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Abstract—We present a system-on-chip (SOC) testing approach
that integrates test data compression, test-access mechanism/test
wrapper design, and test scheduling. An efficient linear feedback
shift register (LFSR) reseeding technique is used as the com-
pression engine. All cores on the SOC share a single on-chip
LFSR. At any clock cycle, one or more cores can simultaneously
receive data from the LFSR. Seeds for the LFSR are computed
from the care bits for the test cubes for multiple cores. We also
propose a scan-slice-based scheduling algorithm that attempts to
maximize the number of care bits the LFSR can produce at each
clock cycle, such that the overall test application time (TAT) is
minimized. This scheduling method is static in nature because
it requires predetermined test cubes. We also present a dynamic
scheduling method that performs test compression during test
generation. Experimental results for International Symposium on
Circuits and Systems and International Workshop on Logic and
Synthesis benchmark circuits, as well as industrial circuits, show
that optimum TAT, which is determined by the largest core, can
often be achieved by the static method. If structural information is
available for the cores, the dynamic method is more flexible, par-
ticularly since the performance of the static compression method
depends on the nature of the predetermined test cubes.

Index Terms—ATPG, system-on-chip test, test compression, test
scheduling.

I. INTRODUCTION

R ECENT growth in design complexity and the integration
of embedded cores in system-on-chip (SOC) ICs have led

to a significant increase in test data volume, test application
time (TAT), and manufacturing test cost. Test data compres-
sion provides a promising solution to these problems [1]–[4].
Some state-of-the-art compression methods such as [4] use test
generation techniques to generate patterns that are more suit-
able for compression. The performance of most compression
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techniques also depends on the number and lengths of scan
chains. However, some SOC chips contain IP cores or black
box cores that are not provided to the system integrator with
detailed structural information [5]. Many SOCs also include
hard cores that are delivered in the form of layouts such that
the configurations of scan chains cannot be modified. Existing
compression techniques for stand-alone ICs are, therefore, less
efficient for such SOCs.

In addition to the problem of limited applicability of existing
test compression techniques, restricted access to internal cores
is another challenge in SOC testing [6]. To tackle this problem,
test-access mechanism (TAM) and test wrappers have been
proposed as key components of an SOC test architecture [7],
as shown in Fig. 1. TAMs deliver precomputed test sequences
to cores on the SOC, while test wrappers translate these test
sequences into patterns that can be applied directly to the
cores. The test wrapper and the TAM design directly impact
the vector memory depth required on the automatic test equip-
ment (ATE), testing time, and thereby affect test cost. Many
techniques have been proposed for TAM/wrapper design under
different constraints (e.g., testing time, test bus width, power
dissipation, control overhead, routing, and layout) [8]–[16].
However, these techniques either do not consider test data
compression, or they utilize relatively inefficient compression
techniques [17].

In [18], test patterns for each core in an SOC are compressed
separately using linear feedback shift register (LFSR) reseed-
ing. Tester channels are time-multiplexed to transfer seed data
to the LFSRs of each core. Patterns of each core are first split
into blocks of fixed length. A seed is obtained by satisfying
care bits from a variable number of blocks. When an LFSR
is expanding a seed to a series of blocks, it need not receive
data until all blocks encoded by this seed have been generated.
Hence, seed streams for different cores can be time-multiplexed
into one stream. The overall TAT is therefore reduced by testing
cores simultaneously. The major drawback of [18] is that extra
data and hardware are needed to enable the time-multiplexing
mechanism. The use of fixed length blocks adversely affects the
encoding efficiency. An optimum block length for one core is
not necessarily optimum for other cores.

In [19], an XOR-network approach is used for test com-
pression, and a compression driven TAM design heuristic is
proposed. This heuristic is guided by a test time estimation
function, which is obtained using curve fitting. It is not clearly
reported in [19] how the estimation function can be derived,
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Fig. 1. Illustration of test wrapper, TAM, and test schedule [21].

and what impact this function has on the efficiency of the TAM
design heuristic. Test scheduling is also not considered.

In this paper, we propose an SOC testing approach that inte-
grates test data compression, TAM/test wrapper design, and test
scheduling. We choose the LFSR reseeding technique proposed
in [20] as the compression engine because of its high encoding
efficiency. A single on-chip LFSR-based decompressor is used
to feed all cores on the SOC. At a given clock cycle, each
core is in one of the following modes: 1) Shift mode—data
are shifted in from the LFSR, and output responses are shifted
out; 2) Capture mode—output responses are captured into the
scan cells; and 3) Inactive mode—the core is not scheduled for
test at this clock cycle. Therefore, the LFSR is shared among
the cores that are in the shift mode; other cores do not receive
data from the LFSR. With appropriate TAM design and test
scheduling, more cores can be tested in parallel, and the TAT for
the entire SOC can be significantly reduced. Our experimental
results show that in most cases, we can achieve a minimum TAT
for the SOC, which is the same as the TAT of the largest core.
The largest core is assigned a certain number of TAM lines,
which depends on the size of the LFSR, such that its TAT cannot
be further reduced.

The organization of the rest of this paper is as follows.
Section II reviews relevant background material. Section III
describes the proposed SOC testing approach. The associated
static-scheduling algorithm is presented in detail in Section IV.
Section V reports experimental results for static scheduling.
Section VI presents an alternative optimization approach that
combines dynamic test compression with the proposed test
architecture. Simulation results for benchmark circuits are pre-
sented for this approach. Finally, Section VII concludes this
paper.

II. BACKGROUND

This section provides background material used for the rest
of this paper.

A. Pareto-Optimal TAM Widths

As shown in Fig. 2, the TAT varies with the number of TAM
lines (or TAM width) assigned to it as a “staircase” function,
and decreases only at Pareto-optimal points, which are formally
defined as follows: A solution to the wrapper design problem
for Core i can be expressed as a two-tuple (Wj , Ti(Wj)), where

Fig. 2. Relationship between TAT and TAM width [21].

