 𝜔(𝑠𝑖, 𝑡) (𝑎 is the parameter of the AR1 process). The covariates 

included latitude, longitude, elevation and WC. Data from WC maps were included in the 

model as covariates, after extracting the values of the pixels containing the gauges.  

The spatio-temporal model for precipitation was defined based on previous experiences of 

applications of INLA-SPDE for this variable. This involved dividing the analysis into 

occurrence and magnitude components, based on Equations 8.5 and 8.6 in Blangiardo and 

Cameletti (2015). However, it was decided to use monthly time-steps as preliminary results 
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of daily runs were far from satisfactory. In addition, CHIRPS and the ENSO index were 

included as covariates to complement the ones used for temperature. 

Dummy variables for each calendar month were included as additional covariates, in order 

to better represent the strong seasonality of precipitation in the case study (Falvey and 

Garreaud, 2007, Montecinos and Aceituno, 2003). In this way, the random process Φ(𝑠𝑖, 𝑡) 

is spatially correlated but independent of other time-steps. The model is described as 

follows: 

𝒍𝒐𝒈𝒊𝒕(𝝅(𝒔𝒊, 𝒕)) = 𝒛𝑷(𝒔𝒊, 𝒕)𝜷𝑷 + 𝚽(𝒔𝒊, 𝒕) + 𝜺𝑷(𝒔𝒊, 𝒕)    Equation 4.5 𝒍𝒐𝒈(𝝁𝑷(𝒔𝒊, 𝒕)) = 𝒛𝑷(𝒔𝒊, 𝒕)𝜷𝑷 + 𝚽(𝒔𝒊, 𝒕)𝜷𝑷′ + 𝜺𝑷(𝒔𝒊, 𝒕)    Equation 4.6 

Both Equation 4.7 and Equation 4.8 share the same 𝛽𝑷𝑠, but the latter has an extra 

parameter (𝛽𝑷′) connecting the random field in both equations.  

It is acknowledged that other models (i.e. with different random effects) could be tested with 

these climate variables after changing covariates, spatio-temporal components, the prior 

distributions (currently we use the default in the R-INLA package) and correlation functions 

(e.g. as done in Cameletti et al. (2011) for particulate matter), and this represents a subject 

for future research. However, taking into account the scope of the paper, it was desired to 

work with existing GLMMs in the literature (or close adaptations) that have been analysed 

with the INLA-SPDE approach. 

4.3.2. Deterministic approaches 

It is assumed that the reader is familiar with IDW and LR. Briefly, the former estimates 

variables at unsampled locations y(sj,t) as a function of the inverse of the distance d(sj,si) 

between sj and all sampled locations si following 

𝒚(𝒔𝒋, 𝒕) = ∑ 𝒚(𝒔𝒊,𝒕)𝒏𝒊=𝟏 𝟏𝒅(𝒔𝒋,𝒔𝒊)∑ 𝟏𝒅(𝒔𝒋,𝒔𝒊)𝒏𝒊=𝟏         Equation 4.7 

where y(si,t) are the values at the n sampled locations. This method does not consider 

elevation effects. LR, on the other hand, uses linear and logarithmic regressions to model 

the relation between temperature or precipitation and elevation. The regressions could be 

extended to include all the covariates of the GLMM, however, the objective here was to 

apply the methods as they are commonly used to define inputs of hydrological and water 

resources models in nearby catchments (Ragettli et al., 2014, Vicuña et al., 2011, Meza et 

al., 2014). 
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The WCA method attempts to couple the benefits of the spatial variability of the WC maps 

and those of the temporal resolution of the observations in a simple way. This approach is 

similar to the RIDW in Manz et al. (2016) or the bias adjustment in Dinku et al. (2014), but 

in this case using WC maps. First, the residual between observations and WC is computed 

at each gauge location at a daily resolution for temperature and at a monthly resolution for 

precipitation. Then, these residuals are interpolated using Inverse Distance Weighting (IDW) 

to each point in the catchment, and this interpolated surface is added back to the original 

WC values. This procedure is repeated for every time-step.  

For precipitation, due to the spatial smoothing that is inherent to all approaches, it is common 

to have very low values of precipitation where none is observed. Therefore, a threshold of 1 

mm/month was set below which all values were deemed to be 0. 

 

4.3.3. Comparison of interpolation approaches 

In order to assess the performance of the approaches, one gauge was removed from the 

group used to interpolate the climate variable, and the set of errors for that gauge were 

recorded as the difference between the interpolation results for that location and the 

corresponding observations. After repeating this for all gauges, the concatenated errors are 

used to calculate the validation metrics. This leave-one-out cross-validation (LOOCV) 

procedure was applied separately for temperature and precipitation and for each 

interpolation approach. 

For temperature there was a total of 24 gauges available, thus, the LOOCV analysed 24 

combinations of 23 gauges. For precipitation there were 18 gauges available, thus the 

LOOCV involved analysing 18 combinations of 17 gauges. 

For all tests, the average Root Mean Squared Error (RMSE) was used to assess the 

performance of temperature and precipitation predictions, following similar comparisons 

(Cameletti et al., 2013, Manz et al., 2016). Being a stochastic approach, for the GLMM this 

involved the analysis of the expected values of each variable (Equation 4.3 and Equation 

4.6).  

This was complemented with an analysis of the distribution of the residuals. Furthermore, 

two categorical statistics, the False Alarm Ratio (FAR) and the Probability of Detection 

(POD) (e.g. as applied in Zambrano-Bigiarini et al. (2016)), were used to assess to what 
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extent the model is able to predict precipitation occurrence (see Table 4.2). These 

categorical statistics are relevant, even at a monthly time-scale, considering that in the case 

study there are several months without any precipitation, thus accurately simulating its 

occurrence is not a trivial exercise. 

Table 4.2 - Categorical statistics used to assess the capacity of the interpolation approaches to 
predict the occurrence of precipitation. Taken from (Ossa et al, 2018). 

Precipitation Observed Not Observed 

Predicted A B 
Not Predicted C D 

Categorical Metrics 
POD 𝐴𝐴 + 𝐶 

FAR 𝐵𝐴 + 𝐵 

 

4.3.4. Sensitivity to the number of estimation gauges 

The sensitivity of the performance of the different approaches to the number of estimation 

gauges was also tested. For temperature, only 9 gauges with relatively long observation 

periods were used as estimation gauges in this sensitivity analysis. The other 15 gauges 

were operational for only one summer period, 2008-2009, and the variability in record length 

they introduced made it difficult to isolate sensitivity to number of estimation gauges. These 

15, however, remained as validation gauges. 

This allowed 9 combinations of 8 estimation gauges. The 9 validation results were averaged 

for the purpose of the sensitivity analysis. This was repeated using different numbers of 

estimation gauges: all possible combinations of 5 and 2 gauges out of the 9. The sensitivity 

analysis for the precipitation results was done in a similar way, but this time with all 

combinations of 14 and 4 gauges. 

The sensitivity test was complemented with the estimation of precipitation and temperature 

values at all locations using raw WC maps and CHIRPS, in order to understand the accuracy 

of these data sets when used independently of the observations. This involved comparing 

the observed values at each time-step with those reported by CHIRPS or the WC maps, 

which in the latter case meant estimating the climate variables based on the long-term 

averages in the WC maps. 

Regarding the computational requirements, the approximate Bayesian inference approach 

(INLA-SPDE), which was run on the INLA package for R (Rue et al., 2013), required using 
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the Euramoo and Flashlite High Performance Computers (HPC) system from the 

Queensland Cyber Infrastructure Foundation (QCIF). All other interpolation approaches 

were run on a computer with 16 Gb of memory, an i7 processor and 4 cores. 

4.4. Results 

4.4.1. Preliminary analysis of correlations between covariates and climate 

variables 

Figure 4.4 shows that monthly temperature values are inversely correlated to elevation 

(Pearson Correlation Coefficient 𝜌 = −0.81). This figure also shows a strong correlation 

between WC values and monthly temperatures (𝜌 = 0.98). Likewise, daily temperature 

values show considerable correlation with elevation (𝜌 = −0.77) and WC (𝜌 = 0.93). In 

contrast, ENSO has a low correlation with temperature(𝜌 = 0.04), thus it was decided not to 

include this covariate in the GLMM. 

Figure 4.4C and Figure 4.4D show that the correlation between CHIRPS and daily precipitation 
observations is weak, but considerably improves when both are aggregated to monthly values (𝝆 =𝟎. 𝟖𝟏). The 𝝆 for monthly precipitation and WC values is lower (𝝆 = 𝟎. 𝟔𝟐 - see  

 

e), while monthly correlation with elevation is above 0.6 for most months. ENSO shows a 

weak correlation with precipitation (𝜌 = 0.12), however, a monthly analysis shows that for 

several months the correlation is close to 𝜌 = 0.5, therefore, it was decided to keep ENSO 

as a covariate for the precipitation GLMM. These correlations may be stronger in longer-

term analyses that cover several Niño-Niña cycles, which last around 2-5 years each (Wolter 

and Timlin, 2011). 
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Figure 4.4 - (A) WC values versus monthly aggregated (averaged) temperature values. (B) Elevation 
of gauges versus average temperature in four months. (C) CHIRPS versus precipitation. Daily values 

for all stations used. (D) Monthly aggregated (sum) CHIRPS versus monthly aggregated (sum) 
precipitation values. (E) WC values versus monthly aggregated (sum) precipitation values. (F) 

Elevation of gauges versus average precipitation for four months. The red lines correspond to the 
1:1 line. 

4.4.2. Temperature results 

Table 4.3 shows the results of all interpolation approaches in terms of the average RMSE 

of the validation gauges in the LOOCV (23 gauges). It was found that the GLMM and WCA 

have the best performance, while LR and particularly IDW have larger RMSE values. 

Table 4.3 - Temperature RMSEs in the leave-one-out cross validation for each interpolation approach. 
Taken from (Ossa et al., 2018). 

Approach RMSE (oC) 

GLMM 1.2 

WCA 1.22 

LR 1.53 

IDW 2.72 
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Table 4.4 shows the results of the sensitivity analysis. As expected, it can be seen that errors 

increase when the number of estimation gauges decreases. However, values for WCA 

increase the least, and its loss of performance is relatively small even when only two 

estimation gauges are used. On the other hand, the performances of all other approaches, 

including the GLMM, show a sharp decline, to the point that some of their RMSE values are 

comparable with the range of observed temperatures (see Figure 4.2). 

Table 4.4 Sensitivity test of the temperature interpolation approaches. Taken from (Ossa et al., 2018). 

Approach Number of estimation gauges RMSE (oC) 

GLMM 8 3.89 
 

5 3.99 
 

2 14.44 

WCA 8 1.77 
 

5 1.98 
 

2 2.54 
 

0 (Raw WC Maps)* 3.36 

LR 8 2.12 
 

5 4.14 
 

2 7.78 

IDW 8 4.42 
 

5 6.15 
 

2 9.34 

* Using the monthly long term values provided by WC to approximate daily temperature at all sites (i.e. one value applied to all 

days in the month). 

Figure 4.5 illustrates the daily temperature averaged over the 5-year period of analysis for 

sites 18, 27 and 28 (similar results were found for the rest of the gauges). Values were 

averaged in this way purely to facilitate visualisation of results, as the daily variability over 

the five years makes it difficult to see what approaches over and under-estimate 

observations, by approximately how much, and how this changes as a function of the period 

of the year. The performance metrics were calculated with the non-aggregated data. 

In the figure it can be seen that the GLMM and WCA reproduce the observed temperatures 

relatively well except for site 28 (the one at the highest elevation - 4250 masl). LR and 

particularly IDW tend to underestimate temperature at all gauges, except at site 28 where 

they overestimate it. 

In Figure 4.5A, the anomalous overestimation of temperature with the LR method around 

March is because during March 2009 all other high elevation gauges stopped measuring, 

thus the predictions for site 27 were done with the lower elevation data only. This generated 
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large errors for this gauge and this approach, which may highlight the limitations of the latter 

when few estimation gauges are available or when it is required to extrapolate results far 

beyond the elevation of available gauges. This will be further discussed later in this section. 

 

Figure 4.5 - Daily temperature averaged over the 5 years of analysis for gauge (A) Site 27 (Lagunitas) 
(B) Site 18 (330019)  (C) Site 28 (MP) (All curves were smoothed using the LOESS method Jacoby 

(2000) with α= 0.045, this is similar to a moving average and is used to facilitate the visualisation of 
the main trends only). Taken from (Ossa, et al. 2018). 

Figure 4.6 shows histograms of the validation residuals. It can be seen that the GLMM, WCA 

and LR give residuals that are more or less evenly distributed around zero, although those 

of the GLMM are more peaked. The distribution of IDW residuals is strongly multi-modal 

indicating consistent over or under-estimation at particular gauges. Figure 4.7 shows the 

relationship between temperature RMSE values and elevation. 
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Figure 4.6 - Residuals of the temperature LOOCV for each interpolation approach. Taken from (Ossa 
et al., 2018). 

 

Figure 4.7 - Elevation of gauges vs Average temperature RMSE in the LOOCV.. Taken from (Ossa et 
al., 2018). 

4.4.3. Precipitation results 

Table 4.5 shows that the performances of all interpolation approaches are relatively similar 

in terms of RMSE. All probability of detection (POD) indices are above 90%, although WCA 
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and IDW have values closer to 100%. Differences in false alarm ratios (FAR) are larger, as 

the GLMM has a ratio of only 7.1%, which is around half of the one for LR and less than a 

third of that of IDW and WCA. 

Table 4.5 - Precipitation results in the leave-one-out cross validation for each interpolation approach. 
Taken from (Ossa et al., 2018). 

Approach RMSE 

(mm) 
POD 

(%) 
FAR 

(%) 
GLMM 14.2 92.3 7.1 
LR 15.5 93.7 12.9 
WCA 13.4 97.3 24 
IDW 13.5 98 22.7 

 

Table 4.6 shows the sensitivity of performances to reductions in the number of estimation 

gauges. It can be seen that the GLMM is quite sensitive to these changes, and its RMSE 

performance decreases sharply when moving from 17 to 14 gauges, and even more from 

14 to 4 gauges. Its POD and FAR remain similar. The RMSE performance of the other 

approaches decreases by a similar rate (3 - 4 mm) when moving to 14 gauges, although LR 

have lower POD and FAR. When moving from 14 to 4 gauges WCA shows the smallest 

increase in RMSE, while LR has a larger increment. PODs and FARs of these methods 

remain similar when moving to 4 gauges, except for the LR POD which drops around 6%. 

Table 4.6 - Sensitivity test of the precipitation interpolation approaches. Taken from (Ossa et al., 
2018). 

Approach Number of 

estimation gauges 

RMSE 

(mm) 

POD (%) FAR (%) 

GLMM 14 32.1 91.8 7.1 
 

4 135.8 87.8 10.6 

LR 14 18.9 90.6 15.7 
 

4 26.4 84.4 11.7 

WCA 14 17.4 97.5 25.8 
 

4 23.5 95.3 27.9 
 

0 (Raw WC 
Maps)* 

34.1 98.6 40.5 

IDW 14 17.8 97.2 22.1 
 

4 25.4 94 19.1 
 

Raw CHIRPS data 
** 

26.2 88.5 28.6 

* Using the monthly long term values provided by WC to approximate daily temperature at all sites (i.e. one value applied 

to all days in the month). 

** Using the monthly CHIRPS values at all sites. 
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When these values are compared with raw CHIRPS and WC values, it can be seen that the 

performance of both alternative data sets by themselves is not competitive when there are 

17 or 14 gauges available. The accuracy of CHIRPS gets closer to that of the interpolation 

approaches when only 4 gauges are used suggesting its potential value for poorly gauged 

regions; however, still, WCA performs better with 4 estimation gauges. 

Figure 4.8 shows the observed and simulated monthly precipitation values for three 

representative gauges. Figure 4.8A shows the performance of the low elevation gauge at 

site 1, which is representative of the performance at the other low elevation gauges. It can 

be seen that most approaches reproduced observed precipitation at this lowland gauge well 

compared to the high elevation gauges. It can also be seen that IDW and WCA predicted 

small amounts of precipitation in several months during the dry season when no precipitation 

was observed, which causes a larger FAR for both of them (see Table 4.5). 
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Figure 4.8 - Validation monthly precipitation estimates for sites (A) 1 (05200007-6) (B) 27 (Lagunitas) 
(C) 17 (Los Bronces). Taken from (Ossa et al., 2018). 

Figure 4.8B shows the performance of all approaches for site 27, which is in the mountains 

at 2765 masl. In this plot it can be seen that observed precipitation is larger than in the 

lowlands, and that all approaches fail to reproduce observations with the level of accuracy 

seen for the lowland gauge (see Figure 4.8A). Figure 4.8C illustrates results for site 17, the 

highest of the precipitation gauges (3420 masl). Once more, larger errors can be seen 

compared to the gauges in the lowlands, particularly for the GLMM, although this approach 

has the best results in site 27. 
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This behaviour can be better appreciated after plotting the elevation of the gauges versus 

their average RMSEs (see Figure 4.9). While RMSE values below 1500 masl are rarely 

above 20 mm, all the RMSE values of the two gauges above 1500 masl are above this 

threshold, some of them are beyond 40 mm and two are above 60 mm. This suggests that 

the performance of all approaches is likely to be determined by inaccuracies at high 

elevation gauges, where frontal systems interact with the topography to create high 

precipitation during the wet season. 

 

Figure 4.9 - Elevation vs Precipitation RMSE for all gauges in the validation groups of the LOOCV. 
Taken from (Ossa et al., 2018). 

Regarding the distribution of residuals (see Figure 4.10), all approaches show values that 

are more or less equally distributed around 0. The GLMM residuals are particularly peaked 

at 0, nevertheless, its greater number of very large residuals gives the GLMM a higher 

RMSE than WCA or IDW. 
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Figure 4.10 - Precipitation residuals of the validation gauges for each precipitation interpolation 
approach. Taken from (Ossa et al., 2018). 

4.5. Discussion 

The LOOCV analysis of air temperature in Section 4.4.2 shows that for this case study, the 

GLMM and the WCA have the best performance (i.e. smallest RMSE values - see Table 

4.3). These results, and those of LR, are comparable with those obtained from similar 

analyses in USA and Canada (Stahl et al., 2006, Wu and Li, 2013). However, compared to 

the GLMM, WCA has less computational requirements thus is easier to implement (i.e. WCA 

was run on a desktop computer as described in Section 4.3.4, while the GLMM was run on 

20 HPC cores in parallel). 

On the other hand, IDW has the largest temperature errors and this, together with the 

skewed and multi-modal nature of its residuals, shows the limitations of this approach. 

Figure 4.5c and Figure 4.7 suggest that IDW residuals can sometimes be related to the high 

elevation (e.g. site 28) or isolation (e.g. site 29) of gauges. Temperature observations from 

the 2008-2009 summer season have the best RMSE values for IDW, but this is likely to be 

due to the proximity and quantity of gauges in this period. 

In terms of the influence of the elevation of gauges on temperature results, WCA, LR and 

the GLMM show similar performance across all elevations, although the latter has an 

outstanding error at the highest gauge (site 28). This may suggest that compared to WCA 
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and LR, this approach is more sensitive to the extrapolation of results beyond the altitude 

ranges of the estimation gauges. 

Furthermore, it was found that the quality of results of the GLMM are particularly sensitive 

to the number and location of gauges measuring temperature. As shown in Table 4.4, the 

RMSE for this approach rises sharply when only 8 (3.89 oC), 5 (3.99 oC) and 2 (14.44 oC) 

gauges are used to estimate its parameters. The performances of IDW and LR also 

decrease considerably (RMSE of 9.34 oC and 7.78 oC respectively, with only two gauges), 

to the extent that using the raw WC maps for this case study (RMSE of 3.36 oC) may be 

preferable to any method other than WCA once the density of gauges becomes low. 

On the other hand, WCA is quite resilient to the reduction of estimation gauges. Even with 

two estimation gauges the average RMSE was only 2.54 oC. This may be because the raw 

WC maps have internalised the average effect of elevation, longitude and latitude through 

the long-term analysis (a worldwide generalisation), which can then be adapted to local 

conditions by including a small number of gauges. This suggests that WCA is an accurate 

and easy to use alternative to model air temperature in the case study. 

Regarding precipitation, the LOOCV shows that all approaches have similar performances 

in terms of RMSE, although the simple merge of WC maps and observations (WCA) has a 

slightly better value (13.4 mm). However, the GLMM also stands out due to its lower FAR 

(7.1%), which may be a positive outcome of separating the analysis of precipitation into 

occurrence and magnitude. This could also be related to the fact that the GLMM analyses 

the randomness of occurrences and their spatial correlation (see Equation 4.5), thus limits 

the possibility of one or few gauges with non-zero precipitation overly influencing the 

precipitation estimate at all points (e.g. smoothing). 

As opposed to this, other alternatives, particularly WCA and IDW, tend to predict 

precipitation when at least one (IDW) or even when no gauges (WCA - due to the inclusion 

of long-term averages) record non-zero values. This is evident from the prediction of dry-

season precipitation events that were never observed (see Figure 4.8). Preliminary results 

obtained using a different threshold (0.3 mm) for the detection of precipitation were similar, 

thus, the preference for GLMM in terms of FAR and POD performance seems not to be 

sensitive to the selection of this threshold. 

When the precipitation interpolation approaches are tested with a reduced number of 

estimation gauges, it is found that the RMSE values of the GLMM rise drastically (beyond 
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100 mm with 4 gauges only). Once more, this suggests that compared to the alternatives, 

in this case study the GLMM is more sensitive to the number and distribution of estimation 

gauges. The importance of the latter is highlighted when using only 14 gauges for model 

estimation but including at least one of the high elevation gauges at site 17 (Los Bronces) 

or site 27 (Lagunitas). This gives an RMSE of 19 mm, which is considerably less than the 

average RMSE for the GLMM with 14 gauges (32.1 mm). 

The other precipitation interpolation approaches decrease their performance at a relatively 

similar rate, when facing a reduction in the number estimation gauges. As shown for the 

LOOCV (see Figure 4.9), this may be because errors at high elevation gauges strongly 

influence the overall RMSE. When only 4 gauges are included, however, WCA shows a 

slightly better RMSE (23.5 mm), although a larger FAR (27.9 %). It was also found that 

CHIRPS as a standalone product is a useful alternative to the interpolation approaches 

when 4 or fewer gauges are available, with only marginally worse RMSE value than IDW 

and better RMSE than LR and GLMM (RMSE=26.2 mm, POD=88.5% and FAR=28.6 %). 

The results in this paper show how simple approaches, which can be easily reproduced 

elsewhere, may perform at least as well as other more complex or more commonly used 

approaches, in a catchment with sparse monitoring networks and complex climate 

dynamics. Based on this evidence and its simplicity, it would be desirable to use WCA to 

estimate temperature in this case study. For precipitation, WCA may also be preferable, 

unless the modeller is particularly interested in the occurrence of precipitation in the dry 

season, in which case the GLMM would be desirable if computational requirements are not 

an issue and there is a reasonable coverage of gauges. Analyses of further case studies 

are required to test the generality of these findings. 

Beyond the issues with the number and location of gauges to estimate the parameters of 

the GLMM, this paper shows how approximate Bayesian inference methods can be applied 

to estimate parameters of these models in a hydrological context. Despite there being high 

computational requirements with the the R-INLA package, these are lower than those of 

MCMC, and this facilitates the use of GLMMs. It would now be useful to test if the benefits 

of GLMMs and Bayesian approaches discussed in this paper and in the non-hydrology 

literature (Pilz and Spöck, 2008, Ecker and Gelfand, 1997) can equally be achieved by 

stochastic approaches like Kriging and GLMs that are more common in hydro-climate 

applications.  It would be particularly interesting to analyse how these approaches behave 

in well and poorly monitored regions, and how this influences hydrological modelling. 
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Results in this case study are of course limited by the fact that 15 temperature gauges in 

the mountain areas measured during one summer season only. For precipitation, it would 

also have been desirable to have good quality gauges between 1300 and 2700 masl, to 

better understand what happens between the low and high elevation gauges. 

4.6. Closing remarks 

Lack of input climate data is an issue for the development of the water resources component 

of HEMs, which may hinder their implementation in several mining regions. This chapter 

considered how this problem can be addressed by using a range of different interpolation 

approaches and alternative datasets, which can be readily applied worldwide. 

This Chapter showed that the WCA approach had a very good performance (often the best), 

for estimating precipitation and temperature values in the case study, and was the least 

sensitive to the reduction in the number of observation gauges in the calibration. 

Furthermore, this approach has very low computational requirements compared to the 

GLMM. Based on these results, it was decided to use the WCA method to generate the 

precipitation and temperature datasets, required to develop the water resources component 

of the HEM (see Chapter 5). Furthermore, as precipitation was estimated in monthly time-

steps, it was required to aggregate all other variables to fit this temporal resolution. 

The spatial resolution of the outputs from this Chapter provide considerable flexibility for the 

development of the water resources component of the HEM, as they allow developing 

distributed, semi-aggregated and lumped models. Due to the characteristics of the economic 

component, it was decided to use the second alternative, which required some degree of 

aggregation of the results here.  

It was still considered appropriate to describe the results of the comparative analysis here, 

because the approaches and alternative sources of data may be useful for further 

applications of HEMs in mining regions with climate data scarcity issues. Thus, they 

contributed towards one of the main objectives of this project, which is developing insights 

into how to facilitate the use of HEMs in mining regions.  

Beyond the direct applications in this project, results in this section support the quest for 

improved climate data sets for water modelling, which is a relevant research topic in 

hydrology. Amongst others, it was shown that approximate Bayesian inference methods 
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(e.g. INLA-SPDE) have the potential to facilitate the use of GLMMs in hydrology, and should 

be compared in more detail with alternatives (e.g. kriging or maximum likelihood) in further 

case studies. Also, WorldClim maps were found to be useful to support the interpolation of 

climate variables, while it was shown how CHIRPS performed similarly to other 

methodologies when only four gauges were made available for calibration. This means that 

these global data products, could provide an alternative source of input data for water 

resources models when there are very few or no climate measurements, particularly if 

monthly time-steps are used. 
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5. The water resources component of the Hydro-Economic Model 

This chapter describes the development, calibration and validation of the water resources 

component of the HEM. Developing a detailed representation of this component was one 

the objectives of this PhD project, in order to obtain insights into the value of this, as opposed 

to simpler representations in HEMs focused on the economics. The temperature and 

precipitation input data used here correspond to the results of Chapter 4, although it was 

required to extend the period of analysis to 17 years (April 2000 – March 2017) as it was not 

possible to calibrate the water resources model with the 5 years period used in Chapter 4.  

Some of the gauging stations used in the previous chapter were not available during the 17-

year period, however, this was not an issue for the WCA method used to interpolate climate 

data, taking into account its resilience to a reduced number of gauges (see Chapter 4). 

It is important to mention that water quality was not part of the scope of this project, although 

future research could include this in HEMs, as this is a relevant topic in mining regions. This 

chapter starts with a brief review of literature on hydrological and water resources modelling, 

model development is then explained, and finally, results of the calibration and validation 

are provided. 

5.1. Literature review on hydrological modelling 

Hydrological and water resources modelling is a field of research that seeks to understand 

the behaviour of water in the physical realm, and more importantly how water fluxes can be 

analysed through equations and models. It is not the scope of this section to undertake an 

in-depth review of this concept and about recent developments in this field(this can be found 

in Yang et al. (2000), Pechlivanidis et al. (2011) and Praskievicz and Chang (2009), amongst 

others). Here, it is intended to review some hydrological models in the light of their 

applicability to HEMs.  

In order to develop a list of possible hydrological models to use in this project, the reviews 

of HEMs in Harou et al. (2009) and Bekchanov et al. (2015) were employed. This was 

complemented with a search on Google Scholar using the following key words: “Hydro-

Economic Model”, “Hydro-Economic Modelling” and “Economic hydrologic model”. Many of 

these papers are described in Chapter 2. The whole review included more than one hundred 

references, but these were filtered by applying the following criteria: 
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 Early literature (i.e. before 2000) on hydro-economic model applications was 

reviewed to understand general concepts of HEMs. However, assuming that more 

recent publications use more applicable tools, they were left aside. Furthermore, high 

impact old papers/tools are still referenced in more recent articles, thus it is possible 

to have an idea of the former by analysing the latter. 

 Papers purely focusing on subjects beyond the scope of this work (e.g. water quality, 

water markets, economic methods, ecosystem services) were left aside as well. 

Roughly 40 papers were shortlisted and analysed in more detail taking into account the 

considerations discussed in Chapter 2, in order to define several features of the water 

resources component of this project. These are described as follows: 

 A monthly resolution was chosen to take into account the effects of intra-annual 

seasonality on hydrological processes (this was the best possible resolution with 

available precipitation data). The review showed that with this temporal resolution, 

the water resources component could be merged with the economic analysis using 

the same time-step, or after aggregating the former into yearly values. 

 A continuous analysis (e.g. several years) was chosen, even if some information 

about agricultural crops and mine requirements was limited to some years only. The 

reason of doing this was that it enabled the analysis of catchment behaviour over 

several dry, wet and wet/dry years. 

 Climate inputs allowed doing either semi-distributed or fully distributed hydrological 

modelling, but information on the volumes of water demanded and economic data 

were less spatially detailed thus the former option was preferred. 

 The model does not include stochastic input data. However, the sensitivity of the 

model to changes in precipitation and temperature values (based on discrete 

changes) was tested and described in Chapter 7.1. 

With these considerations in mind the initial set of 40 papers was narrowed down to 16. This 

last group of references was analysed in further detail, and it was found that most water 

resources components involved conceptual hydrological models (usually involving two 

reservoirs), monthly time-steps, and continuous analyses (see Table 5.1 – Lines 1 to 16).  
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Table 5.1 – Comparison of modelling options for the water resources component. 

Number Consideration Time-step Spatial resolution Hydrological 
model or 
platform 

used 

Timeframe Integration 

Reference Monthly 
or less 

Seasonal 
or Yearly 

Large Areas Micro or Small (< 20,000 km2) Static*  Continuous
**  

Modular Holistic 

Lumped 
catchments 

Node-
Links 

Semi-
distributed 

Lumped Pixels 

1 (Cai et al., 2006) X     X 
   

NHM - HF X     X 

2 (Medellín-Azuara, 
2006) 

  X   X 
   

NHM X     X 

3 (Fernández et al., 
2016) 

  X   
 

X 
  

SWAT 
 

X X   

4 (George et al., 
2011) 

X     
  

X 
 

SimHYD 
 

X X   

5 (Satti et al., 2015)   X X 
    

NHM - HF 
 

X   X 

6 (Medellín-Azuara et 
al., 2015) 

  X X 
    

C2VSim 
 

X X   

7 (Kim and 
Kaluarachchi, 

2016) 

X     
  

X 
 

FAO 
AquaCrop*** 

 
X   X 

8 (Esteve et al., 
2015) 

X     
 

X 
  

WEAP 
 

X X   

9 (Hurd and Coonrod, 
2012) 

X   X 
    

WATBAL 
 

X X   

10 (D’Agostino et al., 
2014) 

  X X 
    

SCS Curve 
Number 
Method 

X   X   

11 (Graveline et al., 
2014) 

X     
 

X 
  

Geotransf 
 

X X   

12 (Dale et al., 2013b) X   X 
    

C2VSim 
 

X X   

13 (Jeuland and 
Whittington, 2014) 

X   X 
    

NHM - SF 
 

X X   

14 (Pande et al., 2011) X   X 
    

Other 
Conceptual 

Model 

X   X   

15 (Srinivasan et al., 
2010) 

  X   X 
   

Other 
Conceptual 

Model 

 
X X   

16 (Forni et al., 2016) X   X 
    

WEAP 
 

X   X 



73 
 

17 (Stehr et al., 2008) X     
 

X 
  

SWAT 
 

X HO   

18 (Ragettli and 
Pellicciotti, 2012) 

X     
   

X Topkapi 
 

X**** HO   

19 (Ragettli et al., 
2014) 

X     
 

X 
  

WEAP 
 

X HO   

20 (Vicuña et al., 
2011) 

X     
 

X 
  

WEAP X   HO   

21 (Young et al., 2009) X   X         WEAP   X HO   

* One year analysis (may include several runs, but all are 1 year runs) 

** Multiple year analysis 

*** Seems to be an irrigation requirement model only 

**** The model is continuous in the sense that is run for several days on hourly time-steps, although is only run for one year. 

NHM No hydrological Model Used 

HF Historical Flows Used 

SF Stochastically generated Flows based on historical records used 

HO Hydrological Model only 

 

Note: This table was filled with the best understanding of the papers analysed, however, in some cases information was not completely clear. 
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It was also found that tools like C2VSim, WEAP and SWAT were common, thus it was 

decided to complement this analysis with a further review of applications of these models in 

Chile or in similar catchments, even in cases where there was no HEM involved (see Table 

5.1– Lines 17 to 21).  

Out of the models listed in Table 5.1, C2VSim was not an option as this model is exclusive 

to California. Other distributed models like Topkapi were overly complex approaches whose 

advantages calculating water supply would be lost, as information of the demand for water 

in the case study is not available in a distributed format. Taking this into account, its 

applicability to HEMs, and previous experiences in Chile (including one example in an small 

section of the case study in this project (Ragettli et al., 2014)), it was decided to use the Soil 

Moisture Model (SMM) available in the Water Evaluation and Planning (WEAP) platform 

(Yates et al., 2005). 

The SMM in WEAP represents hydrological processes with two buckets (Sieber and Purkey, 

2015). The first one represents the upper soil layer and controls the amount of water that 

infiltrates into the soil, the amount that is transformed into surface runoff and the 

evapotranspiration. Water in this layer can then become interflow or percolate to a deeper 

layer represented by the second bucket, which in turn controls base-flows. Snow melt, which 

is key in the case study, is represented with a temperature index method controlled by two 

parameters (melting point and freezing point). A representation of the model is shown in 

Figure 5.1, and further details about it and about WEAP can be found in Appendix C. 

 

Figure 5.1 – Diagram of hydrological processes modelled in the Soil Moisture Model in WEAP. Taken 
from (Sieber and Purkey, 2015). 
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In addition to the calculation of water supply, WEAP includes an optimisation routine that 

facilitates the allocation of resources to all demanding users in order to maximise their 

coverage (proportion of the demand met). This process is influenced by a scheme of 

priorities in which each water user is assigned a number between 1 to 99, and precedence 

is given to the smallest numbers.  

For this application, all users were given the same priority, so this allocation routine could 

be seen as the normal allocation in the case study, which gives each user its corresponding 

share of available volumes, as a function of their WRs. In Chapter 7.2, when analysing the 

effects of including environmental flow requirements, these were given a higher priority than 

all users. Future refinements of the model could include temporal WRs that are only 

allocated during wet years.  

This allocation, however, does not allow to model potential inter-user transactions (e.g. 

agriculture to urban) based on economic data, as WEAP does not allow including the latter 

in the allocation system. Therefore, the possible transactions between users are simulated 

with the full coupled HEM (see Chapter 6), by means of a water market. 

