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Abstract

Purpose—To describe a model-based reconstruction strategy for routine magnetic resonance 

imaging (MRI) that accounts for gradient nonlinearity (GNL) during rather than after 

transformation to the image domain, and demonstrate that this approach reduces the spatial 

resolution loss that occurs during strictly image-domain GNL-correction.

Methods—After reviewing conventional GNL-correction methods, we propose a generic signal 

model for GNL-affected MRI acquisitions, discuss how it incorporates into contemporary image 

reconstruction platforms, and describe efficient non-uniform fast Fourier transform (NUFFT)-

based computational routines for these. The impact of GNL-correction on spatial resolution by the 

conventional and proposed approaches is investigated on phantom data acquired at varying offsets 

from gradient isocenter, as well as on fully-sampled and (retrospectively) undersampled in vivo 

acquisitions.

Results—Phantom results demonstrate that resolution loss that occurs during GNL-correction is 

significantly less for the proposed strategy than for the standard approach at distances >10 cm 

from isocenter with a 35 cm FOV gradient coil. The in vivo results suggest that the proposed 

strategy better preserves fine anatomical detail than retrospective GNL-correction while offering 

comparable geometric correction.

Conclusion—Accounting for GNL during image reconstruction allows geometric distortion to 

be corrected with less spatial resolution loss than is typically observed with the conventional 

image domain correction strategy.
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Introduction

Conventional clinical magnetic resonance imaging (MRI) operates under the assumption 

that spatial encoding gradients vary linearly across the imaging field-of-view (FOV). Due to 
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engineering constraints on system efficiency and coil performance, realizing linear gradient 

across the entire FOV is not always feasible. Moreover, sacrificing some gradient linearity 

for increased gradient amplitude and slew rate capabilities may help relax amplifier 

requirements or reduce peripheral nerve stimulation (1). MR image reconstruction methods 

(e.g., inverse Fourier transform) typically assume that the acquired data set was spatially 

encoded using linear gradients, so the presence of gradient nonlinearity (GNL) causes 

geometric distortion in the generated MR images due to mismapping between the nominal 

and actual data acquisition models (2). In applications that require high geometric accuracy, 

such as pre-surgical or radiation treatment planning and longitudinal, multicenter studies, 

such geometric infidelity can be particularly problematic (3–7).

Standard GNL-correction techniques, such as those widely available on commercial MR 

systems (e.g., “gradwarp” on General Electric systems), are implicitly based on the 

assumption that an infinite set of continuous, noise-free k-space samples was acquired (8). In 

this case, following inverse (continuous) Fourier transformation of the data set, the nominal 

and actual images of the continuous physical object are related by a (continuous, conformal) 

coordinate mapping and intensity scaling based on the mapping's Jacobian determinant (4). 

Presuming that this mapping is both a priori known and bijective (i.e., invertible), the actual 

object image can be recovered from the distorted one simply by inverting these operations. 

In practice, however, only a finite set of discrete samples is acquired, and image-domain 

interpolation is used to approximate the coordinate mapping operation (2, 4, 8, 9).

In practice, there are several challenges associated with the image-based interpolation GNL-

correction. Due to the intrinsic smoothing effect of interpolation, blurring or resolution loss 

is expected to occur (10). This effect can be somewhat reduced by employing more 

advanced interpolation models, but not wholly eliminated (10, 11). Furthermore, image 

discretization can also be problematic, particularly when GNL causes the target object to 

shrink substantially and force a large amount of information into only a few pixels or even a 

single pixel. Additionally, standard GNL-correction methods do not explicitly account for 

the presence of noise, undersampling, or other reconstruction artifacts (e.g., from parallel 

imaging) in the initial image data, and are thus subject to error propagation and 

amplification.

Artifacts manifest whenever an image reconstruction model is used that does not accurately 

describe the data to which it is being applied. Prospectively accounting for MRI system non-

idealities during image reconstruction – rather than attempting to retrospectively correct 

them after transformation into the image domain – is a paradigm that may be logically 

appealing and has already shown some success in other areas of MRI, such as off-resonance 

correction (12) and chemical shift-encoded imaging (13). In the context of GNL-correction, 

prospective correction strategies have previously been considered for acquisitions scenarios 

where spatial encoding gradients are intentionally distorted (e.g., PATLOC), but this 

approach has not yet been considered for the more common scenario where ideally linear 

gradients are not performing as desired due to engineering limitations (14, 15).

In this work, we investigate how prospectively accounting for gradient linearity during 

image reconstruction can be beneficial even in routine imaging cases where gradients 
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unintentionally deviate from linearity. Although we focus on 2D Cartesian imaging, the 

same methodology can be applied to 3D or non-Cartesian cases. After defining a generic 

signal model for MRI data acquisition, we describe a model-based inverse problem 

framework for performing GNL-aware MR image reconstruction for both non-accelerated 

and accelerated scans. Both non-iterative and iterative computational methods will be 

discussed. Several phantom and in vivo scan examples, with varying degrees of GNL-

distortion, are analyzed. Finally, several extensions and generalizations of the proposed 

framework are discussed.

