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Abstract

Inflammatory bowel disease (IBD) is a chronic disorder of the gastrointestinal tract. The molecular 
mechanisms underlying IBD are poorly characterized and treatment options are limited. To gain 
insight into the pathogenesis of chronic colonic inflammation (colitis), we performed a multi-omic 
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analysis that integrates RNA microarray, total protein mass spectrometry (MS), and 
phosphoprotein MS measurements from a mouse model of the disease. Because we collected all 
three types of data from individual samples, we could track information flow from RNA to protein 
to phosphoprotein to identify signaling molecules that were coordinately or discordantly regulated. 
With this information, we identified pathways that had complex in vivo regulation. For example, 
the genes encoding acute phase proteins were expressed in the liver, but the proteins were detected 
by MS in colons during inflammation. We also used the multi-dimensional dataset to ascertain 
which types of data best described particular facets of chronic inflammation. Using gene set 
enrichment analysis and trans-omic co-expression network analysis, we found that each data set 
provides a unique viewpoint on the molecular pathogenesis of colitis. Combining human 
transcriptomic data with the mouse multi-omic data implicated increased p21-activated kinase 
(Pak) signaling as a driver of colitis and chemical inhibition of Pak1 and Pak2 with FRAX597 
suppressed active colitis in mice. These studies provide translational insights into the mechanisms 
contributing to colitis and identify Pak as a therapeutic target in IBD.

One Sentence Summary:

Transcriptomics, proteomics, and phospho-proteomics reveals therapeutic targets in colitis.

Introduction

Inflammatory bowel disease (IBD), composed of Crohn’s disease (CD) and ulcerative colitis 
(UC), affects more than 5 million people worldwide. Sufferers experience a variety of 
debilitating gastrointestinal symptoms that require medical and, eventually, surgical 
intervention. The ultimate target of medical treatment is mucosal healing, which improves 
outcomes. Nevertheless, this goal remains elusive in many patients. Although there have 
been advances in therapeutics, the current treatment options for IBD are limited and include 
general immunomodulators and targeted biologics, such as antibodies targeting tumor 
necrosis factor alpha (TNF-α), α4β7 integrin, and IL-12/23 (1). All of these therapies suffer 
from variable efficacy and non-durable response, as well as a spectrum of negative side 
effects. A better understanding of the molecular pathogenesis of IBD would lead to new 
therapeutic strategies that could lead to more effective treatments.

Genetic and epidemiological studies in human patients (2, 3), as well as experimental studies 
in animal models (4), have identified numerous genetic and environmental risk factors for 
CD and UC, but have not identified clear driver mutations that could lead to therapeutic 
opportunities. To account for the complexity in IBD etiology, researchers have taken 
transcriptomic (5, 6), proteomic (7, 8), metabolomic (9, 10) and metagenomic (11, 12) 
approaches in an attempt to understand global disease networks and to identify genes, 
proteins, and metabolites that may be involved in disease pathogenesis. Although these 
approaches have provided valuable insight, they have fallen short of identifying potential 
high value therapeutic targets in IBD.

In this study, we generated a multi-omic dataset in which transcriptomic, proteomic, and 
phosphoproteomic measurements were made from individual colons of mice with and 
without colitis. We used this dataset to understand the relationships between RNA 

Lyons et al. Page 2

Sci Signal. Author manuscript; available in PMC 2019 September 03.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



abundance, protein abundance, and protein phosphorylation and to determine what each type 
of data reveals about gut inflammation. Because all three types of data were collected from 
each individual sample, we could identify discrepancies between transcriptomic and 
proteomic measurements, thus we could predict post-translational protein regulation and 
identify changes in gene expression that originated at distant organ sites. Finally, we 
performed co-expression network analysis to identify signaling pathways that were 
coordinately or uniquely dysregulated in the different data sets and we computationally 
inferred kinase activation from global phosphoproteomic mass spectrometry (pMS) data by 
collating kinase substrate lists and using them with the gene set enrichment (GSEA) 
algorithm. These complementary computational approaches implicated Pak signaling as a 
potential driver of colitis. We validated the role of Pak signaling in a preclinical therapeutic 
study in mice, and analysis of gene expression data from humans indicated that this finding 
was applicable to IBD patients. Together, these studies provide an unprecedented view of 
dysregulated signaling in colitis and identify a previously unrecognized pathogenic signaling 
pathway that represents a viable therapeutic opportunity.

Results

Collection of multi-omic data from mouse colon

The initial goal of this study was to quantify global transcriptomic and proteomic changes 
that occur during chronic colitis. Because this requires a large amount of starting material, 
we chose to use a mouse model of IBD, namely the adoptive transfer mouse model of CD, 
known for high penetrance and relatively short latency (13). Rag1 null animals on a 
C57BL/6J genetic background were injected with 400,000 CD45RBhi naïve T cells or, as a 
negative control, 200,000 regulatory T cells (Tregs) from isogenic wild-type (WT) animals 
and then weighed bi-weekly and assessed for symptoms related to the onset of colitis, such 
as diarrhea and rectal prolapse. Animals were sacrificed following sustained weight loss of 
greater than 1.5 grams for one week, which was indicative of severe colitis. Control animals 
were sacrificed concomitantly. Upon sacrifice, 3mm of tissue from the medial colon was 
removed and fixed for histological assessment (fig. S1). The remaining colon was opened 
longitudinally and approximately 1/8th was snap frozen for microarray analysis, while the 
remaining matched tissue was snap frozen for mass spectrometry (fig. S2). With this tissue 
processing strategy, we obtained RNA, total protein, and phospho-protein from an individual 
colon, enabling relative quantification among control and experimental animals.

Following sample processing and data collection, we quantified 39,325 named (38,666 
unique) RNA transcripts, 7,951 proteins, and 3,159 phosphopeptides representing 3,325 
unique phosphorylation sites on 1,711 proteins (tables S1–S3). Unsupervised hierarchical 
clustering indicated that each of the three measurements segregated the inflamed mice from 
the non-inflamed (Fig. 1A). Of the 7,951 proteins measured by mass spectrometry 
(hereafter, we refer to total protein mass spectrometry as MS), 7,611 (96%) were represented 
in the RNA data set. RNA transcripts were measured for 1,634 (95%) of the 1,711 proteins 
in the pMS data set. Total protein MS data were obtained for 1,474 (86%) of the 1,711 
proteins measured by pMS and 1,415 species were measured in all three data sets.
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Because we measured RNA, protein, and phosphoprotein from individual samples, we could 
perform one-to-one matched correlation of individual genes across measurements (Fig. 1B). 
The probability density functions for Spearman correlations showed a correlation landscape 
for RNA/MS comparison that was distinct from RNA/pMS and MS/pMS. Most RNA/MS 
gene pairs were positively correlated with each other, with only a few species showing an 
inverse correlation (Fig. 1B). The RNA/pMS probability density function showed a bimodal 
distribution, indicating that there were similarly sized sub-groups for which there was 
negative correlation, no correlation, or positive correlation between RNA abundance and 
phospho-peptide abundance. The MS/pMS probability distribution was similar to the 
RNA/pMS distribution, but there were more positively correlated MS to pMS species than 
RNA/pMS species (Fig. 1B). We hypothesized that the inverse correlation between some 
MS/pMS species (higher MS to pMS) represented proteins that are marked for degradation 
by phosphorylation. Eplin (encoded by the Lima1 gene) has a ubiquitin-priming 
phosphorylation site and exemplified this type of regulation in our data. Lima1 transcripts 
were essentially unchanged (1.1-fold reduced) in inflamed versus non-inflamed tissue, yet 
the protein abundance was ~two-fold decreased (Fig. 1C). We detected a 3.3-fold increase in 
phosphorylation at Ser360 (Fig. 1C and D), which targets the protein for ubiquitination and 
degradation (14).