5.2. Development of the water resources model in WEAP 

The development, calibration and validation of the water resources model was implemented 

in WEAP, however, several steps also required using additional software including R, 

Python, ARCGis and QGis.  

5.2.1. Water Supply 

The first step to analyse supply was identifying all flow gauges available in the case study 

(see Table 5.2), and downloading the observed values from the CR2 database (the same 

one used in Chapter 4). With the spatial location of these gauges and the same Digital 

Elevation Model (DEM) used in Chapter 4, it was possible to delineate the areas draining to 

each one of them, and the trajectory of the main streams of the river (see Figure 5.2). The 

latter was done up to the point where tributaries drained an area of at least 4 km2 (less than 

0.2% of the total area analysed), as to manage the trade-off between detail and 

computational complexity of the model. 

Table 5.2 – Flow gauges available in the case study. 

DGA Code Name Elevation (m.a.s.l.) Latitude Longitude 

5410005 Rio Aconcagua en San Felipe 650 -32.7572 -70.7367 

5410002 Rio Aconcagua en Chacabuquito 950 -32.8503 -70.5094 
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5406001 Rio Colorado en Colorado 1062 -32.8572 -70.4122 

5401003 Rio Juncal en Juncal 1800 -32.8625 -70.1675 

5403002 Rio Aconcagua en Rio Blanco 1420 -32.9067 -70.3036 

5402001 Rio Blanco en Rio Blanco 1420 -32.9072 -70.2978 

5402015 Rio Blanco Antes Junta Rio de los Leones 2090 -32.98 -70.2547 

The DEM was also used to define 500 m contour lines in the catchment. Although smaller 

intervals would have allowed a more detailed analysis of elevation bands, it is not clear if 

this would have resulted in benefits to the model worth the increased complexity in 

calculations (i.e. increased computational time). Although this could be explored in more 

detail in future research, for this project it was decided to use 500 m, as this allows a 

reasonably large number of bands (10) without excessive computational cost. This is the 

same value that has been applied in other analysis in similar catchments in Chile (Correa-

Ibanez et al., 2017, Vicuña et al., 2011).  

The contour lines were overlapped with the river and its tributaries to define all sub-

catchments in the case study (see Figure 5.3 for a sample of the Blanco River, one of the 

main tributaries in the upper section). These sub-catchments represent the basic unit of the 

water supply analysis in WEAP, as homogeneous climate conditions are assumed within 

them when running the hydrological calculations. All the GIS manipulation of the DEM was 

done using the Arcpy python module of ARCGis. 

 

Figure 5.2 - Delineation of the areas drained by the tributaries in the case study. 
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Figure 5.3 – Example of the definition of sub-catchments (grey lines) based on the overlapping of the 
Aconcagua River and its tributaries (blue lines), with the 500 m contour lines (purple lines). The 

image is focused on the Blanco River only. 

Once the sub-catchments were defined, it was possible to include a “Catchment” object in 

WEAP to represent each one of them. The main channel of the Aconcagua River, its main 

tributaries (Colorado, Blanco and Juncal Rivers) and other creeks where also included either 

as “River” or “Runoff-Infiltration” objects (see Figure 5.4). The next step involved arranging 

all input data in the format required by WEAP. This was straightforward for Precipitation and 

Temperature (after aggregating it to monthly values), as they were already available from 

the analysis in Chapter 4.  

Although temperature, and especially precipitation, are the key inputs of the hydrological 

model, it was also required to approximate other climate variables needed to run the model 

in WEAP. Most of this work was done in R and it is explained as follows: 

 Total area and latitude of each catchment’s centroid was obtained after analysing the 

sub-catchments. 

 For relative humidity (𝑅𝐻), only the six gauges that measured this variable were 

analysed (see Appendix B). First, the observed 𝑅𝐻 and mean temperature were used 

to define the actual vapour pressure 𝑒𝑎 at these gauges, using Equation 5.1. Then, 

using Equation 5.2 it was possible to define the dewpoint temperature at the 

gauge 𝑇𝑑𝑒𝑤. A simple linear regression (𝐷𝑒𝑤𝑝𝑜𝑖𝑛𝑡 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ~ 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) for 

each time-step was used to interpolate this variable to all centroids of the sub-

¯
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Sub-catchments

Aconcagua River
& Tributaries

0 2 4 6 81
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catchments. Finally, the actual vapour pressure 𝑒𝑎 and the 𝑅𝐻 at all centroids were 

estimated using Equation 5.1 and Equation 5.2. 

 𝒆𝒂 = 𝑹𝑯𝟏𝟎𝟎 [𝒆𝒐(𝑻𝒎𝒆𝒂𝒏)] 
 Equation 5.1 

  𝒆𝒂 = 𝒆𝒐( 𝑻𝒅𝒆𝒘) = 𝟎. 𝟔𝟏𝟎𝟖 𝒆𝒙𝒑 ( 𝟏𝟕.𝟐𝟕 𝑻𝒅𝒆𝒘 𝑻𝒅𝒆𝒘+𝟐𝟑𝟕.𝟑)  

 Equation 5.2 

These equations were adapted from Allen et al. (1998). As the gauges used to 

measure RH were only available from 2008 onwards, values for previous years were 

defined as the monthly averages of the period with available data. 

 

Figure 5.4 - Representation of the sub-catchments in the case study in WEAP. 

 Snow Water Equivalent (SWE) values were taken from Cortés and Margulis (2017). 

These values were generated using Landsat observations together with a snow 
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model run with the Modern-era Retrospective Analysis for Research Applications 

(MERRA) (Mernild et al., 2017). The SWE values are available until March 2015 only 

and are considered observed SWE values to differentiate them from the values 

modelled in WEAP, even if they were obtained from the merging of observations and 

another model. 

 Wind speed values were taken from WorldClim maps (Hijmans et al., 2005). 

 Cloudiness fraction was defined as the percentage of cloud coverage in an area, 

based on MODIS satellite data V5 (Hall et al., 2006). 

The last three calculations were used to define the climate variables in a map with raster 

format. Afterwards, the sub-catchments outlines were overlaid with the raster maps, in order 

to define the mean value in the former.. 

5.2.2. Demand for Water 

Demand for water in WEAP can be represented with demand nodes, and this was done for 

the mine and for the urban users, as their consumption was assumed to be located in the 

same place (see Figure 5.5). For the mining user, the location of the consumption nodes 

was assumed to be the processing plant facility, as this is the largest consumer of water in 

the mine site (Correa-Ibanez et al., 2017).  

In addition, instead of analysing each mine WR separately, a transmission link from Blanco 

River, starting downstream of the WRs owned by the mine site was created. Doing an 

individual representation of each WR for this user was not possible, as it is not known how 

much water is obtained from each of them on a daily/monthly basis. There was an exception 

for a groundwater WR located downstream of the rest whose water is pumped to the mine 

area.  

Including the irrigation demand was more challenging because it is difficult to know the exact 

position of all abstraction points. Also, the valley where the first irrigation section is located 

is above a large aquifer. The DGA developed models of this aquifer, however, this project 

did not have access to them, thus it was not possible to include them in WEAP. Furthermore, 

the coupling and set up of the surface and groundwater models would have required a 

considerable effort, which would have shifted the scope of the project away from the HEM 

and towards a purely hydrological research. 
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Taking this into account, the irrigation demand was simplified by aggregating it into one 

node, located just after the Rio Aconcagua en Chacabuquito Gauge. Furthermore, 

hydrological processes downstream (e.g. including the aquifer) were not modelled. 

However, a minimum flow requirement was enforced after the irrigation node, to make sure 

that the HEM does not consume the water that would normally flow downstream to other 

irrigation areas or that would percolate to the aquifer.  

Minimum flow requirements are another object in WEAP, which can be located at any point 

along a river to force the optimisation algorithm to guarantee, whenever possible, that the 

flow at this point is at least the predefined value. During very dry periods this minimum 

requirement may not be fulfilled, but by having the same priority as the consumption nodes, 

it was ensured that the coverage was the same for both, even during droughts. 

 

 

Figure 5.5 – Overview of the representation of the demand for water of the case study in WEAP. 

It is acknowledged that representing downstream hydrological processes and water use, 

through a minimum flow requirement, is a major assumption. However, a considerable 

review of the available DGA documentation of the aquifer was undertaken (DGA, 2001, 

DGA, 2002, DGA, 2007, DGA, 2015a, DGA, 2016, DGA, 2011), to make sure that this was 

modelled as realistically as possible. Some of the key findings of this review are summarised 

as follows: 

1. In the first irrigation section, the Aconcagua River recharges the aquifer with a yearly 

average of around 11 m3/s. 
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2. Most of the groundwater inflow to the aquifer comes from the case study, although it 

also comes from other mountain areas like Estero Pocuro. However, the total 

groundwater influx is small (~0.5 m3/s) compared to the surface flows entering the 

first irrigation section. The Rio Aconcagua En Chacabuquito gauge has a range of 

observed flows between 10 and 160 m3/s.  

3. Some of the total recharge to the aquifer comes from precipitation in the area during 

the wet months, but during the rest of the year, the key source is the percolation from 

the Aconcagua River. There are two further streams, the Pocuro Creek and the 

Putaendo River, and although these are not measured as accurately as in Rio 

Aconcagua en Chacabuquito, they are smaller. 

4. Water pumping from the aquifer is smaller than the surface abstractions in this section 

of the river, however, there are no monthly estimates of aquifer pumping to compare 

with the irrigation requirements used in this project. 

With this information in mind, it was determined to use a minimum flow requirement of 7.5 

m3/s to model downstream users. This number was defined assuming that most of the 

recharge to the aquifer (11 m3/s) comes from water leaving the area analysed by WEAP. 

The remainder was assumed to come from precipitation, and percolation from other 

streams. This will be complemented with a sensitivity analysis explained in Chapter 6, in 

which an alternative of 5 m3/s and 10 m3/s for this value are tested. The former would be a 

scenario in which percolation mostly comes from alternative sources, while the later 

assumes that almost all of the percolation comes from the area analysed by WEAP. 

In addition, all the irrigation demand will be concentrated in one node just downstream of 

Rio Aconcagua en Chacabuquito gauge. This does not assume that there is no pumping for 

agricultural purposes in the first irrigation section, but rather that water for pumping comes 

from the outlet of the area modelled in WEAP as well. In other words, it is assumed that this 

water leaves the case study and then percolates to the aquifer, thus from a modelling 

perspective, it is equivalent to including it in the consumption node.  

This means that water supply calculations in the WEAP model will be implemented  up to 

Rio Aconcagua en Chacabuquito gauge. The Rio en Aconcagua en San Felipe gauge will 

not be included in the analysis (see Table 5.2). 

The urban user was defined with a demand site node in WEAP, using information of the 

local water utility (ESVAL, 2014). The location of their surface WRs is in La Petaca channel, 
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whose starting point is a couple of kilometres downstream of the Aconcagua en 

Chacabuquito flow gauge. Thus, in the WEAP model the urban demand for water site is 

located to the left margin of the river after the gauge.  

It is important to mention that this is not the only source of water for the local water utility, 

they also have groundwater WRs in the first section of the River and several WRs in other 

sections. However, their groundwater WRs in the first section are assumed to be included 

in the minimum flow requirement in WEAP, partly due to the lack of information of their 

location, but also because the economic calculations were recommended for surface water 

only (more details will be given in the next section) (Cai et al., 2006). This means their 

groundwater consumption is accounted for in the water resources component, but the full 

HEM only analyses their surface consumption, as done in (Cai et al., 2006). 

The hydro-power stations in the case study were included in WEAP as Run of River Hydro 

objects (see Figure 5.5), while Diversion objects were used to model the channels and pipes 

that are used to channel water from the river and between stations. There are a total of four 

major hydro-power stations in the river that were included in WEAP: Hornitos, Aconcagua 

(which takes water from Blanco and Juncal Rivers), Los Quilos (which takes water from 

Colorado as well) and Chacabuquito (see Figure 5.6). 

 

Figure 5.6 – Location of run-of-river hydro-power stations in the catchment. 
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5.2.2.1. Input Data of the Demand for Water 

The Chilean agricultural census of 20075 developed by the Instituto Nacional de Estadísticas 

(INE) was used to define crop areas in the first irrigation section. While this information may 

be relatively old, there has not been another census since then (although there was some 

discussion about doing another one in 2017 or 2018). Furthermore, although INE attempts 

to update this information with estimates derived from the sampling of a small number of 

farms (in the case study this was done in 2008 and 2014), these are not as accurate and do 

not include as much information as the census. The main issue with the latter was that for 

some of the crops, estimations are only done by region and not by commune (the smallest 

administrative unit in Chile) as in the census. 

Given the aforementioned data limitations, the census dataset was employed assuming the 

2007 production applies for the whole period of the model. This is another major assumption 

of the project. However, it was discussed with local experts6 and it was found suitable for 

the HEM, although it would be desirable for future versions to incorporate more recent data 

once it becomes available. The list of the crops analysed and their respective areas are 

shown in Table 5.3. This list does not include all the crops in the census, as there were crops 

with very small areas whose data was difficult to define (price, cost and water requirement 

– see Chapter 6). This list, however, includes 91% of the total crop area of the first irrigation 

section. 

Table 5.3 – Types of crops in the first irrigation section of the Aconcagua River in 2007. 

Crop Area (ha) 

Alfalfa* 1,705 
Wheat 69 
Corn 326 

Potato 112 
Table Grapes 9,376 

Avocado 676 
Walnut 1,369 
Peach** 2,632 
Olives 354 
Plum 146 
Total 16,768 

*Aggregates all forage plants. ** Includes apricots, nectarines and peaches. 

                                            

5 Available at http://ine.cl/estadisticas/economicas/estad%C3%ADsticas-agropecuarias  
6 Dr. Guillermo Donoso Harris, Professor at Universidad Catolica de Chile and Dr Diego Rivera, Professor at 
Universidad de Concepción. 

http://ine.cl/estadisticas/economicas/estad%C3%ADsticas-agropecuarias
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This information was complemented with an analysis of the irrigation requirements of the 

crops, to define the total volume consumed by agriculture. This analysis was implemented 

following the next steps: 

1. The ASCE Standardised reference evapotranspiration equation was used to 

calculate the reference evapotranspiration in the area (Walter et al., 2000). 

2. The input data for this equation was taken from La Cruz gauge of the 

Agrometeorological network of the Instituto de Investigaciones Agropecuarias 

(Agricultural Research Institute - INIA). This gauge was not included in Chapter 4 as 

it was further away from the mountain area, and also because it has only been active 

since October 2013, however, INIA recommends its use as the basis for 

evapotranspiration calculations in the valleys. Daily evapotranspiration from October 

2013 until June 2018 was averaged to define the mean value for each day of the 

year, to provide the most representative value possible with available data.  

3. Crop coefficients (𝑘𝑐) for each of the crops (see Table 5.3) were taken from Allen et 

al. (1998) and SEPOR (2017), while the dates of the different stages of crops in Chile 

was taken from Faiguenbaum (2003). 

Table 5.4 shows the water requirements per area for each of the crops included in the 

analysis, and their total yearly consumption. The total amount of water required by the crops 

analysed is shown in Table 5.5. Then, taking into account that the latter value corresponds 

to the requirements of 91% of the crops, it was assumed that the 9% that could not be 

analysed had a similar consumptive use. In this way, the total use included in the WEAP 

model is 93,786 Megalitres per year (ML/yr).  

Table 5.4 – Crop water requirements in the case study. 

Crop Water requirement 
(m3/ha) 

Total Water Required 

(ML/yr) 

Alfalfa* 4,676 7974.0 
Wheat 2,736 189.9 
Corn 4,125 1345.9 

Potato 3,573 400.9 
Table Grapes 4,978 46679.2 

Avocado 6,978 4717.3 
Walnut 5,889 8063.4 
Peach 4,928 12969.9 
Olives 4,911 1740.7 

Japanese Plum 4,928 721.9 
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Table 5.5 – Total estimated annual irrigation water use in the case study. 

Total analysed in census (ML/yr) 84,803 

Total in WEAP (ML/yr) 93,786 

Finally, as the model was run in monthly time-steps, WEAP required the monthly share of 

the yearly total. This was done by calculating the monthly irrigation requirements of each 

crop, and then aggregating values per month (see Table 5.6). As expected, most of the 

irrigation occurs during the austral summer, while during winter, irrigation requirements are 

considerably reduced. 

Table 5.6 – Monthly share of the total yearly irrigation requirements. 

Month Monthly share (%) of 

yearly total 

Jan 20.9% 

Feb 16.0% 

Mar 9.8% 

Apr 4.5% 

May 1.7% 

Jun 0.2% 

Jul 0.2% 

Aug 0.8% 

Sep 2.4% 

Oct 9.6% 

Nov 14.9% 

Dec 19.1% 

 

Mining demand was estimated as 25.5 million m3 in 2013 (Correa Ibanez, 2015) and it was 

assumed that this corresponds to the volume required to produce the largest amount of 

copper concentrate during the period of analysis (2000 – 2017). This corresponds to 2000 

when there was a production reached 258,000 tonnes. Then, taking into account that the 

agricultural demand was calculated for 2007 only, it was decided to use the mining water 

use for the same year only, in order to do a fairer comparison amongst all users. The mining 

production for 2007 was 218,400 t, which means that the mine water consumption for the 

WEAP model is 21.58 million m3 per year. Water use from this user is assumed to be 

constant throughout the year. 

The water use for the urban sector was taken from the five-years plan that all water utilities 

in Chile, including ESVAL (i.e. the one in the case study), must present to the regulator. 

From this information it was possible to obtain information about the average historical 

consumption from surface water sources in the area included in this case study, which is 
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79.7 l/s (2.5 million m3 per year), corresponding to about 55% of the total urban consumption 

in the area. As explained before, the urban groundwater consumption was not included as 

a demand site node in WEAP, but as part of the minimum flow requirement at the outlet. 

The run-of-river hydro-power stations in the area do not significantly consume water, but 

they abstract it from the tributaries in the mountain area, and then give it back just before 

Rio Aconcagua en Chacabuquito gauge. Information on their abstractions is not publicly 

available, and perhaps it is not even metred with precision. Furthermore, the non-

consumptive WRs from the energy company may not necessarily match their exact 

consumption, as they may hold more WRs than what they use, and also their historic 

abstractions may have been restricted by the DGA during dry periods. 

Taking this into account, the energy generated by each station (which must be reported to 

the regulator on a daily basis) is the best source of information to approximate the abstracted 

volumes. The energy generated by each station can be downloaded from the website of the 

Coordinador Electrico Nacional (National Energy Coordinator - CEN7). This information was 

complemented with the characteristics of each station, including the maximum possible flow 𝑄𝑚𝑎𝑥, the height difference between the inlet and the generator 𝐻, and the location of inlets 

and generators (4C Ingenieros, 2013, DGA, 2001, DGA, 2011, EDIC Ingenierios, 2003).  

The list of stations included in this analysis and their features are shown in Table 5.7. Two 

smaller stations called Juncalillo and Sauces Andes were not included in WEAP because 

they are relatively small compared to the others, and because it was not possible to obtain 

their data. 

Table 5.7 - Characteristics of the run-of-river Hydro-power stations included in WEAP. 

Station Height difference 
(m) 

Max Flow* 
(m3/s) 

Hornitos 540 12.1 

Aconcagua Blanco 689 8.6 

Aconcagua Juncal 282 11.6 

Los Quilos 227 20 

Chacabuquito 137 20 

* Some of these values had to be increased in WEAP after the flow calculations showed that some stations required larger 

flows to generate the energy reported to the regulator.  

                                            

7 https://sic.coordinadorelectrico.cl/informes-y-documentos/fichas/operacion-real/ 

https://sic.coordinadorelectrico.cl/informes-y-documentos/fichas/operacion-real/
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Assuming that the energy 𝐸 is generated at a constant rate throughout the month (24 ℎ𝑟 ∗𝐷𝑎𝑦𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑀𝑜𝑛𝑡ℎ = 𝑇), the generation of each station can be transformed into power 𝑃 

using Equation 5.3. This assumption is justified by the fact that these are run-of-river hydro-

power stations rather than reservoirs, which means that the elevation head between the 

abstraction point and the turbine is almost constant. For example, Los Quilos station 

produced 28,880.8, 23,857 and 15,928 MWh in January (744 hours), February (all years are 

assumed to be non-leap years - 672 hours) and April 2000 (720 hours) respectively, 

corresponding to 38.82, 35.5 and 22.12 MW of power during the three months.  

𝑷 = 𝑬𝑻   

Equation 5.3 

Once the monthly power values were calculated, it was possible to transform these to flows 𝑄 abstracted from the River by using Equation 5.4. In the latter, it was assumed a water 

density of 𝜌 = 1000 𝐾𝑔𝑚3, a gravitational acceleration of 𝑔 = 9.81 𝑚𝑠3 and an efficiency of 𝜂 =0.95 . These calculations imply that water is abstracted at the same rate as energy is 

produced, which may not necessarily be true at every moment because there are small 

reservoirs next to the inlets regulating abstractions. However, their size is very small, 

compared to the total volumes abstracted in a monthly scale, so they can be ignored. 

𝑷𝝆𝒈𝑯𝜼 = 𝑸   
Equation 5.4 

As opposed to mining, agriculture and urban uses, water required for hydro-power 

generation was defined for the whole period of analysis, and not only for 2007. Using only 

the 2007 demand for the other three users was done to do a fairer comparison, however, 

hydro-power is slightly different because they do not consume but only temporarily abstract 

water. Furthermore, although some calculations were required to transform energy into 

flows, this data represented a reliable benchmark that could be used to refine the calibration 

of the model, to complement flow observations. Thus, not using the whole record of hydro-

power data would have represented a missed opportunity for better calibrating the HEM. 

Figure 5.7 illustrates the flow requirements to generate energy at each station for the whole 

period of analysis 2000-2017. Following Figure 5.6, it can be seen that water is not 

abstracted separately for each station, but that the same flow generates energy at different 

stations. This means that flows required to generate energy in Hornitos should be similar to 

the ones of Aconcagua Juncal, and those of Los Quilos should be similar to those of 
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Chacabuquito. Although the curves are not exactly equal, Figure 5.7 shows that the 

differences are relatively small, except for a period in which Chacabuquito station was 

closed (Sep 2015 – Jun 2016), and during the first months after Hornitos was constructed.  

The average difference between Aconcagua Juncal and Hornitos is 0.7 m3/s, which is only 

15% of the average flow required for Hornitos station. The average difference between 

Chacabuquito and Los Quilos, excluding the period when the former was not working, is 

0.23 m3/s, which is only 2% of the flows required by Los Quilos. This suggests that the 

calculations used to transform energy into flows are of adequate quality to be used in this 

model. Finally, it is important to mention that it was not known how Los Quilos split the 

abstractions between the channel coming from Aconcagua station and the abstractions in 

Colorado River. Thus, it was assumed that the latter only provided water whenever the water 

that had passed through the former was not enough to generate the energy values reported 

for Los Quilos. 

 

Figure 5.7  – Flows required by the four main hydro-power stations. See Figure 5.2, Figure 5.5 and 
Figure 5.6 to check the location of the hydro-power stations. 

5.3. Calibration and Validation 

WEAP includes a tool called PEST (Parameter ESTimation (Doherty and Hunt, 2010)), 

which can be used to calibrate the parameters of the model. Nevertheless, this approach 

was not very flexible when defining the calibration periods and it was cumbersome when 

multiple parameters were calibrated at the same time. Furthermore, it only allowed 

calibration with flow observations, reservoir levels and SWE (i.e. comparison of energy 

generation could not be included in the calibration). Due to this, it was decided to use 
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WEAP’s Application Programming Interface (API8), which basically allows the user 

controlling the whole model from an external program, in this project Python. The latter 

allowed using Monte Carlo sampling to calibrate all parameters (Pechlivanidis et al., 2011). 

The whole period of analysis (April 2000 - March 2017) was divided in one warm-up year 

(April 2000 – March 2001), 8 years for calibration (April 2001 – March 2005 and April 2013 

– March 2017) and 8 for validation (April 2005 – March 2013). The calibration period was 

divided in two to make sure that calibration and validation covered wet and dry years. All 

years started on 1st April and finished on 31st March of the next calendar year, following the 

hydrological year in Chile (Cortés and Margulis, 2017). Several rounds of Monte Carlo 

sampling were undertaken to become familiar with the parameters, and each of them 

involved between 1500 and 5000 samples of parameters for each one of the calibration 

areas (see Figure 5.2 and Figure 5.8). 

 

Figure 5.8 – Calibration areas and their flow gauges in the case study. 

The calibration procedure started in the Juncal River (see Figure 5.8), the upstream-most 

tributary, followed by the Blanco River. Then, all other sub-catchments upstream of Rio 

Aconcagua en Rio Blanco gauge were calibrated together. The sub-catchments upstream 

                                            

8 An API is a set of routines that allow manipulating a program (e.g. WEAP, Microsoft Excel, etc.) from an 
external programming software like Python, JavaScript or Perl, amongst many others. WEAP’s API allows 
changing almost everything in the model, like parameters, climate conditions, input data, demand for water, 
priorities of demand, etc. 
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of the Colorado River gauge were then calibrated and finally, all sub-catchments upstream 

of Rio Aconcagua en Chacabuquito that had not been calibrated already. There was a sixth 

gauge (Rio Blanco Antes Junta Rio de Los Leones, inside Blanco River see Figure 5.9) with 

data for a brief period in 2012 and then from 2014 on. However, taking into account the large 

number of missing values, it was decided to use it for validation only. 

 

Figure 5.9 – Location of the extra flow gauge inside Blanco River. 

Initial analyses of the Juncal River showed that runoff in the outlet during the entire period 

of analysis was larger than precipitation in the area. This was also seen for the Rio Blanco 

en Los Leones gauges. This was probably caused by the limitations of the interpolation 

methodology in the upper most areas. Therefore, it was decided to do a Bias correction of 

60% and 45% respectively (i.e. increment of 60% and 40% in precipitation values in all sub-

catchments upstream of these two gauges). This correction was done to make sure that the 

long-term (i.e. the 17 years of analysis) volumes of water measured in the gauges, were 

similar to the volume of water precipitated during this period. 

The Soil Moisture Model (SMM) in WEAP includes 11 parameters, Table 5.8 list them and 

provides a brief description, while a detailed explanation can be found in Yates et al. (2005) 

and Sieber and Purkey (2015). The ranges of values that each parameter could take for 

each Monte Carlo sampling in the last calibration round were defined taking into account 

other WEAP models (Vicuña et al., 2011, Young et al., 2009), the previous calibration 

rounds, and discussions with experienced WEAP users. All sub-catchments in the same 

calibration area shared the same set of parameters, although they could change between 

areas. 

Table 5.8 – Parameters in the Soil Moisture Model in WEAP. 

Parameter Unit Description Range of values 
for calibration 

Soil Water Capacity 
(SWC) 

mm Maximum amount of water that can be held in 
the upper bucket 

100-600 

Deep Water Capacity 
(DWC) 

mm Maximum amount of water that can be held in 
the lower bucket 

50-400 
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Runoff Resistance 
Factor (RRF) 

NA Empirical factor influencing the volume of 
precipitation that turns into surface runoff 

1-8 

Root Zone 
Conductivity (RZC) 

mm/month Fully saturated conductivity rate of the upper soil 50-800 

Deep Conductivity 
(DC) 

mm/month Fully saturated conductivity rate of the deep soil 50-400 

Preferred Flow 
Direction (PFD) 

NA Empirical factor to split the flow from the lower 
bucket between interflow and flow to lower 

bucket 

5-10 

Freezing Point (FP) °C Threshold for transforming liquid precipitation 
into the solid phase (e.g. snow) 

-2  -  4 

Melting Point (MP) °C Threshold for transforming solid precipitation or 
snow into the liquid phase 

6-12 

Albedo Lower Bound 
(Old snow) 

NA Fraction of solar radiation reflected by new snow 0.3 

Albedo Upper Bound 
(New Snow) 

NA Fraction of solar radiation reflected by old snow 0.7 

Crop Coefficient (Kc) NA Crop coefficient relative to the reference crop. 0.4 – 1 (0.2 – 1)* 
* Although the lower bound of this range may appear quite small when compared to crop coefficients frequently used for 

irrigation calculations, it was chosen taking into account that almost all the area analysed is mountainous with bare soil or 

rocks, and extended dry periods during the year (Allen et al., 2005, Ding et al., 2015, Snyder et al., 2000). The range (0.2-0.1) 

was used for Juncal River only, as this one is the upstream most tributary, and thus has the lowest amount of alternative land 

uses compared to the other 4 areas calibrated. 

Out of the 11 parameters only 9 were calibrated, as the Albedo for old and new snow were 

fixed at 0.3 and 0.7 respectively. This was done following previous applications of this model 

in similar catchments (Vicuña et al., 2011, Young et al., 2009), but also based on the initial 

calibration rounds which showed that these parameters could be fixed without sacrificing the 

quality of the outputs.  

Taking into account the large number of parameters in the model used, equifinality problems 

(i.e. compensation of errors caused by poor modelling of more than two hydrological 

processes (Beven, 2002)), were a potential threat  when calibrating the model to observed 

streamflows. This was addressed, to some extent, by comparing SWE observations (Cortés 

and Margulis, 2017) with modelled values as well, to promote internal consistency of the 

model and have a more robust calibration.  

Nevertheless, some authors are cautious about using satellite images (e.g. MODIS or 

Landsat) to calibrate the SWE magnitudes in semi-distributed models (Ragettli et al., 2014). 

Thus, in this project the comparison was only done in terms of the timings and by using a 

graphical comparison. Being a manual procedure, this comparison was done for a small set 

of parameters only, but thanks to it, it was possible to refine the range of values of FP and 

MP to better simulate snow accumulation and melting periods, and to avoid having long-

term accumulation of snow. Furthermore, the Pearson correlation coefficient was used to 

analyse the calibrated snow results as to have a better idea of their suitability. 
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In addition, the model was also calibrated to make sure that the hydro-power stations could 

generate at least 90% of the energy production that was reported by the company to the 

regulator (i.e. the sets of parameters generating less than 90% were rejected). This is 

particularly important taking into account that each calibration area had several sub-

catchments, thus there could also be compensation of errors amongst them. This is a 

common issue in similar models and was particularly relevant for Blanco and Juncal River 

areas. However, by including this type of information it is possible to mitigate these 

problems. Although the mining water consumption estimations are not as detailed as the 

hydro-power ones, it was also required that the model provided at least 90% of their demand. 

The metrics used to compare simulated and observed values were RMSE, which was 

already explained in Chapter 4, and the Nash-Sutcliffe Efficiency (NSE) that is “a normalised 

statistic that determines the relative magnitude of the residual variance (“noise”) compared 

to the measured data variance (“information”)” (Moriasi et al., 2007). The closer to 1 the 

better NSE, any value > 0.5 is often consider acceptable, and any value < 0 means the 

performance of the model is quite poor, as the mean observed flow is preferable. The NSE 

is calculated with the following equation: 

𝑵𝑺𝑬 = 𝟏 − ( ∑ (𝒀𝒊𝒐𝒃𝒔−𝒀𝒊𝒔𝒊𝒎)𝟐𝒏𝒊=𝟏∑ (𝒀𝒊𝒐𝒃𝒔−𝒀𝒎𝒆𝒂𝒏)𝟐𝒏𝒊=𝟏 )  

Equation 5.5 

In addition, although not used for calibration, the Mean Absolute Relative Error (MARE) was 

calculated for all calibration areas. As opposed to the RMSE and the NSE, the MARE 

aggregates relative errors (see Equation 5.6), which provides further insight into the 

performance of the model. 

𝑴𝑨𝑹𝑬 = 𝒂𝒃𝒔(𝒀𝒊𝒐𝒃𝒔−𝒀𝒊𝒔𝒊𝒎)𝒀𝒊𝒐𝒃𝒔    

Equation 5.6 

5.4. Results 

Figure 5.10 shows the plots comparing observed and simulated flows for calibration (April 

2001 – March 2005 and April 2013 – March 2017) and validation periods (April 2005 – March 

2013), while Table 5.9 includes the average observed flow of each station during the period 

analysed, and the calibration results. Furthermore, Table 5.10 shows the calibrated 

parameters for each one of the areas. 

Table 5.9 – Results of the calibration and validation of the water resources model. 
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Gauge Short Name Average 

observed flow 

(m3/s) 
 

Calibration Validation 

RMSE 
(m3/s) 

NSE MARE 
(%) 

RMSE 
(m3/s) 

NSE MARE 
(%) 

Rio Juncal En Juncal Juncal 5.5 1.40 0.87 21.2 1.65 0.85 25.4 
Rio Blanco en Rio 

Blanco 
Blanco 4.05 

2.72 0.70 47.1 2.62 0.81 57.6 
Rio Aconcagua en Rio 

Blanco 
Aconcagua 
en Blanco 

7.18 
4.95 0.7 47.8 5.01 0.63 48.3 

Rio Colorado En 
Colorado 

Colorado 4.01 
2.67 0.85 658 4.87 0.72 636 

Rio Aconcagua En 
Chacabuquito 

Chacabuquito 30.21 
8.51 0.88 21.9 13.16 0.8 26.2 

Rio Blanco Antes Junta 
Rio de los Leones 

Los Leones 4.88 
      3.82 0.52 40.9 

 

Table 5.10 - Calibrated sets of parameters for each area. 

Parameter Unit Areas 

Juncal Blanco Aconcagua 
En Blanco 

Colorado Aconcagua En 
Chacabuquito 

Soil Water Capacity (SWC) mm 431 362 211 102 105 

Deep Water Capacity (DWC) mm 284 207 167 316 272 

Runoff Resistance Factor (RRF) NA 5 1 4 6 1 

Root Zone Conductivity (RZC) mm/month 642 798 568 540 502 

Deep Conductivity (DC) mm/month 73 121 77 142 390 

Preferred Flow Direction (PFD) NA 0.6 0.9 1 0.8 0.3 

Freezing Point (FP) °C 0 -1 -1 -2 4 

Melting Point (MP) °C 10 12 7 7 9 

Albedo Lower Bound (Old 
snow) 

NA 0.7 0.7 0.7 0.7 0.7 

Albedo Upper Bound (New 
Snow) 

NA 0.3 0.3 0.3 0.3 0.3 

Crop Coefficient (Kc) NA 0.2 0.4 0.4 0.4 0.4 

Results of the comparison between observed and modelled SWE are presented in Figure 

5.11. As previously mentioned, magnitudes of SWE values were not compared with the 

RMSE or NSE, but by means of a visual comparison of values (sub-catchment results were 

aggregated by 500 m elevation bands to facilitate the comparison). This helped to refine the 

ranges of parameters FP and MP prior to the Monte Carlo calibration. In addition, Pearson 

correlation coefficients between observed and modelled values in the calibrated model are 

presented in Table 5.11. 

Table 5.11 – Correlation between observed and modelled SWE. Results were aggregated by the 
elevation of the centroid of the sub-catchments. 