Theory

Standard GNL-Correction

Standard GNL-correction operates under the assumption that continuous, infinite, noise-free 

MRI data are available. Let Δ(x) denote the presumed a priori known mapping from 

nominal to actual spatial encoding position that results from GNL. Then, the observed MRI 

signal at any k-space position, k, can be modeled as:

[1]

where f is a continuous function representing the imaged object, x denotes (true) spatial 

position, and Ω is the field of excitation (FOX). Note that Eq. 1 is simply the continuous 

Fourier transform of f when Δ(x) = x. It is then presumed that image reconstruction is 

performed via inverse Fourier Transform (iFT):

[2]

where W denotes the k-space support of signal g. If the distortion field, Δ(x), is bijective and 

thus invertible, applying a change of variables to the above yields the following:

[3]

where, f˜ is the distorted (continuous) image, Δ−1 denotes the inverse function of distortion 

field, and  is the Jacobian determinant of Δ−1(·).

From Eq. 3, an image acquired under GNL and reconstructed via conventional Fourier 

transform methods will exhibit both geometric spatial distortion and intensity modulation. It 

similarly follows that the distortion-free actual image can, in theory, be recovered from the 

reconstructed one by applying a point-wise intensity correction along with a continuous-to-

continuous bijective coordinate mapping, i.e.,

Tao et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[4]

In reality, only a finite set of k-space samples is available, and the reconstructed image is 

also of limited size. Practically, the bijective mapping is approximated using a discrete 

interpolation operation. The standard discrete analog of Eq. 4 is thus:

[5]

where i is the pixel index, f˜ [i] and f [i] represent the distorted and corrected image 

matrices, respectively, QΔ represents the interpolation kernel (e.g., cubic spline), and J 
denotes pixel-wise scaling by Jacobian determinant of distortion field. Note that QΔ is not 

necessarily invertible even if Δ(x) is bijective due to the implicit discretization of this field 

inside the linear operator. The accuracy of data interpolation is determined by the type of 

interpolation kernel and the sampling grid density. Commonly used spatial interpolation 

kernels usually satisfy certain spatial smoothness conditions and therefore impart blurring in 

the corrected images. In addition, due to practical limits on imaging resolution and pixel 

size, the accuracy of interpolation is further degraded. Thus, Eq. 5 deviates from the 

theoretical prediction in Eq. 4 and resolution loss can be expected.

Proposed Signal Model

In practice only a finite number of k-space samples can be collected and will contain noise. 

Accounting for these realities, the MRI data acquisition model in Eq. 1 can be modified as:

[6]

where g represents the discrete measurement vector, κ is the k-space sample index, and n[κ] 

is an instance of proper complex gaussian noise in the κ-th sample point (16). Note the 

presence of noise in the proposed signal model as opposed to the signal model of the 

standard GNL-correction in Eq. 1.

Like before, GNL-correction corresponds to the inverse problem of reconstructing image 

f(x) given a set of k-space samples, g. In the absence of auxiliary assumptions, this problem 

is intrinsically ill-posed since a continuous function is to be estimated from discrete 

measurements. A standard solution is to approximate the function f(x) via finite series 

representation, i.e., f(x) ≈ Σi∈Θ u[i]b(x−r[i]), where i is the pixel index, u[i] is the display 

coefficient of the i-th pixel, b is the pixel basis model, and r[i] denotes the actual spatial 

position of the i-th pixel (17). Assuming a Dirac delta pixel model, the forward signal model 

in Eq. 6 becomes

[7]
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Denoting the nominal spatial position r′[i] = Δ(r[i]) and defining the forward matrix 

operator A[κ, i] = e−jw⟶[κ]·r′[i], the ensemble of measured data can be modeled in affine 

algebraic form as:

[8]

For (non-accelerated) Cartesian imaging, the set of k-space samples lie on a discrete uniform 

grid. Although image pixels are also generally assumed to lie on a similar uniform grid 

(r[i]), the presence of distortion field (i.e., when Δ(r[i]) ≠ r[i] in Eq. 8) causes these to be 

displaced in the discrete forward model according to Δ(r[i]). Therefore, the nominal spatial 

grid of an image reconstructed under Eq. 8 may actually be non-uniform. Thus, A essentially 

represents a non-uniform-to-uniform linear mapping for the Cartesian case. Note that 

without gradient nonlinearity, i.e., Δ(r[i]) = r[i], the forward operator A reverts to the 

standard discrete Fourier transform (DFT) matrix.

The forward operator, A in Eq. 8 can be efficiently implemented via the type I nonuniform 

fast Fourier transform (NUFFT) (18). NUFFTs of various types have previously been used 

for image reconstruction in other MRI areas such as non-Cartesian (19, 20) imaging, as well 

as for PATLOC (14, 21) and O-space (15) imaging where nonlinear and non-bijective 

spatial encoding gradients are intentionally introduced to offer improved encoding 

efficiency. The type I NUFFT, A, is defined as follows:

[9]

where Γ is a matrix representing convolution interpolation operation that maps the irregular 

image grid onto an oversampled uniform image grid, F is an oversampled DFT 

(implemented via fast Fourier transform (FFT)), and D is pixel-wise deapodization function 

(i.e., diagonal matrix) that compensates for blurring induced by convolutional kernel, Γ.

General Reconstruction Strategy for Cartesian MRI

MRI data are usually acquired with multiple coils and receiver channels. Additionally, 

undersampling (i.e., collected only a subset of the data normally obtained during a scan) is 

commonly performed to reduce overall scan time. Let K, C and N denote the total numbers 

of k-space samples, receiver coils, and pixels in the reconstructed image, respectively. For 

the general case, the signal model in Eq. 8 extends to:

[10]

where G is K × C measurement matrix, Φ is the K × N binary row selection matrix that 

indicates the subset of Fourier elements actually sampled during the exam, U is the targeted 

underlying multi-channel image set (N × C), and N is again proper complex Gaussian noise 

matrix (K × C) which is herein assumed uncorrelated for simplicity.