Wj is the TAM width supplied to the wrapper and Ti(Wj) is the
TAT of Core i with the given wrapper. A solution (Wj , Ti(Wj))
is Pareto-optimal if and only if there does not exist a solution
(Wk, Ti(Wk)) such that Wk ≤ Wj and Ti(Wk) ≤ Ti(Wj),
where at least one of the inequalities is strict. Intuitively, the
steps at which the testing time decreases (as TAM width is
increased) are the Pareto-optimal points. Only these Pareto-
optimal TAM widths need to be considered when designing test
wrappers. We use the design_wrapper algorithm from [21] to
compute Pareto-optimal TAM widths for a given core.

For the rest of this paper, we use Wi,k to denote the kth
Pareto-optimal TAM width of Core i, k = 1, 2, . . . , Ni, where
Ni is the number of Pareto-optimal TAM widths of Core i. The
TAT of Core i with TAM width Wi,k is Ti(Wi,k). All Pareto-
optimal TAM widths for Core i are sorted in an ascending order
such that ∀(k, l), 1 ≤ k, l ≤ Ni, l > k ⇒ Wi,l > Wi,k.

B. TAT for a Core

Given a core, let si(so) be the length of its longest wrapper
scan-in (scan-out) chain. The number of clock cycles required
to apply p test patterns to this core is given by [21]

T = (1 + max{si, so}) · p + min{si, so}. (1)

Once a test pattern has been shifted into the core, in the
next clock cycle, the core will capture the responses of the
combinational parts to the scan cells. The “1+” part in (1)
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Fig. 3. Test architecture.

Fig. 4. Each core has a dedicated test control unit that provides the gated test
clock and the scan_enable signals. Scheduling data for the core are stored in the
scheduling counter.

corresponds to the clock cycles needed for response capture.
While output responses of a pattern are shifted out, the next test
pattern is shifted in at the same time. The “max{si, so}” part in
(1) reflects this fact.

III. PROPOSED APPROACH

An efficient LFSR reseeding technique is proposed in [20].
It allows the generation of a single scan slice from multiple
seeds, or multiple scan slices from a single seed. An additional
tester channel is needed to control when reseeding occurs. In
this paper, without loss of generality, we choose to use the
compression technique of [20] because of its high encoding ef-
ficiency. The proposed test-scheduling method can also be used
with other linear-decompression-based compression techniques
[22], [23].

A. Test Architecture

The architecture of the proposed approach is shown in Fig. 3.
Each core is individually scheduled for test during one or more
clock ranges. If core A is scheduled for test during clock range
[t0, t1), then A starts receiving data from the LFSR through
the phase shifter at clock cycle t0, and finishes scanning out
the responses before clock cycle t1. We refer to t0 and t1 as
start cycle and end cycle, respectively. Outside [t0, t1), core
A is in the inactive mode. Therefore, each core should have a
separate Test_Enable control signal, which is active only during
the scheduled clock ranges. The Test_Enable signal is AND-ed
with the system clock, as shown in Fig. 4. The Test_Enable
signals are generated using on-chip counters according to the
scheduling data that are also stored on-chip. Our experimental
results show that in most cases, one core is assigned one clock
range; hence, the storage size for the scheduling data is very

Fig. 5. Alternative test architecture to reduce routing overhead.

small. For handling test responses, any compaction scheme can
be used.

Each core is associated with a modulo-(max{si, so} + 1)
counter that controls when it should shift in test data, capture
output responses, and shift out output responses. The output of
the modulo counter is connected to the Scan_Enable inputs of
all scan cells, as shown in Fig. 4. The output of the modulo
counter is reset to zero in each capture cycle, incremented by
one in each shift cycle, and again, reset to zero in the next
capture cycle.

Another advantage of the proposed architecture is that the
single LFSR can be arbitrarily duplicated for all or a set of cores
to reduce the area overhead of global routing. Fig. 5 shows the
case in which each core has its own LFSR. Consequently, the
large phase shifter in Fig. 3 is split into smaller ones (shown
as PS A, B, and C). Compared with the architecture shown in
Fig. 3, which routes a huge number of wires from the phase
shifter to the cores, the area overhead of global routing is
significantly reduced since only a small number of wires need
to be routed from test pins to the LFSRs.

As shown in Fig. 3, the number of internal TAM lines is
no longer restricted by the number of scan input output (IO)
pins of the SOC, which are used as scan chain inputs/outputs.
Compared with existing test scheduling techniques [21], we
have more freedom to increase the number of internal TAM
lines. Each internal TAM line is connected to an output stage of
the phase shifter, which is usually an XOR gate [24]. Therefore,
in this paper, we assume there is no constraint on the number of
internal TAM lines. The number of external TAM lines depends
on the number of scan IO pins. In this paper, when we mention
TAM lines without stating whether they are internal or external,
we refer to internal TAM lines.

B. Equivalent Core

At any clock cycle, the LFSR expands its seed to test data,
and simultaneously feeds multiple cores through the phase
shifter. Each seed is calculated from care bits that belong to
multiple cores. From the LFSR’s point of view, the SOC is
tested as a monolithic core, referred to as the equivalent core
of the SOC. By carefully designing the TAM and test wrappers,
together with proper test scheduling, an equivalent core can
be obtained whose testing time is minimized. Thereafter, the
LFSR reseeding technique of [20] is applied for the equivalent
core. TAT is significantly reduced because: 1) multiple cores are
tested in parallel and 2) when some cores are in the capture or
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Fig. 6. Two cores and their equivalent core. (a) Core A. (b) Core B.
(c) Equivalent Core.

inactive mode, other cores are in the shift mode and receiving
data from the LFSR.

