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Deep learning has accomplished huge success in computer vision applications such as self-driving vehicles, facial recognition, and
controlling robots. A growing need for deploying systems on resource-limited or resource-constrained environments such as
smart cameras, autonomous vehicles, robots, smartphones, and smart wearable devices drives one of the current mainstream
developments of convolutional neural networks: reducing model complexity but maintaining fine accuracy. In this study, the
proposed efficient light convolutional neural network (ELNet) comprises three convolutional modules which perform ELNet
using fewer computations, which is able to be implemented in resource-constrained hardware equipment. )e classification task
using CIFAR-10 and CIFAR-100 datasets was used to verify the model performance. According to the experimental results, ELNet
reached 92.3% and 69%, respectively, in CIFAR-10 and CIFAR-100 datasets; moreover, ELNet effectively lowered the com-
putational complexity and parameters required in comparison with other CNN architectures.

1. Introduction

Convolutional neural network (CNN) was firstly introduced
in the 1980s. At that time, Lecun et al. [1] proposed a simply
constructed CNN architecture which contains three con-
volutional layers, two subsampling layers, and a fully con-
nected layer. LeNet was mainly used for handwriting
recognition in the MNIST dataset and obtained the lowest
error rate. However, the hardware equipment was not ad-
vanced, and graphics processing units had not been invented
which led to the development of CNN being greatly re-
stricted. In 2012, Krizhevsky et al. [2] developed AlexNet and
won the first place in the ImageNet large-scale visual rec-
ognition competition by achieving a top-5 error of 15.3%.
Compared with LeNet, AlexNet uses rectified linear unit
(ReLU) to replace the conventional sigmoid activation
function in order to resolve the vanishing gradient problem.
Moreover, the dropout [3] regularization technique was also

introduced to reduce overfitting in neural networks. In
general, AlexNet extends its network architecture resulting
in the requirement of nearly 60 million parameters, and the
floating-point operations (FLOPs) have reached 0.7 giga
FLOPs. Subsequently, researchers have continued to deepen
networks to improve the accuracy such as VGGNet [4].

Instead of deepening the CNN architecture, some re-
searchers expand the width of the network architectures. For
instance, Szegedy et al. [5] firstly came up with a concept of
inception block in the CNN which encapsulates different sizes
of kernels for extracting global and local features. It adjusts the
computations by adding a bottleneck layer of a 1× 1 con-
volutional filter before applying large-size kernels. Further-
more, Srivastava et al. [6] designed a new architecture to
moderate gradient-based training of very deep networks which
is called highway network.)is network imitates the horizontal
expansion concept using the gating function to adaptively
bypass the input so that the network can go deeper. In addition,
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He et al. [7] proposed ResNet by taking inspiration from the
bypass and bottleneck layer approaches for reducing the
amount of operations. Many improved designs of network
architectures are proposed and applied in many applications,
such as object detection [8] and semantic analysis [9]. How-
ever, regardless of deepening or widening the network ar-
chitectures, high computational cost andmemory requirement
are the two main concerns observed with these architectures.

To further alleviate these two primary concerns of the
network, designing a lightweight architecture without com-
promising the performance is necessary, especially when the
CNN model is implemented in resource-constrained hard-
ware. Howard et al. [10] adopted depthwise separable con-
volution in the MobileNet to reduce the model parameters so
that the model can be embedded in portable devices for mobile
and embedded vision applications. Juefei-Xu et al. [11] pro-
posed the local binary convolutional neural network which
adopts local binary convolution (LBC) as a substitute for the
conventional CNN. )e experimental results showed that the
LBCmodule performs a good approximation of a conventional
convolutional layer and results in a major reduction in the
number of learnable parameters while training the network.
Iandola et al. introduced SqueezeNet [12] which replaces 3× 3
filters with 1× 1 filters and decreases the number of input
channels to 3× 3 filters. )ese strategies are desirable to de-
crease the quantity of parameters in aCNNwhile attempting to
maintain accuracy. According to the experimental results re-
ported by Iandola et al., the parameters used in SqueezeNet are
50x fewer than those in AlexNet; besides, it preserves AlexNet-
level accuracy on ImageNet. Others such as parameter pruning
and quantization can reduce redundant parameters which
reduces the network complexity and addresses the overfitting
problem. Furthermore, without decreasing accuracy, more
improvements of YOLO were also proposed [13, 14] to prove
that light CNN can reduce training time andmake applications
more diverse without being limited by hardware.