Differential RNA expression and protein and phosphoprotein abundance analysis

We determined the RNAs, proteins, and phosphopeptides that had significantly different 
abundance in inflamed colons relative to non-inflamed colons. Overall, 7,752 of 38,666 
RNA transcripts, 4,443 of 7,951 proteins, and 2,346 of 3,325 phosphopeptides had 
differential abundance (table S4). Of the 7,611 species for which we had both RNA and MS 
data, 1,858 showed changes in abundance that were similar (either both increased or both 
decreased), 1,064 RNAs and 2,401 proteins had differential abundance in only their 
respective data set, and the remaining 2,288 species were not differentially changed (Fig. 
1E). All 1,345 proteins detected in the pMS and MS data had differential abundance in either 
one data set or both (Fig. 1E), while none of the 1,634 RNAs with co-measured phospho-
peptides in the pMS data were differentially expressed, resulting in limited differential 
abundance similarity between all three data sets (Fig. 1E). This comparison demonstrated 
that the pMS data are critical for exploring the molecular pathogenesis of colitis.

Because our goal was to characterize changes to the tissue-level signaling network during 
colitis, we isolated RNA and protein from the whole colon, which includes the epithelium, 
lamina propria (including immune, stromal, and vascular cells), and muscularis as the 
starting material for our RNA and protein datasets. The cellular representation of an 
inflamed colon is different from that of a normal colon, especially with respect to the influx 
of inflammatory cells (fig. S1). To explore whether the changes that we detected through 
transcriptomic and proteomic analyses reflected the influx of inflammatory cells, we used 
immunohistochemistry to analyze the cellular localization of signals that were up-regulated 
in animals with colitis. We selected phosphorylation of Trim28 (Ser473) and Map3k3 
(Ser337) because they were among the few sites that met the criteria of being upregulated 
during colitis and having phospho-specific antibodies that worked for 
immunohistochemistry. Both exhibited substantially greater phosphorylation during colitis 
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(Fig. 1F); however, their distribution in the colon differed. Trim28 phosphorylation was 
increased in the colonic epithelium, whereas Map3k3 phosphorylation was increased in all 
components of the colonic environment (Fig. 1F). These observations indicated that the 
changes in RNA, protein, and phosphoprotein abundance that occur during colitis reflect 
both a major change in the cellular composition of the tissue and changes in the tissue-level 
signaling network.

Pathway enrichment analysis

Although these analyses described how the -omics data sets related to one another, we 
wanted to determine whether the differences between inflamed and non-inflamed samples in 
each data set represented similar pathways and high-level functional categories. We 
performed GSEA (15) on the 7,611 genes represented in both the RNA and MS data sets to 
identify differentially regulated pathways between inflamed and non-inflamed mice. At the 
RNA level, 19 pathways were positively enriched and 8 pathways were negatively enriched 
in inflamed mice (Fig. 2A and table S5). Most were the same as the 15 positively enriched 
and 10 negatively enriched pathways in inflamed mice at the total protein level, suggesting 
strong functional concordance between the transcriptomic and proteomic data (Fig. 2B and 
table S5). The finding that 14/20 positively enriched and 8/10 negatively enriched pathways 
were similarly regulated in inflamed mice was consistent with the Spearman correlation 
histogram of the RNA/MS data (Fig. 1B). Coordinately positively enriched pathways 
included those involved in the inflammatory response and tumor necrosis factor alpha 
signaling, as well as pathways controlling epithelial proliferation, such as E2F targets, 
KRAS signaling, and MYC targets (Fig. 2C). The “epithelial to mesenchymal transition” 
gene set was positively enriched at the RNA level and negatively enriched at the protein 
level, suggesting complex regulation of this particular pathway (Fig. 2C). This observation 
highlights the potential for RNA analysis to provide misleading information about the role of 
a particular pathway in driving a disease.

Analysis of non-correlated RNA and protein signals

Comparative analysis of the changes in RNA and protein abundance presents an opportunity 
to explore if and how each data set provides unique information on the regulatory events 
associated with colitis, especially when those data sets do not change in the same direction. 
For example, our GSEA analysis identified the “interferon alpha response” as positively 
enriched in the MS data set, but not in the RNA data set (table S5). To expand upon this 
observation, we examined the correlation between RNA and protein abundance for the 7,611 
species for which we collected both types of data. Although we observed general 
concordance in fold-change differences (control vs. colitis) between RNA and protein 
measurements, a small number of species were altered at the protein level, but exhibited no 
change at the RNA level (Fig. 3A). To determine if these discordant species were present in 
particular functional categories, we performed Gene Ontology (GO) enrichment analysis for 
all species that showed greater than 22-fold change in protein abundance and less that 20.75-
fold-change in RNA abundance. We found enrichment for genes involved in defense 
response (positively enriched in the MS dataset) and extracellular matrix (negatively 
enriched in the MS dataset). The extracellular matrix category of proteins was composed 
primarily of collagens (Fig. 3A, purple dots) and, when we surveyed all of the collagens 
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shared between the microarray and total MS data sets, we found that 12/17 collagens were 
reduced at least 2-fold in protein abundance, but unchanged or weakly increased in 
abundance at the RNA level (Fig. 3B). Moreover, we observed an increase in several 
extracellular matrix metalloproteinases (MMPs), notably MMPs 3, 7, 9 and 10, in the MS 
data set. All of these enzymes function to degrade extracellular matrix components such as 
collagen and fibronectin (16). This illustrates how comparative RNA/protein abundance 
analysis can infer genes for which the corresponding protein is regulated by degradation.

Within the defense response GO category, we focused on the acute phase proteins (Fig. 3A, 
red dots) and a set that are specific to neutrophils (Fig. 3A, orange dots). The liver 
coordinates the acute phase response and therefore we hypothesized that these genes may be 
transcribed and translated in the liver and then travel to the colon through the blood stream 
or possibly through bile. According to the publicly available mouse gene atlas (17), all are 
highly expressed in the liver, with minimal expression in other tissues (Fig. 3C). To confirm 
this expression pattern in our experimental model, we assayed the RNA abundance of two of 
the genes, Fga and Orm1, in the colons and livers of animals with and without colitis. For 
both genes, there was at least 5,000-fold higher expression in the liver than in the colon (Fig. 
3D). In inflamed animals, this ratio increased to ~12–50,000-fold (Fig. 3D), indicating that 
the transcriptional events that ultimately resulted in increased colonic abundance of acute 
phase proteins most likely originated in the liver.

We selected the five neutrophil-specific genes with discordant RNA and protein changes 
(Fig. 3A, orange dots) because this group of genes was unexpected: The adoptive transfer 
model of IBD exhibits strong neutrophil recruitment to the colon and there were many other 
neutrophil-specific genes that were increased in abundance at the RNA and protein levels in 
animals with colitis. According to the mouse gene atlas (17), these five genes exhibit bone 
marrow-specific expression in normal mice (Fig. 3C). However, these genes belong to other 
groups of genes that show decreasing RNA expression as neutrophils travel from the bone 
marrow to the circulating blood (18). To assess whether this expression pattern underlies the 
discordant colonic RNA and protein abundance in our model, we isolated neutrophils by 
flow cytometry from the bone marrow and colons of animals with colitis. We assessed the 
abundance of the transcripts for Camp and Elane in neutrophils from these two tissues, 
which revealed an average of 2,257- and 6,142-fold higher expression in the bone marrow 
derived neutrophils compared to colonic neutrophils from inflamed animals (Fig. 3E). These 
data suggested that neutrophils transcribe and translate these proteins in the bone marrow, 
and that the RNA message is degraded by the time the neutrophils reach the site of 
inflammation, leaving only the protein. Together, these examples demonstrate how 
transcriptomic and proteomic data covering the same genes can be used to infer regulation of 
expression in distant organ sites. In both cases, the message and protein were initially 
expressed in a distant organ but carried to the colon through the blood (acute phase proteins) 
or within cells recruited to the colon (neutrophil proteins) (Fig. 3F).