Elevation band (masl) Pearson 
Correlation 

Above 4500 0.7 

Between 4000 and 4500 0.6 

Between 3500 and 4000 0.82 

Between 3000 and 3500 0.82 
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Between 2500 and 3000 0.69 

Between 2000 and 2500 0.72 
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(A) Juncal River Area. 

 

(B) Blanco River Area. 

 

(C) Aconcagua En Blanco Area. 

Figure 5.10 – Observed versus Simulated streamflows at the outlet of each one of the 5 calibration 
areas during calibration and validation periods. 
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(D) Colorado River Area. 

 

(E) Aconcagua en Chacabuquito Area. 

 

(F) Blanco Antes Junta Rio de los Leones Area.  

Figure 5.10 (Cont.) – Observed vs Simulated streamflows at the outlet of each one of the 5 calibration 

areas during calibration and validation periods. 
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(A) SWE for catchments above 4500 masl. 

 

(B) SWE for catchments between 4000 and 4500 masl. 

 

(C) SWE for catchments between 3500 and 4000 masl. 

Figure 5.11 – Average SWE Observed and Modelled for catchments in six different elevation bands 
for the period with available observed data. 
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(D) SWE for catchments between 3000 and 3500 masl. 

 

(E) SWE for catchments between 2500 and 3000 masl. 

 

(F) SWE for catchments between 2000 and 2500 masl. 

Figure 5.11 (Cont) – Average SWE Observed and Modelled for catchments in six different elevation 

bands for the period with available observed data. 



99 
 

The calibration based on the comparison of streamflows and SWE, was complemented with 

the requirement of the fulfilment of at least 90% of the energy generation values reported by 

the energy company. Figure 5.12 presents the monthly averaged demand coverage for the 

5 stations during calibration and validation periods (the Aconcagua station comprises two 

abstraction points, Blanco and Juncal, thus for flow comparisons results are presented 

separately). It is important to mention that the 90% requirement had to be fulfilled for the 

entire period, and not month by month, thus some months for the calibration period have 

values slightly smaller than the threshold. In addition, Figure 5.13 shows the demand 

coverage for all stations together for the whole period of analysis.  

 

(A) Calibration. 

 

(B) Validation. 

Figure 5.12 – Monthly averaged Hydro-power demand coverage for the calibration and validation 
periods. 
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Figure 5.13 – Hydro-power demand coverage aggregated for all stations. 

Demand coverage results for all other users (Mining, Urban and Agriculture) are presented 

in Figure 5.14. In the same way as for Hydro-power, these results were aggregated by month 

to facilitate its analysis and are presented separately for calibration and validation periods. 

 

(A) Calibration. 

 

(B) Validation. 

Figure 5.14 – Monthly averaged demand coverage for all other users for the calibration and validation 
periods. 
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Finally, calibration results were further assessed by plotting the parameters vs the RMSE, 

which was the main metric to assess the performance of models (see Figure 5.15, Figure 

5.16 and Figure 5.17). The intention here was to obtain a better idea of the behaviour of the 

model, particularly its sensitivity to the parameters. For brevity purposes an image for every 

parameter of every calibration area is not included, but some key figures from the Blanco 

sub-catchment are shown, which present the general trends for all the case study. 

Furthermore, these figures also illustrate the effect of enforcing a minimum coverage on the 

hydro-electricity demand, when analysing the sensitivity of the model to the parameters.  
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(A) All model runs. 

 

(B) Only runs that fulfilled the hydro-electricity minimum coverage restriction. 

Figure 5.15 – Analysis of the performance of the model for different Deep Water Capacity (DWC) 
values in the Blanco calibration area. 

 

(A) All model runs. 
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(B) Only runs that fulfilled the hydro-electricity minimum coverage restriction. 

Figure 5.16 - Analysis of the performance of the model for different Freezing Point (FP) values in the 
Blanco calibration area. 

 

(A) All model runs. 

 

(B) Only runs that fulfilled the hydro-electricity minimum coverage restriction. 

Figure 5.17 - Analysis of the performance of the model for different Preferential Flow Direction (PFD) 
values in the Blanco calibration area.
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5.5. Discussion 

From the results, it is considered that the water resources model acceptably reproduces the 

observed conditions. The RMSE values are below the average observed flows, most NSE 

for calibration and validation periods are above 0.7, and all of them are above 0.5, which 

some authors consider the threshold for acceptable results (Moriasi et al., 2007). For most 

part of the period of analysis, simulated flows follow closely observed ones, particularly for 

Juncal River and Aconcagua en Chacabuquito sub-catchments (Plots A and E in Figure 

5.10). 

Results for Blanco, Colorado and Aconcagua en Blanco are good for most of the period, 

however, there are some issues between the 2011 and 2014 hydrological years. These 

years correspond to a very dry period where observed values fell to very low levels. 

Simulated flows, despite being relatively small, are larger during these four years, 

particularly during the austral winter. Although other years had experienced similar levels of 

low rainfall (e.g. 2003 and 2004), observed flows in these gauges for those years were not 

as low as between 2011 and 2014.  

It could be thought that despite water scarcity, users could have continued using similar 

volumes of water as in other years, which may have generated this behaviour. However, 

Figure 5.10F shows that at least between 2010 and 2012 observed flows in Rio Blanco en 

Los Leones are different from zero and are similar to simulated ones, thus problems are not 

related to the mining user but downstream of it.  

It was found that during this period the River User Committees (RUCs) imposed several 

restrictions on users, but it was not possible to determine exactly how this affected 

consumption, thus it is difficult to fully understand the relation between these and the 

observed flows. Nevertheless, apart from the issues during this period, which is relatively 

small compared to the whole period of analysis, the model is considered to have a good 

performance overall. 

This is supported by Table 5.9, which shows that most NSE values are above 0.7 for both 

validation and calibration years, and never fall below 0.5. Also, most RMSE values are small 

compared to the average observed flow in all stations, even in Rio Blanco en Los Leones, 

which was only used for validation purposes. The latter can also be seen in Figure 5.10F, 

and means that the model is able to predict flows in several points of the case study, even 

if they were not used for calibration. 
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Table 5.9 also shows that apart from Juncal and Chacabuquito calibration areas, MARE 

values are not as good RMSE or NSE. Indeed, the ones for Colorado are very poor (>600%). 

This is partly explained by the previously mentioned modelling issues between the 2011 and 

2014 hydrological years. If this period was excluded from the calculations, the MARE values 

are reduced almost by half.  

However, this is also explained by months with very low observed flows in both wet and dry 

seasons (which may even be influenced by measurement errors), where the model 

predicted larger flows. Although the absolute differences are not necessarily very large, 

when these are analysed relative to the very small observed flows, the relative errors end 

up being quite high. Table 5.12 shows an example for Colorado sub-catchment, although 

other areas presented a similar behaviour. 

Table 5.12 – Analysis of the relative errors in the Colorado sub-catchment. 

Date Observed 

(m3/s) 

Modelled 

(m3/s) 

Absolute Difference 

(m3/s) 

Absolute Relative 

Error 

Feb-14 0.017 1.782 1.765 10403% 

Jan-15 0.029 4.122 4.093 14051% 

Although they are not numerous, these large relative errors condition the MARE (see Figure 

5.18). It was attempted to address this by using the MARE as objective function in the 

calibration, but there were not large improvements, thus it was decided to continue using 

the RMSE only. This means that despite some areas of the model have relevant issues 

during very dry moths, during most of the period of analysis the model is considered to 

perform satisfactorily for the objectives of this research.  

 

Figure 5.18 – Histogram of Absolute Relative Errors in the Colorado sub-catchment). 
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Comparison of the modelled SWE melting and accumulation periods, with independently 

estimated values was done to review the internal consistency of the model (i.e. to avoid error 

compensation), as described in Ragettli et al. (2014). In the previous reference, erroneous 

snow parameters caused melting to start earlier (compared to observed values and to a 

physically based model of the same area), but these errors were compensated with 

increased soil retention capacity. 

Figure 5.11 shows SWE in the six key elevation bands after aggregating results in all sub-

catchments with similar altitude. It can be seen that observed values are always larger than 

the simulated ones, particularly during the wet years. Here, it is important to remember that 

what are referred to here as observed values, come from a merging of observed satellite 

images and a snow model forced with MERRA data. In other words, these values are not 

measurements of SWE, but the output of satellite observations and another model, which 

means that there is a degree of uncertainty in them. Taking this into account, it was not ideal 

to compare the magnitudes between these observed values and the ones modelled in 

WEAP, and it was preferable to focus on comparing the timings of snow melting and 

accumulation, following previous experiences with semi-distributed models (Ragettli et al., 

2014). 

The melting and accumulation periods are well described, particularly below 4000 m. Above 

4000 m there are some years in which the observed snow melting season finishes later than 

the simulated one, and this entails that snow accumulation starts earlier for the next year. 

These lags, however, are not very large and they are only seen in some years.  

Table 5.11 complements this by showing correlation coefficients between observed and 

simulated time-series for the same elevation bands. It can be seen that there is good 

correlation between both series, and also that the weakest correlation is for sub-catchments 

between 4000m and 4500m. This could have consequences in the performance of the 

model at these elevations, particularly in the demand coverage of the most upstream users 

(i.e. the mine).  

Despite lags of one or two months in the melting or accumulation periods in the upper most 

areas, the correlation for other elevation bands is strong. This analysis shows no evidence 

of large internal inconsistencies in the model related with snow.  

Figure 5.12 and Figure 5.14 present the results of the demand coverage for the different 

users. It can be seen that generally, a considerable percentage of the demand of all users 
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is covered. Percentages are smaller during validation periods, but still rarely below 80%. 

Agriculture and urban consumption have a very high demand coverage during calibration 

and validation years. This includes the minimum flow requirement at the outlet, which has 

the same coverage as it is located very close and has the same priority as the other two.  

Following the model, the key period when users suffer water deficits is between July and 

November, and the users the most affected are hydro-power and mining. This is mainly 

because snow accumulates during winter but only starts melting by November in the upper-

most areas of the case study. However, these issues could also be related to the problems 

in the calibration of the Colorado, Blanco and Aconcagua En Blanco areas, which affect the 

most upstream users. Nevertheless, taking into account the complexity of the catchment 

and the lack of more detailed input data, results are considered to be satisfactory, and the 

model is considered to be a useful tool for the objectives of this project.  

Regarding the parameters, Table 5.10 summarises the final sets for each one of the 

calibrated areas. It was found that most parameters are not identifiable when plotted against 

performance metrics (see Figure 5.15A), which means that the model is not very sensitive 

to changes in them. Some parameters like PFD (see Figure 5.15C) and MP are not 

identifiable, but it can be seen that some values always give relatively poor results (e.g. 0.5 

and 1 for PFD). This type of behaviour was seen more often during previous calibration 

rounds (not reported here), and thanks to this, it was possible to refine the calibration ranges. 

Finally, FP was the only parameter during this last round that clearly showed that the best 

performance was achieved by fixing the parameter to -1.  

There is an entire research field in hydrology to analyse parameter uncertainty, and 

particularly how different sets of parameters can achieve almost equal behaviour (Beven, 

2002, Pechlivanidis et al., 2011). Future research could analyse how the selection of 

parameters, and the equifinality problem, may affect the final results of HEMs. 

At this point it is important to mention that as the WEAP model described in this chapter is 

based on an system of priorities to allocate water, which means that its decisions may not 

be optimal from an economic perspective. This was useful for this project because in the 

case study there is a system of water rights (see Chapter 3), where water is allocated to all 

water right holders with the same priority (i.e. in a similar way to the WEAP model). However, 

in the catchment there is also a water market where some, but not all users participate (i.e. 

mining is rarely involved thus it is easier to analyse this user through the system of priorities 
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only). The water market component of the model will be explained in the next chapter, 

together with its limitations and the merging methodology. 

5.6. Closing remarks 

1. A water resources model was calibrated and validated in the upper Aconcagua River, 

which will allow estimating time-series of water flows at all relevant points of the HEM. 

2. Despite the limitations of the water resources component of this HEM, including a 

relatively low demand coverage during late winter and spring for some users, the 

results found are considered to be satisfactory taking into account the complexity of 

the catchment (i.e. high degree of anthropogenic activity) and the lack of detailed 

input data. 

3. The assessment of the timings of snow accumulation and of the energy demand 

coverage, is a sign of internal consistency amongst the different hydrological 

processes. This increases the reliability of the model when analysing changes in 

climate conditions that involve precipitation and temperature, as the latter affects the 

snow accumulation and melting periods. The inclusion of a snow-melt predictive 

model is a clear added value of the selected water resources model, relative to using 

historical or stochastic flows or a simpler (e.g. more spatially or temporally 

aggregated) models. 

4. The methodology used to connect Python with WEAP is a relevant contribution of this 

project, as it gives a lot of flexibility to extend the capacity of WEAP to interact with 

other software and plaftorms, and may be more suitable for HEMs than previously 

used sequential approaches based purely on WEAP (Forni et al., 2016). 

5. Future developments should improve: 

a. The coupling of this model with the ones that the DGA has developed for the 

downstream aquifer in the first irrigation section of the Aconcagua River. 

b. The mining demand for water estimation and the location of its abstraction 

points. 

c. The methodology used to transform energy generation into flows abstracted 

from the River. 

d. The assumption that the volume of water required by crops is the same as the 

volume irrigated. Farmers usually use more water than what is actually 

required by crops, and this is related to the efficiency of the irrigation 

technology.  

e. The urban and agriculture demand values as to change on a yearly basis. 
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6. Finally, some aspects of the model could represent interesting research topics for 

future projects. These include: 

a. The analysis of the sensitivity of results to the use of elevation bands of 

different height. 

b. The analysis of the identifiability of parameters of the Soil Moisture Method 

(SMM) in WEAP and the sensitivity of the model to them. 

c. The issues of the model in some sub-catchments during particularly dry 

months. This may even require analysing the quality of measurements during 

these periods.  
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6. The Hydro-Economic Model 

 

The main objective of this PhD thesis is to understand how hydro-economic models (HEMs) 

can help analysing water conflicts in mining regions, and this chapter explains the 

development of the HEM for this project.  

It is important to take into account that the WEAP model explained in Chapter 5 does not 

provide an optimal allocation from an economic perspective, as water is distributed amongst 

users based on a system of priorities related to the water rights in the catchment. In many 

cases this means that water may not be allocated to the most economically efficient uses.  

This chapter will provide an economic analysis of the value of water for the different users 

in the catchment, which will complement the model in Chapter 5 by describing the results in 

terms of three economic metrics: Total Value of Water, Shadow Value of Water and Water 

Scarcity Cost. The generation of these metrics will in turn help model potential transfers of 

water between users (the model in this project allows transfers between agriculture and 

urban users only). 

At first glance, it could be argued that doing an allocation based on a system of priorities 

first, and then complementing this with the transfer of water between users based on the 

assessment of the economic value of water, does not follow an economic logic. 

Nevertheless, this was done to better reproduce real conditions in the catchment. As it has 

been mentioned in previous chapters, in Chile there is an established system of Water 

Rights that allocates water to users based on the amount of rights they hold. During cases 

of water scarcity, users get volumes of water proportional to the shares they have9. This is 

better reproduced through a system of priorities where all users (i.e. all water right holders) 

have the same priority, and its access to water during dry years is limited equitably (the 

WEAP model in Chapter 5). 

However, in the case study there is also a water market where users can trade temporal or 

long-term water rights (some of the limitations of this market were discussed in Chapter 2 

and will be reviewed later in this Chapter). This component is described in this Chapter and 

is based on the analysis of the economic value of water for the users assumed to be involved 

                                            

9 There are many types of Water Rights and some of them have more priority than others, however, here it is 
assumed that all water rights have the same priority. 
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in the trades. In this way, the whole water system in the case study (water rights allocation 

and water trade) is modelled through a system of priorities (Chapter 5) and simplistic but 

relevant water market assumptions (this Chapter). 

The outline of this Chapter is as follows: first, a review of HEMs is done, together with an 

analysis of some key concepts. This is followed by the description of the economic analysis 

of the water demand from each user and the coupling methodology. Afterwards, key results 

are presented, followed by a discussion and some closing remarks. 

6.1.  Review of HEMs 

Table 6.1 analyses the models from Table 5.1 that also included an economic component. 

Table 6.1 also describes some models that were not previously included, as they did not 

provide enough details of the water resources component. In the table, it can be seen that 

the time-steps for some of the papers are different to the ones reported in Table 5.1, this is 

because they use different temporal resolutions for both components, usually after 

aggregating the results from the water resources component. 

Table 6.1 also shows that the General Algebraic Modelling System (GAMS) software is 

widely used to analyse the economic component, and eventually the water resources one 

is also included in this software. It is important to remember that the objective of the 

economic component is to define a set of functions that describe the value that different 

users get from water. This may involve optimisation algorithms that analyse farmers 

behaviours to define their water demand curve (e.g. as done in Positive Mathematical 

Programming - PMP), demand functions, or more simple mathematical expressions that link 

the volumes supplied to the economic value obtained. 

Another common tool to analyse irrigation demand is the State Wide Economic Agricultural 

Production Model (SWAP), however, SWAP is specific for models in California. 

Nevertheless, SWAP is based on the concept of Positive Mathematical Programming 

(PMP), which is a common approach to analyse irrigation demand (Howitt, 1995). It is 

important to mention that some papers did not clearly describe their economic approach, 

thus, although model details are reported as accurately as possible, they are the 

interpretation of the author of this dissertation. 
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Table 6.1 – Analysis of Hydro-Economic Models (HEMs) in the literature. 

Number Consideration HEM Time-step Integration Economic models used to analyse water 
demand 

Software used for 
the economic 
component 

Reference Monthly 
or less 

Seasonal or 
Yearly 

Modular
* 

Holistic* 

1 (Cai et al., 2006) 
 

X 
 

X  Crop Yield and Irrigation Profit function for 
agriculture. 

 Inverse demand function for urban uses.  
 PMP for agriculture as a second alternative. 

GAMS 

2 (Medellín-Azuara, 2006) 
 

X 
 

X  PMP for agriculture.  
 Block rate pricing structures for urban uses. 
 Opportunity costs for environmental values. 

GAMS and STATA 

3 (Fernández et al., 2016) 
 

X X 
 

 PMP integrated with a risk model for 
agriculture. 

NS 

4 (George et al., 2011) 
 

X X 
 

 Residual method for agriculture. NS 

5 (Satti et al., 2015) X 
  

X  Predefined marginal values for agriculture. GAMS 

6 (Medellín-Azuara et al., 
2015) 

  
X 

 
 PMP for agriculture.   SWAP 

7 (Kim and Kaluarachchi, 
2016) 

 
X 

 
X  Farm based single season mathematical 

model to develop producers' pre-season 
decisions. 

Matlab 

8 (Esteve et al., 2015) 
 

X X 
 

 Non-linear mathematical programming 
optimisation model for agriculture. 

NS 

9 (Hurd and Coonrod, 
2012) 

X 
 

X 
  

GAMS 

10 (D’Agostino et al., 2014) X 
 

X 
 

 Non-linear optimisation model. GAMS 

11 (Graveline et al., 2014) 
 

X X 
 

 Linear programming model for agriculture. GAMS 

12 (Dale et al., 2013b) X 
 

X 
 

 PMP for agriculture. CVPM 

13 (Jeuland and 
Whittington, 2014) 

 
X X 

  
NS 

14 (Pande et al., 2011) X 
 

X 
  

GAMS 

15 (Srinivasan et al., 2010) 
 

X X 
  

NS 

16 (Forni et al., 2016) 
 

X 
 

X  PMP for agriculture. SWAP 

17 (Hasler et al., 2014) 
 

X 
 

X 
 

GAMS 
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18 (Qureshi et al., 2013) 
 

X 
 

X  PMP for agriculture. GAMS 

19 (Ringler and Cai, 2006) X 
  

X 
 

GAMS 

20 (Lee et al., 2011) 
 

X 
 

X  Non-linear model for all users. NS 

21 (Baresel et al., 2006) 
 

X 
 

X 
 

GAMS 
NS Non-specified 

*The definition of holistic and modular can be found in the published article referenced in Chapter 2. 
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As found in the literature review (see Chapter 2), Table 6.1 evidences that the type of 

integration of the water and economic components in a HEM is closely related to its 

purpose. Holistic models are usually connected to optimisation approaches, where all 

equations are programmed together and the user maximises or minimises an objective 

function. Modular approaches, on the other hand, may involve some optimisation (e.g. 

using a PMP to analyse agriculture, together with other approaches for other users), 

but are more focused on analysis of scenarios. The latter approach usually involves 

more detailed analyses of hydrological processes, which was the third objective of this 

PhD thesis (see section 1.2).  

The economic depth of most models includes only the direct impacts (microeconomic 

analyses). Few of them even mention the indirect impacts, and when they do, they 

often use simple approaches like social accounting matrices (Hurd and Coonrod, 

2012) or input-output models (Medellín-Azuara et al., 2015). These approaches 

provide a quantitative measure of the potential spillover effects of economic activities 

and events such as agricultural revenue losses due to water shortage. Impacts on 

macroeconomic variables such as employment, gross domestic product and income, 

amongst others, are often analysed. 

This does not mean that indirect effects are never addressed, as there is a very rich 

field of research in macroeconomic analyses of water allocation, including the use of 

Computable General Equilibrium (CGE) models. Nevertheless, these approaches 

tend to use larger spatial extents (states or countries), coarser temporal resolutions 

(years) and often over simplify the water resources component substantially. This 

means that the focus of the research is shifted towards pure economics, and that is 

why they were not reviewed here.  

Regarding the analysis of uncertainty and sensitivity, this is a relevant component of 

several of the HEMs reviewed, although not all of them address it. Two types of 

uncertainty/sensitivity analyses are usually considered; the first one uses Probability 

Distribution Functions (PDF) instead of fixed parameters or deterministic input data, 

and runs the HEM for each set of parameters/inputs sampled from the PDF. The output 

of this not only includes the most likely results, but also boundaries describing what 

could happen in less likely conditions. This is usually applied to specific parts of the 

model, like the generation of streamflow values (Fernández et al., 2016) or crop yields. 
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An alternative, and perhaps more common approach, is to analyse how the model 

changes as a function of discrete modifications of some of the parameters or input 

data. This includes increasing or decreasing climate conditions or water quality values 

by a specific percentage (e.g. + 20% and -20%) (Cai, 2008, Satti et al., 2015), 

changing price or cost estimates (Ringler and Cai, 2006, Cai, 2008), and using outputs 

of climate change models to predict future streamflow or precipitation values 

(D’Agostino et al., 2014). 

Another feature that some HEMs include is a risk component for agriculture. This is 

often incorporated as a term in the objective function which is calibrated to adjust yield 

or profit functions to follow observed values. This is usually justified by the fact that 

many farmers are risk averse, thus their behaviour may be different from a theoretical 

maximisation of their economic returns (D’Agostino et al., 2014, Fernández et al., 

2016, Kim and Kaluarachchi, 2016). These findings were used to define the 

characteristics of the HEM of this project.  

6.2. The economic component of the HEM 

This section describes the approaches used to value water for each one of the four 

users in the HEM (mining, agriculture, urban and hydro-power). While environmental 

requirements will be included in the model, they were not analysed in the same way 

as other users but through a cost of opportunity approach (see Chapter 7). For the 

economic component, most methods used information from 2007 thus the terms 

calibration/observed period are used interchangeably to denote this year. 

6.2.1. Economic analysis of agriculture demand 

6.2.1.1. Positive Mathematical Programming (PMP) 

PMP is a deductive methodology to calibrate the parameters of a non-linear 

agricultural production model (Howitt, 1995, Forni et al., 2016, Medellín-Azuara et al., 

2015). According to Howitt et al. (2012), its key advantages compared to alternative 

approaches are:  

1. The model is calibrated to observed values of crop areas and water 

consumption. This is why the “positive” term is used. 
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2. PMP does not assume that costs are linear, thus adds flexibility to the profit 

function. 

3. The methodology does not require very large datasets for calibration. 

The calibration of the model is done in three steps. In the first a linear model of farm 

profit maximisation is defined with two sets of constraints. The first one is for resources 

constraints, which have to be normalised to land, and the second one is a restriction 

to reproduce observed crop areas. Water and Land were the only resources analysed 

in this project as explained in Equation 6.1. 

𝒎𝒂𝒙 𝒍𝒊𝒏𝒑𝒓𝒐𝒇𝒊𝒕 = ∑ 𝑿𝑳𝒊(𝒗𝒊𝒚𝒍𝒅𝒊 − ∑ 𝒄𝒊𝒋𝒂𝒊𝒋𝒋 )𝒊  

Equation 6.1 𝒔. 𝒕. ∑ 𝑿𝑳𝒊𝒊 ≤ 𝒃       ∑ 𝑿𝑳𝒊𝒂𝒊𝒊 ≤ 𝒘𝒂𝒕 

Equation 6.2 𝑿𝑳𝒊 ≤ 𝑿𝑳𝒊̃ ∗  𝜺 

Equation 6.3 

where 𝑖 represents each crop, 𝑋𝐿𝑖 is the farmers’ decision variable (crop areas), 𝑣𝑖 is 

the marginal revenue per unit of output for crop i, 𝑗 denotes the production inputs (in 

this case all inputs apart from water were lumped in a unitary cost per ha), 𝑐𝑖𝑗 is the 

cost of each input and 𝑎𝑖𝑗 is a coefficient relating the amount of input required per area 

of crop. Equation 6.2 describes the resource constraints, where 𝑏 and 𝑤𝑎𝑡 are the 

maximum area and volumes of water available. Equation 6.3 defines the calibration 

constraint where 𝑋𝐿𝑖̃  is the observed area of each crop, while 𝜀 = 1.0001 is a 

perturbation constant that allows the calibration. 

The second step of the PMP involves using the Lagrange multipliers 𝜆 of the calibration 

constraints (Equation 6.3) in the first step, to parameterise a quadratic cost function 

as follows: 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑠 = 𝑇𝐶 = 𝛼𝑖𝑋𝐿𝑖 + 12 𝛾𝑖𝑋𝐿𝑖2            𝛼𝑖 = 𝑐𝑖 − 𝜆𝑖           𝛾𝑖 = 2𝜆𝑖𝑋𝐿𝑖̃  

Equation 6.4 – Definition of parameters of the cost functions of the PMP. 
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The last step involves optimising a non-linear model for agriculture production with a 

quadratic cost function parameterised in step 2, using the previously defined 

parameters (see Equation 6.5) and the constraints in Equation 6.2. 

𝑴𝒂𝒙 𝒏𝒐𝒏𝒍𝒊𝒏𝒑𝒓𝒐𝒇𝒊𝒕 =  𝒁 =  ∑ 𝑿𝑳𝒊𝒗𝒊𝒚𝒍𝒅𝒊 −  𝜶𝒊𝒊 𝑿𝑳𝒊 − 𝟏𝟐 𝜸𝒊𝑿𝑳𝒊𝟐 

Equation 6.5 

6.2.1.2. PMP Model Calibration 

The 2007 agricultural census was used to define the type of crops and their areas in 

the case study (see Table 5.3). In addition, irrigation requirements were defined using 

evapotranspiration estimates for the Aconcagua valley done by INIA, crop coefficients 

from the FAO guides (Allen et al., 2006) and harvest dates from the literature 

(Faiguenbaum, 2003) (see Table 5.4, Table 5.5 and Table 5.6). For the economic 

analysis, this was complemented with technical sheets based on farmer surveys by 

the Oficina de Estudios y Politicas Agrarias (ODEPA – Bureau of Agricultural Policy 

and Research) (ODEPA, 2018)10. 

They include yields per area, market prices and costs, for the most frequently 

employed technological systems in the farms surveyed. The latter include some 

financial costs (e.g. interest on the loans taken at the beginning of the season to buy 

fertilisers and other supplies) but do not include major capital costs (CAPEX - e.g. cost 

of land and irrigation infrastructure, amongst others), except in the case of corn where 

they were included by ODEPA.  

The sheets are developed for each crop independently, and most of them are provided 

separately for each region of the country. Some crops in this project had sheets 

calculated specifically for the Aconcagua River, although in some cases sheets for the 

Region Metropolitana or O’higgins regions were used.  

                                            

10 Although the link to the Technical Sheets is provided in the reference, during this project it was 
evidenced that this may change with time. This data is available in ODEPA’s website following 
statistics productive statistics  the technical sheets are in the bottom of this page. 
https://www.odepa.gob.cl/estadisticas-del-sector/estadisticas-productivas  

https://www.odepa.gob.cl/estadisticas-del-sector/estadisticas-productivas
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Data on the water rights fees11 were available in two sheets from 2014 only (Table 

grapes and Peach) and it was found to be $40,000 CLP per ha per year (Chilean Peso 

- CLP). Taking into account the average water consumption of these two crops (see 

Table 5.4) means that the yearly water rights fee is around $8,075 CLP/ML. This value 

was applied to all crops.  

As many of the input values used were calculated in different years, inflation rates 

were applied to convert all price data to 2007 equivalents. The input data and 

agricultural results in this section are presented as 2007 prices, to match the year of 

the census. Nevertheless, most of the final calculations of the HEM were taken forward 

to 2017 prices. In order to achieve this, inflation rates based on Consumer Price 

Indices (CPI) were taken from the Instituto Nacional de Estadísticas (INE – National 

Statistics Institute) and are presented in Table 6.2 (INE, 2018).  

Table 6.2 – Yearly changes of Consumer Price Indices in Chile. 

Year CPI* 

2000 3.7% 

2001 2.1% 

2002 3.5% 

2003 0.6% 

2004 2.7% 

2005 3.7% 

2006 2.9% 

2007 8.9% 

2008 3.0% 

2009 1.5% 

2010 3.3% 

2011 3.1% 

2012 0.9% 

2013 5.4% 

2014 4.0% 

2015 4.2% 

2016 2.6% 

2017 2.0% 
Values were calculated using Calculadora IPC between June of the year and May of the next year. 

                                            

11 These fees should not be confused with the costs of irrigation infrastructure inside each farm. These 
fees are paid by all water right holders to their local River User Committees (RUC), to maintain the 
shared infrastructure in the channel. This is paid by users as a function of their amount of water rights 
independent of the crops they grow. 
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Furthermore, to facilitate the understanding of the economic magnitudes, many values 

were transformed to US Dollars (USD) with the exchange rates taken from OANDA 

(OANDA, 2018). These values were double-checked with data from the Chilean 

Central Bank until 2011 (see Table 6.3). Both the CPI and exchange rates presented 

in this section were used throughout this project. 

Table 6.3 – Average yearly exchange rate for Chilean pesos to 1 USD. 

Year Average Exchange 
Rate 

2000 540 

2001 636 

2002 688 

2003 692 

2004 609 

2005 560 

2006 530 

2007 522 

2008 523 

2009 559 

2010 510 

2011 484 

2012 487 

2013 496 

2014 571 

2015 654 

2016 677 

2017 649 

Table 6.4 summarises the input data required to calibrate the case study PMP. 

Appendix D includes a detailed explanation of how these values were defined using 

the previously mentioned sources. In the table, some of the values for wheat and corn 

are presented in Quintals (i.e. 100 kg), because input data were found in these units. 

This is only for illustrative purposes and does not have consequences on calculations, 

as the latter are done with revenues, which in all cases are presented in CLP per ha. 

Table 6.4 – Agricultural input data for the PMP model. Economic values in 2007 CLP. 

Value Price 
(CLP/kg) 

(CLP/qqm)* 

Yield 
(kg/ha) 

(qqm/ha)* 

Revenue 
(CLP/ha) 

Cost (CLP/ha) Crop 
Areas (ha) 

Applied 
Water 

(m3/ha) 

Alfalfa  $                59         9,850   $          578,087   $         518,093           1,705      4,676  
Wheat*  $        10,210              70   $          714,724   $         650,692                69      2,736  
Corn*  $          8,997            150   $       1,349,617   $      1,323,964              326      4,125  
Potato  $             132      26,000   $       3,427,681   $      2,771,060              112      3,573  
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Table 
Grapes 

 $             324      29,000   $       9,384,961   $      7,768,150           9,376      4,978  

Avocado  $             465      10,500   $       4,885,608   $      3,581,969              676      6,978  
Walnut  $          1,318         4,000   $       5,273,355   $      3,805,538           1,369      5,889  
Peach  $             124       30,000   $       3,722,368   $      3,278,946           2,632      4,928  
Olives  $             447         7,000   $       3,131,800   $      2,696,037              354      4,911  

Japanese 
Plum 

 $             488         9,000   $       4,393,120   $      3,638,376              146      4,928  

 

As previously mentioned, costs in the technical sheets and in Table 6.4 do not include 

Capital Expenditure (CAPEX), thus, they were defined using agricultural data from the 

USA (University of California - Davis, 2018), as no local information was found (only 

corn included CAPEX in the technical sheets). Based on the data from California, it 

was found that for most crops, CAPEX is around 26% of the yearly total costs (based 

on the comparison of Annualised Capital Costs - ACC12), while for wheat and alfalfa 

this is 5%. Taking into account the similarities in crops raised, weather and irrigation 

infrastructure in both regions, using this data in this project is seen as an acceptable 

assumption. 

Taking into account that this is a coarse approximation, it was decided to analyse the 

sensitivity of the HEM to changes in the ratio of CAPEX to Total Costs (from now on 

defined PeCAPEX). The sensitivity to the model to the PeCAPEX of wheat and alfalfa 

was not tested, as the margins of these crops are smaller (i.e. with values of PeCAPEX 

larger than 5%, negative net revenues may be obtained), and the areas of these crops 

are not very large. 

With the input data in Table 6.4, it was possible to determine the total volume of water 

required by the crops analysed in the PMP (84,803 ML/yr), which corresponds to the 

sum of all individual water requirements. This is not the same value of the node in 

WEAP (see Table 5.5), as in the latter it was necessary to use the estimation of the 

total consumption of water (93,786 ML/yr), and not only that of the crops with economic 

data available (91%), which were the ones included in the PMP.  

                                            

12 This concept is also defined Equivalent Annual Cost and represents the fraction of capital costs that 
is split amongst the number of periods of the lifespan of an investment, including the effects of discount 
rates. 
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The land constraint was defined based on the total area available for crops, as 

reported in the census (18,551 ha). In addition to crops (16,768 ha), this value also 

includes fallow, resting and unused land. This project assumes that farmers were 

unable to use all available land due to the lack of water, in other words, there was a 

water scarcity cost equivalent to the foregone profits of using the extra land. 

The PMP was coded in R to determine the shadow value of water for farmers. As 

previously defined, the higher this value is, the more urgent/pressing the requirements 

of water are, and the more likely it is that conflicts will arise between users. 

Furthermore, after the parameters of the CES production function and the quadratic 

cost function have been calibrated, it is possible to analyse how farmers in the case 

study may react to dry periods, which allows defining a water demand curve for 

irrigation water. 

6.2.1.3. Results of the economic analysis of agriculture demand 

The PMP calibration results are presented in Table 6.5, and they were validated by 

comparing the solutions with the original crop areas (differences were always below 

1%). This table shows that, for the region as a whole, corn is the product with the 

lowest net revenue and net revenue per water consumption. This means that the 

shadow value of water corresponds to corn’s net revenue per water consumption, and 

that the model redistributes its area (as much as the calibration constraint allows) to 

other crops (𝜆𝑐𝑜𝑟𝑛 = 0).  