Fig. 6 shows two cores A and B and their equivalent core.
In Fig. 6, each row represents a wrapper scan chain (WSC) and
each column represents a scan slice. Core A has four WSCs and
two patterns with each pattern having four scan slices. Core B
has three WSCs and one pattern that has six scan slices. Both
cores are scheduled for test starting from clock cycle 0. At
clock cycle 5, Core A is in the capture mode (marked as
“C” or “Capture”) while core B continues receiving data. The
equivalent core has seven WSCs and nine scan slices.

C. Problem Formulation

The LFSR reseeding technique of [20] requires that a seed
encode at least one scan slice. This implies that if the maximum
number of care bits for all scan slices of the equivalent core is
Smax, then the seed size should be Smax + m, where m is small
(preferably 20, see [25]). In this paper, we assume that Smax

is a user-defined parameter. The proposed TAM, test wrapper,
and test data compression cooptimization problem is referred to
as PTWC (TWC stands for TAM, Wrapper, and Compression),
and can be formally stated as follows.
PTWC: Consider an SOC having |C| cores (where C is

the set of cores). Given Smax and the test set parameters for
each core, i.e., the number of input, output, and bidirectional
terminals, and the test set with unspecified bits, determine the
internal TAM width and a wrapper design for each core, and a
test schedule to form an equivalent core, such that the testing
time for the SOC (or the equivalent core) is minimized. The
number of care bits in each scan slice of the equivalent core
cannot exceed Smax.

Ideally, given an equivalent core, if W tester channels are
used to test it, where W = Smax + m is the seed size of
the LFSR, the overall TAT is minimized. With fewer tester
channels, sometimes the scan clock must be paused to wait for a
new seed to be completely transferred. However, experimental
results show that, particularly for large industrial circuits, most
seeds can encode a sufficiently large number of scan slices,
such that the next seed can be transferred on time. To improve
encoding efficiency, a larger seed size W ′ = kSmax + m,
k = 2, 3, . . ., can be used. In this case, each seed can encode
at least k scan slices, and the ideal number of tester channels
remains W .

Fig. 7. Slice-based scheduling.

Fig. 8. Care bit distribution when two cores are partially stacked.

IV. SCHEDULING ALGORITHM

We next propose a scheduling algorithm, referred to as
TWCScheduler. Most existing scheduling techniques work on
a per-core basis, i.e., each core as a whole is viewed as a block
and is packed into a rectangular bin [21]. TWCScheduler, as
shown in Fig. 7, works on a per-slice basis. In Fig. 7, each
core is shown as a rectangle. The height of the rectangle is
the number of internal TAM lines assigned to the core, and the
width is the corresponding TAT. The care bit distributions of
each core are drawn in gray inside their rectangles. All cores
that are in the shift mode at a given clock cycle t are “stacked”
with each other. Cores are “stackable” at t only if their total
number of care bits at t does not exceed Smax. In Fig. 8, the care
bit distribution when two cores A and B are partially stacked is
shown in dashed line.

During the scheduling process, TWCScheduler may:
1) change the shape of the blocks, i.e., change the number of
internal TAM lines assigned to each core; and 2) place the
blocks at proper places, i.e., allocate clock ranges to test the
cores. If necessary, TWCScheduler may vertically split a core
into multiple blocks with identical heights, such that the core is
tested during more than one clock range. This splitting action
is referred to as preemption.

Before a core is scheduled, its test patterns are sorted in
ascending or descending order according to the total number
of care bits they have. This is motivated by the fact that, given
two cores, if we sort the patterns of one core in an ascending
order and patterns of the other core in a descending order, the
two cores are more likely to be stackable, as shown in Fig. 8.
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Fig. 9. Illustration of maxCore, bottleneck core (with highly specified patterns shown in dark), and other cores.

The high-level flow of TWCScheduler is shown in
Procedure 1.

Procedure 1 High-level flow of TWCScheduler
1: Calculate Pareto-optimal TAM widths for each core;
2: Find maxCore;
3: Find bottleneck cores;
4: Preempt bottleneck cores;
5: Schedule maxCore;
6: Schedule other cores one by one;

A. Identify maxCore

Among all the cores, TWCScheduler first identifies one max-
Core. Given Smax, each Core i has a maximum acceptable
Pareto-optimal TAM width, referred to as Wi,max, such that
if the TAM width supplied to Core i exceeds Wi,max, there
exists at least one scan slice that contains more than Smax care
bits. Consequently, when Core i is assigned Wi,max TAM lines,
its minimum TAT, referred to as Ti,min, is achieved. Core j is
the maxCore if and only if ∀i �= j, Ti,min ≤ Tj,min (Tj,min is
denoted as Tmin). Intuitively, Tmin is the lower bound for the
overall TAT for the SOC.

When the lower bound is achieved, an optimal solution to
PTWC is found. TWCScheduler always assigns to the maxCore
its maximum Pareto-optimal TAM width, such that an optimal
solution is achievable. Section V will show that for most cases
an optimal solution can be found.

B. Identify and Preempt Bottleneck Cores

Next, TWCScheduler identifies bottleneck cores. A Core i
is a bottleneck core if it satisfies ∀Wi,k < Wi,max, 1 ≤ k ≤
Ni, Ti(Wi,k) > Tmin. Given an SOC and Smax, bottleneck
cores may not always exist. TWCScheduler always supplies a
bottleneck Core i with Wi,max TAM lines such that an optimal
solution is still achievable.

Fig. 9 shows an example for an SOC consisting of five cores.
Among these five cores, Core A is the maxCore because TA,min

is greater than Tmin of all the other cores. Core B is a bottleneck

core since although TB,min < TA,min, its testing time would
be greater than TA,min if the internal TAM width assigned to
Core B is less than WB,max. Recall that TB,min will not be
achieved unless WB,max bits of TAM lines are assigned to
Core B. Cores C, D, and E are not bottleneck cores.

If a bottleneck Core i has some highly specified test patterns
that have more than Smax − δ care bits in some scan slices,
where δ is another user-defined parameter, TWCScheduler will
preempt this core. Those highly specified patterns are sched-
uled earlier than other patterns, which will be scheduled later
together with other nonbottleneck cores. These patterns are
shown in dark in Fig. 9.