Trans-omic co-expression network analysis

To gain further insight about the relative information content of the three data sets, we 
assessed the co-abundance changes of the 1,415 species (1,429 RNA transcripts, 1,452 

Lyons et al. Page 6

Sci Signal. Author manuscript; available in PMC 2019 September 03.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



proteins, 3,080 phosphopeptides) that were present in all data sets. Spearman correlation 
coefficients were calculated for all pairs of variables within each data set and dichotomized. 
Correlations greater than 0.9 or less than −0.9 were set to 1 and all others were set to 0. We 
visualized both the correlation networks and the two-step generalized topological overlap 
matrix (GTOM2) to explore the correlation landscape, modularity, and existence of highly 
correlated subsets of variables of each data set (Fig. 4A and B). GTOM2 relates the 
interconnectedness of two genes by computing the number of shared-two step network 
neighbors. Clustering the GTOM2 matrix facilitates identification of groups of highly 
correlated genes called modules (19, 20). At the RNA level, we noted several small clusters 
of highly correlated transcripts, whereas the protein abundance and phospho-peptide 
abundance changes were less modular (Fig. 4B). To estimate the true number of clusters in 
the RNA, MS, and pMS data sets, we computed the gap statistic for up to 15 clusters, by k-
means clustering, of the GTOM2 matrix (21). The gap statistic measures the within-cluster 
variation of each cluster in a dataset compared to a null distribution of expected within-
cluster variation. The cluster at which the gap curve begins to level off or decrease as a 
function of the number of clusters indicates the number of clusters in each data set. Based 
upon the gap curves and clustered GTOM2 matrices, we estimated that there were 8 RNA 
clusters, 5 MS clusters, and 5 pMS clusters in our data (Fig. 4C).

We extracted the genes in each of these clusters (table S6) and compared the gene lists 
between clusters (table S7). We visualized the significant overlap between modules in a 
network diagram and found that most RNA modules shared a significant overlap with 
multiple MS and pMS modules (Fig. 4D). Although some MS and pMS modules 
overlapped, the connections were sparser and the partially isolated modules (RNA_3, MS_5, 
and pMS_4) might present interesting cases of specific trans-omic regulation in colitis. To 
interpret the function of the individual modules in each data set and to examine function 
across data sets, we used the network analysis tool YourCrosstalker (22, 23) to identify the 
enriched pathways, filter out network edges that were not associated with protein-protein 
interactions, and identify topologically relevant genes that were not in our original cluster 
gene lists. We performed the YourCrosstalker random walk on the STRING protein-protein 
interaction network and performed pathway enrichment with a combination of Reactome 
and the National Cancer Institute Pathway Interaction Database (NCI-PID) (24–27).

The correlation structure of module RNA_3 was selectively associated with the 
phosphorylation modules pMS_3 and pMS_4. The 54 genes in RNA_3 showed enrichment 
only for nerve growth factor (Ngf) signaling. The 121 genes in pMS_4 showed enrichment 
only for processing of capped intron-containing pre-mRNAs. In contrast, we found a greater 
diversity of pathway enrichments in the YourCrosstalker modules of the 397 genes in 
pMS_3 (Fig. 4E). Here we found a central network that connected multiple Vegf signaling, 
p38 signaling, cell cycle, and pre-mRNA processing pathways (Fig. 4E). We analyzed the 
221 proteins in the module MS_5, a protein module that did not significantly associate with 
any pMS modules but was significantly connected to RNA modules 2, 4, 5, and 6 (Fig. 4F). 
Similar pathways were implicated by the genes in MS_5 as in pMS_3. In particular, we 
noted the shared MS_5-pMS_3 pathways of Vegf, pre-RNA processing, cell cycle, and p38 
signaling, as well as the presence of Ngf signaling shared with RNA_3 (Fig. 4F). This 
observation suggests that the signaling network at the intersection of these pathways plays a 
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role in colitis and that the components of this network are dysregulated in distinct ways in 
the different omics data sets. This discovery was enabled by the integrated picture provided 
by our multi-omic data set and trans-omic analysis approach.

Inferring kinase activity from phosphoproteomic data

Our overarching goal is to understand how dysregulated signaling contributes to the 
pathogenesis of colitis and to determine whether there are signaling pathways that could 
represent novel therapeutic targets for IBD. To this end, we reasoned that our pMS data set 
would most accurately reflect therapeutically tractable changes in signal transduction that 
occur during colitis. Our pMS analysis identified 2,346 differentially phosphorylated 
peptides in animals with colitis and, although 80% of the phosphopeptides had been 
previously identified, only 1.68% were functionally annotated (fig. S3). In essence, the 
biological importance of most of the measured phosphorylation events is presently 
unknown. We sought to overcome this deficiency in prior knowledge by using known 
kinase-substrate relationships to computationally infer kinase activity from the pMS data. 
Lists of kinase-substrate relationships for 348 kinases across a range of kinase families were 
curated from PhosphoSitePlus (table S8) (28). These were entered as ‘gene’ lists into the 
GSEA algorithm, enabling us to perform a “kinase activation” analysis from pMS data. 
Although many kinases showed substrate enrichment in inflamed colons (table S9 and Fig. 
5A), only Pak1, which had an uncertain role in IBD pathogenesis, reached statistical 
significance as defined by a false discovery rate (FDR) less than 0.25 (Fig. 5A,B). Both 
Pak1 and Pak2 were part of several of the YourCrosstalker modules that we identified in our 
co-expression network analysis (Fig 4E and F and table S6), providing a cross validation of 
the different computational analyses.

In addition to the predicted activation of Pak1 during colitis, GSEA predicted that six 
kinases – Casein Kinase 2A1 (Csnk2a1), Gsk3α/β, p38α (Mapk14), Casein Kinase 1D 
(Csnk1d), and Dyrk1α – were less active in the animals with colitis than in the control 
animals (Fig. 5A and B). Of these kinases, only Mapk14, one of the stress-induced mitogen-
activated protein kinases (MAPKs), has been linked to inflammation (29). To confirm the 
predicted kinase activation, we measured the phosphorylation of sites on Gsk3α/β and 
Mapk14 that regulate their activation states. We performed a Luminex-based 
phosphorylation assay on samples from an independent cohort of animals with adoptive 
transfer-induced colitis. This analysis revealed that animals with colitis had decreased 
phosphorylation of Mapk14 at activating sites (Thr180/Tyr182) and increased 
phosphorylation of Gsk3α/β at inhibitory sites (Ser21/Ser9) (Fig. 5C). As such, this 
experiment validated the reduction in Mapk14 and Gsk3α/β activity as predicted by GSEA 
of the pMS dataset.

Evidence of Pak signaling in human IBD patients

An important consideration with any experimental model system is the generalizability of 
the findings of that system to the human in vivo context. To compare our mouse data to 
human, we obtained a publicly available gene expression dataset of inflamed (n=12) and 
uninflamed (n=16) IBD patient colonic biopsies (6). Our aim was to assess global 
concordance between human IBD differential gene expression and, in particular, whether the 
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identification of increased Pak1 and Pak2 activity was conserved in patients. We performed 
differential expression analysis on the entire human dataset and compared differential 
abundance of human RNA to mouse RNA, MS, and pMS. There were 1,708 genes 
differentially expressed between inflamed and uninflamed human samples. All 1,708 human 
RNAs were represented in the mouse RNA data, 1,040 genes were represented in the mouse 
MS data, and 529 genes were found in the mouse pMS data. Of the 2,710 homologous 
mouse RNA transcripts that were differentially expressed, 751 were also differentially 
expressed in humans (Fig. 6A). Of the 2,608 homologous mouse proteins with differential 
abundance, 613 were also represented by differentially expressed transcripts in the human 
RNA data (Fig. 6A). Finally, of the 867 homologous differentially phosphorylated proteins 
measured in the mouse pMS data, 197 were differentially expressed in the human RNA data 
(Fig. 6A). In general, more molecular species (RNA, MS, and pMS) tended to exhibit 
differential abundance in the mouse relative to the human RNA data. The larger set of 
differentially abundant mouse RNA, MS, and pMS species represented 43.9%, 58.9%, and 
37.2% of the possible homologous differential expression events. This suggests that the 
mouse MS dataset offers a reasonable experimental representation of the human disease 
context. Furthermore, similar to the generally weak correspondence between RNA and 
phospho-peptide differential activity in the mouse, we observed that the products of genes 
differentially expressed in the human tended to not be differentially phosphorylated in the 
mouse.