Table 6.5 – PMP results. Economic values in 2007 CLP. 

Crop Net Revenue 
(CLP/ha) 

Linear 
Solution 

(ha) 

Lagrange 
Multiplier 𝝀 

Alpha 𝜶 
Gamma 𝜸 

Non-
Linear 

Solution 
(ha) 

Difference in 
predicted and 

actual crop 
areas (%) 

Alfalfa  $        59,994       1,706            30,914          487,180             36       1,706  0.007% 
Wheat  $        64,032            69            47,015          603,676         1,355            69  0.008% 
Corn  $        25,654          324                     -         1,323,964               -            324  -0.598% 

Potato  $      656,620          112          634,400       2,136,661       11,306          112  0.010% 
Table 

Grapes 
 $   1,616,811       9,377       1,585,849       6,182,301            338     9,377  0.010% 

Avocado  $   1,303,639          676       1,260,240       2,321,730         3,728          676  0.010% 
Walnut  $   1,467,817       1,369       1,431,193       2,374,345        2,090      1,369  0.010% 
Peach  $      443,422       2,632          412,772       2,866,174            314      2,632  0.010% 
Olives  $      435,763          355          405,222       2,290,816         2,286          355  0.010% 

Japanese 
Plum 

 $      754,744          147          724,094       2,914,281         9,885          147  0.010% 
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The shadow value of water under the full modelled level of water consumption was 

found to be $ 6,219 CLP/ML (i.e. the value for current consumption – 100% in Table 

6.6). Different volumes of water (e.g. as a percentage of the original volume available) 

were used to run the third step of the PMP several times and define the water demand 

curve for agriculture (see Table 6.6 and Figure 6.1). When water availability goes 

beyond 110% the shadow values are 0, meaning that water is not the constraint 

anymore, as farmers are using all land available (i.e. area is the new constraint of the 

model). 

Table 6.6 – Shadow value of water in the first irrigation area of the Aconcagua River. Economic 
values in 2007 CLP. 

Percentage (%) Shadow Value 
(CLP/ML) 

Volume (ML) 

20  $      426,698         16,961  
30  $      337,052         25,441  
40  $      256,582         33,921  
50  $      176,965         42,402  
60  $      131,769         50,882  
70  $         88,167         59,362  
80  $         44,565         67,842  
90  $         15,113         76,323  
100  $           6,219         84,803  
110  $                  0         93,283  

 

Figure 6.1 illustrates the water demand curve for agriculture in the case study, and 

shows that for very low water volumes the shadow value of water is quite large, as 

farmers have a very high willingness to pay for it. Further right in the curve, values 

approach the shadow value for observed conditions ($ 6,219 CLP/ML), and then it 

becomes 0 when more than the total amount of water currently required is made 

available. In this situation land, rather than water, becomes the binding constraint.  
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Figure 6.1 – Water Demand Curve for agriculture in the first irrigation area of the Aconcagua 
River. Values in 2007 prices. 

In order to explore the potential importance of the ratio of CAPEX to total costs on 

these results, Figure 6.2 plots how different values of PeCAPEX affect the water 

demand curve. It can be seen that the shape of the curves are similar but the 

magnitudes change. Larger PeCAPEX decrease the net revenues of crops (i.e. they 

are less profitable), thus farmers forego less revenue during droughts (i.e. their 

willingness to pay for irrigation water decreases). The right hand side of the curve does 

not change, as the least profitable crops that influence this part of the curve had a 

constant PeCAPEX (i.e. were not included in this sensitivity analysis).  

 

Figure 6.2 – Effects of the selection of ACC percentage on the Water Demand Curve. Values in 
2007 prices. 

The two other key economic metrics for this project are the total value of water and 

the water scarcity cost. The former is expressed by the objective function of the PMP 

model, thus it is also possible to plot how this value changes as a function of the 

volume of water available in the catchment (see Figure 6.3). It is important to mention 
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that the curve in Figure 6.1 is the derivative of Figure 6.3, which means that net 

revenues can also be defined by integrating the water demand curve.  

 

Figure 6.3 – Total value of water for agriculture in the first irrigation area of the Aconcagua 
River. Values in 2007 prices. 

Water scarcity cost is also related to the area under the water demand curve, which 

makes it similar to the previous metric. However, in this case it is only accounted the 

area between the point of available water in a determined year and the intersection of 

the curve with the x-axis (i.e. where land starts being the resource constraint). Table 

6.7 summarises all metrics. 

Table 6.7 – Summary of metrics for agriculture in the calibration scenario13. Values in 2007 
prices. 

Metric Unit Value 

Shadow Value of water  CLP / ML  $                          6,219  
Total value of water CLP / yr  $          19,673,748,809  
Water Scarcity Cost CLP / yr  $                 52,739,048  

 

6.2.1.4. Limitations of the economic analysis for agriculture 

In addition to the issues arising from the lack of information about CAPEX and the 

uncertainty from the lack of a more up-to-date agricultural census, there are other 

                                            

13 The Calibration Scenario is the year for which the economic calculations were defined. These values 
can be transformed to other years by means of inflation rates. This concept should not be confused 
with the Base Case Scenario, which corresponds to the benchmark for the whole HEM (i.e. including 
both the water resources and economic components) between 2000 and 2017 described later in this 
section. 
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considerations that should be mentioned. First, PMP models have limitations 

including: 

 PMP models are less suited to analyse multiple observations (e.g. from several 

years) on production outcomes for the same crop (e.g. to incorporate a set of 

marginal cost conditions for the same product). These rather work on the 

average cropping decisions for a set of years. 

 PMP models are not able to analyse crops or farms whose production is zero 

during the reference period. In other words these cannot predict new crops in 

a given year if these were not part of the average of the base time period in the 

dataset. 

A detailed discussion on these and other limitations can be found in Heckelei and Wolff 

(2003), de Frahan et al. (2007) and Howitt (2005). One of the conclusions drawn from 

these references is that PMP models may not make the best use of information when 

large datasets are available (i.e. several years of data). However, within scenarios of 

data scarcity like the one in this case study, these issues tend not to be a problem, 

and PMPs are well suited to analyse agriculture production based on the few data 

available. 

In addition, it is important to mention that PMP results represent an ideal scenario 

where water is allocated with the aim of maximising its economic value. The closest 

representation of this in reality may only be achieved by using water markets, although 

there may be limitations as the latter involves transaction costs, and farmers behaviour 

in water markets departs from PMP ideal allocations. 

For example, it has been reported that farmers prefer to trade water inside the same 

irrigation channel only, some of them do not trade water separated from land, and 

sometimes water is not metered to make sure that each person takes only their 

appropriate share (Donoso et al., 2010, Hearne and Donoso, 2014, Donoso, 2015). 

These are practical issues for the use of PMP but also for most alternative models, yet 

limitations and assumptions have to be discussed. 

Finally, the PMP in this project assumed that the water volumes required by the crops 

are the same as the applied volumes by farmers. In reality, farmers may apply larger 

or smaller volumes as a function of their irrigation infrastructure, and based on their 
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experience. Thus, adjustments at the intensive margin of water use in crop farming 

(i.e. irrigation intensity), will occur as farmers balance yields and water availability 

conditions. This could be a subject for future refinement of this HEM. 

6.2.2. Economic analysis of urban water demand 

In order to define the water demand curve for the urban user, it was applied the Point 

Expansion Method (Griffin, 2016, Young and Loomis, 2014), which is a common tool 

to analyse urban water demand, particularly when there is not too much data available. 

Cai (2008) used to this approach to analyse surface water demand from urban users 

in the Maipo River in Chile (just south of the Aconcagua River). One approach for 

applying this method is to use a known consumption 𝑄 and price 𝑃 combination (i.e. 

the volume that is being currently consumed and the associated price per unit 

consumption), and to assume an estimate for the price elasticity of water demand 𝛼 

(see Equation 6.6), if it is not possible to calculate one from available data. Cai et al. 

(2006) defined the consumption, price pair (𝑄, 𝑃) from data of the local water utility, 

and they assumed a constant elasticity 𝛼 = −0.45. 

𝑸 = 𝑨𝑷𝜶 

Equation 6.6 

Furthermore, following Cai et al. (2006) suggestions, this methodology was restricted 

to analyse the surface water consumption for urban uses in the catchment. 

The input data to describe the urban water consumption was taken from the five-years 

plan of ESVAL (i.e. the local water utility) (ESVAL, 2014). The surface water 

consumption of this user in the first irrigation area is around 79.7 l/s (2.5 million m3 per 

year – 2,500 ML/yr). 

Regarding the price, ESVAL has a charging system with different types of rates: a 

monthly fixed fee, a non-peak fee, and a peak fee (charged between December and 

March). The values for 2007 are shown in Table 6.8, including the average ($461.41 

CLP/m3). This value was calculated assuming that consumption is similar throughout 

the year, thus the price can be estimated as a weighted average proportional to the 

amount of peak (4 out of 12) and non-peak (8 out of 12) months. Yearly values were 

defined using the average yearly consumption per client in the case study (222.55 

m3/yr). 
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Table 6.8 – ESVAL fees for urban water consumption in the case study in 2007 prices. 

 
Fixed ($ 

CLP) 
Non-Peak 

($ CLP/m3) 
Peak ($ 

CLP/m3) 
Total per 
year ($ 

CLP/client) 

Average 
per year ($ 
CLP/m3) 

Monthly Values  $     755.75 $ 419.98 $ 422.02 
  

Yearly Values  $  9,069.00 $ 419.98 $ 422.02 $  102,688.27 $ 461.41 

 

The five-years plan also shows that the average cost of supply per m3 is $ 369 CLP. 

It is assumed that this figure comprises both CAPEX and OPEX, as several sections 

of the plan discussed how infrastructure investments and other CAPEX were included 

in the user fees as annualised capital costs (ACC). 

Taking this into account, the net revenue per m3 for the water utility is approximated 

here as the average price (see Table 6.8) minus the cost ($ 369 CLP/m3), which is: 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑓𝑖𝑡 = $ 461.41 𝐶𝐿𝑃𝑚3 − $ 369 𝐶𝐿𝑃𝑚3 = $ 92.41 𝐶𝐿𝑃𝑚3  

The price elasticity of demand, or an approximation of it, was not found in the five-

years plan, thus, this parameter was taken from the HEM of the Maipo River previously 

mentioned, where this value was defined as -0.45 (Cai et al., 2006). As mentioned 

before, the authors warn that this value should only be used for surface water sources.  

The selection of this value was further discussed with experts in Australia and Chile, 

both of whom agreed that this was a good approximation. A summary of the values 

used to parameterise Equation 6.6 is included in Table 6.9. Once all other values were 

defined, the value of 𝐴 could be calculated. 

Table 6.9 – Parameters of the urban water demand model. 𝑷 (𝑪𝑳𝑷/𝑴𝑳) 𝑸 (𝑴𝑳) 𝜶 𝑨 

$        92,412 2513 -0.45 431,362 

 

6.2.2.1. Results of the economic analysis of urban water demand 

The water demand function for the urban user is shown in Figure 6.4. The shadow 

value of water for urban uses corresponds to the willingness to pay by this user in the 

point of observed consumption in 2007 ($ 92,412 CLP/ML), which is considerably 

higher than the value for agriculture ($ 6,219 CLP/ML) by roughly one order of 
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magnitude. This was expected a priori as it is known that the willingness to pay by 

urban users is higher than by farmers (Medellín-Azuara, 2006, Forni et al., 2016, 

Young and Loomis, 2014), and the differences usually involve at least one order of 

magnitude. 

 

Figure 6.4 – Water demand curve for urban water. 

Figure 6.5 shows the agriculture and urban curves together. In this figure it can be 

seen that the urban user is always willing to pay more than agricultural users to obtain 

additional water. It is important to note the difference in the x-axis between Figure 6.5 

or Figure 6.2, and Figure 6.1 or Figure 6.4. While the x-axis of the latter two is the 

volume of water available in ML, in the former two it is the percentage of the observed 

consumption in 2007.  

 

Figure 6.5 – Water demand curve for urban uses and agriculture. 

By using percentages in the x-axis it is possible to scale the water demand curve, for 

example to downscale the analysis from the whole case study population to one client 
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only (i.e. an average representative client). This would mean that the full urban 

consumption (100%) is not the 2.5 million m3/yr but 222.55 m3/yr. This does not affect 

the scaling of the y-axis as this is always a price per unit of volume, measuring how 

the WTP of the whole population or a representative client, changes as a function of 

available water.  

This was particularly useful for this project because it facilitated monthly economic 

analyses of the value of water, and also enabled analysing the whole water 

consumption included in the WEAP water node, despite only 91% of it had economic 

data available. In both of these cases the x-axis of the water demand curve showed 

the proportion of water available relative to their normal full consumption level.  

Regarding the additional metrics for urban water, water scarcity cost is 0 as the urban 

demand is fully covered, thus the point of current consumption is the same one as the 

point of full consumption. In other words, there is no area below the curve between 

these points, and following the previous description of this metric, this means the water 

scarcity cost is zero. On the other hand, defining the total value of water in urban use 

is more complex, and this will be discussed in the following section. 

Table 6.10 – Summary of metrics for urban water demand for the observed period. Values in 
2007 prices. 

Metric Unit Value 

Shadow Value of water $ CLP / ML $                         92,412 

Water Scarcity Cost $ CLP / yr $                                  0 

 

6.2.2.2. Limitations of the economic analysis of urban water demand 

The current approach to analyse urban water takes the perspective of the producer 

(the water utility), as done for agriculture, and that is why the water demand curve is 

defined using prices net of costs. However, by defining this curve it is implicitly 

assumed that the water supply company is not regulated and could set higher prices 

for water during scarcity periods. In reality, the company is regulated and prices are 

controlled, and overconsumption fees are the only tool companies can use to charge 

higher rates during water scarce periods, but they are not as flexible as the water 

demand curve. 
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This does not mean that if future climate conditions or other phenomena increase 

water scarcity in the catchment, the company will be forced to operate at a loss, as 

they are able to review their costs every time they submit a five years plan. This means 

that they can adapt their fees every time they update their plan, to make sure the 

service continues to operate. The update of these prices, however, may not be as 

flexible as the water demand curve defines, however, this is not an uncommon 

assumption in HEMs that include urban water use.  

Furthermore, to avoid very high fees (quite unrealistic due to regulations), it was 

attempted that the water demand curve was used from the point of 50% of total 

consumption only. Imposing this threshold and avoiding smaller percentages, 

whenever possible, was also a consequence of using a constant average cost per m3 

($ 369 CLP/ m3). Although this may not be a bad assumption in the vicinity of the 

observed consumption, the inaccuracy of this estimation may increase rapidly if very 

small percentages of water availability are used, as in reality the fixed costs would 

increase considerably relative to the variable costs in this part of the curve.  

Taking this into account, the total value of water for the urban user was defined as the 

area under the water demand curve, but assuming that for levels of consumption 

below the 50% of the current one, the shadow value remained constant (see Table 

6.11).  

Table 6.11 – Total value of urban water use in the calibration period. Values in 2007 prices. 

Metric Unit Value 

Total value of water $ CLP / yr $        795,267,193 

 

6.2.3. Economic analysis of hydro-power demand 

As opposed to agriculture and urban uses, for hydro-power it was not possible to 

define a water demand curve because of the complexity of the energy sector. Energy 

suppliers in Chile usually have contracts with the regulator, which define the prices at 

which they will sell the energy produced. This is somewhat similar to the case of the 

water utilities, however, there is a considerable difference as the energy network is 

connected to several producers, which makes it resilient to cases in which one supplier 
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(e.g. the hydro-power stations in this case study) struggle to generate energy (e.g. 

during a dry period). 

This means that defining a water demand curve for this sector is virtually impossible, 

as it would be necessary to take into account several producers in the grid, plus all the 

regulation involved. In addition, the result of this would likely be an inelastic curve (i.e. 

no matter the changes in water availability in the case study, the price may remain 

almost constant). Due to this, it is a realistic assumption to set the willingness to pay 

from the hydro-power company at a constant value, independent of the volume of 

water available (Cai et al., 2006, Satti et al., 2015).  

Taking this into account, to define the value of water for hydro-power it is only required 

to define the price and costs of producing energy, and then analysing these with the 

volumes of water available to generate it. The only restrictions are the WRs from these 

companies and the capacity of the generators (i.e. the maximum flow that can pass 

through them). 

These physical and legal restrictions were included, and were complemented with 

another one aimed at reproducing real conditions of the catchment as accurately as 

possible. This involved using the values of energy production between 2000 and 2017, 

as the target for the HEM. As mentioned in Chapter 5, these generation targets were 

included in the WEAP model, while the actual generation is a WEAP output. The total 

value of water for this user was then defined as the product of this output with the net 

revenue. It is important to bear in mind that as stations are located in series, the same 

volume of water may produce energy in several successive generators. 

Furthermore, water scarcity costs were not included as there was no water curve, 

therefore, this would be redundant taking into account how the Total Value of Water 

was calculated. 

The price of energy was taken from the regulator (CNE, 2018), while the cost of 

production was approximated from an industry average in Bezerra et al. (2012), who 

did a review of CAPEX and OPEX for run of river hydro-power generators in Chile and 

defined levelised costs (i.e. yearly OPEX plus annualised CAPEX, a concept similar 

to ACC). More accurate values are difficult to find as companies are not required to 

disclose them. Price and cost estimates are shown in Table 6.12. 
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Table 6.12 – Price and costs of the Hydro-power user. Values in 2007 prices. 

 
Unit Value 

Price $ CLP/kWh 38.8 

Cost $ CLP/kWh 28.0 

Profit $ CLP/kWh 10.8 

 

Taking into account the production generated in the WEAP model for 2007 and the 

values in Table 6.12, the total value of water for the energy user in this year is $ 7,964 

Million CLP, in 2007 CLP. This methodology was easily adapted to calculate monthly 

values, as the WEAP model provides monthly energy generation figures, and these 

can be multiplied by the profit per kWh. 

6.2.4. Economic analysis of mine water use 

Developing insight into the analysis of the economic value of mine water use was one 

of the aims of this project, due to the lack of literature on the valuation of water used 

by resource industries (e.g. mining, oil and gas) (Young and Loomis, 2014). A priori, it 

was known that some of the complexities are derived from the fact that for many years, 

these industries had seen water resources as a relatively minor cost of operation in 

their large CAPEX and OPEX (even when compared with other input resources like 

energy). Thus, water was often taken as a fixed input that could be obtained almost at 

any cost, because it would not influence considerably their bottom line. On the other 

hand, access to energy, amounts of minerals, their concentration, and other mining or 

metallurgical considerations were considered the key factors determining their 

production function. 

This has changed to some extent as water has gained more relevance and is now 

considered by many as a key input in mining. This is partly because of the potentially 

high costs that social opposition may generate for projects. However, the new 

relevance of water is also caused by the fact that relatively cheap sources of water 

(e.g. surface water and groundwater) that were frequently used in the past are being 

depleted, and this industry has had to invest considerable amounts of money in 

desalination or tailings water recycling systems.  

For an illustration, farmers paid around $8,075 CLP/ML (to maintain the irrigation 

infrastructure) and production costs of urban water (e.g. treatment and pumping) are 
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around $ 754,000 CLP/ML, in the case study in 2014. As opposed to this, desalinated 

water costs around $2,000 USD/ML ($1.14 million CLP/ML) in areas nearby the sea 

(Ghaffour et al., 2013, Zhou and Tol, 2005), and around $5,000 USD/ML ($2.8 million 

CLP/ML) (Concha et al., 2016) at high elevation mines. This illustrates the increasing 

costs that are making water a more relevant input to mine economics.  

In this context, this project attempted to analyse mining’s participation in water 

markets, to elucidate the value by analysing their transactions. Records between 2004 

and 2014 were taken from the DGA and these were analysed after doing a basic 

quality control (e.g. eliminating duplicate, incomplete or misleading values14). Then, 

an exploratory analysis was undertaken following Donoso et al. (2010) and Donoso et 

al. (2014). Despite providing interesting results, this analysis made it clear that it would 

be difficult to understand mining’s value of water through market information. The key 

findings are summarised as follows: 

1. The share of mining in water markets is minor compared to agriculture, urban 

utilities, and even to other traders like real estate. 

2. Mining participation is mostly focused in the northern regions of the country 

where mining is more abundant. Furthermore, due to the very different climate 

conditions, values change considerably as a function of the region. 

3. Mining’s willingness to pay is considerably higher than any other user, to the 

point that it is not clear if some transactions are outliers or simply were not 

registered properly. Figure 6.6 shows an example of how mining transactions 

considerably affected the average price in the Antofagasta region in 2008. 

Further to these observations, some mining users also argue that to avoid further 

problems with communities, they prefer not to see traditional sources of water as 

viable options for future supply, thus there is little incentive to trade. This means that 

even in the context of a market with transparency and price variability issues like the 

Chilean one (as explained in Section 2), the uncertainty in an estimation of the value 

                                            

14 This included checking for values that involved transactions of land as well, and deals that had zero 
price, which are likely to be related to gifts, or inheritance DONOSO, G., CANCINO, J., MELO, O., 
RODRIGUEZ, C. & CONTRERAS, H. 2010. Análisis del Mercado del Agua de Riego en Chile: una 
Revisión Crítica a Través del Caso de la Región de Valparaiso. PONTIFICIA UNIVERSIDAD 
CATÓLICA DE CHILE.. 
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of water for mining based on trading data would be quite high. Moreover, if values from 

the northern regions were used, it would be required to adjust them first using 

econometric tools, as to account for the differences in climate conditions. Therefore, 

this exploratory analysis of the prices paid by mining for water was not taken forward 

along the lines of other water market analyses (Donoso et al., 2014, Donoso et al., 

2010). 

 

Figure 6.6 - Average price of one l/s of long-term consumptive WR by state/region in the USA 
and Chile in 2008. Antofagasta and Antofagasta-NoMine represent the values in the region with 

and without mining transactions  (Bren School of Environmental Science & Management -  
University of California, 2010, DGA, 2015b)15. Taken from (Ossa-Moreno et al., 2018). 

After rejecting the previous approach, the best alternative to analyse the economic 

value of water for mining was to apply a method similar to that used for hydro-power. 

It was assumed that full production (i.e. the production for 2007) was achieved during 

all years of the base case scenario of the HEM. If the water supplied in another 

scenario was less than in this case, this would entail a scarcity cost equivalent to the 

difference in the profits between both scenarios. 

This approach does not incorporate a detailed understanding how the shadow value 

of water for mining changes as a function of water availability, but it allows including 

this user in the HEM, and comparing their degree of satisfaction through a quantitative 

                                            

15 This Figure was constructed after carefully reviewing water prices, however, it is acknowledged that 
these datasets have limitations, including price transparency, thus they are mainly presented for 
illustrative purposes (Grafton et al., 2011, Hearne and Donoso, 2014).  
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metric. Prices and costs of the copper concentrate in 2007 were taken from Cochilco 

(2017)  (see Table 6.13). These are the highest quality publicly available values, 

although they are estimates from all operations of the company, and not only the mine 

inside the case study.  

Table 6.13 – Price and costs of the mining user. Values in 2007 CLP. 

 
Unit Value Unit Value 

Price US c/lb $ 323.2 CLP/lb $ 1,687.4 

Operational Cost US c/lb $ 136.0 CLP/lb $     710.1 

Total Cost US c/lb $ 272.0 CLP/lb $   1420.1 

Net Revenue US c/lb $ 180.9 CLP/lb $    267.3 

 

The cost estimate in Table 6.13 includes OPEX only, thus it was required to 

approximate CAPEX in a similar way as for agriculture. Capital intensity in the mining 

industry may fluctuate as a function of ore grades and other factors, and for this project 

this was defined with data from market analyses (AME, 2016). Based on this, it was 

assumed that the ratio of CAPEX intensity (US$/lb) to total costs (PeCAPEX) was 

50%. This is larger than for agriculture as this is a more capital intensive industry. A 

sensitivity analysis of this value was undertaken for the mining user as well. 

By using the price and cost estimates in Table 6.13 and the copper production for 2007 

(218,400 Tons of copper concentrate), the total value of water for the mining user in 

2007 is $ 128,710 Million CLP, in 2007 prices (the total consumption by this user in 

this year was assumed to be 21.58 million m3). These calculations can be done in 

monthly time-steps assuming that the yearly production is evenly distributed 

throughout the months. Furthermore, although a water demand curve was not defined, 

the mining user’s willingness to pay for extra units of water, whenever demand is not 

fully covered, is $5.96 million CLP/ML. 

As mentioned in Chapter 5, copper production during the whole period of analysis of 

the HEM was assumed to be the same as for 2007, to follow the same limitation of the 

agriculture user and in order to do a fairer comparison. 
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6.3. Coupling methodology for the water resources and economic 

components 

There were practical considerations for the development of the coupling methodology. 

First, it was desired that the exchange of data between components was fast and 

automatic (i.e. avoiding just one transfer of data after running one component first, and 

using its outputs to run the other), and preferably using only one software. It was also 

required that importing and exporting data was efficient, to facilitate changing model 

inputs and parameters, and doing data analysis of the outputs. 

The second consideration was that the coupling methodology should be robust 

enough to allow a detailed representation of water resources and the economic values 

of water. This would allow going beyond the use of historical or synthetic flow values 

(i.e. using the WEAP model), and would also allow a detailed representation of the 

value of water by means of water demand curves for agriculture and urban uses.  

Finally, it was also desired to use relatively easy to access tools that facilitated the 

replication of the model in other case studies. WEAP is a free tool if used in developing 

countries and it is relatively inexpensive otherwise, thus it was desired to complement 

it with software with similar licensing conditions. 

With these requirements in mind, it was decided that the best alternative was to use a 

computer programming language like Python, connected to WEAP through the API 

(Application Programming Interface).  

The steps to develop and use the HEM are described as follows, while a flowchart is 

shown in Figure 6.7: 

1. Calibrate the water resources model in WEAP to reproduce the conditions of 

the catchment (see Chapter 5), and define the economic value of water for each 

user (see previous sections of Chapter 6).  

2. Within Python define any desired changes (e.g. climate data, water demands, 

energy generation targets, consumption patterns, minimum flow requirements, 

etc.). If no changes are specified, the standard WEAP model described in 

Chapter 5 is used. 
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3. Using Python, WEAP runs the model16 and extracts all desired outputs at 

monthly time-steps including: 

a. Flows at the six flow gauge locations in the catchment. 

b. Hydrological fluxes at each sub-catchment (e.g. runoff, groundwater, 

interflux). 

c. SWE in all sub-catchments. 

d. Water volumes provided and demand coverage to each user, including 

minimum flow restrictions. 

4. The economic analysis of urban, hydro-power and mining users is done. 

5. Yearly agriculture production is restricted by the month with the smallest 

demand coverage and the economic calculations are done following this 

restriction. Those months with a larger demand coverage than the driest one 

are not able to use all the water allocated by WEAP, but only up to the point of 

the driest month. This generates a spare volume of water than can be traded 

with other users. 

6. A Python script analyses if any user has unfulfilled demand. If there is, water is 

re-distributed towards the user with the largest willingness to pay (i.e. simulating 

a water market), until an equilibrium point is reached17. The mining user is not 

included here, following observed behaviour which evidences that water users 

are reluctant to trade with them. By default there are no transactions fees, but 

they could be included. 

7. After water is redistributed, overall economic metrics are calculated for each 

user and for the catchment as a whole. Inflation and exchange rates are used 

to present all results in real prices for a determined year. This is complemented 

with demand coverage metrics. 

                                            

16 In this step all users are assumed to have the same priority in WEAP, in order to replicate the ideal 
conditions in the case study in which everyone attempts to get as much water as their WRs allow. When 
water is not enough to fulfil all WRs, it is allocated proportionally. All priorities can be modified from 
Python. 
17 The water market explained here (e.g. the transactions between agriculture and urban uses) should 
not be confused with the ideal allocations of water by the PMP. As explained in Section 6.2.1, the latter 
takes information from current water use by the agricultural sector in the case study and optimises water 
allocation to maximise the economic value of water. The results from this PMP are in turn used to define 
water demand curves for the sector as a whole, and these curves are used to define the trades between 
agricultural and urban sectors.  
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Although the model uses previously defined water demand functions by default, it 

is possible to update them to allow changing economic inputs as well, while other 

type of restrictions (e.g. minimum coverage for a specific user required) could also 

be included. All this can be done before or during the coupling process, as Python 

scripts make sure that there is constant exchange of data between components. 

The model does not require major computational requirements involving HPCs. 

Currently, it is run on a computer with 8G of memory, an i7 processor and 4 cores, 

and it takes between 2 and 5 minutes, depending on how long it takes to reach 

equilibrium with the shadow values of water. 
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Figure 6.7 – Flowchart of the coupling methodology using WEAP’s API and Python scripts. 

6.4. HEM coupling results 

The Base Case Scenario for the HEM corresponds to the period between 2000 and 

2017 using the standard WEAP model (i.e. including the observed past climate 

conditions). The key summary metrics are presented in Table 6.14. Furthermore, 
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Table 6.15 shows the average demand coverage for each of the users during the 

whole period of analysis. It is important to remember that water scarcity cost and 

shadow value of water are only influenced by agriculture and urban uses. 

Table 6.14 – Summary economic metrics of the base case scenario of the HEM. Values in 2017 
prices. 

Metric Value 

Total Value of Water $  5,849.1 Million  USD 
Total Value of Water  Profit WM** $  5,849.2 Million  USD 
Total Value of Water  Profit NM* $  1,013 Million  USD 

Water Scarcity Cost $ 6.11 Million USD 
Water Scarcity Cost WM** $ 6.08 Million USD 

Average Shadow Value $ 122 USD/ML 
Average Shadow Value WM** $ 121 USD/ML 

* Total value of water without including the mining user (NM= No Mining User). 
** Values after trading water between agriculture and urban uses (WM= Water Market). 

Table 6.15 – Demand coverage in the base case scenario of the HEM. 

User Demand Coverage (%) 

Agriculture 96.1 
Urban 99.7 

Hydro-power 92.8 
Mining 90.0 

Average 94.3 

 

In addition to the results of the Base Case Scenario, the model was checked by 

analysing its sensitivity to; the minimum flow requirement at the outlet (i.e. the one 

representing downstream users), and the ratio of CAPEX to total costs (PeCAPEX). 

Table 6.16 shows the economic metrics for the minimum (5 m3/s) and maximum (10 

m3/s) flow requirements at the outlet of the catchment, while Table 6.17 shows the 

coverage of demand. 

Table 6.16 – Summary economic metrics of the minimum and maximum flow requirements at 
the outlet of the catchment. Values in 2017 prices. 

Metric Minimum outlet flow 
requirement (5 m3/s) 

Maximum outlet flow 
requirement (10 m3/s) 

Total value of water $  5,853 Million  USD $  5,782 Million  USD 
Total value of water WM $  5,853 Million  USD $  5,783 Million  USD 
Total value of water NM $  1,018 Million  USD $  998.7 Million  USD 

Water Scarcity Cost $ 1.93 Million USD $ 20.6 Million USD 
Water Scarcity Cost WM $ 1.92 Million USD $  20.4 Million  USD 
Average Shadow Value $ 109 USD/ML $ 157 USD/ML 

Average Shadow Value WM $ 109 USD/ML $ 150 USD/ML 
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Table 6.17 – Demand coverage for the minimum (5 m3/s) and maximum (10 m3/s) flow 
requirements at the outlet of the catchment, before and after water markets. 

User Demand Coverage Minimum 
requirement (%) 

Demand Coverage Maximum 
requirement (%) 

Agriculture 100 87.9 
Urban 100 99.0 

Hydro-power 92.9 92.6 
Mining 90.5 89.1 

 

Regarding the sensitivity of the model to PeCAPEX, different percentages were tested 

for agriculture and mining. However, for the remainder of the calculations of this project 

the selected values were 26% for the former and 50% for the latter. Table 6.18 and 

Table 6.19 show the effect of these changes on the economic metrics. None of these 

parameters affected the water resources component therefore there are no changes 

in demand coverage. 

Table 6.18 – Analysis of the sensitivity of the HEM to changes in the ratio of CAPEX to total 
cost for agriculture (PeCAPEX). 

Metric 10% 15% 20% 26% 30% 

Total value of water (in US 000,000)  $ 6,359.4   $ 6,220.2   $ 6,063.5   $ 5,849.1   $ 5,681.9  
Total value of water WM (in US 

000,000)  $ 6,359.4   $ 6,220.3   $ 6,063.5   $ 5,849.2   $ 5,681.9  

Total value of water NM (in US 000,000)  $ 1,523.5   $ 1,384.4   $ 1,227.7   $ 1,013.3   $    846.1  
Water Scarcity Cost (in US 000,000)  $      9.07   $      8.29   $      7.39   $      6.11   $      5.04  

Water Scarcity Cost WM (in US 
000,000) 

 $      9.04   $      8.26   $      7.37   $      6.08   $      5.00  

Average Shadow Value (in US / ML)  $       132   $       129   $       126   $       122   $       118  
Average Shadow Value WM (in US / 

ML) 
 $       131   $       128   $       125   $       121   $       117  

 

Table 6.19 – Analysis of the sensitivity of the HEM to changes in the ratio of CAPEX to total 
cost for mining (PeCAPEX). 

Metric 30% 40% 45% 50% 55% 

Total value of water (in 
US 000,000)  $ 13,189.2   $ 10,130.9   $   8,184.6   $   5,849.1   $   2,994.6 

Total value of water WM 
(in US 000,000)  $ 13,189.3   $ 10,130.9   $   8,184.6   $   5,849.2   $   2,994.7  

Total value of water NM 
(in US 000,000)  $   1,013.3   $   1,013.3   $   1,013.3   $   1,013.3   $   1,013.3  

Water Scarcity Cost (in 
US 000,000)  $        6.11   $        6.11   $        6.11   $        6.11   $        6.11  

Water Scarcity Cost WM 
(in US 000,000)  $        6.08   $        6.08   $        6.08   $        6.08   $        6.08  

Average Shadow Value 
(in US / ML)  $         122   $         122   $         122   $         122   $         122  
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Average Shadow Value 
WM (in US / ML)  $         121   $         121   $         121   $         121   $         121  

 

6.5. Discussion 

A HEM model was developed after coupling water resources and economic 

components through Python scripts. The purpose of using a HEM with these two 

components was to better represent real conditions in the catchment where water is 

allocated through a system of water rights (e.g. where all water holders have the same 

priority). However, these rights can be traded in a water market in which agriculture 

and urban users are the most active participants, while mining and other users are not 

quite involved and tend to keep their rights relatively constant (See Chapter 2). 

The methodology involved running the previously calibrated WEAP model, and then 

defining the economic value of water for all users by means of three economic metrics; 

Shadow Value of Water, Water Scarcity Cost and Total Value of Water. These outputs 

were complemented by reporting the percentages of demand coverage for each user. 