The motivation for preemption is twofold: 1) Since highly
specified patterns usually target more stuck-at faults, applying
them first can potentially lead to a reduced average testing
time if “abort-at-first-fail” test strategies are used; 2) since it is
less likely that highly specified patterns can be simultaneously
applied with other patterns from other cores, it will save CPU
time by directly scheduling them at the beginning of the test
session.

C. Schedule maxCore

TWCScheduler always attempts to make the overall TAT
equal to Tmin, the shortest possible TAT for maxCore. This re-
quires that maxCore and bottleneck cores be supplied with their
maximum acceptable Pareto-optimal TAM widths. The pro-
posed scheduling algorithm never decreases the TAM widths
assigned to these cores.

If there exist highly specified patterns from bottleneck
cores, these patterns are first scheduled, followed by maxCore;
otherwise, maxCore is scheduled first. The patterns for
maxCore and the highly specified patterns from all bottleneck
cores are sorted in a descending order with regard to the their
numbers of care bits.

For example, in Fig. 10, the highly specified patterns of Core
B are shown in dark. These patterns are first applied to the
SOC without being stacked with patterns from other cores; the
remaining patterns of Core B are scheduled together with other
cores. Therefore, core B is preempted.
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Fig. 10. Scheduling results after preempting bottleneck cores and scheduling maxCore.

TABLE I
DATA STRUCTURES

D. Schedule Remaining Cores

After maxCore and the highly specified patterns are sched-
uled, as shown in Fig. 10, the scheduling algorithm iterates
over all the remaining cores and schedules them one by one
in a random order using a greedy search strategy. For each of
these cores, the scheduling algorithm attempts to schedule it
such that the test of it can finish as early as possible, i.e., to find
an optimal end time. Once a core is scheduled, its testing time
will not be changed; the remaining cores might be stacked on
top of it (Fig. 8 shows how two cores are stacked).

For a nonbottleneck core or a bottleneck core that is not
preempted, an optimal end time can be found given its assigned
TAM width and pattern sort direction (either ascending or
descending). The scheduling algorithm iterates over all of the
possible combinations of its Pareto-optimal TAM widths and
pattern sort directions, and schedules this core using the earliest
end time.

For a preempted bottleneck core, the scheduling algorithm
will not decrease its assigned TAM width. Its remaining pat-
terns are sorted in both directions and two end times can be
obtained. The earlier one is used to schedule it.

E. Algorithm Implementation

TWCScheduler maintains an array timeLine, where time-
Line(t) is the total number of care bits at clock cycle t from
cores that are in the shift mode. Initially, timeLine contains
all zeros. Whenever a core is scheduled, timeLine is updated
to incorporate the care bits of this core. Once scheduling is
finished, timeLine(t) becomes the number of care bits in the tth
slice of the equivalent core.

Table I summarizes the data structures used in TWCSched-
uler. Table II lists important supporting procedures.

Procedure trySchedule is the most time-consuming and is
shown in Procedure 2. It attempts to schedule Core i within
[start, end) as early as possible. First, test patterns are sorted
according to dir (Line 1). Then, Core i and timeLine are
compared slice by slice to see if Core i can be scheduled
starting from startTime (Lines 4–13). Initially, startTime is set

TABLE II
SUPPORTING PROCEDURES

to start (Line 2). If a conflict occurs (Line 8), startTime is
incremented by 1 and the comparison is restarted (Line 9). If
Core i can be scheduled, trySchedule calls doSchedule to record
the scheduling result and to update timeLine, and returns 1
(Lines 14–17); otherwise, returns 0 (Lines 10, 18).

Procedure 2 trySchedule(i, start, end, dir)
1: sortPattern(i, dir);
2: startT ime = start;
3: currT ime = startT ime; currSlice = 0;
4: while currSlice < TAT (i) and currT ime < end do
5: ncb1 = timeLine(currT ime); ncb2 = ncbCore(i,

currSlice);
6: if ncb1 + ncb2 ≤ Smax then
7: currTime ++; currSlice ++;
8: else
9: currSlice = 0; startTime ++;
10: if startT ime + TAT (i) ≥ end then return 0;
11: currT ime = startT ime;
12: end if
13: end while
14: if currSlice == TAT (i) then
15: doSchedule(i, startTime, startT ime + TAT (i));
16: return 1;
17: end if
18: return 0;

Procedure TWCScheduler is shown in Procedure 3. Lines 1–2
are initialization operations and have been discussed earlier
in Section IV. In Lines 3–10, bottleneck cores are preempted
before maxCore is scheduled in Lines 11–12. The patterns of
maxCore and all bottleneck cores are sorted in a descending
order with regard to the their numbers of care bits in favor of
“abort-at-first-fail” strategies.

Lines 13–33 form the main loop that schedules all other cores
except maxCore. If a Core i is a bottleneck core and has been
preempted, trySchedule tries to schedule its remaining patterns
after EndTime(i), when its heavily specified patterns have been
applied (Line 15). If a Core i is a nonbottleneck core and/or has
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not begun (Line 16), a greedy search strategy is performed to
find a schedule for it. We iterate over its Pareto-optimal TAM
widths in a descending order (Line 18), and assign w TAM
lines to it (Line 19). For each w, trySchedule is called twice
with different sort directions (Lines 21–28). The purpose of
this greedy strategy is to find a Pareto-optimal TAM width w
and a sort direction that minimize EndTime(i) (Line 23–27).
When a solution is found that is better than previous solutions,
it is saved in Line 25. When the search process is finished,
the known best solution is restored and timeLine is updated
accordingly in Line 31.