We next sought to determine the extent to which the Pak1 and Pak2 signaling network 
neighborhood was differentially active in human IBD. We assembled a human protein-
protein interaction (PPI) network by querying PAK1 and PAK2 in the Pathway Commons 
database (26). The PAK network neighborhood contained 529 unique genes and 3,666 
interactions. We filtered the human expression data and PAK network for overlapping genes. 
After filtering for expression array coverage, the final PAK neighborhood contained 431 
genes and 2,534 interactions (fig. S4). When we overlaid the differentially expressed genes 
from human IBD patients onto the Pak network neighborhood, we found that 95 genes were 
differentially expressed (Fig. 6B) and the largest connected network of these genes 
implicated PAK2, STAT1, and STAT3 as key hub nodes. This analysis suggested that the 
inferred PAK signaling mechanism from the mouse model translates to the human disease 
and may be a viable therapeutic target in IBD.

To assess the relative importance of PAK signaling compared to that of other kinases 
implicated by phosphopeptide based GSEA (Fig. 5), we repeated the analysis of 
constructing a network neighborhood of the kinase and searching for differentially expressed 
human genes. A hypergeometric test was applied to assess the significance of the overlap 
between differentially expressed human genes and the network neighborhood of the kinases 
MAPK14, CSNK2A1, GSK3A, and GSK3B. The PAK1 neighborhood contained 95 
differentially expressed genes and was the most significant kinase (p < 10−15) (Fig. 6C). 
Although MAPK14, GSK3A, and GSK3B also have significantly active network 
neighborhoods, the PAK1 neighborhood is statistically the most significant of the kinases 
(Fig. 6C).
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Validation of Pak as a therapeutic target in colitis

With multiple lines of evidence pointing toward dysregulation of Pak signaling in colitis, we 
investigated whether pathway activation was a cause or consequence of the disease. First, we 
sought to validate, in an independent cohort of animals, that Pak was activated during colitis. 
Phosphorylation of Pak1/2 on Ser144/Ser141 is associated with kinase activation (30) and 
western blotting of colonic protein lysates from the new cohort confirmed increased 
phosphorylation in inflamed colons (Fig. 7A). This observation validated the MS analysis 
and kinase inference that predicted Pak1 activation based on increased phosphorylation of its 
substrates in inflamed colons (Fig. 5A and B). Note that Pak2 was not predicted by GSEA to 
be activated because not enough of its known substrates (table S8) were represented in the 
pMS dataset. We also found that Pak1 auto-phosphorylation was increased in animals with 
acute colitis induced with dextran sodium sulfate, indicating that Pak activation is not 
specific to the adoptive transfer mouse model of colitis (fig. S5).

Next, we investigated whether inhibition of Pak signaling could suppress colitis. We chose to 
focus on animals that already had severe inflammation because our goal was to determine 
whether inhibition of the pathway could be effective in patients with active disease. We 
found that colons from animals with colitis that were treated acutely with FRAX597, a 
Pak1/2 inhibitor (31), exhibited reduced phosphorylation of Merlin on Ser518, a Pak1/2 
substrate (Fig. 7B). Next, we treated sick animals with FRAX597 for 7 days (100 mg/kg/
day) and assessed their phenotype by endoscopic monitoring. Following treatment with the 
Pak inhibitor FRAX597, the animals exhibited decreased mucosal thickness, return of both 
small and large vessel visible vascular markings, and resolution of contact friability and 
bleeding (Fig. 7C), all of which are signs that the active colitis had been diminished after 
Pak inhibition.

At the histologic level, animals treated with FRAX597 exhibited reduced immune cell 
infiltrate in their colons and a return to more normal epithelial crypt morphology (Fig. 7D). 
The colitis that arises in the T cell transfer model is characterized by increased numbers of 
colonic macrophages and neutrophils in the lamina propria (32). Pak has a direct role in 
neutrophil migration by promoting chemotaxis (33). To determine whether Pak inhibition 
altered the immune milieu in the colon, we used fluorescence-activated cell sorting (FACS) 
to quantify immune cells from the colon. Consistent with the reduction in the clinical and 
histologic presentation of colitis, we found that animals treated with FRAX597 had reduced 
numbers of colonic macrophages and neutrophils relative to vehicle-treated controls (Fig. 
7E). Together, our computational and experimental studies implicate Pak signaling as a 
driver of chronic inflammation in the colon.

Discussion

Here we present a case in which RNA microarray, total proteomic, and phosphoproteomic 
measurements have been analyzed and integrated in matched tissue from single animals in a 
mouse model of colitis. This “all measurements from a single animal” approach enabled us 
to determine how changes in gene expression are carried through to protein expression and 
modification. We found that genes that were differentially expressed at the RNA level 
showed similar patterns of differential regulation in the MS data set, but that differential 
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expression at the RNA level did not predict protein phosphorylation status. Furthermore, 
though most genes differentially expressed at the total protein level were also differentially 
phosphorylated at the phosphoprotein level, the pMS data contained many differentially 
expressed phosphopeptides that were unchanged at the RNA and total protein level (Fig. 
1E). Although there are typically a greater number of molecular species measured through 
transcriptomics, our finding demonstrates that there are additional layers of molecular 
regulation that are not represented within transcriptomic datasets, underscoring the 
importance of proteomic measurement for understanding disease pathogenesis at the 
molecular level.

We observed stronger concordance between the RNA and MS data at the pathway level than 
at the single gene level (Fig. 2B). The enriched pathways pointed to several dysregulated 
signaling pathways, such as oxidative phosphorylation and signaling through E2F, KRAS, 
and MYC, that might provide some therapeutic targets in IBD. Work by Bar et al. 
demonstrated that mice with DSS- and TNBS-induced colitis are protected against more 
severe symptoms when oxidative phosphorylation is more active (34). Their work suggested 
that increasing the activity of this pathway could reduce inflammation and crypt formation 
in the intestinal epithelium through enhanced nuclear factor κB (NF-κB) signaling (34). 
Because our analysis identified a link to oxidative phosphorylation in the T cell transfer 
model of colitis, it appears that the anti-inflammatory activity of this pathway is conserved 
among the DSS, TNBS, and adoptive transfer models.

Furthermore, whereas the RNA and MS measurements exhibited conserved patterns of 
expression and higher-order process enrichment, there were also many proteins that were 
differentially regulated in inflamed versus non-inflamed tissue, but had unchanged RNA 
expression. Using GO enrichment analysis, we identified differential regulation in defense 
response and extracellular matrix. This led us to infer post-translational regulation of 
collagens by matrix metalloproteinases (Fig. 3B). Additionally, we found a subset of 
neutrophil and acute-phase proteins that were transcribed and translated in other tissues 
(bone marrow and liver) and transported to the colon in the blood stream or through 
infiltrating immune cells (Fig. 3F). These analyses leveraged the transcriptomic and 
proteomic data to produce hypotheses regarding organismal scale gene and protein 
regulation that could not have been made with either data set alone, underscoring the value 
of multi-omics measurement. Only multi-omics analysis of an intact organism could identify 
these instances of physiologic regulation of protein expression.

The collection of multi-omics data enabled us to perform trans-omic co-expression network 
analysis to examine the correlation structure between all pairs of RNA transcripts, proteins, 
and phosphopeptides measured in all three data sets (Fig. 4). By clustering the data sets into 
modules and performing targeted network analysis on the modules with YourCrosstalker, we 
were able to identify important functional commonalities between the phospho-peptide 
module pMS_3 and the total protein module MS_5. We found that pMS_3 associated with 
all 8 RNA modules and was characterized by an intriguing core network of hyper-
phosphorylated proteins in the RNA metabolism and pre-RNA processing pathways coupled 
to a de-phosphorylated network of Vegf signaling. The MS_5 module did not associate with 
any pMS modules, and yet it was characterized by similar coupling of pre-RNA processing 
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pathway proteins to Vegf signaling proteins through the cell cycle signaling pathway (Fig. 
4E and F). Although the characteristic proteins of MS_5 and pMS_3 did not overlap, the 
same signaling pathways and core network architecture were identified by YourCrosstalker, 
suggesting an important role for these pathways in colitis. RNA processing and cell cycle are 
general terms and it is difficult to ascertain specific mechanisms potentially involved in 
colitis, but Vegf is plays a role in angiogenesis and lymphangiogenesis during colitis (35). 
Indeed, Vegf therapy is beneficial in mouse models of the disease (36, 37). By extension, 
Vegf signaling in experimental colitis is likely to be a result of the inflammation as the tissue 
attempts to repair itself.