A common strategy for reconstructing both fully- and undersampled MRI data is penalized 

regression, which seeks to produce the image most likely to have produced the set of noisy 

Tao et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



measurements while potentially also satisfying some other expected properties (e.g., 

sparsity) (17). Since noise in MRI is Gaussian distributed, penalized least squares regression 

of the following general form is often employed:

[11]

where  is the Frobenius norm of matrix, P(·) is a regularization or penalty functional 

that promotes some desired property in the reconstructed image, and λ ≥ 0 is a mixing 

parameter that controls the relative preference placed onto the penalty functional and the 

data fidelity term, . Note that Jacobian-based intensity correction is not an 

explicit part of this model, as its effect is implicitly accounted for in the forward signal 

model. Also, note that Eq. 11 prospectively accounts for the presence of data noise; and for 

the special case of λ = 0, it provides the maximum likelihood estimate of U. Moreover, 

Tiknonov and locally low rank (LLR) (22) penalties can be included (via specific definition 

of P(U)) to provide robustness and stability when reconstructing undersampled data sets 

collected during accelerated scans.

Incorporating GNL-Correction into Some Common Reconstruction Strategies

Several common MR image reconstruction strategies arise from special instances of Eq. 11. 

For example, when no undersampling (Φ = I) or regularization (λ = 0) is used, Eq. 11 

reduces to ordinary least squares regression and has a simple closed form solution given by

[12]

which can be iteratively solved via standard or conjugate gradient (CG) descent. As will 

demonstrated later, the inverse Gramian matrix, (A*A)−1, can be well approximated by a 

diagonal matrix built from the Jacobian determinant of distortion field (J), which in turn 

provides a non-iterative pathway for performing coil-by-coil GNL-corrected reconstruction 

of fully-sampled Cartesian MRI data:

[13]

The approximate solver in Eq. 13 and the standard GNL-correction strategy in Eq. 5 are 

functionally similar. The key difference is that the non-iterative method based on the 

proposed signal model utilizes explicit oversampled interpolation and deapodization steps, 

which enables later performing coarse geometric distortion correction without introducing 

substantial image blurring.

Beyond simple direct Fourier reconstruction, the proposed strategy also readily incorporates 

into standard SENSE-type reconstructions for accelerated acquisitions. Assume that the 

sensitivity profiles for the C channels of the phased array receiver are a priori known and 

contained within the N × C matrix, S. Then, the target signal in Eq. 11 can be reduced to
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[14]

where diag{u} constructs an N × N diagonal matrix from the N × 1 vector u, which 

represents the target non-modulated image (23). Tikhonov-regularized SENSE 

, for example, then involves solving:

[15]

which can be efficiently performed via linear CG iteration regardless of where uniform or 

non-uniform (i.e., random) sampling was performed. Eq. 15 inherently requires sensitivity 

profiles that are free from GNL-distortion. A simple way to provide this information is to 

perform sensitivity calibration in the usual fashion and then GNL-correct the estimated 

profiles via either Eq. 12 or Eq. 13.

The proposed gradient nonlinearity model can also be used within nonlinear reconstruction 

paradigms like CLEAR (24), a calibrationless parallel imaging method that utilizes LLR 

penalty functionals in lieu of explicit sensitivity profiles. CLEAR reconstruction operates by 

solving

[16]

where ‖·‖* denotes the matrix nuclear norm, η defines a set of (potentially overlapping) 

spatial blocks, b is a block index, and Rb extracts a block indexed at b from each of the coil 

images. Nonsmooth convex optimization problems of this form can be readily solved using 

first-order methods like projected gradient (PG) iteration (22). Methods based on sparsity or 

low-rankedness like the above CLEAR example are typically applied for randomly 

undersampled acquisitions, i.e., where Φ operates by selecting a random subset of the rows 

of A.

Methods

The distortion field induced by GNL can be obtained in a variety of ways. Standard 

strategies on commercial MR system (e.g., “gradwarp”) rely on a parameterization of 

gradient field that can be obtained by electromagnetic field simulation, onsite measurement 

of the magnetic field (25), or measured via data fitting method using specialized phantom 

designed to track spatial distortion (6, 26–28). Alternatively, strategies making use of 

geometric information acquired from other modalities like CT are also available (4, 29). In 

this work, the vendor-provided parameterization of the distortion field was used.

Phantom and In Vivo Experiments

All experiments were performed on a 3.0 T scanner (General Electric, Signa HDxt system, 

v16.0) using the zoom mode gradient with maximum gradient amplitude and slew rates of 

40 mT/m and 200 T/m/sec, and a 350 mm FOV, if not otherwise specified. The use of the 
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zoom mode, as opposed to the 480 mm FOV whole body mode allowed us to observe GNL-

effects while minimizing the confounding effects of B0 inhomogeneity. Fully-sampled k-

space data were retained. The American College of Radiology (ACR) quality assurance 

(QA) phantom (30) was scanned using a single-channel head coil with a spin echo (SE) 

sequence. Pulse sequence acquisition parameters are summarized in Table 1. To compare 

the performance of the standard and proposed GNL-correction strategies at varying degree 

of gradient nonlinearity, image sets were acquired at each location as the phantom was 

translated in the Superior/Inferior (S/I) direction from -62 mm to -122 mm in increments of 