)e three modules provide capabilities and advantages:
saving computations when kernel size and the number of
kernels are large using depthwise separable convolution,
expanding the field of view (FOV) of filters without in-
creasing parameters by atrous convolution, and extracting
local and global features simultaneously adopted by the
inception module to reduce the parameters and operations
of the CNN. In this study, the proposed model, efficient light
convolutional neural network (ELNet) with the three
modules, is no longer limited by memory and computational
constraints.

)e rest of the paper is organized as follows. In Section 2,
the conventional CNN architecture is briefly reviewed. )e
ELNet is introduced in Section 3. )e experimental results
using CIFAR-10 and CIFAR-100 datasets are revealed in
Section 4 and compared with other state-of-the-art CNN
architectures such as GoogLeNet, ResNet-50, and Mobile-
Net. Lastly, Section 5 draws conclusions.

2. Convolutional Neural Network (CNN)

)e concept of neural networks mainly comes from bio-
logical neural network systems; however, neural networks

are connected in a fully connected manner which causes a
great amount of calculations when the input size is large.
)erefore, in the 1980s, convolution kernel was first in-
troduced and then was widely applied in image processing.
)ere are four main parts of the CNN: convolutional layer,
pooling layer, activation function, and fully connected layer.
)e function of feature extraction depends on the first three
parts, and the fully connected layer is used to classify the
obtained features. More descriptions of these parts are
explained as follows.

2.1. Convolutional Layer. A convolutional layer consists of a
set of learnable filters (or kernels) which have a small re-
ceptive field; however, feature extraction can be acquired by
extending filters through the full depth of the input volume.
)e formula is as follows:

Or,c � ∑n
k�1

∑kh
i�1

∑kw
j�1

Ikr−kh+i,c−kw+j ×W
k
i,j + b, (1)

where r and c represent the row and column of the feature
map, n is the number of input channels, kw and kh are the
width and height of a convolution kernel,Wk

i,j is the weight
of the ith row and jth column convolution kernel in the kth

channel, Iki,j is the input of the i
th row and jth column in the

kth channel, and b is the bias.

2.2. Pooling Layer. In order to effectively extract features,
most of the moving strides are set as 1; yet, this setting causes
relatively more operations. )erefore, pooling layer is
usually added in the CNN for effectively reducing the
amount of operations. Equation (2) shows the calculation of
max pooling and average pooling:

Or,c �

max pooling max Ii,j( )| r≤ i< r + Ph
c≤ j< c + Pw

 ,

average pooling ∑r+Ph
i�r

∑c+Pw
j�c

Ii,j

Pw × Ph( ) ,


(2)

where Or,c is the output row and column, Ii,j is the row and
column of the input image, and Pw and Ph are the width and
height of the pooling kernel.

2.3. Activation Function. )e conventional operation of the
convolution kernel is a linear operation; LeNet adopts
sigmoid function as an activation function to solve nonlinear
problems. Along with the development of deeper network,
researchers found out that gradient disappearance occurs
when the sigmoid function approaches to 0 in the saturation
region. )en, ReLU is introduced in AlexNet to address this
problem. Moreover, the operations using ReLU are simpler
than those of the sigmoid function. Later, many scholars
made various improvements based on ReLU and sigmoid
functions. For instance, Leaky ReLU [15] solves the problem
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that ReLU is not activated when x is less than 0, PReLU [16]
adds a parameter to make ReLUmore accurate when x is less
than 0, and RReLU [17] learns parameters automatically via
the neural network. Here, PReLU is selected as the activation
function which is shown in Figure 1, and its equation is given
as follows:

fβ(x) �
β · x, x≤ 0,
x, x> 0.

{ (3)

2.4. Fully Connected Layer. After convolutional computa-
tion, the high-dimensional feature maps will be classified
and predicted through a fully connected neural network.
)is layer is often used in many network architectures such
as LeNet, AlexNet, and GoogLeNet. )e equation is given as
follows:

P � Oc × Ic + 1( ), (4)

where Ic and Oc represent the number of input and output
channels.

From equation (4), the number of parameters in the fully
connected layer depends on the input dimensions. If di-
mension reduction is not performed, the number of input
channels might be massive, and many parameters will be
generated. According to Lin et al. [18], the fully connected
layer is prone to overfitting which hampers the general-
ization ability of the overall network. )erefore, the later
CNN architectures usually replace fully connected layers
with global average pooling.

3. Efficient Light Convolutional Neural
Network (ELNet)

An efficient light convolutional neural network (ELNet) is
proposed to make the network architecture suitable for
resource-constrained hardware. A schematic view of the
network is depicted in Figure 2, where the red block is a
depthwise separable convolution, the black dash line block
represents an inception module, and the brown block is a

depthwise separable convolution combining with atrous
convolution. )e details of the architecture are described in
Table 1.