The primary goal of this study was to use the multi-dimensional dataset to identify new 
drivers of colitis and we noted that the pMS analysis provided additional mechanistic insight 
that was not revealed by the RNA or protein expression studies. Because most of the 
individual sites identified by pMS were not functionally annotated, we reasoned that 
phosphoproteomic data coupled with prior knowledge of kinase substrates would enable 
computational inference of kinase activity. Public databases and software packages provide 
information on kinase-substrate interactions, kinase recognition motifs, and kinase substrate 
predictions and various algorithms have been used to determine a kinase activity metric 
based on these relationships. For example, similar to our analysis, Drake and colleagues 
compiled substrate sets and used an algorithm analogous to GSEA to quantify enrichment 
(38). In our study, GSEA predicted one significant positively enriched and six significant 
negatively enriched kinases from our pMS dataset (Fig. 5A), most of which had unknown or 
poorly characterized roles in IBD. The activation or inhibition of several of these predicted 
kinases was confirmed through the measurement of regulatory phosphorylation sites on 
those kinases (Figs. 5C and 7A). Pak1 was of particular interest because our enrichment 
analysis indicated that it was activated during colitis, suggesting that inhibition could be a 
therapeutic strategy. Although Pak2 was not implicated by GSEA, western blotting and 
YourCrosstalker network analysis revealed that it is also activated in animals with colonic 
inflammation and in human patients (Fig. 4E and F and 6B). Inhibition of Pak1/2 with 
FRAX597 suppressed inflammation in animals with active colitis, indicating that this 
pathway plays an active role in the pathogenesis of the disease (Fig. 7C to E). Thus, we 
demonstrated that chemical inhibition of Pak signaling can revert inflammatory disease in 
the colon.

Pak1 and Pak2 are members of the family of group I p21-activated kinases that regulate 
inflammatory responses, in part by stimulating assembly of the NADPH oxidase complex in 
neutrophils (39). Pak1 was previously reported to be increased in abundance in epithelial 
cells during colitis and is thought to be regulated by mTOR signaling (40). Our 
YourCrosstalker network analysis identified the mTOR pathway as being activated in the T 
cell transfer model (Fig. 4E), although our GSEA analysis failed to identify enrichment for 
mTOR substrates in pMS data from animals with colitis (table S9). As such, the mechanism 
of activation of Pak1 in the T cell transfer model is not clear. Nevertheless, the effect of Pak 
inhibition validates the prediction made by our computational modeling approaches: that 
Pak plays a critical role in the pathogenesis of colitis. In sum, our analyses demonstrate the 
added value of multi-omic measurements by showing how different molecular species in 
each data set may be acting on similar pathways in distinct ways. We used multi-omics 
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comparisons to obtain mechanistic insight into the pathogenesis of chronic inflammation in 
the colon, in particular identifying Pak signaling as a bona fide therapeutic target. This work 
highlights the power of analyzing the global proteome and phosphoproteome to uncover 
dysregulated signaling pathways that are not revealed by transcriptomic studies alone.

Materials and Methods

T cell transfer model of colitis

T cell transfer (TCT) was performed according to established methods (41). Briefly, 
splenocytes were isolated from wild-type C57BL/6J animals (Jackson Laboratory) and 
depleted for red blood cells by treatment with ACK lysis buffer. CD4+ T cells were enriched 
using a Dynal CD4 untouched kit (Thermo-Fisher). Naïve T cells (CD4+CD45RBhi) and 
regulatory T cells (CD4+CD25+) were isolated by FACS. Naïve T cells (400,000) or Tregs 
(200,000) were injected IP in PBS vehicle into C57BL/6J Rag1 null mice (Jackson 
Laboratory). Recipients were weighed bi-weekly. Animals treated with naïve T were 
sacrificed after sustained weight loss of 1.5g for one week. Treg-injected animals were 
sacrificed at these time points. Upon sacrifice, the medial colon was formalin fixed for 
histology and then matched tissue was snap-frozen for microarray analysis and MS analysis 
(fig. S2). All animal work was approved by the Institutional Care and Use Committees of 
Massachusetts General Hospital and Beth Israel Deaconess Medical Center.

Microarray analysis

RNA was isolated from snap-frozen tissue with a Qiagen RNeasy microarray tissue mini kit 
(Qiagen: 73304). RNA expression was quantified on Affymetrix Mouse Transcriptome 1.0 
Arrays and data were processed using the Affymetrix Expression Console software. 
Subsequent analysis was performed on named transcripts. Microarray data were submitted 
to Gene Expression Omnibus (GEO accession GSE95705).

Protein digestion and tandem mass tag (TMT) labeling for MS

Excised colon tissue was re-suspended in mammalian cell lysis buffer (75mM NaCl, 50mM 
HEPES [pH 8.5], 10mM sodium pyrophosphate, 10mM NaF, 10mM β-glycerophosphate, 
10mM sodium orthovanadate, 1mM PMSF, 3% SDS, and complete mammalian protease 
inhibitor tablet [Roche]). Suspensions were mixed with zirconium oxide beads (1mM 
diameter) and lysed on a mini bead beater (Biospec) four times for 45 seconds, cooling the 
sample in between. Beads were removed, the lysate was centrifuged at 15,000×g for 5 
minutes at 4°C, and insoluble debris was discarded. Ditheiothreitol (DTT) was used to 
reduce disulfide bonds and free thiols were alkylated with iodoacetamide (IAA) as described 
previously (42). Reduced and alkylated proteins were then precipitated following the 
methanol/chloroform method as described previously (43). Precipitated proteins were 
reconstituted in 300μL of 1M urea in 50mM HEPES, pH 8.5. Vortexing and sonication were 
used to aid solubility. Proteins were then digested in a two-step process, first with 3μg 
endoproteinase Lys-C (Wako) for 17 hours at room temperature (RT) and then with 3μg 
sequencing-grade trypsin (Promega) for 6 hours at 37°C. The digest was acidified with 
trifluoroacetic acid (TFA). Peptides were desalted over Sep-Pak C18 solid-phase extraction 
(SPE) cartridges (Waters). The peptide concentration was determined using a BCA assay 
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(Thermo Scientific) and a maximum of 50μg of peptides were aliquoted, then dried under 
vacuum and stored at −80°C before labeling with TMT reagents. Peptides were labeled with 
10-plex TMT reagents (Thermo Scientific). TMT reagents were suspended in dry 
acetonitrile (44) at a concentration of 20μg/μL. Dried peptides were re-suspended in 30% 
dry ACN in 200mM HEPES, pH 8.5, and 5μL of the appropriate TMT reagent was added to 
the sample, which was incubated at room temperature for one hour. The reaction was then 
quenched by adding 6μl of 5% (w/v) hydroxylamine in 200mM HEPES (pH 8.5) and 
incubated for 15 min at room temperature. The solutions were acidified by adding 50μl of 
1% TFA, combined into one sample, and desalted.