5 mm (magnet coordinates; negative sign indicates the inferior direction). To demonstrate an 

example of large GNL distortion, a separate ACR phantom scan was performed at -235 mm 

in the S/I direction with the whole body coil and the 480 mm FOV whole body mode 

gradient with maximum gradient amplitude and slew rates of 23 mT/m and 80 T/m/sec. The 

whole body coil was used instead of the head coil because the slice location was far out of 

the coverage of the latter. Additionally, two healthy volunteers were scanned under an IRB-

approved protocol using an 8-channel brain coil and the parameters listed in Table 1. The 

brain of one volunteer was scanned with a 3D MP-RAGE sequence, and a second with a 2D 

T2-weighted Fast Spin Echo (FSE) sequence (echo train length = 12). A copy of the human 

k-space data was retrospectively undersampled for the different reconstruction experiments 

to further investigate the proposed method.

Data Processing

All data processing was performed on a dual 8-core 2.6 GHz machine with 128 GB memory. 

The reconstruction algorithms were implemented in C/C++ environment with FFTW and 

OpenMP parallelization. In this work, GNL-correction (all approaches) was performed only 

within 2D imaging plane. All standard image-domain GNL-corrections were executed using 

cubic spline interpolation. Unless noted otherwise, all NUFFT operations were implemented 

using 1.25 × oversampled FFT's and width 5 Kaiser-Bessel kernel interpolators (19, 20), and 

parallelized using thread privatization.

Reconstruction Experiments and Analysis

Initial analysis was performed to verify that the non-iterative method in Eq. 13 for fully-

sampled Cartesian acquisitions provides an accurate approximation to the full iterative 

correction reconstruction in Eq. 12. GNL-correction of the high resolution (HR) insert plane 

(axial) of the ACR phantom was performed for two data sets corresponding to two different 

off-isocenter positionings of the phantom. Specifically, the physical location of the imaged 

section of the phantom was translated to -82 or -122 mm from gradient isocenter, in the S/I 

direction, and selected to exhibit mild and strong geometric distortion, respectively. Using 

the same acquisitions settings, another scan at -47 mm was performed twice, to enable 

imaging differencing and analysis of the effects of the different GNLC methods on noise 

power spectra. To demonstrate an example of extreme distortion, the phantom was further 

translated to -235 mm from gradient isocenter and scanned with whole body coil and whole 

mode gradient. Note that the readout bandwidth was increased to minimize the effect of B0 

inhomogeneity (Table 1). For each case, both non-iterative (Eq. 13) and iterative (Eq. 12) 

NUFFT-based reconstructions were performed. Iterative NUFFT-based reconstruction was 

performed via CG iteration, initialized with an all-zero image, and executed for 5 iterations. 
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Standard GNL-correction via image-domain interpolation was also performed as a reference. 

All reconstructed images were sinc interpolated (to 1024×1024 points) for display.

To compare the performance of the standard and proposed GNL-correction strategies, a 

series of GNL-corrections of the HR insert plane (axial) of the ACR phantom placed at 

different off-isocenter positions was also performed. For all 13 cases, standard GNL-

correction via image-domain interpolation and the proposed non-iterative NUFFT-based 

correction reconstruction (Eq. 13) were performed with zoom gradient mode. Again, all 

reconstructed images were sinc interpolated (4× magnification) for display. Some 

commercial scanners also have the option of sinc interpolating (by zero-padding the k-space 

data) uncorrected images prior to GNL-correction, a process similar to the oversampled FFT 

component of our non-iterative NUFFT-based correction reconstruction. To investigate the 

effect of this action, uncorrected images were 4× sinc interpolated prior to standard GNL-

correction. For consistency, k-space data was also 4× zero-padded prior to NUFFT-based 

correction reconstruction. We highlight that the notion of zero-padding k-space prior to 

NUFFT-based reconstruction is generally only relevant for fully-sampled acquisitions, so 

this step will not be applied to later iterative reconstructions of undersampled data.

The images of the ACR phantom were assessed by five independent observers to determine 

whether a significant difference between the resolution performance of the standard and 

proposed GNL-correction methods can be detected. The HR insert of the ACR phantom 

contains three groups of resolution inserts (dots) corresponding to nominal resolution values 

of 0.9, 1.0 and, 1.1 mm. The total number of resolution dots is 93, with 31 dots in each 

group. For each group, the numbers of dots that were distinguishable in images before and 

after correction were recorded by each observer. A dot was regarded as distinguishable if it 

could be visually distinguished from surrounding dots in all four directions (up/down/right/

left). This criterion is somewhat more strict than the standard ACR QA resolution criteria, 

which states that the resolution of a certain group is reached provided all 4 dots in at least 

one row are recognizable as points of greater signal intensity than the spaces between them 

(30). Statistical significance between assessor values of the different correction results was 

determined via one-sided Wilcoxon signed-rank tests in both directions.

In addition to the manual evaluation process described above, resolution insert contrast was 

automatically measured from line profiles over four resolution dots in the 1.0 mm group to 

provide a separate, objective measure of correction performance. Within each line profile, 

the four peaks corresponding to the four resolution dots were automatically identified, along 

with the minimum valley point between each (three total). Insert contrast was measured as 

the smaller intensity difference between a peak and its adjacent valley points. In some cases, 

blurring causes peaks to merge such that all four are not distinguishable – for such cases, 

insert contrast was set to zero.