Some early termination conditions are exploited to quickly
terminate the greedy search. Line 20 checks if the current w
will result in a TAT longer than minTime. If so, then w and
other smaller TAM widths will not result in better solutions and
should not be tried. Line 26 checks if EndTime(i) equals to its
TAT, which implies that the core has been assigned a start cycle
of zero. If so, then we have found a best solution for this core.
Line 29 checks if the known best solution has been obtained
with a Pareto-optimal TAM width larger than w. If this happens,
then in most cases other smaller widths will not result in better
solutions, since they usually result in much longer TATs.

Procedure 3 TWCScheduler(C, Smax, δ)
1: Calculate Pareto-optimal TAM widths for each core;
2: Find maxCore; Find bottleneck cores;
3: currT ime = 0; //Preempt bottleneck cores
4: for all Core i that is a bottleneck core do
5: sortPattern(i, DESC); designWrapper(i,Wi,max);
6: Find all patterns of Core i that have at least one scan

slice with more than Smax − δ care bits;
7: length = testing time to apply those patterns;
8: doSchedule(i, currTime, currT ime + length);
9: begun(i) = 1; currT ime = currT ime + length;
10: end for
11: j = index of maxCore; //Schedule maxCore
12: designWrapper(j,Wj,max); trySchedule(j, 0, ∞, DESC);
13: for all Core i in |C|, i �= j do
14: if begun(i) == 1 then
15: trySchedule(i, EndTime(i), ∞, DESC);
16: else
17: minTime = ∞; minW = −1;
18: for k = Ni to 1 do
19: w = Wi,k; designWrapper(i, w);
20: if TAT (i) ≥ minTime then break;
21: for dir ∈ {DESC,ASC} do
22: r = trySchedule(i, 0,minT ime, dir);
23: if r == 1 and EndTime(i) < minTime then
24: minTime = EndTime(i); minW = w;
25: minDir = dir; saveSchedule(i);
26: if EndTime(i) == TAT (i) then break;
27: end if
28: end for //dir
29: if minW > w then break;
30: end for //w
31: restoreSchedule(i);
32: end if
33: end for //Core i

F. CPU Time Optimization

Procedure trySchedule compares Core i against array time-
Line slice by slice, trying to find a proper start clock cycle
for Core i. For large industrial circuits, this process may take
several hours for a midsized core (e.g., cores listed in Table V
in Section V). To optimize trySchedule, whenever startTime
is changed (Lines 2 and 9 of trySchedule), a new procedure
checkStart is called to quickly check if conflicts will occur. If
conflicts occur, checkStart returns zero and startTime is directly
incremented by one, without entering the time-consuming loop
in Lines 4–13. To call checkStart, the following code snippet is
inserted after Lines 2 and 9, respectively.

while checkStart(i, startT ime) == 0 do startTime ++;

Procedure checkStart (shown in Procedure 4) uses three
caches for quick identification of conflicts. Each cache is a
1-D array that references to a series of slices or elements in
timeLine.

1) Cache A stores all scan slices of Core i that have at least
δ care bits.

2) Cache B stores all elements of timeLine that have at least
Smax − 3 care bits.

3) Cache C stores all elements of timeLine that have at least
Smax − δ care bits.

The constants (3 and δ) are chosen through extensive
experiments.

Cache A is updated when Core i is assigned a new number
of internal TAM lines in Procedure designWrapper. Caches B
and C are updated when timeLine is updated in Procedure
doSchedule. Since the time cost to update these caches is
linear to the size of the core, and the update operations do
not occur frequently, the cost to maintain these caches are
trivial.

Cache B and C can be viewed as Level 1 and 2 caches
of timeLine. We do not remove duplicate elements from the
Level 2 cache that also belong to the Level 1 cache. To check
Cache A (B or C) for conflicts, each slice in it is compared
against the corresponding slice in timeLine (ncbCore). If the
total number of care bits is greater than Smax, then a conflict oc-
curs. In most cases, Cache A contains fewer elements and is first
checked.

This optimization technique significantly accelerates Proce-
dure TWCScheduler. Without optimization, the scheduler does
not finish after 20 h for the SOC described in Table V. After
optimization, it only takes about 30 min.

Procedure 4 checkStart(i, startTime)
1: check elements in Cache B for conflicts;
2: if Cache A contains fewer elements than Cache C then
3: check elements in Cache A for conflicts;
4: check elements in Cache C for conflicts;
5: else
6: check elements in Cache C for conflicts;
7: check elements in Cache A for conflicts;
8: end if
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TABLE III
BENCHMARK SOC d695

TABLE IV
RESULTS FOR d695

V. EXPERIMENTAL RESULTS

First, we run TWCScheduler on the d695 benchmark SOC
[21]. Test patterns for the cores are compacted by Mintest [26].
Table III lists detailed information about d695. We assume that
the internal scan chains of the cores cannot be modified.

Scheduling results for d695 with Smax = 32, 64 and δ = 10
are reported in Table IV. Column “TAM” reports the number
of internal TAM lines assigned to each core. Column “TAT”
shows the TAT. Clock ranges assigned to each core are listed
in Columns “Start” and “End.” Two bottleneck cores, s38584
and s38417, are preempted when Smax = 32. Core s13207 is
maxCore for both values of Smax. The overall TAT of the SOC
is the same as the end cycle of s13207 (in bold). The CPU time
is less than 1 s. The care bit distribution over scan slices of the
resulting equivalent core is shown in Fig. 11.

Next, we present results for an SOC named NIM that consists
of nine real-life industrial cores. Table V describes these cores.
For cores C1–C4 and C7–C9, primary inputs and outputs
are scannable and are part of the scan chains. Therefore, the
numbers of inputs or outputs for these cores are listed as zero.

Table VI reports scheduling results for NIM with Smax =
16, 32, 48, 64 and δ = 10. The CPU times are also listed.
Table VI is similar in format to Table IV. Row “CPU time” lists
the execution time in minutes and seconds. As shown from the
table, smaller values of Smax may result in much higher CPU
time. Unlike d695, the scheduler finds no bottleneck cores and

Fig. 11. Care bit distribution over scan slices of the equivalent core of d695.

does not perform preemption. For all cases, an optimal solution
has been found. When Smax = 64, the exact test data volume
is 46 049 951 b, if the LFSR size is 1044 (kSmax + 20, k = 16,
see Section III) stages and 64 (532/k) ATE channels are used.