Basic pH reversed-phase liquid chromatography (bRPLC) sample fractionation

bRPLC was used to perform sample fractionation with concatenated fraction combining. 
Briefly, samples were re-suspended in 5% formic acid (FA)/5% ACN and separated over a 
4.6 mm × 250 mm ZORBAX Extend C18 column (5μm, 80 Å, Agilent Technologies) on an 
Agilent 1260 HPLC system outfitted with a fraction collector, degasser, and variable 
wavelength detector. A two buffer system (Buffer A: 5% ACN, 10mM ammonium 
bicarbonate; Buffer B: 90% ACN, 10mM ammonium bicarbonate) was used for separation, 
with a 20–35% gradient of Buffer B over 60 minutes at a flow rate of 0.5 mL/minute. A total 
of 96 fractions were collected, which were combined in a total of 24 fractions. The 
combined fractions were dried under vacuum, reconstituted with 8μL of 5 % FA/5 % ACN, 
3μL of which were analyzed by LC-MS2/MS3.

Phosphopeptide enrichment

For each sample, 450μg of total peptides were subjected to phospho-peptide enrichment 
using a 4:1 ratio of titanium dioxide beads:peptide (w/w). Peptides were resuspended in 2M 
lactic acid in 50% ACN and added to 1.8mg of titanium dioxide beads. The mixture was 
shaken gently for 1 hour. Beads were collected by centrifugation and washed 3 times with 
2M lactic acid in 50% ACN and 3 times with 50% ACN/0.1% TFA. Phospho-peptides were 
eluted with 2 × 200μL of 50mM KH2PO4, pH 10, and acidified with 1% TFA. Eluted 
phospho-peptides were desalted, lyophilized, and labeled with 2μL of 10-plex TMT reagents 
127n-130c as described earlier. The combined sample was enriched for phospho-tyrosine-
containing peptides using phospho-tyrosine antibody-conjugated beads (Cell Signaling 
Technology) according to the manufacturer’s protocol. Unbound peptides (phosphoserine 
and phosphothreonine peptides) were desalted, lyophilized, and fractionated by bRPLC 
using a gradient of 5 to 28% Buffer B. A total of 96 fractions were collected, and fractions 
were combined into 12 fractions. Bound peptides (phospho-tyrosine peptides) were eluted 
and desalted. All 12 fractions were re-suspended in 5% ACN / 5% formic acid and analyzed 
on an Orbitrap Fusion mass spectrometer using LC-MS2/MS3 for identification and 
quantification of the phospho-peptides.

Mass spectrometry acquisition and analysis

TMT-labeled peptides were subjected to multiplexed quantitative proteomics analysis on an 
Orbitrap Fusion mass spectrometer (Thermo Scientific) coupled to an EASY-nLC 1000 
integrated autosampler and HPLC pump system. Peptides were separated over a 100μm 
inner diameter microcapillary column, packed in-house with 0.5cm of Magic C4 resin (5μm, 
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100Å, Michrom Bioresources), followed by 0.5cm of Maccel C18 resin (3μm, 200Å, Nest 
Group), followed by 29cm of GP-C18 resin (1.8μm, 120Å, Sepax Technologies). Samples 
were eluted over 165 minutes at a flow rate of 300nL/minute over a gradient of 6 to 25% 
ACN/0.125% formic acid. TMT-labeled peptides were identified using MS2 spectra and 
quantified using a MultiNotch (Simultaneous Precursor Selection, SPS) MS3 method (42, 
45) in a data-dependent mode. Each scan sequence began with acquisition of a full MS 
spectrum (MS1) acquired in the Orbitrap (m/z range: 500–1,200; resolution: 60,000; AGC 
target: 5×105; maximum injection time: 100ms). From this spectrum, the ten highest 
intensity peptide ions were subjected to MS2 analysis, where acquisition time was optimized 
in an automated fashion (top speed: 5 seconds). Peptides were fragmented by CID 
(normalized collision energy: 30%), and low-resolution MS2 scans were performed in the 
linear ion trap (quadrupole isolation width: 0.5 Th; AGC target: 1×104; maximum injection 
time: 35ms). From each MS2 spectrum, the ten highest intensity fragment ions were selected 
for SPS MS3 analysis. Fragment ions were restricted to an m/z range of 400 to 2000, an m/z 
range of −40 to + 15 around the precursor peptide ion m/z was excluded from selecting 
fragment ions, and “TMT” was selected for Isobaric Tag Loss exclusion settings. This group 
of MS2 fragment ions was further fragmented by HCD (normalized collision energy: 50%), 
and high resolution MS3 scans were performed in the Orbitrap (resolution: 60,000; AGC 
target: 5×104; maximum injection time: 250ms). When analyzing phosphopeptide samples, 
two MS2 spectra were acquired per peptide, a 15,000 resolution spectrum in the Orbitrap 
upon HCD fragmentation (normalized collision energy = 40%) and a low resolution CID-
MS2 spectrum as described earlier. Precursor ion selection for MS3 spectra was done based 
on the low resolution MS2 spectral data using the top ten intensity fragment ions. Data 
analysis was performed on an in-house, SEQUEST-based software platform (46, 47). RAW 
files were converted into the mzXML format using a modified version of ReAdW.exe. 
Peptide identification was performed as reported previously (48), searching against a protein 
sequence database containing all protein sequences in the mouse ORF database (downloaded 
01/14/2014), as well as that of known contaminants. For phosphopeptide data, high- and 
low-resolution spectra were annotated in two separate searches and subsequently combined. 
Phosphorylation of serine, threonine, and tyrosine residues (79.966331 Da) was set as a 
variable modification, and up to 3 modifications were allowed. Peptides were quantified 
based on the TMT reported ion intensities in the collected MS3 spectra, as reported 
previously (48, 49). Quantified peptides were required to have a summed signal-to-noise 
value greater than 386 and an isolation specificity greater than 0.75 (42). TMT intensities for 
all peptides assigned to a protein were summed for protein quantification. Both protein and 
phosphopeptide quantitative data were normalized in a two-step procedure. First, the average 
intensity of each species (protein or phospho-peptide) was calculated and normalized to the 
median of all of these average intensities. Second, to account for any mixing errors, the 
intensity of each species was normalized to the ratio of the median intensity for a given 
TMT channel to the median of all species intensities. Total protein and phospho-protein MS 
datasets were deposited into the Mass Spectrometry Interactive Virtual Environment 
(MassIVE, accession number MSV000081198).
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RT-PCR confirmation of acute phase and neutrophil genes

To confirm distant tissue expression, mice were subjected to TCT-induced colitis as 
described earlier. Inflamed and negative control animals were sacrificed and whole liver and 
colon tissue were snap-frozen in liquid nitrogen. In addition, bone marrow was collected 
from one femur from each animal. In brief, femurs were flushed with Hank’s Balanced Salt 
Solution (HBSS) and passed through a 45 μm filter. Red blood cells were lysed in ACK 
buffer for three minutes and remaining cells were stained with APC-Cy7 CD45 (BioLegend) 
and Alexa-700 LY6G 1A8 (BioLegend) for ten minutes at room temperature. In addition, 
colons were dissociated in a collagenase solution for 1hr at 37 degrees C with agitation. 
Tissue was then passed through a 45 μm filter and stained with APC-Cy7 CD45 
(BioLegend) and Alexa-700 LY6G 1A8 (BioLegend) as described earlier. Cells were gated 
on CD45+ and LY6Ghi population (neutrophils) and sorted directly into trizol on the BD 
Biosciences ARIA flow cytometer and stored at −80°C until processing. RNA was isolated 
from whole tissue and sorted neutrophils by extraction with Trizol. For whole tissue 
extraction, liver and colon segments were homogenized in trizol by chopping with a razor 
blade. After RNA extraction, cDNA was produced using the Taqman High Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems), and pre-amplification was performed 
according to manufacturers’ protocols (Applied Biosystems). For liver genes, we assayed 
Fibronectin alpha chain (Fga, TaqMan Mm00802584_m1) and Alpha-1-acid glycoprotein 1 
(Orm1, TaqMan Mm00435456_g1). For neutrophils, we assayed Cathelicidin antimicrobial 
peptide (Camp, Mm00438285_m1) and Elastase neutrophil expressed (Elane, 
Mm01168928_g1). 18s rRNA (Mm04277571_s1) was used as a standard in each case and 
expression levels were determined by the dCT/dCT method. For liver genes, graphs 
represent the ratio of liver:colon transcripts in inflamed and non-inflamed tissue. For 
neutrophil genes, all measurements were normalized with the lowest value set to one for 
each gene. Graph represents Log2 normalized expression.