In Table 1, Conv dw represents a depthwise separable
convolution, and d means stride in the atrous convolution.
)e three convolutional modules used in ELNet are de-
scribed as follows.

3.1. Depthwise Separable Convolution. Depthwise separable
convolution separates the original convolution into two
parts for the purpose of reducing operations as shown in
Figure 3.

Compared with the conventional convolution method,
one convolutional kernel will generate only one feature map
according to its input dimensions. However, depthwise
separable convolution performs multiple feature maps
corresponding to each dimension, and then a 1×1 con-
volutional layer is used to combine all the feature maps into
one output. Although there is no difference between the
output of the depthwise separable convolution and con-
ventional convolution, the parameters of the depthwise
separable convolution using one 3× 3 convolutional kernel
are much less than those of the conventional convolution
method. )e calculations are listed as follows:

conventional convolution : Iw × Ih × Ic × kw × kh × kc,

depthwise separable convolution : Iw × Ih × Ic × kw × kh + Ic × kc × Iw × Ih,
(5)

where Iw, Ih, and Ic represent the width, height, and channel
of the input, respectively, kw and kh are the width and height
of the convolutional kernel, and kc is the number of con-
volutional kernels in the convolutional layer.

3.2. Atrous Convolution. Atrous convolution [9], as shown
in Figure 4, enlarges the FOV of filters by incorporating the
larger context without growing parameters. )e advantages
of using atrous convolution are allowing the user to filter a
larger context instead of using a bigger size of kernel and
reducing the usage of pooling layers which brings less

operation consumption and accuracy improvement; besides,
using less parameters can also avoid an overfitting problem.

3.3. Inception Module. Inception module uses various
convolution kernels to extract features so that the feature
maps are able to contain local features and global features.
)e schematic view of conventional convolutional layers and
inception module are displayed in Figure 5 as comparison.
Although both of the methods can map to the same size of
FOV, local features in Figure 5(a) might be washed out at the
end. On the contrary, the wash-out problem will not be
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Figure 2: ELNet architecture.

Table 1: ELNet architecture.

Type/stride Filter shape (H ×W × C ×N, d) Input size

I Conv/2 3 × 3 × 3 × 32 W ×H × 3

1
Conv dw/1 3 × 3 × 32 W/2 ×H/2 × 32
Conv/1 1 × 1 × 32 × 64 W/2 ×H/2 × 32

2
Conv dw/2 3 × 3 × 64 W/2 ×H/2 × 64
Conv/1 1 × 1 × 64 × 128 W/4 ×H/4 × 64

3
Conv dw/1 3 × 3 × 128 W/4 ×H/4 × 128
Conv/1 1 × 1 × 128 × 128 W/4 ×H/4 × 128

4
Conv dw/2 3 × 3 × 128 W/4 ×H/4 × 256
Conv/1 1 × 1 × 128 × 256 W/8 ×H/8 × 256

5
Conv dw/1 3 × 3 × 256 W/8 ×H/8 × 256
Conv/1 1 × 1 × 256 × 256 W/8 ×H/8 × 512

6

Conv dw/2 3 × 3 × 256 W/8 ×H/8 × 256
Conv/1 1 × 1 × 256 × 512 W/16 ×H/16 × 512

(a) Atrous dw/1 3 × 3 × 512， d � 1
W/16 ×H/16 × 512(b) Atrous dw/1 3 × 3 × 512， d � 2

(c) Atrous dw/1 3 × 3 × 512， d � 3
Add (a) + (b) + (c) W/16 ×H/16 × 512

7 Conv/1 1 × 1 × 512 × 512 W/16 ×H/16 × 512

8
Conv dw/2 3 × 3 × 512 W/16 ×H/16 × 512
Conv/1 1 × 1 × 512 × 1024 W/32 ×H/32 × 512

9
Conv dw/1 3 × 3 × 1024 W/32 ×H/32 × 1024
Conv/1 1 × 1 × 1024 × 1024 W/32 ×H/32 × 1024

10 Average pooling Global pooling W/32 ×H/32 × 1024
F Fully connected 1024 × Classes 1 × 1024
O Softmax Classification answer 1 × ClassNumbers
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considered when using the inception module (Figure 5(b));
however, fusing multiple feature maps is another question.
In general, concatenation (Concat) and addition (Add) are
two common methods; the former can retain characteristics
of each convolution output but produce high-dimensional
problems; in contrast, the latter does not have dimensional
problems, yet relatively might lose the independence of each
output.