The following interesting observation can be made for NIM,
but not for d695. The rate at which the TAT for the SOC
decreases is relatively more compared to the rate at which Smax

increases. This is because the test sets for the industrial circuits
have lower care bit densities compared to the test sets for the
International Symposium on Circuits and Systems (ISCAS)
circuits in d695. A small increment in Smax will enable a
relatively large increment in the total number of WSCs that
can be driven by the LFSR in parallel. We also note that the
solution obtained with Smax = 64 is a particularly noteworthy
optimal solution. The maxCore, C8, has at most 100 scan chains
(Table V). If a smaller Smax is used, i.e., 48 < Smax < 64, the
overall TAT may still be 4 110 383 cycles, but the TATs for the
other cores become higher.

Next, we compare this paper to some related prior work,
as listed in Table VII. To compare with that in [18], we only
considered the five cores for d695 that were used in [18]. We
carried out the same set of experiments that are reported in
Table IV. The resulting TAT for the proposed work is the same
as that when all cores are considered, i.e., 11 049 clock cycles
when Smax = 32. For 32 scan chains, the TAT reported by
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TABLE V
BENCHMARK SOC NIM

TABLE VI
RESULTS FOR NIM

TABLE VII
COMPARISON RESULTS

[18] is 11 658 clock cycles (for the “seed-only” variant) and
9612 clock cycles (for the “seed-mux” variant) for Mintest-
compacted test patterns. The number of ATE channels is not
reported in [18]. The exact test data volume is 181 821 b (the
LFSR size is 532 stages and there are 34 ATE channels). The
test data volume reported in [18] is 419 688 b (seed-only) and
442 152 b (seed-mux). The TAT reported in [19, Fig. 5] is
higher than 50 000 clock cycles when apparently 32 internal
scan chains are used.

We also compare with the TAM optimization and test
scheduling techniques mentioned in [27], which do not use
compression. The best TAT reported in [27] for d695 with
a TAM width of 64 b is 9869 cycles. The TAT achieved by
the proposed work is 11 407 cycles when Smax = 32 (with
Smax + m ATE channels). Although the TAT is slightly higher,
the proposed method applies 1120 test patterns to the cores,
while the TAT in [27] is obtained for only 881 patterns. More
test patterns are expected to result in higher test quality.

VI. DYNAMIC ATPG AND COMPRESSION PROCEDURE

The optimization technique presented in Sections III–V is
based on a static test compaction and compression approach
in that it requires a predetermined set of test cubes for each
core. The major drawback of using predetermined test cubes
is that it usually results in larger test sets, since once a test
cube is generated, it cannot be randomly filled to detect more
faults. Although a few sophisticated algorithms such as [26]
can produce highly compacted test sets, they are not imple-
mented in most commercial ATPG tools, and hence, it is not
known if they can handle industrial designs with reasonable
CPU time.

In this section, we present a dynamic ATPG and test-
compression approach for the test architecture shown in Fig. 3.
Note that this dynamic approach cannot handle IP cores whose
structural information is not available. Therefore, we cannot
apply the dynamic method to the NIM SOC, for which we are
only provided the test data for the cores.

To ensure that the optimization method is scalable, we make
the following assumptions: 1) All cores are tested starting from
time zero and hence the test control scheme in Fig. 4 only stores
information on when the testing of the corresponding core is
completed; 2) the internal scan chain structure in each core
cannot be altered; and 3) dedicated IO WSCs are created for
PIs and POs. Each IO WSC consists of no internal scan cells
and cannot be longer than the longest internal scan chain. This
assumption implies that the number of clock cycles to apply a
test pattern to a core is equal to the length of its longest scan
chain plus one capture cycle.
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Fig. 12. Illustration of the dynamic ATPG and compression procedure.

A. Proposed Algorithm

Similar to existing dynamic test-compaction methods [4],
[28], test cubes are dynamically generated and merged with
other existing test cubes. When a newly generated test cube is
compacted, care must be taken to ensure that each scan slice ap-
plied to the “Equivalent Core” (defined in Section III) contains
no more than Smax care bits. Once a certain number of scan
slices with sufficient care bits to compute a new LFSR seed are
obtained, these slices are randomly filled by the LFSR and ap-
plied to the “Equivalent Core.” If these slices cross test pattern
boundaries for some cores, as shown in Fig. 12, fault simulation
is performed for these cores using the newly generated test
patterns and faults detected by these patterns are dropped. This
dynamic ATPG and compression procedure continues until
satisfactory fault coverage is obtained for all the cores.

Procedure 5 High-level flow of the dynamic method
1: while (1) do
2: numDone = numAtpgDone = 0;
3: numCore = the number of cores;
4: for (i = 0 to numCore-1) tag[i] = 0;
5: newPatCnt = 0;
6: //Stage 1: generate and merge test cubes
7: while (numCore > 0) do
8: for all Core i do
9: if tag[i] == 1 then continue
10: if done[i] == 1 then
11: tag[i] = 1; numDone++; numCore–; continue
12: end if
13: if atpgDone[i] == 1 then
14: if hasUndetF lts[i] == 0 then numAtpg-

Done++;
15: tag[i] = 1; numCore–; continue;
16: end if
17: while (1) do
18: Try to generate a new test cube;
19: if no cube generated then
20: atpgDone[i] = 1;
21: if hasUndetF lts[i] == 0 then numAtpg-

Done++;
22: tag[i] = 1; numCore–; break;
23: else
24: Try to merge the newly generated cube;