By using Python scripts and WEAP, it was possible to provide real time feedback from 

both components at all time steps, without doing major simplifications of any of them. 

This meant that the coupling was not limited to one directional transfer of data. 

The water resources model was run in monthly time-steps to take into account intra-

annual variations and seasonality, was calibrated with 5 flow gauges and snow data, 

and was able to fulfil the demand for water to a large extent. The economic component 

made the best use of available data to develop water demand curves for two of the 

water users in the catchment, and two more simple approaches for the rest, in order 

to provide a more robust analysis than other alternatives to allocate water (Forni et al., 

2016). Further alternatives such as allocation based on priorities (Esteve et al., 2015) 

or penalty functions (George et al., 2011) can also be implemented.  

Further benefits of this approach are its efficiency in terms of computational 

requirements and processing times. In addition, as WEAP is a platform that is free in 

many countries for research or government purposes, and Python is an open-access 

programming language, the tools are not limited to a specific region (Dale et al., 2013b, 

Medellín-Azuara et al., 2015), but can be replicated elsewhere.  
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Regarding the specific results of the HEM in this project and the sensitivity analysis, it 

can be seen that the participation of mining in the total value of water is very large 

(83% in the base case scenario). This may fluctuate as a function of PeCAPEX values 

for mining and agriculture, but it is always high (see Table 6.18 and Table 6.19), which 

highlights that mining is a special user in HEMs. This is why the Total Value of Water 

was complemented with others metrics in order to better understand the value of water 

for different users. These alternative metrics could also be viewed as proxies of the 

water conditions and water conflicts in the catchment. For example, the higher the 

shadow value of water and water scarcity costs, the more likely it is that conflicts and 

problems will arise between water users. 

Results also show that water markets enhance conditions in the catchment (e.g. 

increase total value of water, while reducing shadow value of water and water scarcity 

costs), however, improvements are relatively small. Shadow values and water scarcity 

costs are improved by between 0.1 and 4.5% only (see Table 6.16 and Table 6.18), 

while the impacts on total value of water are even smaller. This is partly because urban 

coverage before the trading is already quite high (for the 5 m3/s flow requirement case 

it was not required to trade water in the model). In addition, and more importantly, this 

is because the volumes of water consumed by urban uses are relatively small 

compared to the rest, which means that small trades of water can rapidly fulfil urban 

demand with little impact on the economic metrics. If urban consumption was larger 

compared to agriculture, the effects of water markets may have been more evident. 

It is also important to mention that the water scarcity costs for the base case scenario 

and the sensitivity analyses, are relatively small compared to the total value of water 

with and without mining (in these cases most water scarcity arises in agriculture only). 

There are three orders of magnitude in the difference, meaning that on a catchment 

scale, the foregone benefits of not having enough water to irrigate the unused land in 

the catchment are not very large compared to the total value derived from water in 

other uses.  

This is a consequence of the last units of water (i.e. before land becomes the 

constraint) having a relatively low shadow value, as they are used for seasonal (low-

value) crops that do not require securing long-term access to water and are cultivated 

whenever water is available only. High value crops require securing access to water 
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during several years, thus, in an optimisation scenario they are expected to be the last 

to sacrifice during dry periods. This is reflected in Figure 6.2 where shadow values, 

and the steepness of the curve, increase as demand coverage is reduced.  

Nevertheless, even though this value is small when analysing the whole catchment, it 

does not mean that it is insignificant for individual farmers. It may be the case that for 

some of them the values are considerable. Thus, analysing this metric and how it 

fluctuates as a function of external conditions or water management strategies, is still 

important if a catchment scale approach is to be taken, covering the perspectives of 

all water users.  

In terms of the sensitivity of the model, it can be seen that the mining PeCAPEX value 

has a very high impact on the total value of water, with differences up to 125% 

compared to the default value. This highlights again the importance of using a broader 

set of metrics to analyse water conflicts in mining catchments, as to avoid being biased 

by a single metric that is strongly influenced by one user only. All other metrics were 

not affected by changes in this variable. 

The impact of the agriculture PeCAPEX on the shadow value and water scarcity costs 

is not large, as this variable did not affect low-cost crops that much, and these are the 

ones influencing these metrics in the base case scenario. On the other hand, the total 

value of water for agriculture, hydro-power and urban users (without mining), is 

affected considerably by this variable, producing up to a 50% difference from the 

default value (see Table 6.18). These changes, however, are small compared to the 

value of water for mining, thus, they generate changes of less than 10% in the total 

value of water (with mining). 

Regarding the sensitivity to the minimum flow requirement at the outlet of the 

catchment, it was found that there were not large differences in terms of total value of 

water with or without mining. Differences in the shadow values of water between the 

minimum or maximum scenarios and the default condition are larger (10% and 30% 

respectively). On the other hand, differences in water scarcity costs are 68% and 

236%. 

Once the HEM was developed and its sensitivity to key assumptions analysed, it was 

possible to develop insight in how this tool can be used to support water decision 
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making in mining catchments. Three potential applications of the HEM were analysed 

in this PhD project, they are discussed in the next Chapter. 

6.6. Closing Remarks 

1. A Hydro-Economic Model (HEM) has been developed for a mining catchment 

and it has been calibrated to reproduce hydrological and economic 

observations. The model assists understanding relationships between water 

users in mining catchments, which, to the best knowledge of the author, has 

rarely been attempted through a HEM. 

2. This model couples a water resources and an economic model to represent the 

system of water rights in the case study, and the potential trades between some 

of its users. 

3. The coupling in the HEM was done in an efficient, robust and automatic way, 

through Python scripts and WEAP’s API.  

4. Although the Total Value of Water is calculated using information from all major 

users, taking a catchment scale approach, in the sense of effectively 

communicating the impacts on all users, was only possible by using a set of 

metrics. Otherwise results would have been biased by the very large CAPEX 

and OPEX of the mining user. These metrics are more robust (i.e. provide a 

wider perspective of the value of water) when considering the interests of 

multiple users, including producers of both high and low-value crops. These 

metrics could be regarded as proxies of the perceptions of users towards water 

conditions, and as indicators of the potential for conflicts in the catchment. 

5. The economic calculations for each user follow commonly applied approaches. 

However, the key added value of this HEM is its application to a catchment with 

interactions between mining and further users, and this shows how this tool can 

support water decision making in these regions (see next chapter). 

6. The coupling methodology is another key added value of this project as it 

allowed a robust connection between the water resources and the economic 

components, without oversimplifying either of them. 

7. Further research and case studies are desirable to better understand how to 

integrate the value of water for mining users into HEMs. However, the high 

degree of confidentiality in this industry represents an obstacle for this. 
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8. A sensitivity analysis of the key assumptions of the HEM was done to give an 

idea of the uncertainty ranges in the final outputs. These results are useful to 

understand the model performance, but also to use as a benchmark of the 

changes in the scenario analysis (see Chapter 7). 

9. An important assumption of the whole HEM approach, which was not 

mentioned previously, is the perfect foresight of the users. This is required to 

justify, amongst other things, the fact that an agricultural user limits his/her 

water consumption in each year to that available in the driest month (i.e. which 

defines how much “excess water” he or she should trade to optimise its 

revenues). This is a common assumption in similar models (Hurd and Coonrod, 

2012), although some authors address the first issue by including risks factors 

(Fernández et al., 2016, D’Agostino et al., 2014). The inclusion of risk factors 

in all users could be implemented as a future improvement of the model. 

10. Future refinements of this model could analyse how to include indirect 

economic benefits and risk factors of each water user. 

11. Another benefit of this HEM is that the tools used are not limited to a 

geographical area, but can be replicated in other catchments (including the 

analysis of climate variables). Furthermore, all software used is free in 

developing countries. 

12. The mining industry has been the focus of researchers and international 

organisations (e.g. The International Council on Mining and Metals - ICMM), 

who try to define metrics and frameworks; to assess mining’s water 

performance and to monitor their relationships with other water users. The 

methodology developed here represents a step forward in this field, as it 

facilitates understanding the value of water catchment wide, and how this 

fluctuates as a function of external factors or shared infrastructure projects. 

Moreover, the pros and cons of the set of metrics used were discussed, 

including an explanation of how each one of them reflects the perspectives of 

specific users and specific parts of the water demand curve of agricultural 

users.  
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7. Scenario Analysis 

After developing the HEM, it was analysed how this model could add value to water 

decision making in mining catchments. This chapter uses the metrics defined in the 

previous one as proxies of water conditions and conflicts in the catchment.  

An analysis of scenarios was done to test how the model reacts to changes in climate 

conditions, and to the introduction of environmental flow requirements. The former is 

important taking into account that changing climate conditions pose a risk for water 

resources management in the region. On the other hand, the minimum environmental 

flow requirements were included as they are seen by many as one of the ways to 

improve the ecological condition of catchments like the case study in this project. This 

is even being debated in Chile, as part of potential amendments of the water code. 

The third scenario analyses the impacts of a tailings water recycling project in the 

catchment. The benefits that this project will bring to the mining user have been 

analysed elsewhere, however, it was desired to complement them with a catchment 

scale approach that takes into account the potential benefits to all users. This 

represents one of the more practical added values of this HEM. Evidence will be 

provided of how this tool may support taking a catchment scale approach within a 

project-appraisal context. 

7.1. Impacts of changes in climate conditions in the HEM 

Changes in climate conditions are one of the key risks for water management 

worldwide, thus, this scenario explores how the HEM can be used to analyse how 

precipitation and temperature changes may affect water conditions in the case study. 

Being able to include both variables is an added value of HEMs with a detailed water 

resource component, as the effects of temperature changes are difficult to analyse 

when using historical flows observations. 

Developing a climate change model of the catchment, by means of a GCM or an RCM 

(Buytaert et al., 2010, McGregor, 1997), was not part of the scope of this project. 

Therefore, a predetermined group of changes in both precipitation and temperature 

was used. This is commonly referred in the literature as “Climate Response 

Function” analysis (Mendelsohn and Schlesinger, 1999, Brown et al., 2012, Arnell, 

2000), and it is quite useful to analyse the effects of changing climate conditions in a 
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water resources system without a climate model. This approach takes into account a 

broad spectrum of climate variations, which is particularly useful taking into account 

the uncertainty surrounding climate change forecasts. 

This analysis explored precipitation changes from 60% to 110% with 10% changes, 

and temperature changes from -2 to +2 °C. These values were defined taking into 

account the range of variability of the results of an existing climate model in the 

catchment (CEPAL, 2012, CONAMA and DGF, 2006). These ranges were extended 

in some directions for the sake of understanding how the HEM would react to these 

changes.  

Nevertheless, temperature ranges were limited to a maximum of two degrees of 

change. Larger increments of temperature would entail further changes in the crops 

that are not currently analysed in the HEM in its current form. Future improvements of 

the agricultural analysis may allow modelling temperature increments beyond these 

ranges. 

Table 7.1 shows the range of climate conditions analysed. The table also identifies 

which of the precipitation-temperature combinations correspond to the A2 and B2 

scenarios of the Intergovernmental Panel on Climate Change Reports (IPCC, 2014), 

which were the scenarios analysed in the aforementioned climate change model for 

Chile (CEPAL, 2012). These results cover three different periods of time (2010-2039, 

2040-2069 and 2070-2099) 

Table 7.1 – Changes in climate conditions analysed during the scenario analysis, including the 
description of the A2 and B2 climate scenarios in the existing climate model for Chile 

(CONAMA and DGF, 2006). 

Temperature -2 -1 0 0.5 1 1.5 2 2.5* 3* 

Precipitation 

60% 
       

  

70% 
       

  

80% 

       
B2 

2070-99 
A2 

2070-99 

90% 

   
B2 

2010-39 

 
B2 

2040-69 
A2 

2040-69 
  

100% 

   
A2 

2010-39 

   
  

110% 
       

  

* For illustration purposes only, not analysed in the model. 
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The changes in the input data were done using Python scripts, as described in Figure 

6.7, by perturbing the WEAP input data used in Chapter 5 either through multiplication 

(precipitation) or addition (temperature) depending on the climate scenario. 

7.1.1. Results of the scenario of changing climate conditions 

The results of the analysis of the sensitivity of the model to changes in climate 

conditions is divided into three parts: the first will analyse the changes in modelled 

flows at the outlet of the five hydrological areas, and in the hydrological processes 

within them. The second will analyse the effects on the demand coverage of water 

users, and the last will cover the impacts on the economic metrics. The effects of 

changes in precipitation are explained first, and this is followed by those due to 

changes in temperature. In order to facilitate the comparison between results of 

different magnitude, some of them are either normalised or presented relative to 

benchmark values.  

Figure 7.1 shows the relation between time-averaged flows at the outlet of the 

hydrological areas (at the location of the observation gauges) and the Precipitation (P) 

factors. Figure 7.2 shows the same results after flows are divided by the values in the 

precipitation benchmark case (𝑃 𝑓𝑎𝑐𝑡𝑜𝑟 =  1). In both figures, the results of different 

changes in T were aggregated (i.e. averaged).  

 

Figure 7.1 – Precipitation factor versus average flow at the five hydrological areas 
(aggregating all temperature changes). 
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Figure 7.2- Precipitation factor vs percentage changes of the average flow (compared to the 
values when P Factor = 1) at the five hydrological areas (aggregating all temperature changes). 

The figure includes a reference line with 𝑺𝒍𝒐𝒑𝒆 = 𝟏 𝒂𝒏𝒅 𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 =  𝟎. 

Figure 7.3 shows how specific hydrological variables change as a function of different 

P factors. The variables analysed are Base flow (BF), Decrease in snow (Dec_Snow), 

Decrease in Soil Moisture (Dec_SoilMois), Evaporation (Evap), Increase in Snow 

(Inc_Snow), Increase in Soil Moisture (Inc_SoilM), Interflow (InterFl), Precipitation (P) 

and Surface Runoff (Surf_Runoff) (see Figure 5.1 and Appendix C). Figure 7.4 shows 

the same relationship after flows are divided by the precipitation benchmark values. In 

both figures, the results of different hydrological areas and changes in T were 

averaged. 

 

Figure 7.3 – Precipitation factor versus average hydrological variables in the catchment 
(aggregating over all calibration areas and temperature changes). 
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Figure 7.4 –Precipitation factor versus percentage changes of the hydrological variables in the 
catchment (compared to the values when P Factor = 1 and aggregating all temperature 

changes). The figure includes a reference line with 𝑺𝒍𝒐𝒑𝒆 = 𝟏 𝒂𝒏𝒅 𝑰𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕 =  𝟎. 

Figure 7.5 and Figure 7.6 show how the average monthly flows and the normalised 

flows (which were normalised using the mean and standard deviation of the monthly 

results with a 𝑃 𝑓𝑎𝑐𝑡𝑜𝑟 =  1 and 𝑇 = 0), change as a function of P factors. This 

required averaging the monthly values of all hydrological areas over the 17 years 

period of analysis, for each combination of P factor and Temperature change (T 

Change). Then, all results with the same P factor are aggregated, so each point in the 

graphs represents the average results of several changes in T. 

 

Figure 7.5 – Average monthly flows over the whole period of analysis for different P Factors 
(aggregating all hydrological areas and temperature changes). 
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Figure 7.6 - Average monthly-normalised flows over the whole period of analysis for different P 
Factors (aggregating all hydrological areas and temperature changes). 

Figure 7.7 and Figure 7.8 show a similar relation, but this time values are a function of 

the changes in temperature (T changes), while the aggregation is over all the P factors. 

In Figure 7.8, the 𝑇 = 0 line is below 𝑌 = 0 because most P factors are smaller than 

1, while the normalisation was done with the monthly 𝑃 𝑓𝑎𝑐𝑡𝑜𝑟 =  1 and 𝑇 = 0 cases. 

In addition, Figure 7.9 shows how these results change as a function of the calibration 

areas. 

 

Figure 7.7 – Average monthly flows over the whole period of analysis for different temperature 
changes (aggregating all hydrological areas and precipitation factor changes). 
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Figure 7.8 - Average monthly-normalised flows over the whole period of analysis for different 
temperature changes (aggregating all hydrological areas and precipitation factor changes). 

Figure 7.10 shows how changes in temperature affect the average flow at each gauge. 

The latter are shown as a percentage change of the values in the temperature 

benchmark (𝑇 𝐶ℎ𝑎𝑛𝑔𝑒 =  0), and they aggregate all precipitation factors. Figure 7.11 

is similar, although this time results from different hydrological areas are aggregated 

as well. 

 

Figure 7.9 – Average monthly flows over the whole period of analysis for different temperature 
changes and different gauges (aggregating changes in precipitation factors). Values were 

normalised with the mean and standard deviation of each hydrological area to facilitate 
visualisation. 
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Figure 7.10 – Temperature changes vs percentage changes in the average flows for each 
hydrological area (aggregating changes in precipitation factors). 

The second group of results analyse how the demand coverage is affected by the 

changes in climate conditions. Figure 7.12 shows how the demand coverage of 

different users is affected by P factors, after aggregating results with different changes 

in T. Users include Hydro-Power (Hydro), Mining (Min), Urban (Urb), Agriculture (Agr), 

and it also includes the coverage of the minimum flow requirement at the outlet of the 

catchment representing downstream demand (MinFlow). The last two overlap each 

other in the figure because their values are very similar. 

 

Figure 7.11 – Temperature changes vs percentage changes in the average flows (aggregating 
all hydrological areas and precipitation factor changes). 
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Figure 7.12 – Precipitation factor vs percentage of covered demand for different water users 
(aggregating all temperature changes). 

Figure 7.13 shows the average monthly demand covered for each user over the 17 

years period of analysis, after aggregating all P factor and T changes. Figure 7.14, on 

the other hand, shows the same values change as a function of different changes in T 

(aggregating P factors and results from all hydrological areas). Moreover, Figure 7.15 

shows how different T values affect the demand coverage of all users, aggregating 

information from different months and different P factors. 

 

Figure 7.13 – Average monthly percentage of covered demand over the whole period of 
analysis for different water users (aggregating all temperature and precipitation factor 

changes). 
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Figure 7.14 – Average monthly percentage of covered demand over the whole period of 
analysis for different temperature changes (aggregating results of all water users and all 

precipitation factor changes). 

 

Figure 7.15 – Temperature changes vs percentage of demand covered for different water users 
(aggregating all precipitation factor changes). 

The last group of results involves the analyses of the effects of changes in climate 

conditions on the economic metrics described in Chapter 6. The effects of changes in 

temperature on the shadow value of water, total value of water and water scarcity 

costs are shown in Figure 7.17, Figure 7.18 and Figure 7.19 respectively. These 

values aggregate the results for different P factors. In addition, Figure 7.16 shows the 

relation between different P factors and the shadow value of water, after aggregating 

results from all changes in T. Figure 7.20 complements this by showing how all 

combination of changes in precipitation and temperature affect the shadow value of 

water. The other economic metrics behaved similarly. 
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Figure 7.16 – Precipitation factor vs shadow value of water (aggregating all temperature 
changes). 

 

Figure 7.17 – Temperature changes vs average shadow value of water (aggregating all 
precipitation factor changes). 



158 
 

 

Figure 7.18 – Temperature changes vs total value of water (aggregating all precipitation factor 
changes). 

 

Figure 7.19 – Temperature changes vs water scarcity cost (aggregating all precipitation factor 
changes). 
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Figure 7.20 – Climate response function of the Shadow Value of Water. 

7.1.2. Discussion of results 

Results in Figure 7.1 show that as expected a priori, there is a strong correlation 

between changes in precipitation and the outlet flows in the hydrological areas of the 

case study.  

When flows are analysed relative to the benchmark case, it can be seen that the values 

at the outlet of Aconcagua en Chacabuquito (Aconcagua) and Juncal change 

proportionally with precipitation, while the other three increase faster (see Figure 7.2). 

This could be caused by the fact that the latter include abstractions by the hydro-power 

stations or consumption by the mining company. During dry conditions users expect 

to obtain their normal allocations whenever possible, thus the flows in the outlet 

decrease faster than precipitation factors. On the other hand, during wet periods users 

stop consuming water after fulfilling their demand, therefore flows in the outlets 

increase faster than the P factors. 

Figure 7.3 and Figure 7.4 show how different hydrological processes were affected by 

changes in precipitation, both in absolute terms and relative to the benchmark. 

Although these results are illustrative and relevant for water users, the key message 

here is that the inclusion of a hydrological model allowed having a detailed 

understanding of water fluxes and storages inside the catchment, which goes beyond 

knowing how output flows change. 
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Figure 7.5 and Figure 7.6 also show how a detailed representation of hydrological 

processes in a HEM (compared to the use of historical flows), allow understanding 

how changes in precipitation translate into flows variability. In both figures it can be 

seen that the largest variability is seen in the wettest months (austral summer). Further 

in this section it is discussed how these changes then translate to impacts on the 

economic metrics. 

Figure 7.7 allows doing a similar analysis for temperature, as it shows the influence of 

this variable when defining periods of minimum and maximum flows (by changing 

snow melting periods). Figure 7.9 expands this by providing insight into the specific 

effects of temperature on each of the hydrological areas of the case study. This figure 

shows how impacts depend on the area of study, particularly on their elevation. 

In the last two figures, it is of particular importance to note that increments in 

temperature have proportional effects on flows between March and November, and 

an inversely proportional effect in the rest of the year. Temperature decreases, on the 

other hand, have the opposite effect in the two periods. This is confirmed in Figure 

7.8, which shows that normalised flows for increments in temperature are larger than 

the benchmark after mid-April, and this lasts longer than the corresponding reductions 

before mid-April. 

Complementing the previous analysis, Figure 7.10 shows how temperature influences 

flows as a function of the hydrological area. It can be seen that flows in all catchments 

are affected in different ways by the changes in temperature. Overall, a decrease in 

temperature generates larger flows for the whole case study (see Figure 7.11). Based 

on the predictions by CONAMA and DGF (2006), only positive changes in T will be 

experienced, thus, in the light of the evidence of the water resources component only, 

any increase in temperature will be negative for the catchment. 

Regarding the demand coverage for each user, Figure 7.12 shows that the percentage 

covered increases with P factors, and it approaches 100% asymptotically. 

Furthermore, Figure 7.13 shows that most users face more water scarcity during the 

second semester of the calendar year, which corresponds to later winter, spring and 

early summer in the southern hemisphere. The values for agriculture are constant, 

because it was assumed that this user was constrained by the driest month of the 
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year, which tends to be during the second semester. Coverage during these months 

is the lowest for all users as most precipitation falls as snow, but the snow melting 

period only starts towards the end of the year.  

Figure 7.14 shows how the monthly aggregated demand coverage of all users is 

affected by changes in temperature. This figure is strongly related to Figure 7.7 and 

Figure 7.8 as the periods of low flows in the latter, correspond to the lowest demand 

covered in the former, for all temperatures. Future increments in temperature will 

reduce the demand covered in the first part of the year, compared to the benchmark 

conditions, but will improve coverage during the second part, which as seen in Figure 

7.13 is more critical. Decreases in temperature would generate the opposite 

behaviour. 

Figure 7.15 is quite interesting as it shows how changes in temperature affect the 

overall demand coverage for each one of the users, and confirms what was discussed 

in the last paragraphs. In the figure, it can be seen that larger coverage for Hydro and 

Mining, compared to benchmark conditions, is achieved when temperature increases. 

The largest coverage for hydro and mining is achieved with at 2°C, while for the other 

three users the best scenario is achieved with a temperature increment between 0°C 

and 1°C. 

Turning to the detail of the economic metrics, Figure 7.16 shows the relation between 

precipitation factors and the shadow value of water. Based on the experience of 

previous variables and a priori assumptions, the behaviour of this metric was an 

inverse correlation. This time, however, the points do not show a linear behaviour, 

which can be explained by the inclusion of non-linear functions in the economic 

analysis. A similar pattern was found for the other economic metrics. 

Figure 7.17 analyses the variability of the shadow value of water (as explained in 

Chapter 6 this variable only analyses agriculture and urban water) as a function of 

changes in temperature (aggregating results with different precipitation factors). It can 

be seen that this variable has the lowest value for 0.5°C, which coincides with the 

behaviour of agriculture and urban uses in Figure 7.15. The same behaviour can be 

seen in Figure 7.19, as water scarcity cost is also determined by the conditions of 

agriculture and urban water. 



162 
 

At this point, it is clear that the improvement of these metrics due to the positive 

changes of temperature, is explained by the fact that increasing temperatures shifts 

the snow melting period from summer towards the spring. This, in turn, increases flows 

in the second semester of the year, which is the period with the largest rates of 

uncovered demand (see Figure 7.13). In this way, the negative economic impacts 

during the first part of the year are outweighed by the benefits in the second part. 

Therefore, despite reducing the overall availability of water (see Figure 7.11), 

temperature increments may bring economic benefits for users. As seen in Figure 7.17 

and Figure 7.19, for agriculture and urban water the peak is achieved with increments 

of around 0.5°. Furthermore, as the uncovered demand during spring is larger for 

hydro (likely to be because these users are located in higher elevation points), the 

improvements are larger for this user, and reach a maximum with 1 °C (see Figure 

7.18).  

Taking into account that the previous analysis aggregated the changes due to 

precipitation fluctuations, Figure 7.20 shows the climate response function of the 

shadow value of water. In other words, how the shadow value of water changes as a 

function of both climate variables (the other economic metrics behaved similarly). In 

this figure it can be seen that the lowest values (i.e. the best conditions), are found 

with zero or small temperature increases. However, it can also be seen that the 

changes due to temperature fluctuations are small, compared to the effects of the 

reduction of precipitation. This is confirmed after checking that in Figure 7.20, the 

fluctuation of values in the y-axis is larger than that in the x-axis. 

Bearing in mind the predictions in the A2 and B2 climate scenarios for 2010-2039 (as 

reported in Table 7.1), this model suggest that the former may not have substantial 

effects in the catchment, while the second will have, due to the reduction in 

precipitation. In general, it is suggested that as long as there are no reductions in 

precipitation, slight temperature increments may not largely affect water users in the 

case study. However, if temperature increases by more than 1° C (as expected for 

both scenarios closer to the second half of the century) water conflicts may be 

exacerbated again.  
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It is important to highlight that it would have been difficult to get to this result without 

the HEM. If a purely hydrological model had been used, it would have been concluded 

that any increase in temperature would be negative for the catchment (see Figure 

7.11). If the latter had been merged with an analysis of the demand for water only, it 

would have been possible to predict some improvements with the rise of temperature. 

However, only with the HEM it was possible to summarise this in monetised metrics 

that analyse all users, including the effects of potential water trades between them.  

On the other hand, if a purely economic model had been used, it would have been 

difficult to predict the influence of temperature changes on flows, and all subsequent 

analyses. All this highlights the added value of a robust tool as the HEM in this project, 

which includes a detailed water resources component. 

7.2. Environmental Flow Requirements 

This section analyses the effects of including minimum Environmental Flow 

Requirements (EFR) in the case study. A total of 6 EFRs were analysed, each of them 

located downstream of a flow gauge in the catchment (see Figure 5.8 and Figure 5.9). 

This includes Aconcagua en Chacabuquito (Outlet), Colorado en Colorado (Colorado), 

Juncal en Juncal (Juncal), Aconcagua en Blanco (AconBla), Blanco en Blanco 

(Blanco) and Blanco en Los Leones (Leones). In addition, it was analysed the scenario 

of having all of them (All), and none of them (None/Baseline). 

There are multiple methods to define the magnitude of the EFRs, and they range from 

thresholds defined using statistical analysis of historical flows, to deep ecological 

analyses of the streams (Acreman and Dunbar, 2004, Pastor et al., 2014). This project 

takes the former approach, and analyses four percentiles of historical observed flows: 

10, 20, 30 and 40 (i.e. the flows that exceed 90%, 80%, 70% and 60% of the records 

respectively). Each month was analysed separately to take into account hydrological 

seasonality.  

Initially, the complete historical record was analysed to define the percentiles, 

however, it was realised that very old measurements were done when not many users 

were present in the catchment, or when they consumed different volumes of water. 

Therefore, it was decided to analyse observations after 2000 only, as to generate 

thresholds that were more easily implemented in practical terms. 
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Some issues were found with two flow restrictions; Outlet and Leones. In the outlet 

this was because all water for the first irrigation area was taken in one point only. In 

reality, users would take water in several points, and restrictions could be defined 

accordingly to the flows at different points of the river. Thus for this station it was 

decided to define the restriction based on the simulated flows downstream of the 

diversion points in the base case scenario. 

The Leones restriction, on the other hand, was recently installed and has a relatively 

short historical record (see Figure 5.10F), where most correspond to a relatively dry 

period. This means that the calculated percentile values may be relatively low. Despite 

this, it was decided to keep this restriction, as it allowed developing valuable analyses 

of the mining and hydro-power users. Table 7.2 shows a sample of the flow restrictions 

for the six locations. 

Table 7.2 – Percentile 30 restriction for the six locations in the catchment (all values in m3/s). 

Month AconBla Outlet Blanco Leones Colorado Juncal 

Jan 6.68 12.80 6.39 5.36 0.18 9.47 

Feb 3.24 8.37 2.01 5.52 0.11 7.38 

Mar 2.01 4.89 1.09 3.50 0.07 5.29 

Apr 1.63 4.16 0.82 1.64 0.08 3.55 

May 1.32 4.32 0.67 0.84 0.11 2.55 

June 1.58 5.14 0.75 0.71 0.14 2.06 

Jul 2.33 4.56 0.82 0.68 0.16 1.83 

Aug 2.17 5.02 0.77 0.98 0.26 1.86 

Sep 2.48 5.23 1.00 1.45 0.30 2.07 

Oct 4.30 6.56 1.12 2.16 1.00 3.26 

Nov 5.73 10.78 3.01 4.93 4.06 5.54 

Dec 10.86 14.94 6.78 7.49 1.78 8.48 

 

7.2.1. Results of the analysis of Environmental Flow Requirements 

The results in this section are divided into two groups, the first analyses the effects on 

the demand coverage and the second one covers the effects on the economic metrics. 

Figure 7.21 shows the average monthly demand coverage for all users as a function 

of the location of the EFR, after aggregating results for all restriction percentiles. 
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Figure 7.21 – Average monthly percentage of covered demand over the whole period of 
analysis for different locations of the EFR (aggregating results for all percentiles). 

Figure 7.22 and Figure 7.23 show how different percentiles of flow restrictions affect 

the average demand covered, as a function of the location of the restriction and the 

type of user respectively. Figure 7.24 shows how the location of the EFR affects the 

percentage of demand covered as a function of the user, and also of two percentile 

restrictions (the smallest and the largest), plus de baseline (no restrictions). 

 

Figure 7.22 – Percentile of flows restrictions versus percentage of covered demand for 
different locations of the EFR. 
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Figure 7.23 - Percentile of flows restrictions versus percentage of covered demand for 
different users with all the EFRs. 

 

Figure 7.24 – Location of EFR versus percentage of covered demand for different users and 
two percentiles of flows restrictions (10 and 40) plus the baseline. 

Figure 7.25 show the average monthly percentage of demand over the 17 years period 

of analysis, as a function of all type of users and two percentiles (10 and 40, plus the 

baseline).  
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Figure 7.25 - Average monthly percentage of covered demand over the whole period of 
analysis for different users and two percentiles of flows restrictions (0.1 and 0.4). 

Figure 7.26 is similar to Figure 7.25, although instead of percentiles it classifies results 

for two conditions, when all restrictions are imposed and when none is included (i.e. 

baseline). Other locations are not shown to facilitate visualisation of results.  

 

Figure 7.26 - Average monthly percentage of covered demand over the whole period of 
analysis for different users and two locations of flows restrictions. 

Figure 7.27 shows how different percentiles of flow restrictions affect the total value of 

water for all users in the catchment, while Figure 7.28 shows the relation with the total 

value of water for agriculture, hydro and urban uses only. The Y-axis of both figures 

has been adjusted as to facilitate visual comparison with other figures with the same 

economic metric. It is important to realise that as opposed to the demand coverage 

analysis, for the economic metrics only three percentiles are included in the figure, as 
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it was not possible to calculate values for 0.4 (further details of this will be given in the 

discussion of results). 

 

Figure 7.27 - Percentile of flows restrictions vs total value of water (aggregating all locations of 
flow requirements). 

 

Figure 7.28 - Percentile of flows restrictions vs total value of water for agriculture, hydro and 
urban uses only (aggregating all locations of flow requirements). The Y axis scale was 

adjusted to facilitate comparisons with other figures in this section. 

Figure 7.29 and Figure 7.30 show how the percentiles of flows restrictions affect the 

water scarcity cost and the shadow value of water respectively, and their Y axis have 

also been adjusted to facilitate comparisons.  
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Figure 7.29 - Percentile of flows restrictions vs water scarcity cost (aggregating all locations of 
flow requirements). The Y axis scale was adjusted to facilitate comparisons with other figures 

in this section. 

 

Figure 7.30 - Percentile of flows restrictions vs shadow value of water (aggregating all 
locations of flow requirements). The Y axis scale was adjusted to facilitate comparisons with 

other figures in this section. 

Figure 7.31 shows how the location of the flow requirement affects the total value of 

water for all users, as a function of the percentiles, while Figure 7.32 shows the relation 

with the total value of water for agriculture, hydro and urban uses only. 
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Figure 7.31 – Location of EFR vs total value of water for different percentiles of flow 
restrictions. 

 

Figure 7.32 - Location of EFR vs total value of water for agriculture, hydro and urban uses 
only, for different percentiles of flow requirements. The Y axis scale was adjusted to facilitate 

comparisons with other figures in this section. 

Figure 7.33 and Figure 7.34 show how the EFR at the outlet of the case study affects 

water scarcity cost and shadow value of water, as a function of the percentiles. These 

two plots do not include the other flow restrictions because they do not considerably 

affect agriculture and urban water, which are the users described by these economic 

metrics. It is important to recall that water used for hydro-power purposes is returned 

to the river and can be used for agriculture and urban uses, thus the latter are not 

affected by the flow restrictions in areas where hydro-power abstracts water. 
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Figure 7.33 - Location of EFR vs water scarcity cost, for different percentiles of flow 
requirements (only the restrictions affecting agriculture and urban uses are included). 

 

Figure 7.34 - Location of EFR vs shadow value of water, for different percentiles of flow 
requirements (only the restrictions affecting agriculture and urban uses are included). 

Results in this section showed that many variables were not affected by EFRs, as 

much as by changes in climate conditions (see Section 7.1). In order to explore how 

both scenarios affected variables, Figure 7.35 shows the yearly coverage of 

agricultural demand when including the EFR in the outlet of the catchment and three 

different percentiles (PCTL). This is compared in the same figure with the results of 

three different precipitation factors. 
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Figure 7.35 – Yearly percentage of agricultural demand coverage for the whole period of 
analysis for a simulation with a temperature change of – 2°C and three P factors (0.6, 0.75 and 

0.9), and a simulation with a EFR in the outlet of the catchment and three percentile 
restrictions (0.1, 0.3 and 0.4). 

Moreover, Figure 7.36 show how the same group of conditions affected the shadow 

value of water during the same period (2000 – 2017), although this time the percentile 

0.4 was not included as it was not possible to calculate economic values for this case. 