4. Results and Discussion

To deploy the systems on resource-constrained hardware for
real-time data processing, large-scale datasets such as
PASCAL VOC, ImageNet, and COCO are not considered.
)us, CIFAR-10 and CIFAR-100, two well-understood and
widely used datasets, were provided to verify the perfor-
mance of ELNet. )e experimental results including pa-
rameters, FLOPs, and accuracy were compared, respectively,
with the other state-of-the-art CNN architectures such as
GoogLeNet [5], ResNet-50 [7], MobileNet [10], and All
Convolutional Net (All-CNN-C) [19]. )e hardware spec-
ifications and predefined parameters used in this study are
listed in Tables 2 and 3.

4.1. CIFAR-10 Dataset. )e CIFAR-10 dataset includes
60,000 colour images with the size of 32 × 32 in a total of 10
classes. To fit into the proposed network, bilinear inter-
polation is used to resize the images into 224 × 224 which
provides more features than using the padding method.
Table 4 shows the results in which the parameters and
MFLOPs required in larger CNN models such as Goo-
gLeNet and ResNet-50 models are very large. In other
words, these models need longer training time and higher
operations. To make the model suitable for general hard-
ware equipment, models with less operations and lower
complexity are more favourable. )erefore, the proposed
model is also compared with MobileNet and All-CNN-C
which are also called light models. According to the results,
MobileNet uses less parameters and MFLOPs than others;

yet, the accuracy is lower than that of ELNet. Even though
All-CNN-C has the least parameter requirements, its
MFLOPs are the highest which means the training time
could be decreased by using better graphics processing
units, but this increases the cost of hardware equipment.
ELNet reaches a tradeoff between accuracy and parameters/
MFLOPs which is closer to the purpose of this study than
that of other methods.

4.2. CIFAR-100 Dataset. )e CIFAR-100 dataset contains
100 classes which are more than in the CIFAR-10 dataset.
)erefore, the accuracy shown in Table 5 is obviously rel-
atively lower than the accuracy of classifying the CIFAR-10
dataset; yet, the accuracy of ELNet is still the highest.

To evaluate the effectiveness of three convolutional
modules used in ELNet, Tables 6 and 7 show the results of
classifying the CIFAR-100 dataset. Table 6 shows that using
atrous convolution can not only widen the FOV which
increases the accuracy from 67% to 69% but also reach the
same accuracy (69%) as using a bigger kernel size. Addi-
tionally, the inception module has the ability to extract

Input

Output

Input

Output

3 × 3 conv

3 × 3 conv

1 × 1 conv 3 × 3 conv 5 × 5 conv N × N conv

3 × 3 conv

Add/concat

Figure 5: (a) Conventional convolutional layers. (b) Inception module.

Table 2: Hardware specifications.

Hardware Specification

GPU NVidia GTX1080-Ti 11G
CPU Intel Xeon E3-1225 v3 @ 3.2GHz

Table 3: Predefined parameters.

Parameter Value

Epoch 120
Optimizer Nesterov’s accelerated gradient
Learning rate 0.01
Learning rate decay 0.9
Learning rate decay frequency 40 (epochs/time)
Momentum 0.9
Batch size 100
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features using different convolution kernel sizes. In order to
keep the features, different fusion methods may display dis-
tinct results. From the experimental results (Table 7), con-
catenation shows better accuracy than the other two methods;
however, it requires more parameters and MFLOPs; thus, the
addition method might be the better choice for implementing
the network in a resource-constrained environment.

Overall, the proposed ELNet showed better perfor-
mance in comparison with either relatively larger CNN
architectures (GoogLeNet and ResNet-50) or light CNN
architectures (MobileNet and All-CNN-C).)e accuracy of
ELNet is acceptable if the environment of the deployed
system is considered. Although the proposed ELNet rea-
ches 92.3% and 69% in the CIFAR-10 and CIFAR-100
datasets, respectively, the accuracy can be improved by
using more complex networks. )e three convolution
modules with depthwise separable convolution, atrous
convolution, and inception modules can also be extended
to these complex networks to lower the number of pa-
rameters and operations and preserve the accuracy of
classification as well.

5. Conclusions

)e contributions of this study listed in the following
confirm that the ELNet can effectively reduce model com-
plexity but maintain fine accuracy:

(1) ELNet successfully combines three convolutional
modules, depthwise separable convolution, atrous
convolution, and inception module, for reducing the
number of parameters and operations in the model

(2) ELNet requires only 2.1 million training parameters
and 2.57 mega FLOPs based on the input image size
that is equal to 224× 224

(3) )e accuracy of ELNet reached 92.3% and 69% in
CIFAR-10 and CIFAR-100 datasets, respectively

)erefore, the proposed ELNet can be applied on em-
bedded systems for image classification applications. In
addition, the architecture can integrate other methods such
as parameter pruning, recursion, or other learning meth-
odologies to optimize the network for further research.
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