For the ACR phantom data acquired at -47 mm, each repetition was reconstructed without 

GNLC, or via either the standard or proposed NUFFT-based correction strategy. The two 

images were then subtracted to remove image content, and the 2D power spectrum of the 

residual noise was calculated by discrete Fourier transformation (DFT) of the 2D 

autocorrelation function of a 100×100 points kernel located at the center of the difference 
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image. This 2D spectrum was then averaged along one dimension to yield a 1D profile for 

visualization.

A single 2D axial slice of the fully-sampled T2-weighted data set located at +39 mm 

superior of gradient isocenter was also reconstructed using both the standard GNL-

correction method and the proposed non-iterative NUFFT-based strategy to investigate the 

relative performance of these methods in vivo under standard imaging conditions. All GNL-

corrections were performed coil-by-coil for this multi-channel data set, and subsequently 2× 

sinc interpolated and root-sum-of-squares combined for display.

To investigate the utility of our proposed framework for accelerated imaging applications, a 

single slice from the MP-RAGE data set located at +59 mm superior of gradient isocenter 

(within standard clinical coverage) was uniformly undersampled (3×) in the in-plane phase 

encoding direction to simulate a 2D SENSE-type reconstruction (23). Coil sensitivity 

profiles were estimated from separate calibration scan data via ESPIRiT (31). Two separate 

reconstruction experiments were performed using SENSE signal model with Tikhonov 

regularization (Tikhonov-SENSE), as described in Eq. 15. In both cases, CG iteration was 

used to solve the optimization problem, and executed for 20 iterations with λ = 0.01 

(manually selected). In the first reconstruction experiment, the forward operator, A, was 

defined as a standard DFT, and standard GNL-correction was performed on the 

reconstructed image. In the second experiment, A was defined as the NUFFT (as in Eq. 9) 

such that GNL was accounted for during image reconstruction. In vivo images were 2× sinc 

interpolated for display.

Similar to the previous in vivo example, the T2-weighted image data set located at +35 mm 

superior of gradient isocenter was also retrospectively undersampled in the phase-encoded 

dimension albeit according to a variable-density random distribution (2×). Two separate 

reconstruction experiments were performed using CLEAR signal model with LLR 

regularization (22), as described in Eq. 16. In both cases, image blocks of width 8 and λ = 

0.002 (manually selected) were used, and the nonlinear optimization problem was solved via 

100 iterations of Nesterov's optimal gradient method (32, 33). As in the above SENSE 

example, one experiment was performed with A defined as a standard DFT, with subsequent 

coil-by-coil standard GNL-correction, and the second was performed with A defined as the 

distortion field-based NUFFT. All multi-channel data sets were individually 2× sinc 

interpolated and then root-sum-of-squares combined for display.

Results

Iterative Reconstruction vs. Non-iterative Approximation

Fig. 1 shows images derived from fully-sampled ACR phantom data. Each row corresponds 

to the HR insert plane of the phantom located at two axial positions (a-d: -82 mm, e-h: -122 

mm) with zoom gradient mode. Listed from left to right in each row are: uncorrected (a, e); 

standard GNL-correction via image-domain interpolation (b, f); NUFFT-based non-iterative 

GNL-correction (c, g); and NUFFT-based iterative GNL-correction (d, h). An enlargement 

of the HR insert area of each image is shown below its corresponding full-scale image. 

Comparing Fig. 1(a) and 1(e) highlights the varying effect of GNL as a function of imaging 
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plane distance from magnet isocenter. Fig. 2 shows an example of large distortion using 

whole body mode gradient, with the same layout as that of Fig. 1. The imaging plane was 

located at -235 mm in S/I direction, near the edge of whole body gradient mode FOV. In 

both Figs. 1 and 2, no substantial visual difference between the non-iterative and iterative 

NUFFT-based corrections was observed, suggesting that the non-iterative approximation is 

an efficient alternative to solving the complete inverse problem for fully-sampled Cartesian 

MRI. Additionally, in all scenarios the NUFFT-based corrections exhibited less spatial 

blurring and distortion than the standard GNL-correction results.

GNL-Correction Performance vs. Distance From Magnet Isocenter

Fig. 3 shows enlargements of the ACR phantom HR inserts from the results of standard and 

proposed NUFFT-based GNL-corrections, with the purpose of demonstrating how 

correction performance degrades as a function of distance from magnet isocenter. Noting the 

results shown in Figs. 1 and 2, only the non-iterative NUFFT-based correction results are 

included. The physical scanning locations (relative to isocenter along the S/I direction) of 

the HR insert slices are indicated by the “distance” axis. Only images acquired beyond 77 

mm from isocenter are shown since resolution dot resolvability was not substantially 

degraded at closer scan locations. Images in the first two rows were first GNL-corrected and 

then sinc interpolated for display. As discussed in the previous section, images in the third 

and fourth rows were either sinc interpolated (for the standard approach) or zero-padded in 

k-space (for the proposed approach) prior to GNL-correction. In all cases, both the standard 

and proposed GNL-correction methods exhibit progressively degraded resolution as the 

imaging plane is offset farther from magnet isocenter. This is illustrated by the gradually-

increased blurring of resolution dots in each row of Fig. 3. However, in both scenarios (sinc 

interpolated before or after GNL-correction), the resolution degradation of the proposed 

approach is reduced compared to that of the standard image-domain interpolation strategy. 

The discrepancy exists even when sinc interpolation is performed prior to GNL-correction, 

which highlights the importance of deapodization operations inherent to the NUFFT.