 

Figure 7.36 – Yearly average shadow value of water for the whole period of analysis for a 
simulation with a temperature change of – 2°C and three P factors (0.6, 0.75 and 0.9), and a 
simulation with a EFR in the outlet of the catchment and two percentile restrictions (0.1 and 

0.3). 
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7.2.2. Discussion of Results 

Regarding the overall impact of the location of flow restrictions on monthly demand 

coverage, Figure 7.21 shows that Juncal and Leones generate the largest impacts, 

although the second is known to be a relatively stringent restriction as previously 

explained. Furthermore, although demand coverage with most restrictions is lower in 

the second half of the year (similar to results in previous sections), this figure shows 

that the one in Juncal seems to distribute the impact more evenly throughout the year. 

In terms of the effect of the different percentiles of the restrictions, as expected, there 

is an inverse correlation between them and the covered demand (see Figure 7.22 and 

Figure 7.23). However, the incremental differences between percentiles (see Figure 

7.22, Figure 7.23 and Figure 7.25) are not as large as the ones seen for changes in 

temperature and precipitation (see Figure 7.12 and Figure 7.15). Indeed, there are 

flow restrictions that have very small impacts (e.g. those at Colorado and Blanco). This 

may be because the flows (and the associated restrictions) are rather small, there are 

few demand nodes immediately upstream of them, or because they are downstream 

of the convergence of multiple streams, which may facilitate a more resilient response 

to EFRs (e.g. AconBlanco).  

The location of the flow restrictions affect users in different ways. Juncal station for 

instance, despite being located in an upstream point has larger observed values than 

Blanco, AconBlanco (i.e. in several but not all months) and Leones, and this affects 

the main abstraction point for Hornitos and Juncal hydro-power generators, which are 

just upstream of the restriction. This is why this restriction has such large impacts (see 

Figure 7.24). 

Results also show that hydro-power and mining often bear larger economic impacts 

with the flow restrictions, agriculture is only impacted when a relatively large restriction 

(Percentile 40) is in place, while the urban sector is barely affected (Figure 7.24). The 

differences between agriculture and urban use arise mostly because of the 

assumption that the yearly value of the former is constrained by the month with the 

minimum coverage in each year. 

Regarding the users that each EFRs specifically affects, it can be seen that the one in 

the outlet mainly influences agriculture, while those in Leones, Blanco, AconBlanco 
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and Juncal affect hydro-power. Mining is affected by Leones, Blanco and AconBlanco, 

as expected, but it is also affected by Juncal (see Figure 7.24). After analysing the 

latter, it was found that due to the restriction on the abstraction of water by hydro-

power, with the flow requirement in Juncal, WEAP reduces the demand allocated to 

the mine project as to alleviate the water scarcity for hydro.  

This behaviour is caused by the way WEAP algorithms were set, and it raises the 

question if a restriction should be beared by those with water rights upstream of it only, 

which looks like the status quo, or if partnerships should be created in the catchment 

as to alleviate the burdens of the restriction. This also raises a warning that the results 

of this type of models should be interpreted in light of real life restrictions. 

Before analysing the economic metrics, it is important to mention that calculations 

were limited to a maximum 30 percentile restriction in flows, after evidencing that using 

40 at the outlet would generate a demand coverage for agriculture near 0% in one 

year. As explained in Chapter 6, such small values were avoided for agriculture and 

urban uses, as the assumptions used were only logical for larger consumptions. This 

meant that values smaller than 50% were avoided as much as possible, while 

demands coverages of less than 30% would trigger errors in the algorithms.  

Turning to the detail of the economic metrics, the losses in total value of water due to 

changes in the magnitude of the EFRs, come mostly from mining use. The other three 

uses, although affected, experience smaller changes that are almost imperceptible 

when using a range in the Y axis scale that is similar to the one in the previous plot 

(compare Figure 7.27 and Figure 7.28).  

Water scarcity cost and shadow value of water, which are key descriptors of the 

impacts on agriculture and urban uses, fluctuate as a function of the percentiles of the 

flow restrictions and their location (see Figure 7.29, Figure 7.30, Figure 7.33 and 

Figure 7.34). However, these changes are small compared to the ones seen in the 

analysis of climate conditions (see Section 7.1.1).  

Results also show that changes due to different percentiles are smaller than those 

arising as a consequence of different locations. This suggests that deciding the 

magnitude of the restriction on flows may not be as important as defining its location.  
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Taking into account that the inclusion of EFRs seemed to have very small impacts on 

agriculture and urban uses, but at the same time it was not possible to calculate 

economic values for percentiles beyond 30, it was decided to explore results in a year 

by year basis. Up to now, results in this chapter aggregated the whole period of 

analysis (2000 - 2017) for each run of the model, even in those cases in which monthly 

values were presented. 

The yearly comparison between scenarios showed that there were differences in the 

way agriculture and urban use were affected. While the changes in climate conditions 

would impact demand coverage throughout the period of analysis (several although 

not all of the years), the inclusion of EFRs would only affect values in very dry years 

(see Figure 7.35 and Figure 7.36). These figures show that during the driest years of 

the period of analysis (2011-2015), the changes of climate conditions and the inclusion 

of EFRs have a similar impact on the analysed metrics, nevertheless, the rest of the 

years behave differently.  

This meant that the changes in climate conditions managed to affect the aggregated 

metrics, while the inclusion of EFRs barely influenced values, as the impacts in a few 

years were averaged with the unaffected ones, as to generate a small overall impact. 

This suggests that the methods used to define the magnitudes of EFRs should be 

flexible. This could involve a set of frequent restrictions that benefit the environment in 

most years, with less tight restrictions during very dry periods that do not impose an 

unbearable burden to users.  

These outcomes could have changed if flow restrictions had been set using the whole 

set of historical observations (i.e. as opposed to using records from 2000 only as in 

Table 7.2). However, this would have entailed further challenges as very old 

observations were made when conditions in the catchment were quite different. This 

highlights the relevance of the selection of the historical period to develop the 

statistical analysis that defines flow restrictions.  

An alternative to this statistical approach would be to use more robust analyses 

(Acreman and Dunbar, 2004, Pastor et al., 2014), like setting the requirements on the 

basis of an ecological analysis for the streams. This approach, although desirable to 

have a tailored solution for the environment, may face practical problems during the 
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implementation due to the challenge of studying all streams in such a detail, and 

making sure users agree with the restrictions. 

7.3. Tailings Water Recycling Project 

The mining project located in the case study has its main Tailing Storage Facility (TSF) 

or Tailings Dam18 outside the Aconcagua catchment, in an area that is part of the 

Maipo River in a much lower altitude than the mine and processing plant (see Figure 

7.37). The company has previously analysed the feasibility of developing the 

infrastructure, to pump back the water that accumulates in this dam. The aim of this 

was to increase the supply of water to the processing plant, as part of a project that 

expected to increase the production capacity of the mine. This expansion project was 

put on hold, and is being updated by the company, but the TSF is still seen as a 

potential source of water if the copper production capacity of the mine is increased. 

 

Figure 7.37 - Location of Ovejeria Tailings Storage Facility. 

                                            

18 Tailings are a slurry containing the mining waste after processing the economically desirable 
minerals. This slurry tends to have high contents of water that are frequently the main loss in the system. 
This water is lost through evaporation or seepage, although the latter is usually undesirable due to the 
environmental impacts associated. Many mining projects around the world now see Tailings Water (TW) 
as an alternative source of water. This, however, requires investing in pumping systems and eventually 
in treatment facilities, although the water quality requirements for mineral processing are not high 
compared to potable or agricultural standards. 
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As well as being considered as an alternative source of water for a potential expansion, 

there has been some research to analyse how this water could be used to help the 

mine facing droughts in the catchment (Correa-Ibanez et al., 2017, Correa Ibanez, 

2015). This analysis, however, was only focused on the direct economic benefits that 

this source could bring to the mine project.  

Thus, it was desired to analyse how a catchment-scale approach could provide insight, 

into the benefits that the same infrastructure project could be brought to the whole 

catchment. This was done by using the HEM developed in this project to analyse the 

tailings water recycling project. The information regarding the capacity and costs of 

this, was taken from Correa Ibanez (2015), is summarised in Table 7.3. 

Table 7.3 - Characteristics of the tailings water recycling project. Values in 2017 prices. 

Variable Value 

Flow recycled from TSF (m3/s) 0.25 

CAPEX in 2017 prices (Millions USD)  $          69.15  

OPEX in 2017 prices (Millions USD per year)  $            2.19  

Lifespan - Assumed from data available (yrs.) 25 

Annualised Cost in 2017 prices (Millions USD)  $            8.67  

Interest rate % 8 

Total Net Present Cost (Millions USD) $92.6 

The inclusion of the recycling infrastructure in WEAP was done by adding an “Other 

Supply” node, which provides the system with an extra constant supply of 0.25 m3/s 

(7.9 million m3 per year, around 36% of the assumed yearly consumption of the mining 

user). This object was connected directly to the mine project, and it was assumed that 

this source would be the first choice of the project, which in several months would 

reduce its requirements from the river. This, in turn, makes some water available, 

which can be used by downstream users, which represent the shared benefits from 

the project. In other words, the priority for the use of the recycled water is the mine 

project, but eventually the benefits are received by downstream users. 

It is important to remember that in the first scenario of this Chapter, it was assumed 

that the coverage of mining’s demand for water in the base case was enough to allow 

full production during the whole period, even if WEAP had not allocated 100% of the 

demand during all years. Taking this into account, this scenario assumes that the 

demand for water target with the additional source of water is the same as in the base 

case scenario (see Chapter 6). 
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7.3.1. Results of the inclusion of recycled Tailings Water 

Figure 7.38 is similar to Figure 7.12, as it shows the improvements in percentage 

demand coverage as a function of precipitation factors, for all users in the model, with 

tailings water recycling. Figure 7.39 is related to Figure 7.13 and illustrates the intra-

annual improvements in demand coverage for each user in the catchment after 

including the TSF recycling, after aggregating temperature and precipitation changes. 

Figure 7.40, on the other hand, shows the improvements on percentage demand 

coverage as a function of changes in temperature. 

 

Figure 7.38 - Precipitation factor versus percentage of demand coverage improvement for 
different water users after including the tailings water recycling (aggregating all temperature 

changes). 

 

Figure 7.39 - Average monthly percentage improvement of demand coverage over the whole 
period of analysis for different water users after including the tailings water recycling 

(aggregating all temperature and precipitation factor changes). 
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Figure 7.40 - Temperature changes vs percentage improvement of demand coverage for 
different water users after including the tailings water recycling (aggregating all precipitation 

factor changes). 

Figure 7.41, Figure 7.42, Figure 7.43 and Figure 7.44 show respectively how; shadow 

value of water, total value of water, water scarcity cost, and total value of water for 

hydro, agriculture and urban uses fluctuate, as a function of temperature changes. All 

these figures also show the way results change with and without tailings water 

recycling.  

 

Figure 7.41 - Temperature changes vs average shadow value of water with (TW) and without 
(NO-TW) tailings water recycling (aggregating all precipitation factor changes). 
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Figure 7.42 - Temperature changes vs total value of water with (TW) and without (NO-TW) 
tailings water recycling (aggregating all precipitation factor changes). 

 

Figure 7.43 - Temperature changes vs water scarcity cost with (TW) and without tailings (NO-
TW) water recycling (aggregating all precipitation factor changes). 
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Figure 7.44 - Temperature changes vs total value of water for agriculture, hydro and urban 
uses, with (TW) and without (NO-TW) tailings water recycling (aggregating all precipitation 

factor changes). The Y axis of this figure have been adjusted as to facilitate the comparison 
with Figure 7.42. 

Figure 7.45, Figure 7.46, Figure 7.47 and Figure 7.48 show respectively how; shadow 

value of water, total value of water, water scarcity cost, and total value of water for 

hydro, agriculture and urban uses fluctuate, as a function of the precipitation factors, 

with and without tailings water recycling. 

 

Figure 7.45 – P factors vs average shadow value of water with (TW) and without (NO-TW) 
tailings water recycling (aggregating all precipitation factor changes). 
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Figure 7.46 – P factors vs total value of water with (TW) and without (NO-TW) tailings water 
recycling (aggregating all precipitation factor changes). 

 

Figure 7.47 – P factors vs water scarcity cost with (TW) and without (NO-TW) tailings water 
recycling (aggregating all precipitation factor changes). 
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Figure 7.48 – P factors vs total value of water for agriculture, hydro and urban uses, with (TW) 
and without tailings (NO-TW) water recycling (aggregating all precipitation factor changes). 
The Y axis of this figure have been adjusted as to facilitate the comparison with Figure 7.45. 

In order to better understand the differences generated after including the tailings 

water recycling, it was decided to average the economic metrics for the climate 

conditions analysed. Table 7.4 show the average values for all the climate 

combinations in Table 7.1, while Table 7.5 shows the average results for those 

combinations that matched the forecasts of the A2 and B2 climate scenarios, in the 

climate model for Chile. In both tables the differences between the values with and 

without including tailings water recycling are calculated. 

Table 7.4 – Summary of catchment-scale economic metrics of the benefits of the tailings water 
recycling project, for all climate conditions tested. 

Name NO-TW TW Difference 

Shadow Value of Water 
(USD/ML) 

$150 $146 -$4 

Total Value of Water - 
Hydro, Agr and Urban (in 

US 000,000) 
$968.37 $971.0 $2.6 

Total Value of Water (in 
US 000,000) 

$5,353.8 $5,756.8 $403 

Water Scarcity Cost (in US 
000,000) 

$22.55 $20.8 -$1.8 

 

Table 7.5 - Summary of catchment-scale economic metrics of the benefits of the tailings water 
recycling project, for the climate conditions forecasted by CONAMA in the A2 and B2 

scenarios only. 

Name NO-TW TW Difference 

Shadow Value of Water 
(USD/ML) 

$129 $126 -$3 
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Total Value of Water - 
Hydro, Agr and Urban (in 

US 000,000) 
$1,004.6 $1,007.1 $2.5 

Total Value of Water (in 
US 000,000) 

$5,694.89 $5,816.6 $122 

Water Scarcity Cost (in US 
000,000) 

$10.7 $9.3 -$1.4 

 

7.3.2. Discussion of results 

The last scenario in this Chapter investigated the benefits of including the tailings 

water recycling project in the catchment. The results showed that this alternative 

source of water considerably improves the conditions of the mine, throughout all 

combinations of climate conditions (see Figure 7.38, Figure 7.39 and Figure 7.40), and 

in all seasons of the year. Nevertheless, the benefits for other users are almost 

imperceptible in the figures. This is partly because the mining user had the priority to 

consume this water. However, it is also because the flow made available with the TSF 

recycling is relatively small compared to the volumes required by agriculture or hydro-

power, thus it is not enough to considerably improve conditions of other users. 

The latter is confirmed with the economic metrics that analyse the mining user, which 

clearly show an improvement over all precipitation and temperature conditions (see 

Figure 7.42 and Figure 7.46), to the point that this user becomes quite resilient to all 

changes in climate conditions. Furthermore, results also show that once this 

alternative source of water is included, the maximum total value of water for all users 

(over al precipitation conditions) is achieved with a 0.5°C temperature change, 

although all other changes show small decreases only. This means that this metric, 

and the mining user who is related to it, becomes quite resilient to any changes in 

climate conditions. 

On the other hand, the rest of the economic metrics show perceptible, but very small 

improvements with the inclusion of tailings water, which confirms the results found with 

the demand coverage. 

In terms of the numeric results, particularly the total value of water, it can be seen that 

the benefits of recycling tailings water outweigh the net present costs (see Table 7.3), 

both for all climate conditions tested and for those in the CONAMA analysis only. This 
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is of course quite important, as if the difference was negative, it would be difficult to 

justify the development of this infrastructure. 

Regarding the benefits to other users, it can be seen that the differences in the metrics 

after including the TSF recycling are small. In relative terms with respect to the no TW 

case, they are 2% for shadow value of water, 0.25% for total value and 13 % for water 

scarcity cost. This confirms that the shared benefits of this project are small, mainly 

because of the two reasons mentioned before.  

It could be argued that this would change if the priorities were modified, and the tailings 

water was shared evenly between mining and other users. However, this is an unlikely 

scenario as the water belongs to the mine company, and they expect to be the key 

beneficiary. Furthermore, it would be difficult for the project to be economically feasible 

when the mining benefits are not accrued. In addition, the direct use of tailings water 

by other users would require further treatments, which would reduce the financial 

feasibility of the project even more. 

7.4. Closing remarks 

The first part of this Chapter involved a climate response function analysis, which 

showed examples of the insights that a HEM with a detailed description of the water 

resources component can provide, when compared to a HEM that uses historical 

observations of flows only. Amongst the specific results of this case study, the analysis 

of temperature changes stands out as it suggested that users would not be largely 

affected, or they would even be slightly better off, with a small rise of temperature in 

the catchment, despite the forecasted overall decrease in average flows. On the other 

hand, a decrease in precipitation will negatively affect everyone. 

Results also evidenced the methodological advantages of using a HEM, as opposed 

to separate models for hydrological processes, demand for water and economic 

analyses. By means of the HEM it was possible to describe water conditions and 

conflicts in the catchment with monetised metrics, which can be integrated into 

decision making frameworks. It is acknowledged that several social issues may not be 

covered with these values, thus they represent a great complement to qualitative 

analyses to find holistic solutions that reduce water conflicts in mining regions. 
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This section has also provided evidence supporting the use of multiple metrics to 

understand the conditions of all water users in a mining catchment (i.e. taking a 

catchment scale approach). This avoids using the total value of water or similar 

variables alone, as they may be biased towards the mining user. This highlights some 

of the special characteristics of mine water users, which should be taken into account 

when analysing them through HEMs. 

Despite the magnitude of the alternative metrics used here were small compared to 

the total value of water, they helped capturing the conditions of the other sectors 

involved, thus should not be ignored.   

HEMs in mining regions could be aimed to optimise the total value of water, while 

including constraints in the other metrics to safeguard the interests of other users (e.g. 

setting a minimum shadow value or water scarcity cost for the period of analysis). 

Alternatively, the economic information provided by the alternative metrics could be 

used to negotiate compensation schemes beyond water markets, between the mine 

and other users. This is what this project defines as taking a catchment-scale 

approach to analyse water conflicts within a mining region. 

The second scenario showed how this HEM can provide valuable insights into the 

economic impacts of EFRs. A relatively simple statistical methodology was used to 

calculate the magnitude of the EFRs, as the main focus was to understand how this 

type of model can be used in this context. Results showed how the selection of the 

exact location of EFRs may be equally, o more important, than defining their 

magnitude. Moreover, it was shown how the latter may affect water users in a different 

way than the changes in climate conditions, highlighting the importance of setting 

flexible EFRs for dry periods.  

When using historical observations to define the EFRs, it is also important to define 

the period of data in which the statistical analysis will be done. This project used a 

recent record (2000-2018), in order to take into account the hydrological conditions 

that are already affected by current users. Including very old measurements with the 

same percentiles used here may generate extremely strict restrictions that would be 

difficult to achieve in reality. An alternative is to set restrictions based on a detailed 

ecological analysis of each stream, but this entails the challenge of repeating a 
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detailed assessment over a large area, which for very large catchments may not be 

practical and difficult to agree upon. 

The HEM also proved to be a useful methodology to analyse the shared benefits of 

water resources infrastructure in the case study, allowing understanding how an 

additional source of water would benefit each user in the catchment. Results suggest 

that this specific TSF project is not a very useful alternative for the users beyond the 

mine site, in terms of the economic value of extra water released to the catchment. 

However, this may not be the case for other catchments or other projects, or under 

alternative allocation strategies for the extra water, all of which can be analysed with 

this HEM. 

Finally, it is important to comment on the potential impact of the uncertainty of model 

parameters and design, on the results in this section. First of all, it should be noted 

that although the PeCAPEX for mining may generate relevant changes in the total 

value of water (see Table 6.19), it is unlikely that any conclusion may be affected by 

this factor, because in any circumstance, the value of water for mining is considerably 

larger than the rest. 

Regarding the PeCAPEX for agriculture, and particularly the flow requirement at the 

outlet of the catchment, both features have a substantial impact on the shadow value 

of water and the water scarcity cost. This may affect the magnitudes of results in this 

Chapter (i.e. the scale of plots like Figure 7.17), however, the overall shape of these 

figures is more related to the hydrology. In other words, the conclusions related to the 

impacts of the increments of temperature are unlikely to be affected, but the exact 

amount of money involved in the improvements could change.  

The PeCAPEX for agriculture could also modify the differences between TW and NO-

TW values in the TSF recycling analysis, but not even with the lowest value would the 

magnitude of economic returns from water use in agriculture would compete with those 

in mining. Thus, the overall conclusion still stands. 
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8. Discussion 

This project has developed a Hydro-Economic Model (HEM) of the upper Aconcauga 

River in central Chile. This HEM includes a water resources component developed in 

WEAP, where hydrological processes are analysed and where water is allocated 

through a scheme of priorities, in order to reproduce the water rights system in the 

catchment. This is complemented with an economic model that analyses the value of 

water for different users, and re-distributes water towards the user obtaining the 

largest value until an equilibrium is reached (i.e. an economic optimisation of the value 

of water). The mining user was not included in this market as in reality this user rarely 

participates in the market, and it is usually restricted to use the volumes it obtains 

based on its water rights (i.e. which is modelled through the WEAP component of the 

HEM). 

This project has also defined a set of metrics that describe the conditions of water 

resources in the catchment. The strengths and weaknesses of each of these metrics 

have been explained, with the principal observation that, despite being easy to 

calculate the Total Value of Water is biased to the favour of the mining user. This is a 

consequence of the large sums of money involved in this industry (revenues, OPEX 

and CAPEX), and highlights that this user should receive special attention when 

included in HEMs, otherwise results may ignore the other water users in the 

catchment. 

On the other hand, the Total Value of Water without mining, the Shadow Value of 

Water and the Water Scarcity Cost focus on alternative users, and each one of them 

provides a view from a different angle (for agriculture they are even able to distinguish 

between different types of crops). The water scarcity cost in the case study is several 

orders of magnitude smaller than the Total Value of Water, but the fact that it is small 

for the whole catchment does not mean that it is insignificant for individual farmers or 

crops. This highlights the importance of monitoring this metric to understand how it 

changes with external factors and water management strategies. 

When working together, this set of metrics is more likely to provide a holistic 

impression of all water users’ perceptions (i.e. concerns), which in this project is 

understood as taking a catchment-scale approach. It is understood that these metrics 

may not capture all the impressions from water users, but taking into account they are 
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based on actual data from users, it is assumed that they are good proxies. For 

example, the Shadow Value of Water for agriculture may not represent the exact 

underlying valuation of water by farmers, but it can be assumed the higher this value 

(inside a water demand curve), the more difficult conditions for farmers.  

It is not suggested, however, that thresholds can be easily set with these metrics, to 

define a value beyond which social tensions will become problematic (e.g. other water 

users will protest against the mining company). However, it is logical to suggest that if 

an external factor generates a negative change in any of them, this will exacerbate 

conflicts for access to water resources in the catchment. Therefore, by analysing the 

fluctuation of these metrics it is possible to monitor water conditions, analyse allocation 

strategies and estimate the effects of water resources management strategies across 

the whole catchment (e.g. infrastructure projects, compensation schemes, amongst 

others).  

This does not mean that these metrics should replace all non-monetisable or non-

quantifiable information, particularly the qualitative analyses of social interactions 

between mining companies and communities. The results of this HEM are seen more 

as a complement, rather than a substitute of other analyses. The proposal here is that 

informed applications of suitably developed HEM in mining regions, can usefully  assist 

decision making processes in developing more informed decisions. 

When compared to alternatives (e.g. purely hydrological or purely economic analyses), 

the value of this HEM is that it merges information from multiple disciplines, and 

provides a summary through a single set of monetised metrics that can be relatively 

easily understood by decision makers. For example, if the models had been used 

separately they would have arrived to a different conclusion regarding the effects of 

the rise of temperature, or results would not have been monetised, or simply they 

would not have been able to analyse these changes (see Section 7.1).  

Regarding the more tangible implications for this case study, it can be seen that the 

HEM provided valuable insights into the potential effects of changes in climate 

conditions in the catchment. A priori, it was known that a reduction in precipitation 

would entail negative consequences for all users, and this was confirmed with the 

results. It was less clear what would happen in terms of changes in temperature. It 
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was illustrative to see that small increases in temperature may not have a major 

negative impact, and may even benefit users (see Figure 7.17, Figure 7.18 and Figure 

7.19), due to the time-shifting of the snow melting towards a period where there is 

currently higher water scarcity (this is for comparison of cases with the same 

precipitation rate). This contrasts with the overall reduction in flows shown in Figure 

7.11 as a consequence of these temperature increments.  

When the effects of both climate variables were merged following the predicted 

changes of the A2 (+0.5°C), and B2 (+0.5°C and 10% reduction in precipitation) 

climate scenarios. It was found that for the 2010-2039 period, the former may not 

considerably impact users, as it mainly involves a slight increase in temperature, while 

the other one will likely exacerbate conflicts as it predicts a reduction in precipitation 

as well (see the climate response function for the shadow value of water in Figure 

7.20).  

For the 2040-2069 period, both scenarios predict a decrease in precipitation compared 

to current conditions, and they also forecast increases of temperature beyond 1 °C 

(B2 +1.5 °C and A2 +2.0 °C), which is the threshold for temperature changes 

becoming a major issue. This means that water conditions in the catchment will 

worsen considerably. 

These results suggest that if future conditions follow the A2 scenario, users in the 

catchment will have some time to adapt to more extreme conditions, as the transition 

will be smoothed thanks to the delayed decrease in precipitation, and the small 

impacts of the slight increments of temperature. On the other hand, the decrease in 

precipitation in the B2 scenario means that users will need to adapt rapidly to these 

climate conditions. In both cases, by the second half of the century the catchment will 

have to be adapted to more severe weather conditions. 

The second scenario in this project looked at Environmental Flow Requirements 

(EFRs), which are increasingly been discussed in Chile (Carey, 2017) and worldwide 

(Pastor et al., 2014). Within the local context, there has been a long debate about 

amending the water code. This includes discussing the refinement of the calculation 

of EFRs, and the definition of the water rights that should be affected (Carey, 2017, 

Biblioteca del Congreso Nacional and Morales Peillard, 2016). Although they may not 
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be popular amongst users, EFRs could be a potential path to improve the ecological 

condition of rivers like the Aconcagua. 

This project defined EFRs using a monthly statistical analysis, which defined the 

restrictions based on four different percentiles or probabilities of exceedance. Results 

showed that defining the location was as relevant as defining the magnitude of the 

restrictions (see Figure 7.27 and Figure 7.31), in this case study.  

In addition, results underscored the importance of carefully selecting the historical 

records time for analysis, if a statistical approach is used to define the EFRs. In this 

case study, water users have largely modified the natural environment in the last two 

or three decades, and this means that very old flow observations are large compared 

to current values and even the shape of the hydrograph could have been altered. If 

old values are included in the definition of the restrictions, they may end up being quite 

strict during dry periods, to the point that they are impractical to apply. 

Furthermore, this project showed relevant differences in the way EFRs affect users, 

as opposed to the changes in climate conditions. While the latter continuously restricts 

the volumes of water available to users in a relatively homogeneous way, the former 

may not have any noticeable effect in most years, but during dry periods it could have 

very large impacts (see Figure 7.35). This calls for analysing ways of having flexible 

restrictions that do not pose an unbearable burden to users in dry years, but still 

allocate water to the environment during wet and average periods. 

A step forward on this subject would be to compare these results with those from 

alternative methods to define EFRs. It was mentioned previously that one of the 

preferred options from an environmental point of view, is to develop detailed analyses 

of each stream and define the restrictions based on them. The main drawback of this 

approach is the complexity inherent in repeating such detailed analyses across the 

whole catchment. A mid-point could involve doing ecological analyses in a small 

number of key hydrological locations (e.g. the outlet), and complementing this with the 

statistical appraisal of historical data.  

A further step forward would be to analyse options to develop the policies required to 

establish the EFRs, amongst others, including the negotiations with existing users. An 

approach to this would be that the government or an independent organisation bought 



192 
 

water rights from users, and then used the purchased rights to improve environmental 

conditions. This would be similar to the model used by the Commonwealth 

Environmental Water Holder in Australia, which is a federal agency part of the 

Department of the Environment and Energy, which holds water rights in the Murray 

Darling Basin for environmental purposes. This, however, would still require defining 

EFRs using any of the aforementioned methods. 

The third scenario analysed was of particular interest for this project, as it allowed 

addressing a challenge of the mining industry that has been highlighted several times 

in this document: Promoting water stewardship in the areas where they operate, and 

calculating the benefits to other users that would follow from different approaches to 

water stewardship by mining companies.  

The HEM in this project was used to calculate the shared benefits of a tailings water 

recycling system, which would potentially be built by the mining company. The results 

suggest that this specific scheme would not generate any large benefits to users 

outside mining (a 2% reduction in the shadow value of water, a 0.25% increase in the 

total value of water for alternative users and 13 % reduction of the water scarcity cost). 

The main reason for this was that the priority for using the recycled water was given 

to the mining user, in order to fulfil the assumed deficit as a consequence of the 

changes in climate conditions.  Another reason was that the additional flow supplied 

was not very large compared to the magnitudes required by agriculture or hydro-

power.  

If the first issue was addressed, and a higher priority was given to other users, it is 

likely that the project would not be economically feasible, as the mine would be unable 

to meet its requirements during extremely dry years, which is when most economic 

benefits for this user arise. Other users would be unable to generate economic benefits 

in the same order of magnitude using these volumes of water. This can be seen by 

noting that the shadow values of water for agriculture and urban uses (see Figure 6.5), 

even in the driest conditions and despite being in 2007 prices, are low compared to 

the annualised costs of the project (see Table 7.3). In addition, being the water 

property of the mining company this option does not sound very logical.  
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The second issue makes it evident that to effectively support users that consume large 

volumes of water (e.g. agriculture), it is required that the additional supply is in the 

same order of magnitude, otherwise it may only be possible to make an impact on 

smaller consumers like the urban sector.  

Nevertheless, if the extra water supply was not used to alleviate all users but specific 

farmers (e.g. the ones closer to the project), the relative impacts may have been larger. 

This may require refining the economic analysis of agriculture, by distinguishing 

agricultural users by their geographical area and re-running the Positive Mathematical 

Programming model. All of this can be easily implemented in this HEM. 

Under any circumstances, the share of water would always involve the good will from 

the company and their desire to share benefits at a free or reduced rate, as no other 

user has the capacity of paying for the costs of the project (see Table 7.3). The added 

value of the HEM here is the ability to approximate the benefits provided to other users, 

and to assess which users would find the additional water most beneficial, as a 

function of different hydrologic and economic conditions. 

It is important to remember that when the mining company has analysed this project, 

it has been with the objective of supporting a future mine expansion, and the 

associated increase of minerals processing. However, even with this scope, this model 

could be used to understand how other water users in the catchment could be 

benefited with the new infrastructure.  
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9. Summary and Conclusions 

This PhD project aimed to analyse how an integrated hydrologic and economic 

approach, implemented by means of a Hydro-Economic Model (HEM), could help to 

quantitatively analyse water conflicts and the potential for improving water resources 

management in mining regions. HEMs are multidisciplinary tools that have been used 

to address current and future challenges of water management, usually focused on 

agriculture, urban uses and environmental flow requirements. This involves taking a 

catchment-scale approach, which means analysing all water users in the area of 

interest and identifying system-wide promising water management alternatives. 

This methodology can be used to help water decision makers testing policies, building 

synergies, analysing the benefits of new infrastructure, forecasting the impacts of 

changes in climate conditions and supporting independent observers monitoring water 

conditions, amongst others. Nevertheless, despite being a relevant user of water in 

many catchments worldwide, mining has not been widely included in HEMs. 

This contrasts with an increasing interest by researchers, companies, and international 

organisations (e.g. the Minerals Council of Australia – MCA and the International 

Council of Mining & Metals - ICMM), to help the mining industry improve their long-

term water performance. This includes discussions on how to link the value of water 

to regional sustainability of mining areas, how to use sustainability frameworks in the 

mining water context, and how to evaluate the shared benefits of mine water 

management and infrastructure, amongst others. The latter is relevant as sharing the 

benefits of new sources of water (e.g. seawater or tailings water), should be the new 

paradigm if this industry wants to improve its relations with communities, and preserve 

their social licence to operate.  

Qualitative analyses by means of frameworks or methodologies have been used to 

address these issues, however, there have been fewer examples of how to 

complement them with quantitative results. The main objective of this project was to 

include mining water usage in a HEM with appropriately detailed portrayals of water 

resources and economic components, and to understand how the outputs of this HEM 

could contribute to improve water resources management, and to monitor current and 

future water conflicts in mining regions, while taking a catchment scale approach. 
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The first step of this research was a literature review on Hydro-Economic Modelling in 

order to: 

1. Analyse the applicability of HEMs concepts in mining areas.  

2. Identify the key challenges of implementing HEMs in mining regions. 

3. Learn from existing models to define the design features of the HEM in this 

project. 

4. Define a roadmap for the rest of the PhD project. 

Based on the findings of the literature review, the PhD was divided in four stages: 

 An assessment of some interpolation methods and of the usage of alternative 

sources of climate data, in order to address the challenge of implementing 

HEMs in mining regions with few or no input data of adequate quality. 

 Development of a water resources model of the case study in order to make 

sure that the HEM would incorporate a relatively detailed representation of this 

component, as opposed to using historical flow observations or synthetic values 

derived from them. 

 Development of the HEM after merging the water resources and economic 

components, by means of a coupling methodology that was flexible and robust. 

The latter meant that the coupling had to allow a relatively detailed analysis of 

both components, data exchange between them, support easy and flexible 

modifications to input data, it also had to be fast, and interactions between 

components should be automatic. Furthermore, it was desired to use software 

that allowed the model to be replicated in other catchments at a low cost. 

 Implementation of three potential applications of the HEM in a mining region, 

including analyses of the effects of changes in climate conditions, the inclusion 

of environmental flow requirements (EFRs), and the valuation of shared 

benefits of a tailings water recycling project. 

9.1. Key findings 

The key findings explained in this sub-section answer the research question and 

address the objectives of this PhD project. Findings are reported here in the same 

order as they were outlined in Chapter 1. 
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First, the literature review highlighted the importance of using more than one metric in 

HEMs of mining regions, amongst others, to address the substantial gap between the 

sums of money involved in this industry and those in alternative users. Throughout this 

project, the Total Value of Water was used acknowledging that it was biased towards 

the mining user. This metric could not be ignored as it allowed understanding the value 

of water for mining. However, to take a catchment scale approach, the Total Value of 

Water without mining, the Shadow Value of Water and the Water Scarcity Cost (the 

last two for agriculture and urban uses only), were also used. These metrics were used 

together, as proxies of the conditions of water resources available to different users, 

and of the potential for water conflicts. 