25: if can be merged then
26: newPatCnt++; break; //goto the next

core.
27: else
28: Reject this cube and save the faults

detected by it;
29: hasUndetF lts[i] = 1;
30: nReject[i]++;
31: if nReject[i] reaches a user-defined up

limit then
32: nReject[i] = 0; tag[i] = 1; num-

Core–; break;
33: end if
34: end if //merge cube
35: end if //if new cube generated
36: end while //cube generation loop
37: end for //for all cores
38: end while //while (numCore)
39: if numDone == the number of cores break;
40: noPatRound=newPatCnt==0?noPatRound +

1: 0;
41: //Stage 2: compression and fault simulation
42: minTime= the earliest pattern boundary time among

all the cores;
43: GetSeed(minTime, numDone, numAtpgDone, noPat-

Round);
44: if A new seed is generated then
45: Expand this seed to obtain fully specified test

patterns;
46: for all Core i do
47: if done[i] == 1 then continue;
48: nReject[i] = 0; Run fault simulation;
49: if atpgDone[i] == 1 then
50: if hasUndetF lts[i] == 1 then atpg-

Done[i] = 0; restore the faults saved in 28;
51: else if No more not simulated patterns then

done[i] = 1;
52: end if
53: if new patterns simulated then

hasUndetF lts[i] = 0;
54: end for
55: else
56: for all Core i do
57: if done[i] == 1 then continue;
58: nReject[i] = 0;
59: if atpgDone[i]==1 and hasUndetF lts[i]==

1 then
60: hasUndetF lts[i] = 0; atpgDone[i] = 0;
61: restore the faults saved in 28;
62: Adjust the pattern storage queue for Core i

such that the first test cube ewly generated in
proc:dynamic:atpg is appended to the end of
the queue, instead of being merged with
existing unfilled cubes;

63: end if
64: end for
65: end if
66: end while
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TABLE VIII
VARIABLES USED IN PROCEDURE 5

Fig. 13. Schedule after the first execution of Stage 1: Two test cubes are
obtained.

Procedure 5 provides a detailed description for the proposed
dynamic ATPG and compression method. Table VIII lists the
supporting variables that are used throughout Procedure 5.

The whole procedure consists of two stages. In Stage 1
(Lines 6–38), all the cores are iterated one by one. In each
iteration, one new test cube is generated (Line 18) and merged
to existing test cubes that are not compressed yet (Line 24). If
no more cubes can be generated or merged, the corresponding
core is tagged (Lines 20–22, 28–33) and skipped during later
iterations (Lines 9–16). For example, Fig. 13 shows how the
SOC in Fig. 12 is scheduled after the first execution of Stage 1:
two test cubes are obtained for the two cores by merging one or
more test cubes returned in Line 18.

After one execution of Stage 1 is finished, the earliest pattern
boundary time among all the cores minTime is computed in
Line 42. In Fig. 13, minTime is marked by a downward arrow.

In Stage 2 (Lines 41–65, the test cubes that are generated dur-
ing Stage 1 are compressed and fault simulation is performed.
In Line 43, a seed is obtained from the existing uncompressed
test cubes obtained during the previous executions of Stage 1.
Line 43 ensures that no scan slices after minTime is used to
derive the seed. Otherwise, as can be shown in Fig. 13, a
new seed might be generated if scan slices after minTime are
included; hence, no more test cubes can be appended to Cube 1

Fig. 14. Schedule after the second execution of Stage 1.

TABLE IX
RESULTS FOR d695_REDUCED: TetraMAX ATPG

TABLE X
RESULTS FOR d695_REDUCED: DYNAMIC ATPG AND COMPRESSION

of Core 2, since the scan slices after minTime would be fully
specified by expanding the seed.

For better compression ratio, in most conditions, Line 43 will
not return a new seed until there exist sufficient number of care
bits in these test cubes. For example, in Fig. 13, a new seed is
not generated from time 0 to minTime because the number of
care bits in scan slices 0 to minTime is much less than Smax.
Hence, in the example of Fig. 13, no seed is generated and
no fault simulation is performed during the first execution of
Stage 2. It is also shown in Fig. 12 that the first seed (Seed 1)
is generated from scan slices 0 to minTime+3 (this is done after
the second execution of Stage 1). The first seed cannot cover
scan slice minTime+4, otherwise there would be more than
Smax care bits.

However, Line 43 will always return a new seed regardless
the number of care bits when: 1) numDone+numAtpgDone
equals the total number of cores or 2) noPatRound exceeds
a user-defined upper limit. Condition 1) is triggered when no
more test cubes can be generated. Condition 2) is triggered

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on July 26, 2009 at 22:52 from IEEE Xplore.  Restrictions apply. 



1262 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

TABLE XI
RESULTS FOR IWLS-4: DYNAMIC AND NONDYNAMIC ATPG

when no more test cubes can be merged after a certain number
of executions. Both conditions prevent potential dead loops.

Stages 1 and 2 are inside the same loop and are executed al-
ternatively, until all cores have been marked as done (Line 39),
i.e., satisfactory fault coverage has been reached for each core
and all test cubes have been compressed.

Fig. 14 shows how test scheduling is carried out for the SOC
after the second execution of Stage 1. Two more test cubes are
obtained, and the variable mintime is moved to the first pattern
boundary of Core 1. During the second execution of Stage 2,
Seed 1 is generated and fault simulation is performed for
Core 2.

B. Experimental Results

To evaluate the effectiveness of the proposed dynamic ATPG
and compression method, we have developed an experimental
environment based on the Synopsys TetraMAX tool. A C++
program was developed to implement the algorithm. This pro-
gram communicates with TetraMAX via UNIX named pipes
for test-pattern generation and fault simulation. A TCL script
is executed within TetraMAX to serve requests from the C++
program. A dedicated instance of TetraMAX is required for
each core. Due to the limited availability of TetraMAX licenses,
we used a reduced version of the d695 SOC that only consists
of four cores: s38584, s38417, s13207, and s15850.