Fig. 4(a) shows the average resolution scores (indicated by the number of resolution dots in 

HR inserts that are distinguishable) of the five human observers for the HR inserts in Fig. 3 

versus imaging plane locations for each GNL-correction method. Error bars are also 

included to show the standard deviations in the observer scores. The scores of two standard 

GNL-correction groups drop substantially faster than the two NUFFT-based correction 

groups, especially for distances above 100 mm. Sinc interpolation before GNL-correction 

does offset some improvements in performance over the base case; however, it is still less 

effective than the two NUFFT based methods especially when GNL is strong (after 100 

mm). The scores of the two NUFFT-based correction groups were found to be significantly 

higher (one-sided Wilcoxon signed-rank tests; P < 0.05) than their standard counterparts 

beyond a certain distance from isocenter (d > 82 mm for the regular cases, and d > 102 mm 

for the cases when sinc interpolation was performed prior to correction). At all distances, 

reversed one-sided tests failed to show that the standard corrections had higher scores than 

the NUFFT-based corrections.
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Fig. 4(b) shows line profiles across resolution dots in the 1.0 mm resolution insert group that 

were automatically analyzed as a separate, objective measure of performance. Due to the 

blurring effect of interpolation, insert prominence is decreased in the two standard GNL-

correction groups, reflecting a decrease in insert contrast. Fig. 4(c) shows the results of 

automated insert contrast analysis for these line profiles for images acquired at various 

distances from isocenter. Note that insert contrast for the two standard GNL-correction 

groups drop substantially faster than for the two NUFFT-based groups, and in a manner 

consistent with the manual scoring results in Fig. 4(a).

Fig. 5 displays the noise power spectra calculated from subtracted images of the standard 

GNL-correction, non-iterative NUFFT, and the image without GNL-correction. As 

expected, the power spectrum of the uncorrected image appears like white noise, mostly 

uniform except for some low frequency content that can be attributed to phase changes from 

field drift between scans. Compared to this, the spectrum of standard GNL-correction image 

exhibits degradation in its high frequency components – like it has been low-pass filtered – 

and highlights the smoothing effects of interpolation-based GNL correction. This 

corroborates the image resolution loss observed in our phantom results. Note that the 

spectrum of the proposed NUFFT-based correction image does not exhibit this same loss, 

since the NUFFT implicitly counters (via deconvolution) any blurring introduced by 

interpolation (Eq. 9).

In Vivo Reconstruction Results

Fig. 6 shows reconstructed images for the fully-sampled, multi-channel T2-weighted image 

data before and after both standard and the proposed non-iterative NUFFT-based GNL-

correction. Even relatively close to isocenter (+39 mm S/I) there still is noticeable geometric 

distortion in the uncorrected image (see arrows). A visual comparison between Fig. 6(b) and 

(c) reveals that while both approaches provide the same coarse-scale geometric correction, 

the proposed NUFFT-based approach better preserves the subtle texture of the cerrebellar 

gyri as well as the morphology of vascular structures. As highlighted by the arrows in the 

images, the interpolation operations underlying standard GNL-correction undesirably 

smooth out some of these anatomical details. The standard GNL-correction results in loss of 

vessel wall clarity (arrow b) compared with reconstruction before correction (arrow a) and 

NUFFT-based approach (arrow c). Fig. 7 shows the subtracted difference between Figs. 6(b) 

and 6(c). The difference image is multiplied by 10, and displayed in the same window/level. 

Fig. 7 highlights that the differences between the images corrected by standard GNL-

correction and the proposed NUFFT-based correction are mainly high spatial frequency 

components including the boundaries and small structures, which is consistent with our 

previous phantom results and power spectra analysis in Fig. 5.

Fig. 8 shows Tikhonov-SENSE-type reconstructions of the (retrospectively) 3× uniformly 

undersampled reconstruction of the MP-RAGE data set. Fig. 8(a) shows a standard SENSE 

reconstruction without GNL-correction. Fig. 8(b) shows the the result of performing 

standard image-domain GNL-correction on the result from Fig. 8(a). Fig. 8(c) shows the 

result of an NUFFT-based SENSE reconstruction with integrated GNL-correction. Although 

geometric distortion at this position (+59 mm S/I) is subtle, the standard GNL-correction 
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degrades the spatial resolution of the uncorrected image. Conversely, the correction 

generated using our proposed strategy does not exhibit this blurring. These differences are 

especially apparent at the gray matter/white matter boundaries, as indicated by the arrows in 

Fig. 8. The cortical white matter junction is better depicted before GNL-correction (arrow a) 

and with integrated NUFFT (arrow c) than with standard GNL-correction (arrow b). Also 

note that the proposed correction strategy (Fig. 8(c)) preserves the noise level and texture of 

the uncorrected image, whereas the interpolation operations inherent to the standard GNL-

correction alter this as well as compromise morphology. Since both noise and image details 

are subtle structures, we believe it is better to retain all information available and let the user 

separately “denoise” the result if they desire to do so.

Fig. 9 shows CLEAR reconstructions of the (retrospectively) 2× variable density random 

undersampled reconstruction of a different slice of the T2-weighted image data. Fig. 9(a) 

shows a standard CLEAR reconstruction without GNL-correction and Fig. 9(b) shows the 

result of applying standard GNL-correction to Fig. 9(a). Fig. 9(c) shows the result of an 

NUFFT-based CLEAR reconstruction with integrated GNL-correction. Similar to fully-

sampled and SENSE-type undersampled reconstructions in Figs. 6 and 8, the NUFFT-based 

result in Fig. 9(c) provides comparable coarse-scale geometric correction to the standard 

approach in Fig. 9(b) but better preserves the subtle structures in the cerebellar region and 

sharpness of small vessels. Note that blurring of the cerebellar folia occurs with standard 

GNL-correction (arrow b) compared with the result before GNL-correction (arrow a) and 

utilizing integrated NUFFT (arrow c).