This project also found that by using an easy to replicate analysis of climate 

observations, supported by global gridded datasets of temperature and precipitation, 

it was possible to obtain estimations of these variables in the case study of acceptable 

quality. It was also possible to analyse under what circumstances the CHIRPS satellite 

product represents a potential alternative to estimate precipitation in the case study. 

This may be quite useful when thinking about implementing HEMs in remote mining 

regions, where there are no climate observations of adequate quality. 

Using the climate data generated in this project, a water resources model for the case 

study was successfully calibrated and validated in WEAP. Internal consistency was 

checked by accompanying the comparison of flow observations, with reviews of snow 

water equivalents and energy demand values. This component was complemented 

with economic analyses of the value of water for each user in the catchment. 

The coupling methodology developed involved using WEAP and Python scripts. This 

is one of the main methodological contributions of this project as it was possible to 

merge the water resources and economic components, after allowing multiple 

interactions between them and without major simplifications in any of them (e.g. using 

historical flow observations in the water resources component). By using a robust 

programming language like Python it was possible to easily modify input data, do data 

mining of results and use the existing modules available, amongst others, to do Monte 

Carlo sampling to calibrate the water resources model. 
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The outputs of the base case scenario of the HEM summarise the conditions of all 

users during the 17 years analysed (2000-2017). The HEM provides a monetised 

indication of the value of water during this period, and represents a benchmark that 

allows comparison among scenarios, to analyse how multiple factors may mitigate or 

exacerbate water conflicts in the region. 

This research shows how a detailed representation of water resources in a HEM 

provides a wide range of useful results. The most important one for this case study 

was that small increases in temperature may not have a significant negative effect, or 

may even benefit, water users in the catchment (when comparing cases with the same 

precipitation rate) due to the shifting in the timing of the snow-melting period, despite 

the predicted overall reduction of flows. Valuable conclusions like this one would not 

be found if a simplification of this component (e.g. using historical flows) was used. 

Furthermore, as expected a priori, it was found that any reduction in average 

precipitation would negatively affect all users.  

With the scenario analysis, this research showed the added value of a HEM, when 

compared to separate analysis of hydrology, demand for water and economics. 

Regarding the EFRs, in this case study it was found that defining the location of the 

EFR was as important as the selection of its magnitude. Further relevant issues with 

EFRs were flagged, including the importance of defining flexible restrictions for very 

dry periods, and the careful selection the historical period of observations when using 

statistical methods to define EFRs.  

Finally, this project showed how HEMs could be used to quantify the shared benefits 

of new water infrastructure in mining regions. It is known that this industry has the 

financial capacity to invest in large infrastructure projects that increase water supply, 

and some of these benefits could potentially be shared with other users. For this to 

happen, however, it may be desirable to quantify these benefits in order to facilitate 

decision making around them. In this case study the shared benefits of a proposed 

tailings water recycling scheme were not large, however, this may not always be the 

case thus the methodology may be useful to identify regions and schemes where 

relevant synergies between users may be achieved. 
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9.2. Contributions to knowledge 

At the beginning of this project it was hypothesised that HEMs could be adapted to 

mining regions, in order to provide valuable insight to water decision makers as done 

in other types of catchments. This project accepted this hypothesis after developing a 

HEM in the case study, and defining a set of metrics that can be used to take a 

catchment-scale approach to monitor water resources conditions of all users in the 

region analysed. 

In addition to this, this project has contributed to knowledge in the following ways: 

 It has developed a methodology that can be used to facilitate the estimation of 

input climate variables of HEMs, which is of particular interest for remote 

regions with poor climate observation networks. This project showed the 

advantages of this approach in the case study, when compared to more 

commonly used alternatives, like inverse distance or lapse rates. Moreover, it 

was described under what conditions it was useful to use a satellite product like 

CHIRPS in this catchment.  

 It has shown the value of including a detailed representation (i.e. a hydrological 

model) of water resources in HEMs, as opposed to more simple representations 

(i.e. historical flows). It also showed the advantages of using a HEM, as 

opposed of separate multi-disciplinary analyses. 

 It has developed a robust, but flexible, coupling methodology, which may 

outperform alternatives by allowing the inclusion of a detailed representation of 

both components in the HEM and multiple data exchange between them, 

amongst others. This approach may be easily replicated elsewhere, as it is not 

constrained to a geographical region, while the software used is easy and 

inexpensive to access. 

 It has shown three potential applications of HEMs in mining regions, including 

the analysis of changes in climate conditions, introduction of EFRs, and the 

valuation of the shared benefits of mine water infrastructure. The specific 

results of this case study also provided interesting insight into water resources 

in this catchment. 
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9.3. Limitations and future research 

Despite attempts to obtain the best available data, there were limitations with this. This 

included, although is not limited to, restricted climate data in the mountain areas, use 

of just one agricultural census and lack of CAPEX estimates for agriculture, lack of 

knowledge of the exact location and amounts of water abstracted or consumed in the 

upper-most parts of the river, and lack of detailed estimates of costs of the mining and 

hydro-power users. 

This was addressed, to some extent, by analysing the sensitivity of the model to some 

of these limitations. Although results do fluctuate, it was found that the sensitivities 

tested were unlikely to invalidate the conclusions. Future refinements of this model 

could include improved and updated datasets, to address the rest of the data 

limitations and to develop insight of the sensitivity of results. 

The simplification of the downstream water use (i.e. the minimum flow requirement in 

the outlet of the case study) allowed developing the model in the case study within the 

time period of this PhD. However, the merger with the existing groundwater models in 

the irrigated area would be a step forward, as it would provide a more detailed 

representation of the flow of water between the are analysed in this project and the 

aquifer. 

It is also important to mention that the analysis of changing climate conditions was 

based on summarised data taken from the literature, but a next step should be to 

analyse temperature and precipitation outputs from regional climate models (RCMs). 

This would allow a better understanding of the transition of climate, and the associated 

impacts on the catchment over the next 20-50 years. 

Future models should also attempt to analyse the methodologies used in Chile to 

define the EFRs. This project used a simple approach to analyse EFRs through the 

HEM, but other alternatives used in Chile or in other countries could be implemented 

in the future. 

The economic depth of all economic analyses in this project involved direct benefits 

only, although it was acknowledged that input-output models could be included to 

analyse indirect benefits as well. Generally, the latter are not analysed in HEMs, 
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however, it would be interesting to implement this to understand how macroeconomic 

features like employment and royalty payments, amongst others, affect the 

comparison between mining and other users. 

The inclusion of risk factors in the economic analysis of agriculture, and even in that 

of other water users, could help address the assumptions of perfect foresight, and 

could also help analyse the risk perceptions from users. This would involve the 

refinement of the economic functions used to describe water users (e.g. an extra 

variable in the PMP with the quadratic cost function). A refinement of these economic 

calculations may in turn improve the accuracy of the results of the water trades 

between users. 

Another relevant assumption of the economic component was that users cooperate in 

order to optimise the use of water. This was assumed when modelling the water 

markets between agriculture and urban users, and was also indirectly assumed when 

using the results of the PMP, which are an ideal allocation of resources following the 

maximisation of economic value. In reality, it has been seen in similar regions that 

some farmers are reluctant to trade water rights beyond the same irrigation channel, 

which means that the trades with the urban user and the ideal allocation of water 

following the results of the PMP would be limited. Future versions of the model could 

compare scenarios of cooperation and no cooperation, as to define how this 

assumption may affect the results. 

From the beginning of this project it has been acknowledged that water decision 

making is not purely undertaken based on the results of models, like the one here, but 

also with several other factors in mind. From this perspective, the metrics used in this 

project are not thought to be absolute descriptors of the water resources conditions in 

the catchment, but proxies that can help inform the perceptions of users in the 

catchment towards water allocation and potential water scarcity. These values should 

complement further qualitative analyses, rather than replacing them, with the aim of 

driving more informed decision making. For example, these metrics cannot predict 

whether or not strong opposition and social protest will arise against a mining project, 

yet they can provide insight into how multiple factors may mitigate or exacerbate 

conflicts for access to water resources. 
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It would be desirable that future HEMs in mining regions included closure and 

rehabilitation costs of the mine site, and an economic estimation of system-wide 

environmental impacts from all users. As previously discussed, this has been 

simplified during this project as there is a lot of uncertainty defining a reliable estimate 

of these costs, and comparing future cash flows with present values. There are entire 

fields of research focusing on these topics, and it would take a whole PhD project to 

approximate these costs in such projects. Furthermore, many of these outputs may 

have considerable ranges of fluctuation depending on the assumptions used, which 

makes it difficult to use them for practical purposes in their current form. 

9.4. Closing remark 

Being an industry with potentially high negative impacts on the environment, but at the 

same time a provider of key resources to our modern society, mining has the challenge 

of continuing operating while improving their environmental performance and 

interactions with other water users. Water is one of the key concerns in this discussion, 

and the Hydro-Economic Modelling approach here represents an effort to reconcile 

the mine water requirements with the broader necessities from other users in 

catchments, and the environment. 

Despite the multiple assumptions and limitations previously described, these models 

have the potential to develop multi-disciplinary insights into how to manage the 

tradeoffs between allocating water to mining, and the well-being of other users in the 

catchment. By including an analysis of hydrological processes in the catchment, it was 

possible to understand the physical behaviour of water. The economic component 

complemented this by including an analysis of the demand side. 

The results from this research expect to foster the design, development and 

application of tools that support more informed water decision making in mining 

regions. Future refinements should aim to include refined input data and reduce the 

uncertainty of selected quantitative elements, while including feedback from 

stakeholders in mining regions, in order to generate the type of outputs that can drive 

positive socio-economic and environmentally sustainable change in these areas. 
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Abstract 

Joint research between economists and hydrologists increasingly contributes to 

optimising the economic value gained from water, while safeguarding its social and 

environmental values. The application of hydro-economic analysis to mining regions, 

however, is limited. This paper examines why this is the case and how to confront it. 

The paper focuses on identifying and describing features of large-scale mines and 

mine regions that are challenging to analyse such as: magnitude of capital involved, 

time-scale and remoteness of projects, inherent environmental risks, and strong 

negative perceptions about mining’s impacts on water. These characteristics may limit 

the applicability of established hydro-economic concepts and methods, thus risk-

based metrics are discussed as complementary tools. We also contend that further 

research and development in water-related ecosystem services should be a priority, 

in order to better quantify trade-offs between the economic benefits of water use by 

mining and competing users, including environmental flows. Case studies of mining 

regions in Chile, Madagascar and Sweden are summarised to illustrate some of the 

issues raised. While data limitations are an obstacle, new and extended case studies 

are required to explore how the challenges may be addressed.  
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1. Introduction 

Collaborative approaches between hydrologists and economists have the potential for 

optimising the instrumental value of water without irreparable ecological harm. This 

approach has been termed “hydro-economics” (Brouwer and Hofkes, 2008) and has 

particular salience in mining regions. On one hand, the mining industry must manage 

water-related economic risks associated with water scarcity, floods, pollution and 

community conflicts, amongst others. On the other hand, due to the large volumes of 

water consumed and discharged, the mining industry is a major investor in, and 

manager of, water infrastructure. Efficient fulfilment of these water management roles 

requires good understanding of the links between water management options and their 

economic costs and benefits. Furthermore, these links are of substantial interest to 

governments and other water stakeholders, when developing views about allocations 

of land and water to mining projects. 

The term ‘hydro-economics’ may be defined as the discipline of understanding the 

current and potential economic value of water, using hydrologic, economic and social 

perspectives (Brouwer and Hofkes, 2008, Harou et al., 2009). A hydro-economic 

model (HEM) is the formalisation of that understanding, generally built into a numerical 

tool supporting quantitative scenario analysis and/or optimisation. The field of hydro-

economics has increasing prominence, partly due to the relatively new emphasis 

placed on water as an economic good (United Nations, 1992, Seyam et al., 2003), and 

partly due to the increasing need for governments and industry to improve water 

management and promote transparent decision making (WBCSD, 2013, Canadian 

Council of Ministers of the Environment, 2010). The field aims to give water users and 

managers objective information for use in decision-making frameworks. 

Although hydro-economics is a well-established discipline, there are few reviews or 

applications that address the important technical and conceptual challenges of 

applying hydro-economic techniques to mining applications. We identify the major 

challenges as follows: 

 The high revenues from large-scale mining, and high capital and operational 
costs involved, mean that water supply is often a relatively minor, and typically, 
fixed cost. However, mining’s presence in catchments or in water markets may 
make water unaffordable for some alternative users.  
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 Due to hydrological variability and topography (i.e. some mines are below the 
groundwater table), many mines alternate between periods of water scarcity 
and water excess. 

 The longevity of large-scale mine projects and consequent economic and 
hydrological uncertainties also requires a risk-based approach to hydro-
economic analysis. 

 The importance of large-scale fresh water consumption efficiency 
improvements. 

 Increasing scrutiny of the mining industry’s social and environmental 
performance increases the relevance of quantifying the social value of water 
and ecosystem services impacts. 

In summary, it is the scale of investments and revenues from mining, the large spatial 

and temporal extent of large-scale mining projects, and the particular social and 

environmental perceptions and risks, which make hydro-economic analysis of mining 

regions special. While some of these features apply to other sectors, they are arguably 

more common and prominent in large-scale mining regions. Yet, to date, the mining 

industry and mining regions have scarcely been addressed in the hydro-economic 

literature. This review paper analyses this gap, and its objectives are: 

 To establish and describe the features of large-scale mining that pose special 
challenges for hydro-economic analysis. 

 To review the applicability of established economic and hydro-economic 
concepts and metrics, in light of the challenges. 

 To present a view on the way forward for addressing these challenges to enable 
transparent economic assessments of water management options for mines 
and mining regions, covering both industry and societal interests. 

This review paper first develops the argument that regions with mining projects are 

special in the hydro-economic context, and discusses the applicability of commonly-

used economic concepts and metrics. Then, it reviews the components of HEMs, and 

lists some considerations when including mine water users in them. Finally, it presents 

case studies that illustrate some of the challenges described, and suggests pathways 

to address them. We restrict our analysis to regulated, large-scale mining. While 

artisanal and small-scale mining are also relevant in many regions, they present a 

separate set of challenges, which we do not explore in detail here. We also focus on 

the direct economic benefits of mining, and only briefly mention the indirect ones.  

2. Why mining is a special case 

Mines vary greatly in terms of geological features, as well as hydrological and socio-

economic settings. However, for a typical large-scale mine, main water uses include: 
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separating minerals from the waste; dust suppression; cleaning equipment; drinking 

water and sanitary supplies; and for conveying tailings and concentrate (SMI-MCA, 

2014). A detailed review of mine water usage and the risks that a mine project poses 

for regional water resources, summarised in Figure 1, can be found in Younger and 

Wolkersdorfer (2004) and Department of Resources Energy and Tourism - Australian 

Government (2008). This section will focus on describing the characteristics of mining 

that create special challenges when including these uses in hydro-economic analysis.  

 

Figure 1.  Overview of mine water uses and regional impacts. 

The high revenues from and costs of mining 

Average revenues per unit volume of water abstracted in the mining industry tend to 

be high compared to its main competitor for water, agriculture (Moran et al., 2008). 

Typical revenues for copper and gold mining operations are shown in Table 1. 

Information on production costs per mine site is rarely publicly available; thus, it is 

difficult to estimate net revenues per unit of water abstracted.  

Table 1 - Estimations of revenue per m3 of water consumed in the production of copper and 

gold, based on 2013 data.  

Mineral Source Method Revenue per m3 of Water 

Consumed (US $/m3) 

Range of Values  

(US $/m3) 

Copper (Northey et al., 

2014)19 

Pyrometallurgy 

$80.36  

                                            

19 Based on the process modelling in Northey et al. (2014) along with average copper and gold prices in 2013 prior 
to the decline in metal prices that started in 2014. 



213 
 

(Northey et al., 

2014)1 

Hydrometallurgy 

$105.22  

Own Calculations20 Both $78.80 $70.1  -  94.61 

Gold (Northey et al., 

2014)1 

Non-refractory 

$182.98  

(Northey et al., 

2014)1 

Refractory 

$157.86  

Own Calculations2 Both $271.39 $38.7321  -  709.23 

 

Similarly, Figure 2 shows the Gross Value Added (GVA) values per unit water 

consumption for major water-consuming sectors of the Australian economy between 

2008 and 2014. This figure shows that mining and mining-related activities (e.g. 

manufacturing of metals) provide high economic value to Australia in terms of GVA 

per unit water input. This is not unique to Australia. Mining and agriculture in Chile 

contributed around 8% and 4% respectively to the country’s Gross Domestic Product 

(GDP) in 2005, while consuming around 8% and 73% of water consumptive rights 

(World Bank, 2011). Such comparisons are potentially powerful in terms of influencing 

water policy, which raises the question of what complementary metrics are needed to 

provide a broader view of hydro-economic performance, which will be addressed in 

Section 3. 

                                            

20 Based on production data published by governments and company sustainability reports for a sample of large-
scale mines in Peru, Papua New Guinea, Turkey, Chile, China and USA, along with average copper and gold 
prices. Only mines with clear information about volumes of minerals produced and water abstracted in 2013 were 
included. Reports with lumped information from several mines or several countries were excluded. 
21 The lower bound is from a mine site in PNG, whose relatively wet tropical climate does not require mines to 
improve efficiency in consumption. This shows the influence of local conditions in the value of water. 
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Figure 2. Gross Value Added (GVA) per unit water usage to the Australian economy between 

2008 and 2014 (Australian Bureau of Statistics, 2015). 

The high revenues at stake, and the high capital investment and operational costs 

involved, also mean that compromising water demand in times of water shortage is 

not regarded as an option during mine planning. Furthermore, as water costs 

represent a small fraction of total capital and operational costs, mines may be willing 

to pay sums of money often unaffordable for other users to ensure they have a reliable 

source of water under any demand scenario (Young and Loomis, 2014). This suggests 

that water may be seen as a fixed, rather than a variable input, for the mining industry. 

Water excess and discharge 

Most mine projects face the challenge of avoiding water deficit while minimising 

excess. A possible switch from input water being an asset to being a liability for the 

mining operation is illustrated in Figure 3. Before point (1), the figure shows that 

available water is not enough to allow production, thus its value is either 0 or negative, 

in cases where operational costs are still incurred in its management. Between points 

(1) and (2), production is possible in the mine site and the value of water may increase 

linearly (dashed line) or in a discrete way (points), depending on whether mine 

production can respond to incremental increases in available water. 

Mine water surplus is shown in the figure beyond point (2), and this occurs when 

groundwater inflows, surface water runoff into the mine site, and precipitation into the 
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mine site exceed the consumptive demand and storage capacity. The excess water 

may leave the site in a regulated manner, usually involving treatment to improve its 

quality, or through unregulated spillages and diffuse runoff or seepage. In the worst 

case mines may be forced to stop operations due to floods, or face regulatory penalties 

and reputational damage due to unregulated discharges (Barrett et al., 2014, Gao et 

al., 2014).  

 

Figure 3.  Example of the possible dynamics of the total value of water on a mine site. 

These discharges may have large spatial and temporal impacts (Younger, 1997, 

Kossoff et al., 2012), and examples of this exist worldwide (Amezaga et al., 2010, 

Veiga and Hinton, 2002, Salvarredy-Aranguren et al., 2008, Lovingood et al., 2004, 

Rojas and Vandecasteele, 2007, Nazarro, 2008, Younger et al., 2005).  

Problems involving tailings water, acid mine drainage, mercury and cyanide, have 

received special attention due to their complex interactions with the environment and 

potential toxicity (Oyarzún et al., 2012, Dold, 2014, Salvarredy-Aranguren et al., 2008). 

However sediments, salts, hydrocarbons and radio-active materials may also be 

sources of risks (Younger and Wolkersdorfer, 2004). Therefore, while managing water 

excess is a challenge across many sectors, the physico-chemical risks associated and 

the scrutiny of mining discharges mean that management costs can be especially 

large for mining. 

It is important to mention that water scarcity and surplus, and quality of discharges, 

should be analysed relative to local conditions (Moran, 2006). The same abstraction 

of water, or discharge of pollutants, could have very different effects in a dry and in a 



216 
 

wet catchment. Metrics which can account for local conditions would help to 

standardise the assessment of water-related risks for mines.  

The longevity of mine projects and potentially perpetual impacts on water 

resources 

The operational life of a mine is often beyond 50 years, and may be preceded by 

decades of exploration and planning, and then may be proceeded by years of 

rehabilitation and post-closure management. The long life means that the economic 

valuation of a mine project must involve projections of commodity demand and prices, 

and operational costs, which include the costs of securing a water supply. Thus, 

hydrological predictions over a time-scale of 50-plus years are often needed. The 

uncertainty in long-term forecasting of water supply, as well as other components of 

costs and revenues suggests that hydro-economic analyses should account for 

uncertainty and variability, and be risk-based (Li et al., 2008, Correa et al., 2016).  

Furthermore, water-related problems are the most common environmental impacts 

when closing mines (Laurence, 2011); and pollution impacts can last for decades or 

centuries due to the gradual physical and chemical weathering of rocks that are 

exposed to water and atmosphere (Younger, 1997, Lovingood et al., 2004). The 

problem can continue until pollutant sources have been confined during mine closure 

or land rehabilitation phases, or until they are exhausted (Younger, 1997, Northey et 

al., 2014, Rojas and Vandecasteele, 2007).  

Although adopting best practice guidelines for managing waste-rock and tailings 

effectively reduces risks (European Commission, 2009, The Mining Association of 

Canada, 2011), uncertainties in long-term climate, hydrology and performance of 

mitigation strategies (Kuipers et al., 2006), mean that residual risks always exist, 

including the potential for catastrophic impacts (e.g. tailings dam failures) (Amezaga 

et al., 2010, Salvarredy-Aranguren et al., 2008). This has led to calls for costs of 

recovery from pollution events and costs of long-term pollution management to be 

integrated into risk-based economic metrics (Kim and Kaluarachchi, 2016, Farber et 

al., 2002, Evans et al., 2006, Esteve et al., 2015). 

Water efficiency and alternative sources of water 
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Mines in water-stressed regions invest considerable resources in water-efficient 

processes, reduction of water losses and seeking alternative sources of water 

(seawater or brackish groundwater). The water efficiency gains realised by these 

efforts tend to be large ‘step-changes’ rather than gradual changes (ICMM, 2012, 

Espejo et al., 2016). These efforts contribute to the high economic value of fresh water 

for mining, as water is expected to pass several times through the production process 

(Gunson et al., 2012).  

Furthermore, as many water efficiency measures are energy-intensive processes (e.g. 

desalination), water costs and risks may be transferred to energy costs and risks. 

Thus, analysing energy cost and carbon emissions may become necessary from both 

cost-benefit and sustainability perspectives (Woodley et al., 2014, Nguyen et al., 2014, 

Northey et al., 2014, Simpson et al., 2014, Rivera et al., 2016).  

Social and environmental performance 

Water-related conflicts between mine projects, communities, environmental groups 

and other land and water stakeholders, arising from actual or perceived impacts, have 

the potential to diminish the success of mine projects (Kemp et al., 2010, Franks et 

al., 2014, Rivera et al., 2016). This suggests that from a mining company perspective, 

hydro-economic analysis should include broad considerations of how a project is 

perceived to protect and augment regional water resources compared to other users. 

This may include analysing how investments in water supplies for communities, 

without the project obtaining any direct economic benefits (Quintero et al., 2009), may 

influence the social license to operate (Franks et al., 2014). 

3. Applicability of economic evaluation metrics and concepts 

Economic valuation of water should ideally include all benefits that are accrued from 

it, net of all costs incurred (WBCSD, 2013, Morgan and Orr, 2015). The value may be 

higher than prices paid (e.g. to pump, treat or trade), as in many places water is free, 

subsidised or commercialised below its full value (Damigos, 2006, Kochhar et al., 

2015). Lange (1998), for example, found that water subsidies for mining in Namibia 

are around 19% of their operating costs, and it is argued that this type of subsidies 

have adverse impacts in the environment (Clinch et al., 2002, OECD, 2003).  
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The selection of an economic value metric is affected by multiple factors (e.g. temporal 

and spatial scales, and whether a private or social point of view is taken) (Harou et al., 

2009, Young and Loomis, 2014, Brouwer and Hofkes, 2008, Seyam et al., 2003, 

Medellín-Azuara, 2006). The specific metric to be used may change depending on the 

scope of the analysis. This section examines the applicability of selected economic 

metrics and concepts to appraise the economic value of water. 

Revenues per volume of water consumed 

The average revenue per volume of water consumed (as in Table 1), could be used 

to show that the economic value of using water in mining is higher than for alternative 

users (e.g. agriculture). An alternative metric, although more difficult to calculate, 

would be average revenues net of costs, hopefully including capital expenditure 

related to water use, to take into account the different capital structures of users in the 

analysis. This could be achieved through deductive methods (George et al., 2011, 

Davidson et al., 2010), which involve a “construction of empirical and behavioural 

models, from which specific parameters or shadow prices are deduced” (Young and 

Loomis, 2014). 

An independent observer or government may be more interested in defining region-

wide benefits offered by mining per unit volume of water consumed, during the whole 

life of the mine. These would include estimations of closure/rehabilitation costs, as well 

as other production costs. This could be achieved, for example, by extending Net 

Present Value (NPV) calculations to include social and environmental economic 

values.  

From a government perspective, it may also be important to analyse how much of the 

revenues generated by mining stay in the national and local economies (Fleming and 

Measham, 2014, Black et al., 2005), and what their effects on national and local 

economies are (Khan, 1999, Petkova et al., 2009). In addition, governments may be 

interested in the number of jobs, and especially the number of low-skilled jobs (i.e. 

those that are more likely to employ lower income citizens), that will be generated by 

projects. The latter are macro-economic features that are not usually included in 

HEMs, but may be relevant to government officials analysing HEMs’ results. 

Marginal Productivity 
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An alternative to average values (e.g. revenue per volume of water consumed) are 

metrics of marginal value such as marginal productivity. This metric describes the 

change in production due to a unit change in one input, assuming that all other 

quantities are kept constant (Farber et al., 2002, Varian, 2010). Marginal productivity 

can be complemented with the market price of the output, to define the economic value 

of marginal productivity (i.e. marginal revenue product or value marginal product) 

(Young and Loomis, 2014). This indicates the revenue or net revenue obtained by the 

sale of the additional units of output produced with the additional unit of input. 

This metric is useful for optimisation purposes, when maximising the regional 

economic value of water, by allocating it to the uses with the greatest marginal revenue 

product until equilibrium is reached. Marginal analysis, however, assumes that users 

see water as a variable input, and thus they can adjust their production processes 

accordingly (Young and Loomis, 2014). Agriculture within well-developed water 

markets and some industries may be able to adapt (Grafton et al., 2012, Wheeler et 

al., 2014, Dupont and Renzetti, 2001), but for mining this would depend on the design 

of the processing plant, which tends to be the largest consumer of water in the mine. 

Typically, mine production cannot adapt smoothly to changes in water supply, and 

large processing units may be taken off-line when water supply drops below critical 

levels. 

Willingness to pay and ecosystem services 

In addition to the previously described methods to define the value of water from a 

producer’s point of view, approaches to defining users’ willingness to pay are useful 

to approximately monetise mining’s impacts on environmental flows. Young and 

Loomis (2014) give a detailed description of the most common methods, which can be 

divided in three groups. Revealed references approaches derive values from the 

observation of the behaviour of users in existing markets for related economic goods 

(e.g. Hedonic Pricing, Travel Cost Methods and Damage Cost Methods).  

Stated preference approaches rely on direct answers from users to constructed 

surveys which  elicit water users’ willingness to pay for the benefits which water 

provides to them (e.g. Contingent Valuation Method and Choice Modelling). A third 

approach, benefit transfer, uses values derived for case studies at other locations or 
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settings. These methods can be complemented with Ecosystem Services frameworks 

(Millennium Ecosystem Assessment, 2005, DEFRA, 2007), to support the 

understanding of how environmental flows provide services to humans and hence the 

indirect economic impact of water use by mines. 

In mining regions, while there is recognition of the need to quantify these values, only 

preliminary applications of willingness to pay have been undertaken (BSR, 2015). 

Damigos (2006) applied them to determine the loss of environmental value due to 

three mine projects. He concluded that willingness to pay methods produced rough, 

but useful estimates of social and environmental liabilities of the mines. However, the 

alternative methods gave differences of up to two orders of magnitude, highlighting 

the importance of doing sensitivity analyses, and of clearly communicating analytical 

assumptions. 

Li et al. (2011) and Bai et al. (2011) evaluated the ecosystem services losses resulting 

from coal operations in the Mentougou region of China, and found that over the past 

50 years, the loss of ecosystem services outweighs the value of the coal resources. 

These findings are consistent with a more recent study of coal mining in Colombia 

(Cardoso, 2015). However, these estimates are susceptible to assumptions, as 

guidelines for quantifying the ecosystem service impacts of mining and other industries 

are not well developed (Hamilton, 2013).  

An alternative approach is using pre-determined environmental standards (e.g. fixed 

through political agreements or international requirements). This approach does not 

directly define the intrinsic value of the environment, but does an indirect 

approximation, by determining the required investments to achieve the standards 

(Baresel et al., 2006, Younger and Wolkersdorfer, 2004, Hasler et al., 2014) or the 

cost of opportunity to alternative uses of water (Medellín-Azuara, 2006). This 

approach, however, can be criticised because the environmental standards may be 

defined subjectively, without detailed/scientific assessments of the services they can 

provide. 

Risk-based metrics 

Beyond the financial risks of mining projects, frequently related to the magnitude of 

capital and operational expenditure required (Bertisen and Davis, 2008), water-related 
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risks may also strongly impact projects. The latter group includes risks associated to 

unforeseen extreme flooding or drought, large-scale water-related accidents (e.g. 

tailings dam failures), uncertainty regarding mine closure and rehabilitation efficiency 

(Kahn et al., 2001, Kuipers et al., 2006), and poor relations with local communities. 

This means that risk-based approaches, involving the analysis of the probability of a 

range of possible scenarios and their impact in the project (Younger et al., 2005), are 

particularly useful when analysing the mining industry, and should ideally be included 

in HEMs. 

Water markets 

Within the spectrum of economic metrics and concepts related to HEMs, water 

markets stand out as important. They can be used to understand the economic value 

that users get from water, but they can also be included in models to explore how the 

redistribution of water amongst competing users can achieve an optimal allocation. 

‘Water market’ is a generic term describing a system under which users buy and sell 

the right to access water (Grafton et al., 2011). They are expected to foster the flow of 

water towards more profitable uses, particularly during water scarcity (i.e. from low-

value agriculture towards high-value agriculture, mining or industry (Young and 

Loomis, 2014, Donoso, 2015)), arguably distributing water more efficiently than 

government allocation systems (Thobanl, 1997). 

Water markets may provide observed evidence of the economic value of water to 

different users, and allow examination of how these values vary under changing 

economic and hydrologic conditions.  Figure 4 shows regional differences in average 

trading prices of consumptive long-term entitlements/rights in several states/regions 

of the USA and Chile, and illustrates the spatial differences in water prices, which are 

strongly correlated to economic and hydrologic conditions. The very high value of 

water in Antofagasta region in Chile is a consequence of a single purchase from a 

mining company (compare the values with and without the mine transaction in Figure 

4), probably reflecting mining’s long-term water security needs and risk aversion.  

Grafton et al. (2011), however, found that price transparency is low in most water 

markets, which means that observed prices may not be representative of users’ 

underlying valuations of water. Hearne and Donoso (2014) confirmed this for Chile 
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and mentioned that the lack of publicly available market data is a cause of price 

dispersion. Furthermore, while in some cases, mainly in agriculture, water markets 

have achieved their aim (Hansen et al., 2014, Donoso, 2015, Grafton et al., 2011, 

Young and Loomis, 2014, Rivera et al., 2016), in many regions obstructions have 

prevailed (Tisdell and Ward, 2003).  

 

Figure 4. Average price of one l/s of long-term consumptive water entitlement by state/region 

in the USA and Chile in 2008. Antofagasta and Antofagasta-NoMine represent the values in the 

region with and without the referenced mining transaction  (Bren School of Environmental 

Science & Management -  University of California, 2010, DGA, 2015b)22. 

Mining participation in water markets 

The mining industry has been a relatively minor participant in most water markets, 

even in the most developed ones (e.g. Chile, Australia and western USA) compared 

to agricultural or urban water users (MCA, 2009, National Water Commission, 2014). 

One reason for this is the design of the markets (i.e. institutional foundations), which 

defines key aspects such as the users who are allowed to trade and the initial 

allocations (Hearne and Donoso, 2014, Grafton et al., 2011, MCA, 2009). In Australia, 

the Minerals Council of Australia has stated that mining has faced more obstacles to 

                                            

22 This Figure was constructed after carefully reviewing water prices, however, it is acknowledged that 
these datasets have limitations, including price transparency, thus they are mainly presented for 
illustrative purposes (Grafton et al., 2011, Hearne and Donoso, 2014).  
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trade than anyone else, due to cultural perceptions against mining and limited 

development of markets in some mining regions (MCA, 2009).  

Water quality-related markets have also been used to trade emission allowances, with 

the aim of optimising the use of streams to dilute and disperse contaminated 

wastewater and runoff. The Hunter River Salinity Trading Scheme in Australia is an 

example where mining is a principal player in a salts emission market (Department of 

Environment and Conservation NSW, 2003). There is also a potential to use water 

markets to assign value to low quality water (Barrett et al., 2010), including worked 

water, contaminated runoff and tailings water. These markets could be fostered 

amongst users who do not necessarily require high quality water (Kunz and Moran, 

2014, Barrett et al., 2010), and they would allow using resources that are currently 

seen as waste (Petritz et al., 2009, Dale et al., 2013a).  

It is important to recognise that there are mixed views on water markets, and in 

mining’s participation in them. Although stakeholders generally agree that criteria 

beyond economic efficiency (e.g. social equity) should be taken into account when 

implementing water trading (MCA, 2009, National Water Commission, 2014), there 

are cases where trading water like a commodity is seen to have benefited mining 

companies at the expense of low-income and vulnerable communities (e.g. low-value 

agriculture farmers) (Babidge, 2016, Perreault, 2013). 

4. Hydro-economic modelling in mining regions 

Characteristics of hydro-economic models 

Hydro-economic modelling combines hydrologic and economic approaches to 

understand, predict and optimise the value of water in a catchment (see Figure 5), 

promoting an efficient allocation of water amongst competing uses. The hydrologic 

component describes the time and space dynamics of water storage and transfer, 

while the economy component describes the economic value of water. The method 

used to couple the two components determines how their interactions are modelled 

(i.e. availability of water influences users’ behaviour, while economic activities modify 

the storage and transfer of water). Figure 5 illustrates an example of how inputs, 

components, outputs and external factors can be related in a hydro-economic model.  
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Figure 5 – Schematic representation of a hydro-economic model including inputs, components 

and outputs. 

A comprehensive review of HEMs, including examples, can be found in Harou et al. 