We first use TetraMAX to generate fully specified and
compacted test patterns using the commands “set_atpg -merge
high -fill random” and “run_atpg -auto_compression.” Table IX
lists the results. The column “Slice,” i.e., the number of clock
cycles to apply one pattern to the core, is equal to column
“Max Scan Chain Length” in Table III plus one. We let the TAT
of each core equal the product of “Slice” and the number of
patterns (column “P”), i.e., the time used to shift out the test
response of the last pattern is ignored. For the entire SOC, a
total of 651 test patterns are applied to the cores. The test data
volume “TD” is 652 682 b, and the overall TAT is 28 132 cycles.
To derive the overall TAT in Table X, we assume that the cores
are tested serially and that sufficient ATE channels are available
to drive all the WSCs.

Comparing Table IX with Table III, we note that the number
of fully specified test patterns generated by TetraMAX is even
larger than the number of test cubes generated by MinTest.

The results obtained using the proposed dynamic approach
with Smax = 32 and Smax = 64 are shown in Table X. The

number of LFSR stages is equal to Smax + 20. As shown from
Tables IX and , the TAT achieved by the dynamic approach
is approximately 42% of the overall TAT in Table IX. The
compression is 77% and 82% for Smax = 32 and Smax = 64,
respectively. This experiment indicates that larger LFSR size
results in higher encoding efficiency and higher compression
ratio.

We next compare the proposed dynamic approach with the
proposed static scheduling algorithm. For the reduced d695
SOC, the static algorithm yields similar results, as shown in
Table IV. The overall TAT is still 11 049 and 9716 for Smax =
32 and Smax = 64, respectively. The TAT achieved by the
dynamic approach is 10%–20% higher than the TAT achieved
by the static approach. However, since the underlying ATPG
engines are different for the two approaches, this difference is
not unexpected. For Smax = 32, the test-data volume achieved
by the static approach is 129 685 b with a 532-stage LFSR and
34 ATE channels, and 255 813 b with 52-stage LFSR and 34
ATE channels.

In summary, for the reduced d695 core, the dynamic ap-
proach yields similar results compared with the static approach.
However, for larger industrial designs, since the test cubes
usually contain much less care bits than the ISCAS benchmark
circuits, and since commercial ATPG tools are most likely to be
used instead of MinTest, we expect that the dynamic approach
will find wider applications and yield better results.

Next, we use another SOC [referred to as International
Workshop on Logic and Synthesis (IWLS)-4], which we have
crafted using four midsized IWLS benchmark circuits [29], to
compare the effectiveness of our dynamic and static scheduling
methods. Table XI lists the circuit information and TetraMAX
ATPG results for the four cores. For dynamic ATPG, TetraMAX
commands “set_atpg -merge high -fill random” and “run_atpg -
auto” are used. The nondynamic ATPG test cubes, generated
using commands “set_atpg -merge low” and “run_atpg,” are
used for the static method. We also tried “set_atpg -merge
medium,” but it yielded almost fully specified test cubes that
cannot be effectively compressed. As shown from Table XI,
nondynamic ATPG generated significantly larger test sets.

Table XII lists the results of the dynamic- and static-
scheduling methods. Compared with the dynamic ATPG test
patterns, the dynamic method achieves 6.37× and 5.71× reduc-
tion in test data volume (equal to TD/TE) for the two reported
cases (Smax = 64 and Smax = 128). Note that the TE values
reported in Table XII include the control data corresponding
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TABLE XII
RESULTS FOR IWLS-4: DYNAMIC AND STATIC SCHEDULING

to TAT. Since the number of LFSR seeds is much smaller
than the magnitude of the TAT, the control data contain long
runs of consecutive 0 s and can be further compressed using
ATE pattern repeat [30]. If we exclude the control data, the
reduction in test data volume increases to 10.64× and 9.48×,
respectively.

Compared to the nondynamically compacted baseline ATPG
method, static scheduling yields 11.32× and 9.98× reduction
in test data volume. However, compared with the dynamic-
scheduling method, the performance of the static method is
less impressive. This can be attributed to the fact that the
nondynamic ATPG test cubes are not optimized. After static
scheduling, testing of all the cores start from time 0.

The experimental results for IWLS-4 show that the dynamic
method is more flexible while the effectiveness of the static
method is highly dependent on the quality of the predetermined
test cubes. Nevertheless, the static method on its own still yields
significant reduction in both test data volume and TAT com-
pared with with the baseline case of nondynamically compacted
ATPG test cubes.

VII. CONCLUSION

We have presented an SOC testing approach that integrates
test data compression, TAM/test wrapper design, and test
scheduling. The LFSR reseeding technique from [20] is used
as the compression engine. All cores in the SOC share a single
on-chip LFSR, i.e., at any clock cycle one or more cores
can simultaneously receive data from the LFSR. To reduce
the overall TAT for the SOC, it is necessary to increase the
throughput of the LFSR (i.e., the number of care bits the LFSR
generates per clock cycle), and configure the cores with as many
WSCs as possible. These objectives are accomplished using the
proposed scheduling algorithm TWCScheduler that determines
appropriate test wrappers and test schedules for each core.

Experimental results for d695, an SOC crafted from IWLS
benchmarks, and an SOC with industrial circuits show that
significant reduction in TAT can be achieved. For most cases,
an optimal solution can be found such that the TAT of the
SOC is the same as that of the most time-consuming core.
The scheduling algorithm is also scalable for large industrial
circuits. For the larger benchmark SOC, we used in this paper
that consists of nine industrial cores, the CPU time ranges from
1 to 30 min for different values of Smax. The proposed approach
has small hardware overhead and is easy to deploy. Only one

LFSR, one phase shifter, and some scheduling and modulo
counters need to be added to the SOC.

We have also presented an alternative optimization approach
that combines dynamic test compression with the proposed
test architecture. Experimental results show that the dynamic-
scheduling method is more flexible since the performance of
the static method depends on the nature of the predetermined
test cubes.
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