Western blotting for Pak1 and Merlin

Lysates from additional inflamed and non-inflamed animals (generated using the protocol 
described earlier) were run on 4–12% Novex tris-gly gels (Invitrogen). After transfer, 
membranes were probed with primary antibodies as follows: phospho-Merlin (Ser518) from 
Cell Signaling (13281) used at 1:1,000; phospho-Pak1/2 Ser144/Ser141 from Cell Signaling 
(2606) used at 1:1,000; Actin from Santa Cruz Biotechnology (sc-1616) used at 1:10,000; 
Gapdh used at 1:10,000 from Cell Signaling (D16H11). Secondary antibodies were anti-
mouse and anti-rabbit IgG HRP-linked as appropriate (Cell Signaling 7076, 7074; used at 
1:5,000).

Luminex analysis for p38 and Gsk3α/β phosphorylation

BioplexPro (Bio-Rad) phospho-protein measurements were performed according to the 
manufacturer’s instructions with the following kits: Gsk3α/β Ser21/Ser9 (171-V50007M) 
and p38 MAPK Thr180/Tyr182 (171-V50014M).
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Pak inhibition in vivo

Mice that had received adoptive transfer of naïve T cells were monitored for the 
development of colitis with regular weight measurements. Once mice developed signs of 
colitis, they underwent rigid endoscopy to confirm evidence of inflammation, using a 
validated endoscopic scoring system for colitis (50). Once inflammation was demonstrated, 
mice were treated with FRAX597 (100 mg/kg QD) or vehicle by oral gavage for 7 days (31). 
A subset of mice underwent post-treatment endoscopy and then all mice were sacrificed at 7 
days. The colons were resected and opened longitudinally; two side portions (1/5th) from the 
entire length were reserved, one for flow cytometry and one placed in Bioplex lysis buffer. 
The rest of the tissue was used for flow cytometric analysis.

Flow cytometry

Tissue was homogenized in serum-free DMEM with 2mg/ml collagenase type I C (VWR 
234153–100MG) and incubated for 1hr at 37C. After incubation, the sample was strained 
through a 45μm filter and centrifuged for 5 minutes at 700g. Cells were then stained with the 
following antibodies from BioLegend (1:300 in FACS buffer) for 10 minutes: FITC CD4 
(116004) (BV-421 F4/80 (123131), BV-605 CD4 (100547), BV-510 cd11b (101245), 
Alexa-700 Ly6G (127622), PE/Cy7 cd11c (117317), APC/Cy7 CD45 (103116), and PE 
CD45RB (103308). Cells were analyzed on a 5-laser LSR II flow cytometer (Becton 
Dickinson SORP).

Unsupervised clustering

Unsupervised hierarchical clustering was performed using the clustergram function in 
Matlab, using default parameters. Input data included log2-transformed RNA, MS, and pMS 
datasets. For the purposes of visualization, RNA data was masked using the genevarfilter, 
genelowvalfilter, and geneentropyfilter as described: http://www.mathworks.com/help/
bioinfo/examples/gene-expression-profile-analysis.html.

Differential gene expression and pathway analysis

To compare univariate differential expression in each data set, RNA, MS, and pMS data 
were analyzed using the Wilcoxon-Mann Whitney test with Benjamini-Hochberg False 
Discovery Rate Correction, p<0.05, q<0.25. Pathway analysis was performed on the RNA 
and MS data sets using GSEA. GSEA was performed with weighted log2ratio ranking and 
1000 gene set permutations using the “Hallmarks Gene Sets” from MSigDb.

Co-expression network analysis

Spearman correlations were calculated for all pairs of species represented in all three data 
sets. Correlation coefficients less than 0.9 or greater than −0.9 were set to 0 and all others 
were set to 1 to define the undirected network adjacency matrix. The topological similarity 
of nodes in each data set was calculated using GTOM2 (19, 20). We then clustered the 
GTOM2 using k-means clustering and determined the number of GTOM2 clusters in each 
data set by calculating the gap statistic for 1 to 15 possible clusters. The genes were then 
extracted and module overlap was computed using Fisher’s exact test with Benjamini-
Hochberg False Discovery Rate correction (p<0.05, q<0.25). All analysis was performed in 
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MATLAB R2016a and networks were generated using Cytoscape 3.4.0 (51). GTOM2 
visualizations and calculations were performed using the implementation described in: 
https://www.mathworks.com/matlabcentral/fileexchange/17668-gtom-generalized-
topological-overlaping-measure

YourCrosstalker network analysis

Co-expression network modules were analyzed using the YourCrosstalker network analysis 
tool (www.youromics.com) (22, 23). Given an input set of gene seeds and a protein-protein 
interaction network database, Crosstalker identifies subnetworks of highly connected genes 
as scored by a random walk with restarts at the seed genes. As the random walk reaches a 
steady state, seed genes are removed if they are not topologically related in the protein-
protein interaction (PPI) network and additional genes are recruited if significantly traversed 
(“Crosstalkers”), indicating possible association with the seed genes. Pathway enrichment is 
then tested using Fisher’s exact test against a database of curated pathways and network 
edges are colored by pathway. The Reactome and National Cancer Institute Pathway 
Interaction Database pathway databases and STRING protein-protein interaction network 
(high confidence interactions, edge weights >0.7) were used in the analysis (24–27).

Differential regulation analysis

We selected 122 genes/proteins as having greater than 2-fold increased or decreased 
abundance at the protein level and less than 2.75-fold increased or decreased expression at 
the RNA level. Gene Ontology (GO) enrichment was performed using Gorilla (http://cbl-
gorilla.cs.technion.ac.il/) with the background list as all of the shared RNA and protein 
species. GO terms that were enriched with a p value < 10−3 were deemed significant. Tissue 
expression of acute phase and neutrophil genes was assessed using the mouse tissue 
expression atlas. Each gene was normalized to 1 by the highest expression for that gene. 
After normalization, the average value for all of the genes of a given category was calculated 
and plotted for each of the indicated tissues.