(2009) and Bekchanov et al. (2015), while detailed examples of implementations can 

be found in Cai et al. (2006) and Medellín-Azuara (2006).  

Table 2 summarises the key features of HEMs and comments on how these features 

influence the applicability of HEMs to mining regions, based on the discussion in 

Section 2 and Section 3 of this paper. This table, does not suggest a specific 

approach to analyse catchments with mining projects, but highlights criteria that should 

be taken into account when developing a model in these regions. Some of these points 

will be further discussed in the case study section of this paper. 
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Table 2 - Considerations for the development of a hydro-economic model in a catchment with mining projects 

Modelling 

consideration 

Alternatives Examples  Potential importance when developing HEMs in a mining region 

Simulation or 

optimisation 

Simulation models that answer “what 

are the effects in the output due to 

changes in one or some inputs” (i.e. 

“what if” questions). 

George et al. 

(2011), 

Graveline et al. 

(2014) 

Normal 

This is entirely a function of the scope of the model. Simulation 

models are easy to implement, but optimisation models can be robust 

tools to define the ideal allocation of resources. A mid-point is 

optimising some components of the model only. This is a common 

consideration of all HEMs and is not specially challenging for mining 

catchments. 

Optimisation-based models that 

answer “what are the best” set of inputs 

to achieve the optimal output. 

Harou et al. 

(2010), Satti et 

al. (2015)  

Time 

resolution 

Fine (e.g. daily or monthly) to better 

model hydrological variability and 

seasonality. 

Ringler and Cai 

(2006), Kite 

(2001) 

Normal 

The mine water demand tends to be constant throughout the year, 

thus yearly time-steps would be acceptable. However, the supply 

changes as a function of climate seasonality, which requires monthly 

or smaller time-steps. This is a common consideration across HEM 

applications. 

Coarse (e.g. yearly) to fit production 

patterns and their associated economic 

value. 

Fernández et al. 

(2016), Kim and 

Kaluarachchi 

(2016) 

Space 

resolution 

Models can represent key catchment 

features as nodes connected by links. 

Medellín-Azuara 

(2006), Esteve 

et al. (2015) 

High 

Models aggregating several catchments may dilute mine water 

consumption by the larger demand by agriculture, and may not be 

suitable for analysing  demands and supply in the vicinity of the mine. 

Distributed analyses allow a spatially detailed analysis of runoff, 

groundwater flows and transport of pollutants, which are key 

Using pixels to develop a distributed 

analysis. 

Hasler et al. 

(2014), Dale et 

al. (2013b) 
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Models can aggregate the entire river in 

a node to do a macro-scale analysis. 

Kim and 

Kaluarachchi 

(2016) 

hydrological processes determining available water, risks of drought 

and flood, and mine environmental impacts, but may be very complex 

to develop. Node-link models simplify the calculations of water supply 

by aggregating sub-catchments in nodes, but allow representing 

mine water demand as a distributed model may do, in one or multiple 

(e.g. pit, tailings dam and processing plant) nodes. 

Time frame Analysis undertaken for past climate 

conditions. 

Harou et al. 

(2010) 

Very High 

The longevity of mine projects and of mine environmental impacts 

mean that if the HEM is used for understanding the net economic 

values of mining, it should involve long time-horizons. HEMs 

analysing existing projects or past conditions should try to involve the 

long-term costs or at least discuss their impacts in the catchment. 

Analysis undertaken for future 

conditions (e.g. short/medium term 

simulations or long-term planning 

approaches). 

Lee et al. (2011), 

Hurd and 

Coonrod (2012) 

Space frame Analysis of sub-catchments or whole 

catchments. 

Cai et al. (2006) High 

If very large regions are analysed in the HEM mine water demand 

may be eclipsed by agricultural demand. Thus, if a detailed scrutiny 

of social and environmental performance of mining is required, an 

analysis of only the sub-catchments most influenced by the project 

would be desirable (i.e. those affected by the mine, tailings storage 

facility, and processing plant). 

Analysis of larger regions (e.g. 

countries or group of countries). 

Hasler et al. 

(2014), Ringler 

and Cai (2006) 

Economic 

depth 

Direct impacts on particular users in the 

local environment only. 

Qureshi et al. 

(2013) 

Very High 
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Direct and Indirect effects of water 

management in the whole economy of 

a country or region. 

van Heerden et 

al. (2008), 

Medellín-Azuara 

et al. (2015) 

Due to the high revenues from and costs of mining, a detailed 

analysis of the direct effects of mining is important. However, due to 

the scrutiny of social performance and the potential environmental 

impacts of mining, including projects’ indirect costs and benefits 

affecting macro-economic variables may be desirable for certain 

users, and this is particularly relevant when the mining industry is 

involved in HEMs. 

Integration Hydrology and economic components 

can be run separately and results 

retrofitted to each other (compartment 

approach). 

George et al. 

(2011), 

Medellín-Azuara 

et al. (2015) 

Normal 

Although in principle holistic models represent powerful tools, in 

practice they require assumptions and simplifications about 

interactions between the two systems that may create uncertainty 

and make it difficult to interpret model outputs. The modeller has to 

identify a balance between the level of coupling used and keeping the 

model practical to use. This, however is a common consideration in 

using HEMs, and is not unique for applications to mining regions. 

The components can be coupled and 

run together so that the interlinking is 

internal to the model (holistic 

approach). 

Cai et al. (2006), 

Cai (2008) 

Uncertainty 

analysis 

Models can be run with deterministic 

inputs and parameters. 

Satti et al. 

(2015) 

High 

Due to the relevance of risk-based approaches, HEMs applied to 

mining regions should involve uncertainty analysis of some kind, to 

allow understanding how sensitive the results of the model are to 

changes in key inputs (e.g. prices of commodities or climate 

conditions). More detailed risk-metrics could also be helpful to better 

represent mining risk perceptions, as done for other water users 

Inputs and parameters can be specified 

as a range of values or probability 

distribution functions so that results 

have an associated range of variability. 

Kim and 

Kaluarachchi 

(2016), Jeuland 

and Whittington 

(2014) 
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(Fernández et al., 2016, Petsakos and Rozakis, 2015, Younger et al., 

2005). 

Static or 

dynamic 

Static models give a snap-shot in time, 

excluding the potential future impacts of 

current decisions 

Hasler et al. 

(2014) 

Normal 

Although the snap-shot type of model may support the understanding 

of multiple factors in the catchment, analyses of several years are 

more illustrative of the dynamics of the value of water, including the 

effect of several continuous dry/wet years. This, however, is a 

consideration for most HEMs and not only for those with mining 

users. 

Models can represent changes in 

hydrologic and/or economic conditions 

over time, and delayed effects of 

decisions. 

 Lee et al. (2011) 

Economic 

functions/tool

s used 

Functions based on average values 

(i.e. values do not change as a function 

of water availability) 

Satti et al. 

(2015) 

Very High 

This is one of the key questions faced when including mining in HEMs 

and there is a lack of literature providing guidance. Use of average or 

marginal values should be defined after understanding if water should 

be seen as a fixed or variable input in the mining production process. 

Willingness to pay calculations should be included where it is possible 

and relevant to analyse environmental and social impacts of mining. 

Marginal values used based on 

continuous demand or production 

functions 

Cai et al. (2006) 

Willingness to pay calculations Damigos (2006) 

Water 

Markets 

Water markets are included in the HEM Cai et al. (2006), 

Medellín-Azuara 

(2006) 

High 

Although currently the participation of the mining industry in water 

markets is not large, the potential economic value of trading raw, 

worked and tailings water should be explored, as this represents an 

alternative to reduce water stress in mining regions. 

Water markets are omitted from the 

HEM 

George et al. 

(2011) 
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Affecting all the issues raised in Table 2, is the general issue of data support for developing 

and evaluating HEMs. This may be especially important in mining regions, as the location 

of mineral deposits often leads to mines being in hydrologically extreme and poorly 

accessible areas (e.g. high-altitude mountains and deserts) where observed climate data 

are sparse (McIntyre et al., 2016) and high quality modelled data-sets are not available 

(Jeffrey et al., 2001, Jones et al., 2009). Furthermore, in some regions climate is complex 

due to the interaction between weather systems and steep topography (Ragettli et al., 2014). 

This means that developing hydrological models with high temporal and spatial resolutions 

(see Table 2), is often not possible, and the modeller is forced to spatially and temporally 

aggregate the available data more than would usually be considered appropriate in 

hydrological modelling (van Heerden et al., 2008, Davidson et al., 2010, Harou et al., 2009).  

Lack of economic input data may also be a challenge, particularly relating to confidentiality 

of data for individual mining projects. Using industry average values may be the only 

alternative, however, some projects may operate far from these averages. Data limitations 

on both sides – hydrologic and economic – emphasise the case for conducting uncertainty 

management using formalised, best practice principles (Refsgaard et al., 2007). 

Also, affecting the long-term approach to analyse the mining industry is the challenge of 

predicting changes in climate conditions (Barrett et al., 2014, Gao et al., 2014), especially in 

mountain areas (Barnett et al., 2005). General Circulation Models coupled with Regional 

Climate Models, or other climate downscaling approaches, could be used to predict these 

changes (Kigobe et al., 2011), however, their performance is still far from satisfactory 

(Buytaert et al., 2010).  

5. Case studies of hydro-economics applications in mining regions 

Although mine water use in HEMs has not received as much attention as agriculture, urban 

uses and environmental flows, in terms of number of case studies and detail of models 

(Harou et al., 2009, Bekchanov et al., 2015), there are some examples worth highlighting. 

In this section three of these are reviewed, including a brief summary of the models, and an 

analysis of the extent to which they successfully address the special challenges of mining 

regions (as reviewed in Section 2 of this paper), and how the considerations in Table 2 have 

been included. 

5.1 Aconcagua River Catchment   
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The first example is the Aconcagua River in central Chile, a catchment with increasing 

competition for water between agriculture, urban development, hydro-electricity and mining 

(Aitken et al., 2016). A large-scale copper mine, which produced 224.3 kMT of copper in 

2015, is located in the headwaters, at around 3,500 m above sea level. Downstream, the 

central valley supports intensive agriculture including fruits, fodder, legumes and cereals 

crops, while several urban areas are located throughout the catchment. All water rights have 

been allocated, thus a relatively active water market exists in the catchment (Hearne and 

Donoso, 2014), although mine participation in the water market is infrequent (Figueroa San 

Martin, 2016). 

Correa-Ibanez et al. (2017) calibrated a hydrological model for the sub-catchment where the 

mine project is located, analysed the impacts of future climate conditions through three 

climate scenarios, and did an economic assessment of alternatives for securing future water 

supply for the mine. The compartment approach was taken, and it was assumed that the 

economic model output did not affect any relevant aspects of the hydrology. The 

hydrological component was a lumped model of the sub-catchment, which was run 

continuously with monthly time-steps during the calibration and long-term future scenario 

periods. Flows were aggregated by years in the scenario period to run the economic 

calculations. 

This model is a good example of the merging of water resources and economic calculations 

for the purpose of cost-benefit analysis from a mine project planning perspective, including 

analysis of the impacts of long-term future climate conditions. Reviewing how the paper 

addresses the special challenges of mining regions highlights the following: 

1. Regarding the high revenues from and costs of mining: The economic assessment 

involved capital and operational expenditure of the alternatives for future water 

supply, and an estimation of the average value of water based on the costs of lost 

production. However, the selection of the alternative was taken using a no water risk 

logic, which illustrates the characteristic of mining that water demand is seen as a 

fixed input to be met at any cost.  

2. Regarding water efficiency and new sources of water: The solution identified as 

optimal was recycling water from the tailings dam, which is a resource that was 

previously not exploited. The study therefore illustrated the opportunities for mines to 

free up regional water resources, and thus economic opportunities, by finding new 

and potentially low quality sources of water that meet mine needs. 
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3. Regarding social and environmental performance: The authors did not analyse the 

benefits or impacts of the water supply alternatives on other water users or 

environmental flows, but they acknowledged that quantifying these would affect the 

business cases for the alternative options. This calls for greater attention to 

integrating social and environmental metrics into hydro-economic models of mine 

regions in order to respond to the close scrutiny placed on mine water use. 

4. Regarding the modelling of water scarcity and excess: The authors highlight the 

uncertainty in current and future climate conditions as a constraint, in particular 

limiting the accuracy of drought estimation (the key source of risk for the mine site). 

The study recognises these limitations and recommends that sensitivity of results to 

input uncertainty is examined more deeply.   

 

5.2 The Ankeniheny–Zahamena Corridor  

The second example is the Ankeniheny–Zahamena Corridor in Madagascar. The World 

Bank’s Wealth Accounting and the Valuation of Ecosystem Services global partnership 

(Portela et al., 2012), used this region as an example of how to measure return on 

investment of water consumption for development alternatives, including large-scale mining 

(cobalt and nickel).  

Annual water supply estimates for the catchments of analysis were generated using the 

Artificial Intelligence for Ecosystem Services (ARIES) model (Bagstad et al., 2011), in yearly 

time-steps (Portela et al., 2012). The economic component was defined separately using 

Cobb-Douglass production functions, in order to define the economic value of marginal 

productivity of agriculture, mining, tourism and hydro-electricity sectors. Furthermore, the 

project analysed two ecosystem services; carbon storage and sequestration, and sediment 

retention, although the later was not monetised. 

This is one of few examples of including the mining water use in a regional ecosystem 

service analysis, setting a pathway for holistic approaches to hydro-economic analysis of 

mine regions. However, the study also illustrates major difficulties in doing so, related to the 

special challenges of mining: 

1. Regarding the analysis of revenues and costs: A production function for mine water 

use was employed, however the study does not comment on the applicability of 

marginal analysis to this mine site. Also, from the report is not possible to determine 

the sufficiency of the data for selecting the Cobb-Douglas function. Regarding their 
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results, Table 3 shows that nickel mining, and to a lesser extent cobalt mining and 

residential electricity use, generate the highest economic value of marginal 

productivity from water. However, it is not clear if costs were subtracted from the 

prices of the output when defining the economic value of marginal productivity. 

Table 3 - Economic results of the Madagascar’s Ankeniheny–Zahamena Corridor analysis (adapted 

from Portela et al. (2012)). 

Economic sector Economic value of marginal 

productivity (2012 USD / m3) 

Cobalt Mining 

  

7,541 

Nickel Mining 11,906 

Rice Agriculture 469 

Luxury segment 

tourism 

50 

Residential 

electricity use 

6,980 

Industrial electricity 

use 

680 

 

2. Regarding social and environmental performance, and the longevity of mine projects 

and potentially perpetual impacts on water resources: The study attempts to address 

these challenges by analysing water supply as an ecosystem service related to other 

ecosystem services. However it does not clearly overcome the challenges of 

implementation, for example it was not able to monetise the values related to 

sediment retention, and their relationship with water supply. Furthermore, the other 

ecosystem service, carbon storage and sequestration, did not analyse potential links 

to water supply (e.g. carbon footprint of the energy required to manage water 

resources). While this study provides a valuable template for advances in mine region 

hydro-economics, the assumptions limit the robustness of results in Table 3.  

3. Regarding water efficiency and new sources of water: As Madagascar is a relatively 

wet country, water efficiency measures seem not to be as relevant as in drier contexts 

(e.g. Chile). Thus, the study did not mention nor analyse alternative sources of water 

like tailings water recycling or desalination. In addition, the report does not clearly 

differentiate “water use” and “water consumption”, which are important concepts in 
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the mining context, where high recycling and re-use ratios mean that metrics such as 

those in Table 3 are sensitive to exact definitions.  

5.3 Mine rehabilitation in the Dal River Catchment 

The last example is slightly different from the previous two as the hydrological component 

is not focused on water supply, but on the abatement of pollution from a post-operational 

mine site. Baresel et al. (2003) present a case study of a region in Sweden where closed 

mines are responsible for zinc, copper and cadmium loads to the river. The authors 

explained that the hydrologic component assessed the capacity of different rehabilitation 

techniques to reduce pollution in the receiving streams. The economic component, on the 

other hand, did not calculate the economic value of mine water, but the cost to implement 

each one of the abatement technologies. 

The coupled model was used to minimise the cost of achieving different pollutant reduction 

targets, presenting a good example of the application of HEMs in optimisation mode, to the 

long-term economic liability aspect of mining. There are several features to highlight relating 

to the special challenges of mining: 

1. As the model is focused on mine land rehabilitation, it does not analyse revenues and 

costs from the industry, but the costs of addressing environmental impacts in the 

short and long run. 

2. Regarding water excess and discharge, and the longevity of mine projects: The 

model is focused on the problem of water discharge from the mine site and the 

associated liability in the long term, therefore directly addressing this challenge. 

Together with the ecosystem service approach of the previous case study, it provides 

a complement of water supply analyses for developing a holistic, life-of-mine 

calculation of the net value of mining.  

3. Regarding social and environmental performance: While the HEM directly addresses 

environmental impacts, it does not define functions describing the intrinsic value of 

the environment that may be used to optimise the net value of abatement options, 

rather it uses a series of predetermined water quality standards. However, authors 

included different standards, to address the problems of subjectiveness when 

defining one only. 

4. Regarding data availability issues: The authors considered different levels of 

performance of each pollution abatement measure, to take into account the lack of 

data regarding their effectiveness. Furthermore, they also include different 
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implementation costs of wetlands, as the costs of this abatement measure were 

deemed very uncertain. This explicit treatment of uncertainty is consistent with good 

modelling practice to address risks. 

6. Conclusions 

This paper has presented the case that large-scale mines pose special challenges for hydro-

economic analysis, and assessed the applicability of some commonly used hydro-economic 

metrics and concepts. While various conclusions might be drawn from the discussion, here 

we focus on those we consider to be the primary outcomes. 

The magnitude of revenues and costs of large-scale mining means that it is often difficult to 

compare the economic contributions of mining with those from other sectors. Furthermore, 

the lack of information on how the mine production process responds to changes in water 

availability hinders the definition of economic functions (e.g. water demand curves) for 

mining. 

Environmental risks associated with mining (e.g. acid mine drainage and accidental 

emissions) may be mitigated by good environmental regulation and mine water 

management planning. Nevertheless, experience shows that there are substantial residual 

risks that should be encompassed in net economic benefit calculations, particularly the long-

term impacts of mining. This requires research in environmental science, but also monitoring 

closed and rehabilitated projects, in order to learn from their efficiency and the magnitude of 

costs involved. 

Events such as commodity price fluctuation, tailings dam failures, floods and droughts, and 

water-related protests against mining projects, highlight the relevance of taking risk-based 

approaches when including mining in hydro-economic models. This may be addressed by 

including uncertainty in medium to long-term projections of hydrology and commodity 

markets, and by including risk frameworks that help address unlikely events that 

considerably affect the expected net economic benefit of projects.  

The lack of data is an issue for hydro-economic models of all kind, however, this may be 

particularly challenging for mining regions, as minerals are often located in remote areas 

with few long-term climate observations, and this industry tends to be quite confidential with 

its project-level economic and financial data. 
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Finally, at present, there are few hydro-economic case studies described in sufficient depth 

and supported by sufficient databases, thus the development of more examples is important 

to foster improved analysis of hydro-economics in mining regions. Further case studies 

should aim to: 

 Improve the functions describing the economic value of water for mine users, based 

on a better understanding of the use of water in their production process, and their 

perception of water as a fixed or variable input. 

 Appraise the impacts of mining projects on environmental and social values of water 

at a catchment scale, with emphasis on the long-term. 

 Analyse the sensitivity of model results to changes in input variables and apply risk-

based approaches to deal with the various uncertainties in model inputs. 

 Include indirect economic benefits on different water user groups, as macro-

economic features, such as employment and contribution to the local and national 

economies, tend to be arguments in the debate over new mine projects. 

 Analyse the trading of raw and worked water, as this may alleviate water stress in 

catchments with mining projects. 
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B. Information of the Climate Gauges Used in Chapter 4 

 
Station Elevation Long Lat Variable Dates 

available 

% of Missing Gaps in P and 

T in the 5 year period 

1 05200007-6 1202 -70.68 -32.42 P All period 0 

2 05403006-1 1313 -70.36 -32.92 P All period 1.67 

3 05410002-7 954 -70.51 -32.85 P All period 5 

4 05410005-1 642 -70.74 -32.76 P All period 3.33 

5 05410006-K 1078 -70.47 -32.86 P All period 0 

6 05410007-8 830 -70.6 -32.83 P All period 0 

7 05410008-6 650 -70.72 -32.75 P All period 0 

8 05414001-0 1193 -70.58 -32.5 P All period 23.33 

9 05414004-5 1209 -70.58 -32.5 P All period 5 

10 05414005-3 943 -70.7 -32.57 P All period 0 

11 05415004-0 1023 -70.6 -32.68 P All period 1.67 

12 05422002-2 835 -70.82 -32.93 P All period 1.67 

13 05732001-K 575 -70.8 -33.09 P All period 1.67 

14 05732002-8 597 -70.77 -33.08 P All period 5 

15 05733006-6 973 -70.75 -32.95 P All period 0 

16 05733010-4 809 -70.81 -32.95 P All period 1.67 

17 Los Bronces 3423 -70.29 -33.15 P All period 0 

18 330019 654 -70.55 -33.45 T All period 44.58 

19 330020 529 -70.68 -33.45 T All period 0.16 

20 330021 481 -70.79 -33.39 T All period 1.04 

21 AWS1 3088 -70.11 -32.99 T Summer 08-09 96.11 

22 AWS2 2785 -70.11 -32.97 T Summer 08-09 96.11 

23 AWS3 3269 -70.1 -33 T Summer 08-09 96.66 

24 Angela 3573 -70.27 -33.08 T and RH All period 1.81 

25 Barroso 3776 -70.23 -33.11 T and RH All period 4.05 

26 Hornitos 2214 -70.15 -32.87 T and RH From Sept/12 80.01 

27 Lagunitas 2922 -70.25 -33.08 P, T and RH All period 0 

28 MachuPichu 4080 -70.26 -33.17 T and RH All period 2.35 

29 Saladillo 1585 -70.28 -32.93 T and RH From Dec/11 66.32 

30 TLog1 3254 -70.1 -33 T Summer 08-09 96.22 

31 TLog10 3004 -70.11 -32.99 T Summer 08-09 96.22 

32 TLog11 2968 -70.11 -32.98 T Summer 08-09 96.22 

33 TLog12 2911 -70.11 -32.98 T Summer 08-09 96.22 

34 TLog2 3269 -70.1 -33 T Summer 08-09 96.22 

35 TLog3 3269 -70.1 -33 T Summer 08-09 96.22 

36 TLog4 3212 -70.1 -33 T Summer 08-09 96.22 

37 TLog5 3153 -70.11 -32.99 T Summer 08-09 96.22 

38 TLog6 3081 -70.11 -32.99 T Summer 08-09 96.22 

39 TLog7 3094 -70.11 -32.99 T Summer 08-09 96.22 

40 TLog8 3092 -70.11 -32.99 T Summer 08-09 96.22 

41 TLog9 3070 -70.11 -32.99 T Summer 08-09 96.22 
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C. Hydrological Model Details 

This appendix textually reproduces the description of the Soil Moisture Method, the 

hydrological model used in this project, which is available in the WEAP user guide in Page 

198 (Sieber and Purkey, 2015). 

“This one dimensional, 2-compartment (or "bucket") soil moisture accounting scheme is 

based on empirical functions that describe evapotranspiration, surface runoff, sub-surface 

runoff (i.e., interflow), and deep percolation for a watershed unit (see Figure 1). This method 

allows for the characterization of land use and/or soil type impacts to these processes. The 

deep percolation within the watershed unit can be transmitted to a surface water body as 

baseflow or directly to groundwater storage if the appropriate link is made between the 

watershed unit node and a groundwater node.  

A watershed unit can be divided into N fractional areas representing different land uses/soil 

types, and a water balance is computed for each fractional area, j of N. Climate is assumed 

uniform over each sub-catchment, and the water balance is given as, 

𝑅𝑑𝑗 𝑑𝑧1,𝑗𝑑𝑡 = 𝑃𝑒(𝑡) − 𝑃𝐸𝑇(𝑡)𝑘𝑐,𝑗(𝑡) (5𝑧1,𝑗 − 2𝑧21,𝑗3 ) − 𝑃𝑒(𝑡)𝑧1,𝑗𝑅𝑅𝐹𝑗 − 𝑓𝑗𝑘𝑠,𝑗𝑧21,𝑗 − (1 − 𝑓𝑗)𝑘𝑠,𝑗𝑧21,𝑗 

Equation 11.1 

where 𝑧1,𝑗  =  [1,0] is the relative storage given as a fraction of the total effective storage of the root 

zone, (mm) for land cover fraction, 𝑗. The effective precipitation 𝑃𝑒, includes snowmelt from 

accumulated snowpack in the sub-catchment, where 𝑚𝑐  is the melt coefficient given as, 

𝑚𝑐 = { 01𝑇𝑖 − 𝑇𝑠𝑇𝑙 − 𝑇𝑠     𝑖𝑓      𝑇𝑖 < 𝑇𝑠𝑇𝑖 > 𝑇𝑙𝑇𝑠 ≤ 𝑇𝑖 ≤ 𝑇𝑙   
Equation 11.2 

where 𝑇𝑖  is the observed temperature for month 𝑖, and 𝑇𝑙  and 𝑇𝑠  are the melting and freezing 

temperature thresholds. Snow accumulation, 𝐴𝑐𝑖, is a function of 𝑚𝑐  and the observed 

monthly total precipitation, 𝑃𝑖, by the following relation, 𝐴𝑐𝑖 = 𝐴𝑐𝑖−1 + (1 − 𝑚𝑐)𝑃𝑖 
Equation 11.3 

with the melt rate, 𝑚𝑟, defined as, 



238 
 

𝑚𝑟 = 𝐴𝑐𝑖𝑚𝑐 
Equation 11.4 

The effective precipitation, 𝑃𝑒, is then computed as 𝑃𝑒 = 𝑃𝑖𝑚𝑐 + 𝑚𝑟 

Equation 11.5 

If the timestep length is less than one month (General, Years and Time Steps) then the snow 

accumulation and melt model is modified to restrict the snow melt rate by the total heat 

available to transform ice to water. The total heat available is calculated as the sum of the 

net solar radiation and the heat introduced to the snow pack by rainfall. Albedo for the net 

solar radiation calculation is computed as a function of snow accumulation and ranges from 

a value of 0.15 to 0.25 with increasing snow pack depth.  

In Equation 11.1, the calculation for the potential evapotranspiration, PET, is done using the 

reference crop calculation described in the Handbook of Hydrology (1993) in section 4.2.5, 

equation 4.2.31. This is the Penman-Monteith equation modified for a standardized crop of 

grass, 0.12 m in height and with a surface resistance of 69 s/m. In this implementation two 

modifications to the equation were made: the albedo varies over a range of 0.15 to 0.25 as 

a function of snow cover, and the soil heat flux term, G, has been ignored.  

Continuing with Equation 11.1, the 𝑘𝑐,𝑗 is the crop/plant coefficient for each fractional land 

cover. The third term represents surface runoff, where RRFj is the Runoff Resistance Factor 

of the land cover. Higher values of RRFj lead to less surface runoff. The fourth and fifth 

terms are the interflow and deep percolation terms, respectively, where the parameter 𝑘𝑠,𝑗 

is an estimate of the root zone saturated conductivity (mm/time) and 𝑓𝑗 is a partitioning 

coefficient related to soil, land cover type, and topography that fractionally partitions water 

both horizontally and vertically. Thus total surface and interflow runoff, RT, from each sub-

catchment at time t is, 

𝑅𝑇(𝑡) = ∑ 𝐴𝑗 (𝑃𝑒(𝑡)𝑧1,𝑗𝑅𝑅𝐹𝑗 + 𝑓𝑗𝑘𝑠,𝑗𝑧21,𝑗)𝑁
𝑗=1  

Equation 11.6 

For applications where no return flow link is created from a catchment to a groundwater 

node, baseflow emanating from the second bucket will be computed as: 
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𝑆𝑚𝑎𝑥 𝑑𝑧2𝑑𝑡 = (∑(1 − 𝑓𝑗)𝑁
𝑗=1 𝑘𝑠,𝑗𝑧21,𝑗) − 𝑘𝑠2𝑧22 

Equation 11.7 

where the inflow to this storage, 𝑆𝑚𝑎𝑥  is the deep percolation from the upper storage given 

in Equation 11.1, and 𝑘𝑠2  is the saturated conductivity of the lower storage (mm/time), which 

is given as a single value for the catchment and therefore does not include a subscript, 𝑗. 
Equation 11.1 and Equation 11.7 are solved using a predictor-corrector algorithm.  

Figure 11.1 - Conceptual diagram and equations incorporated in the Soil Moisture model. 
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D. PMP Input Data Organisation 

In order to define the input data for the agricultural model, it was reviewed the more recent 

update of the water users cadastre in the first irrigation section of the case study (DGA, 

2011). Based on this, it was possible to define that all municipalities (comunas) in Los Andes 

province, obtained water from this part of the river. Furthermore, in the San Felipe province, 

the Santa Maria municipality also obtained all of its water from the case study, and around 

52% of the San Felipe municipality used it as well. 

These values were used together with the 2007 Agricultural Census23 in order to define the 

areas of each crop. For example, in the case of Alfalfa, information was taken from the 

Forage data in the Microsoft Excel Sheet “Superficie total sembrada o plantada por grupo 

de cultivos”.  

Table 11.1 – Input data to calculate the area of the alfalfa crops. 

Region Province Municipality Forage Surface (ha) 

Valparaiso Los Andes Los Andes 246.20 

Valparaiso Los Andes Calle Larga 294.40 

Valparaiso Los Andes Rinconada 235.10 

Valparaiso Los Andes San Esteban 470.80 

Valparaiso San Felipe de Aconcagua San Felipe 615.10 

Valparaiso San Felipe de Aconcagua Santa María 139.80 

Total (ha) 2,001.40 

Total including the San Felipe area inside the case study only (ha) 1,705.41 

  

The same procedure was followed for Wheat, Corn and Potato, although this time 

information was available in the Sheet “Superficie sembrada, producción y rendimiento de 

cereales, leguminosas y tubérculos, en riego y secano”. On the other hand, information from 

all other products was taken from “Superficie con frutales en plantación compacta o 

industrial y huertos caseros en formación y producción”.  

In order to calculate the irrigation requirements, it was used the climate data from La Cruz 

station from INIA, together with the crop parameters in Table 11.2. These values were 

defined following Allen et al. (1998) and SEPOR (2017), while the dates of the different 

                                            

23 Available at http://ine.cl/estadisticas/economicas/estad%C3%ADsticas-agropecuarias . Accessed last time 
on the 19/10/2018. The exact link may be modified, thus, the information can also be accessed by following 
INE’s website www.ine.cl  Estadísticas  Económicas  Estadísticas Agropecuarias  Censos 
Agropecuarios. 

http://ine.cl/estadisticas/economicas/estad%C3%ADsticas-agropecuarias
http://www.ine.cl/
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stages of the crops were approximated from Faiguenbaum (2003). It is important to mention 

that the latter may not necessarily be followed by the farmers in the case study, but they 

help to estimate the plant behaviour, which in turn allows calculating total irrigation 

requirements. 

Finally, regarding cost, price and yields, most data was taken from the technical sheets of 

ODEPA, which are defined after surveying farmers in the region and defining average 

values. 

Table 11.2 – Crop characteristics to define irrigation requirements. 

Crop Initial Kc Mid Kc Final kc Initial Date Mid Date End Date 

Alfalfa 1st Cutting 0.4 0.95 0.9 1-Sep 30-Sep 30-Oct 

Alfalfa 2nd Cutting 0.4 0.95 0.9 4-Nov 18-Nov 3-Dec 

Alfalfa 3rd Cutting 0.4 0.95 0.9 8-Dec 22-Dec 6-Jan 

Alfalfa 4th Cutting 0.4 0.95 0.9 11-Jan 25-Jan 9-Feb 

Alfalfa 5th Cutting 0.4 0.95 0.9 14-Feb 28-Feb 15-Mar 

Wheat 0.3 1.15 0.3 1-Aug 29-Sep 8-Dec 

Corn 0.3 1.2 0.35 16-Oct 9-Dec 17-Feb 

Potato 0.5 1.15 0.75 15-Aug 8-Oct 22-Dec 

Table grapes 0.45 0.85 0.5 1-Oct 1-Jan 1-May 

Avocado 0.6 0.8 0.75 1-Jul 1-Nov 1-Jan 

Peach 0.4 0.9 0.65 1-Oct 1-Jan 1-Apr 

Olives 0.5 0.65 0.6 1-Jul 1-Sep 1-Apr 

Plum 0.4 0.9 0.65 1-Oct 1-Jan 1-Apr 

Walnut 0.5 1.1 0.65 1-Aug 30-Aug 6-Feb 

 

Table 11.3 – Technical sheets including the economic information of the crops analysed. 

Crop Year Region Link 

Wheat 2016 Bio-Bio Link 

Corn 2017 O'higgins Link 

Potato 2014 Metropolitan Region Link 

Table grapes 2014 and 2015 Valparaiso and 
O'Higgins 

Link Valparaiso and 
Link O’Higgins 

Avocado 2014 Valparaiso Link 

Peach 2014 Valparaiso Link 

Olives 2015 Valparaiso Link 

Plum 2012 and 2015 O'higgins Link 2012 and Link 
2015 

Walnut 2014 Valparaiso Link 

 

https://www.odepa.gob.cl/costo-de-produccion-de-trigo-con-riego-2016-17
https://www.odepa.gob.cl/costo-de-produccion-de-maiz-region-de-ohiggins
https://www.odepa.gob.cl/costo-de-produccion-de-papas
https://www.odepa.gob.cl/costo-de-produccion-de-la-uva-de-mesa-region-de-valparaiso
http://www.odepa.cl/costo-de-produccion-uva-de-mesa-region-de-ohiggins-2/
http://www.odepa.gob.cl/costo-de-produccion-de-paltos-region-de-valparaiso/
http://www.odepa.gob.cl/costo-de-produccion-de-durazno-region-de-valparaiso/
http://www.odepa.gob.cl/costo-de-produccion-de-olivo-2013-14/
http://www.odepa.gob.cl/costo-de-produccion-de-ciruela-region-de-ohiggins/
http://www.odepa.cl/costo-de-produccion-ciruela-para-secado-region-de-ohiggins/
http://www.odepa.cl/costo-de-produccion-ciruela-para-secado-region-de-ohiggins/
http://www.odepa.gob.cl/costo-de-produccion-del-nogal-region-de-valparaiso/
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In the table it can be seen the year and region where the technical sheet was defined, and 

a link to the information. It is important to clarify that only once (for wheat), data from the 

Bio-Bio region was used. It is acknowledged that climate conditions in this part of the country 

are different from Valparaiso (where the Aconcagua River is located), but it was not possible 

to find alternatives for this crop. It should also be noted that in two cases (Table grapes and 

plums) two references were analysed in order to reduce uncertainty in some values. Finally, 

it should be remembered that before including this data in the PMP model, values were 

transformed  to 2007 prices whenever required. 