Discussion

In this study, we propose a new GNL-correction strategy for conventional MR imaging that 

accounts for the effects of GNL during – rather than after – reconstruction to the image 

domain. Standard GNL-correction, which is based on strict image-domain interpolation, can 

effectively correct geometric distortion but at the expense of reduced spatial resolution from 

the (unaccounted for) smoothing effects of interpolation. Additionally, since those methods 

are derived under continuous image assumptions, operating on discretized images can also 

introduce localized distortion in extreme GNL cases. As demonstrated in Fig. 3, performing 

sinc interpolation before standard GNL-correction partially compensates for these issues, but 

does not entirely overcome them, especially where stronger distortion is present. Our 

proposed NUFFT-based GNL-correction and image reconstruction framework prospectively 

accounts for both image discretization and interpolation-based spatial blurring (via 

deapodization), and is correspondingly able to better alleviate resolution loss and local 

distortion while still correcting coarse-scale geometric distortion. The resolution-preserving 

capability of our approach is visually apparent in the phantom results shown in Figs. 1 to 4, 

especially when the imaging plane is located farther away from isocenter where stronger 

GNL presents. As demonstrated in Figs. 6 to 9, for in vivo exams our proposed GNL-

correction strategy similarly better preserves fine anatomical details such as small vessel 

morphology and sharp tissue boundaries.

The improved capability offered by the proposed NUFFT-based method can potentially 

benefit any MRI application where GNL-correction is routinely performed. However, we 
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believe these subtle but concrete benefits will be particularly important in applications that 

require precise morphological or volumetric measurements, such as Alzheimer's disease 

characterization (5) and treatment planning (6, 7), or where the region of interest extends 

across a large FOV (4). Another potential application of the proposed methodology is 

moving table whole-body imaging, where GNL-correction is especially challenging since 

each k-space measurement is made at a slightly different displacement between the moving 

object and the gradient field (34). Although the proposed method was tested within a ±120 

mm FOV, the maximum FOV of the zoom gradient is ±175 mm, so the gradient distortion 

was not maximized. The resolution preserving effect of the proposed method is expected to 

be more significant in this extended region, as suggested by the large distortion example 

acquired at the edge of FOV with the whole body mode gradient in Fig. 2. The proposed 

NUFFT-based GNL-correction strategy may also be very beneficial for emerging MRI 

scanner architectures, such as high-performance head-only systems (35) where GNL could 

be more pronounced.

As demonstrated in this work, the proposed GNL-correction strategy can be applied to both 

routine imaging protocols with fully sampled k-space data and accelerated acquisitions. 

When it is applied to fully sampled data, one can either compute the full iterative solution of 

Eq. 12 or employ the non-iterative NUFFT-based approximation in Eq. 13 as a minimal 

computational load alternative. As shown, the latter approach is of similar computational 

cost to standard GNL-correction but offers superior performance. For accelerated imaging 

scenarios, our proposed strategy can be readily integrated into advanced reconstruction 

models like Tikhonov-SENSE (Eq. 15) and CLEAR (Eq. 16) by replacing their standard 

forward and adjoint FFT with NUFFT operators. Although the NUFFT and standard FFT 

have the same computational complexity order (19), NUFFTs are more expensive to 

compute due to their internal interpolation operations. While not a substantial concern for 

non-iterative methods, the additional computational cost of performing NUFFTs does 

increase the total execution times for iterative reconstruction methods. In this study, we 

observed that employing NUFFTs with small oversampling factors (1.25×) and kernel sizes 

(5 points) gave robust performance while minimizing the added computation load. For 

example, generating the 256×256 Tikhonov-SENSE results in Fig. 8 via 20 CG iterations on 

the computing system described in Methods with the standard FFT and NUFFT setups 

required only 0.65 sec and 2.00 sec, respectively. Thus, the added expense is non-trivial but 

the approach remains practical.

Beyond application to different MRI areas and within alternative reconstruction models 

(e.g., sparsity-based), several extensions of the proposed framework will be examined in the 

future. Although all examples in this work demonstrate 2D in-plane GNL-correction for 

Cartesian imaging, the proposed framework readily applies for oblique scan and full 3D 

volume GNL-correction. The proposed GNL-correction framework can also be extended for 

(both 2D and 3D) non-Cartesian acquisitions by migrating from type I to type III NUFFT's 

(36), similar to the pathway taken by Knoll et al. (21) for radial PATLOC acquisitions. 

Spatial smoothing penalties like total variation can be used within Eq. 11 to prospectively 

combat noise during GNL-corrected reconstruction while offering a degree of image 

structure preservation. Finally, for all iterative reconstruction results presented in this work, 
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the regularization parameter, λ, was selected manually following visual assessment of image 

results. In future studies, we hope to automate and optimize this selection process based on 

concrete image quality metrics like low contrast object detectability (37) or mean-square 

error (38) to eliminate the potential for subjectivity and ensure maximally fair comparisons.