Gene set enrichment analysis of kinase substrates

Functional annotation was assessed based on previous knowledge obtained from downloads 
available on PhosphoSitePlus. Identified proteins were obtained from 
Phosphorylation_site_dataset, which contains all of the published mouse phosphorylation 
sites found in their database; functional annotation was obatained from Regulatory_sites, 
and we included all of the phospho-sites that had known effects on function; upstream 
kinase information was obtained from kinase lists. Kinase substrate lists were obtained from 
PhosphoSitePlus (http://phosphosite.org). Lists were composed of known mouse, rat, and 
human kinase substrate sites. Human and rat sites were converted to mouse numbering. This 
produced a total of 348 kinase substrate sets with a maximum of 558 unique phospho-sites 
and a median of 6. Enrichment was performed with a rank-based test using GSEA software 
developed at the Broad Institute (http://www.broadinstitute.org/gsea/index.jsp). Parameters 
can be found along with the output of the analysis in table S4. Briefly, of 348 kinases sets, 
29 met the minimum size threshold of overlap with our dataset (4 phospho-sites). Input data 
was the ratio of phospho-peptides to total peptides from match samples. The ratio 
measurement was used because this is more reflective of specific activation of 
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phosphorylation. Phospho-sites were ranked by ‘Log2 ratio of classes’ and permuted 35,000 
times to the gene set (because of the limited number of samples, phenotype permutation is 
not recommended). The kinase substrate lists have been added to the Msigdb so that they 
can be easily applied to the GSEA software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Multi-omic analyses of murine colitis. (A) Unsupervised clustering of microarray, mass 
spectrometry (MS), and phospho mass spectrometry (pMS) data. Non-inflamed samples are 
marked in blue in the dendrograms above the heat maps. Inflamed samples are marked in 
red. (B) Probability distributions of Spearman correlations for each pairwise comparison 
between–omic data sets. (C) Lima1 (Eplin) average fold changes between inflamed and non-
inflamed colons. (D) Scatter plot of phospho-Ser360 and total Eplin protein counts in 
individual samples. (E) Venn diagrams summarizing the unique and overlapping differential 
expression events between the RNA, MS, and pMS data sets. Species refers to RNAs, 
proteins, or phosphopeptides that were detected in each dataset from the comparison. 
Expression events refers to the direct comparison between the datasets for a given species. 
(F) Cellular localization of representative up-regulated phospho-signals in colitis. Left 
panels show abundance in individual samples, as detected by MS, for Trim28 Ser473 (top) 
and Map3k3 Ser337 (bottom). ** p < 0.01, *** p < 0.001 in an unpaired T test. Other panels 
show immunohistochemistry for phospho-Trim28 and phospho-Map3k3 in non-inflamed 
and inflamed colons. In all panels, N = 5 for control (non-inflamed) samples and N = 3 for 
inflamed samples.
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Fig. 2. 
Differential RNA expression, differential protein abundance, and pathway analysis. (A) 
Heatmaps of RNA and total protein measurements most strongly contributing to pathway 
enrichment scores of GSEA. (B) Venn diagrams summarizing the unique and overlapping up 
and down-regulated pathway enrichment in the RNA and MS data sets. (C) GSEA plots 
from RNA and total protein MS data set.
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Fig. 3. 
Differential regulation of RNA and protein. (A) Scatter plot of fold change (inflamed vs. 
non-inflamed) in RNA expression plotted against fold change in protein abundance for 
species that were present in both data sets. Colored dots represent ECM proteins (purple), 
acute-phase proteins (red), and neutrophil proteins (orange), with the arrowheads indicating 
genes that were further investigated in panels D and E. (B) Collagen expression in the RNA 
data and abundance in the protein data. Differential abundance of MMPs and TIMPs in the 
MS data are indicated in the heatmap inset with a key. (C) Tissue expression patterns of 
acute phase (red) and neutrophil (orange) transcripts. Each gene was normalized to a 
maximum of one, and all of the genes from each category averaged to generate bars. (D) 
Induction of acute phase RNA in the liver during inflammation. Bars represent the ratio of 
liver expression to colon expression for Orm1 and Fga from N = 2 each of inflamed and 
non-inflamed animals. Assays were performed in duplicate. * p < 0.05 in an unpaired T test. 
p = 0.085 for Orm1. (E) Loss of neutrophil gene expression by colonic neutrophils. 
Abundance of the RNA for Camp and Elane from bone marrow neutrophils relative to that in 
neutrophils isolated from colon is shown. The plot represents log-transformed data from N = 
2 inflamed animals, normalized to the smallest expression value for each gene. For both 
genes, p < 0.05 in a paired T test. (F) Model depicting RNA expression (R) and protein 
abundance (P) for acute phase proteins (APP) and neutrophil proteins (represented by a 
polymorphonuclear cell symbol) in the colon and distant organ sites.
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Fig. 4. 
Co-expression and co-abundance network landscapes of RNA, MS, and pMS measurements. 
(A) Correlation networks for RNA, MS, and pMS data sets. Nodes indicate genes or proteins 
and edges connect two genes or proteins if the Spearman correlation between the expression 
of two genes or abundance of the two proteins is greater than 0.9 or less than −0.9. (B) Two-
step generalized topological overlap matrices (GTOM2) of the RNA, MS, and pMS data sets 
clustered by unsupervised hierarchical clustering. Correlations greater than 0.9 or less than 
−0.9 were set to 1 (yellow) and all others were set to 0 (blue). Square regions indicate highly 
connected clusters of genes or proteins. (C) Plot of the gap statistic versus the number of 
clusters in each data set. Clustering cutoff points are marked with a star for each data set 
based upon the gap statistic and GTOM2 topology. (D) Network visualization of module 
overlap. Nodes indicate particular modules; edges are present if there was significant overlap 
in genes or proteins between the two modules (Fisher Exact p<0.05, FDR q<0.25). (E) 
YourCrosstalker network module for pMS cluster 3. Nodes are colored by differential 
phosphorylation status in inflamed relative to uninflamed colons (red = hyper-
phosphorylated, blue = de-phosphorylated, WMW p<0.05, FDR q<0.25) and edges are 
colored by pathway membership of the interaction. Gray edges indicate PPI’s that exist but 
are not part of an enriched pathway in the subnetwork. Pathways with higher statistical 
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significance determine the interaction pathway association for interactions in multiple 
pathways. Striped nodes were recruited by the algorithm during the random walk procedure 
as significantly traversed “crosstalker” nodes. (F) YourCrosstalker network for MS cluster 5. 
Nodes are colored by total protein differential abundance status in inflamed relative to 
uninflamed mice (red = increased abundance, blue = decreased abundance, WMW p<0.05, 
FDR q<0.25). Edges and striped nodes are defined as in panel E.
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Fig. 5. 
Inferring kinase activity from pMS measurements. (A) Volcano plot of Normalized 
Enrichment Score (NES) versus False Discovery Rate (FDR). Kinases with positive or 
negative enrichment and an FDR < 0.25 are specified. (B) Heatmaps of phospho-peptides 
corresponding to known kinase substrates from non-inflamed (NI) and inflamed (Inf) 
animals. The kinase is indicated to the left of each set of substrates with the Log2 
differential abundance (inflamed vs. non-inflamed) for RNA (left box), protein (right box), 
and phosphorylation (circles). Normalized Enrichment Score (NES) is specified for each 
kinase. All of the kinases shown had FDR < 0.25 and are predicted to be either up-regulated 
(positive NES) or down-regulated (negative NES) in colitis. (C) Validation of Mapk14 and 
Gsk3α/β phosphorylation in colon samples from inflamed and noninflamed animals.. 
Fluorescence intensity (FI) was measured using Luminex assays specific to each 
phosphorylation site. N = 12 samples from individual non-inflamed animals and N = 25 
samples from individual inflamed animals. * p < 0.05 and ** p < 0.01 in an unpaired T test.
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Fig. 6. 
Mouse model omic data overlap with human IBD biopsy transcripts. (A) Venn diagrams 
representing the differential expression analysis of human IBD colonic biopsies in inflamed 
and uninflamed phenotypes (Wilcoxon Mann Whitney p<0.05, FDR q<0.25) compared to 
differentially expressed RNA, protein abundance, and phospho-peptide abundance between 
inflamed and uninflamed mouse colons. (B) Human IBD differentially expressed genes in 
the PAK signaling network neighborhood. Genes are colored by differential expression 
direction (red = up-regulated, blue = down-regulated) in inflamed relative to un-inflamed 
human colonic biopsies. (C) Assessment of the overlap between the genes regulated by 
kinases significantly associated with colitis in the mouse and human genes differentially 
expressed in the kinase regulated network (Hypergeometric test p<0.05).
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Fig. 7. 
Validation of Pak as a therapeutic target in colitis. (A) Validation of Pak activation in the 
colons of animals with induced colitis (Inflamed). Phosphorylated Pak1 and Pak2 were 
detected by western blotting. Each lane represents a sample from a different animal. .NI, not 
inflamed. (B) Inhibition of Pak activity by FRAX597. Merlin phosphorylation on Ser518, a 
Pak substrate, was assessed by western blotting in the colons of inflamed animals treated for 
24 hrs with FRAX597 (100 mg/kg single dose) or polyethylene glycol and 
polyvinylpyrrolidone (vehicle). (C) Colonoscopic monitoring of colitis. Colonoscopy images 
of a representative mouse with adoptive transfer-induced colitis. Animal was imaged before 
and 7 days after FRAX597 treatment (100 mg/kg per day). (D) Histological effects of 
FRAX597 treatment on the colon of mice with induced colitis. (E) Immunological effects of 
FRAX597 on the colon of mice with induced colitis. The percentages of macrophages and 
neutrophils were quantified by flow cytometry in the colons of inflamed animals after 7d of 
FRAX597 or vehicle treatment. * denotes p < 0.05 in one-tailed Mann-Whitney test. N = 3 
for vehicle-treated animals and N = 4 for FRAX597-treated animals.
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