Conclusion

In this work, a new GNL-correction framework for conventional MR imaging is proposed 

and demonstrated to better preserve spatial resolution than the conventional image-domain 

interpolation strategy. The proposed framework is general and can be applied for both non-

accelerated and accelerated acquisitions.
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Figure 1. 
ACR phantom images acquired with zoom gradient mode (full scale and enlarged resolution 

inserts) before and after GNL-correction. (a) and (e): images acquired at -82 and -122 mm in 

the S/I direction, respectively; (b) to (d) and (f) to (h): images corrected with Standard GNL-

correction (Standard GNLC), non-iterative NUFFT operator (NUFFT Non-iterative), and 

iterative reconstruction with incorporated NUFFT solved by CG (NUFFT iterative-CG).
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Figure 2. 
ACR phantom images acquired with whole body gradient mode (full scale and enlarged 

resolution inserts) before and after GNL-correction. (a): image acquired at -235 mm in the 

S/I direction; (b) to (d): images corrected with Standard GNL-correction (Standard GNLC), 

non-iterative NUFFT operator (NUFFT Non-iterative), and iterative reconstruction with 

incorporated NUFFT solved by CG (NUFFT iterative-CG). Note that the whole body coil 

was used instead of the head coil in Fig. 1 since the slice location was far out of the 

coverage of the head coil.
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Figure 3. 
Effects of resolution degradation versus distance from magnet isocenter. The “distance” axis 

indicates the locations in S/I direction where the corresponding images were acquired. The 

first and second rows shows the resolution inserts regions of the images corrected with 

Standard GNL-correction (Std. GNLC) and non-iterative NUFFT (NUFFT). The images 

were then sinc interpolated (4×) to show details. In the third and fourth rows, images were 

first sinc interpolated (zero padded in k space) by a factor of 4 and then corrected with Std. 

GNLC and NUFFT, respectively.
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Figure 4. 
(a) Imaging plane location versus resolution scores of each correction method in Fig. 3. The 

resolution scores are defined as the total number of resolution dots that are distinguishable in 

all the four directions (up/down/right/left). For NUFFT+ZP and Std. GNLC+ZP group, the 

images being scored are first corrected with the corresponding methods and then sinc 

interpolated (zero padded in k space) to compare image detail. For ZP+NUFFT and ZP+Std. 

GNLC group, the order of zero padding and GNL-correction is reversed; (b) Representative 

examples of the line profiles across four resolution dots (in the 1.0 mm resolution inserts 
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group) in images corrected with each GNL-correction method; (c) insert contrast measured 

from line profiles in images acquired at various distances from isocenter. Insert contrast is 

here defined as the distance between each of the four peaks (corresponding to four 

resolution dots) and the highest valley point next to it.
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Figure 5. 
Noise power spectra calculated from the subtractions of two separate images (ACR 

phantom) acquired at the same slice location, obtained without GNL correction, with 

standard GNL-correction (Std. GNLC), or with non-iterative NUFFT-based GNL-correction 

(NUFFT).
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Figure 6. 
Example of T2-weighted SE images (volunteer 1) reconstructed with fully sampled k-space 

data. (a) image before GNL-correction; (b) image corrected by Standard GNL-correction, 

and (c) image corrected by the proposed non-iterative NUFFT approach. Note that small 

vessel wall features (arrow) apparent in the uncorrected image (a) are preserved by the 

proposed GNL-correction strategy (c) but distorted during standard correction.
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Figure 7. 
Difference (10× magnitude amplification) between Fig. 6(b) and 6(c) in full scale (a) and 

magnified inset (b). The arrow points to the same location as those in Fig. 6. Fig. 7 

highlights that the differences between the images corrected by standard GNL-correction 

and the proposed NUFFT-based correction are mainly high spatial frequency components 

including the boundaries and small structures.
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Figure 8. 
Example of MP–RAGE images (volunteer 2) with SENSE-type reconstruction (3× 

uniformly subsampled in phase encoding direction). (a) image before GNL-correction; (b) 

image corrected by Standard GNL-correction, and (c) image corrected by iterative 

reconstruction with integrated NUFFT. Note that cortical white matter junctions (arrow) 

apparent in the uncorrected image are preserved by the proposed GNL-correction strategy 

(c) but distorted during standard correction.
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Figure 9. 
Example of T2-weighted SE images (volunteer 1) reconstructed with CLEAR (2× randomly 

subsampled in phase encoding direction). (a) image before GNL-correction; (b) image 

corrected by Standard GNL-correction, and (c) image corrected by iterative reconstruction 

with integrated NUFFT. Note that the cerebellar folia (arrow) apparent in the uncorrected 

image are preserved by the proposed GNL-correction strategy (c) but distorted during 

standard correction.
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Table 1

Specifics of Protocols

Subject ACR Phantom ACR Phantom in vivo Brain in vivo Brain

Sequence 2D T1 SE 2D T1 SE 3D MP-RAGE 2D T2 FSE

FOVx×FOVy(×FOVz) 220×220 mm2 210×210 mm2 240×240(×240) mm3 240×240 mm2

Nx × Ny(×Nz) 256×256 384×384 256×256(×240) 256×256

TR/TE(/TI) 500/13 msec 500/10 msec 7/2.9(/900) msec 4800/105 msec

Flip Angle 90° 90° 8° 90°

Slice Thickness 3 mm 3 mm 1 mm 4 mm

Scan Plane Axial Axial Axial Axial

Bandwidth ±15.63 kHz ±83.33 kHz ±31.25 kHz ±25.00 kHz
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