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Abstract Damping-off is a disease that leads to the decay of
germinating seeds and young seedlings, which represents for
farmers one of the most important yield constraints both in
nurseries and fields. As for other biotic stresses, conventional
fungicides are widely used to manage this disease, with two
major consequences. On the one hand, fungicide overuse
threatens the human health and causes ecological concerns.
On the other hand, this practice has led to the emergence of
pesticide-resistant microorganisms in the environment. Thus,
there are increasing concerns to develop sustainable and du-
rable damping-off management strategies that are less reliant
on conventional pesticides. Achieving such a goal requires a
better knowledge of pathogen biology and disease epidemiol-
ogy in order to facilitate the decision-making process. It also
demands using all available non-chemical tools that can be
adapted to regional and specific production situations.

However, this still is not the case and major knowledge gaps
must be filled. Here, we review up to 300 articles of the
damping-off literature in order to highlight major knowledge
gaps and identify future research priorities. Themajor findings
are (i) damping-off is an emerging disease worldwide, which
affects all agricultural and forestry crops, both in nurseries and
fields; (ii) over a dozen of soil-borne fungi and fungus-like
organisms are a cause of damping-off but only a few of them
are frequently associated with the disease; (iii) damping-off
may affect from 5 to 80% of the seedlings, thereby inducing
heavy economic consequences for farmers; (iv) a lot of re-
search efforts have been made in recent years to develop bio-
control solutions for damping-off and there are interesting
future perspectives; and (v) damping-off management re-
quires an integrated pest management (IPM) approach com-
bining both preventive and curative tactics and strategies.
Given the complex nature of damping-off and the numerous
factors involved in its occurrence, we recommend further re-
search on critical niches of complexity, such as seeds, seed-
bed, associated microbes and their interfaces, using novel and
robust experimental and modeling approaches based on five
research priorities described in this paper.
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1 Introduction

Damping-off is a historical term coined during the early nine-
teenth century, and represents one of the oldest worldwide
nursery problems as discussed in detail in the classic nursery
manual (Hartley and Pierce 1917; Tillotson 1917; Hartley
1921). Damping-off was considered “the most serious prob-
lem encountered in raising nursery seedlings,” and conse-
quently was one of the most focused research subject since
the beginning of its description (Hartley and Pierce 1917). The
definition of damping-off is not straightforward in the litera-
ture. Many authors refer to damping-off as a “disease”
(McNew 1960; Horst 2013), while others refer to damping-
off as a “symptomatic condition” (Agrios 2005; Kemerait and
Vidhyasekaran 2006). In the former case, damping-off is usu-
ally associated to soil-borne pathogens while in the latter case,
seed-borne pathogens can promote damping-off .
Nevertheless, both interpretations comprehend that damping-
off involves non-germination, prevention of seedling emer-
gence after germination, or the rotting and collapse of seed-
lings at the soil level.

Overall, damping-off can be caused by a number of biotic
or abiotic stresses/factors, which prevent seeds to germinate or
seedlings to emerge, including those caused by plant-
pathogenic bacteria or insect pests notably those living in soil
such as Delia spp. Agriotes spp., or Melolontha spp. (Fig. 1).
As a consequence, the symptoms associated with damping-off
widely vary depending on the type of stress associated with it
and time of its occurrence. In general, many fungi and fungi-
like species (Table 1) have been reported as the most impor-
tant biotic stress weakening or destroying seeds and seedlings
of almost all species including fruit, vegetable, field, ornamen-
tal, and forestry crops (Filer and Peterson 1975; Kraft et al.
2000). However, this paper will focus on damping-off caused
by Fusarium spp., Rhizoctonia spp., Pythium spp. and
Phytophthora spp. since these pathogens are the most fre-
quently associated with damping-off and are considered the
most important causal agents of this problem in the literature
(Table 1). Furthermore, the role of abiotic stresses will be also
discussed as they indirectly affect damping-off occurrence.
Favorable abiotic conditions for damping-off problems gener-
ally involve excessive soil moisture and excessive overhead
misting, lower soil temperatures before emergence, higher soil
temperatures after emergence, and overcrowded flats or seed-
beds (Wright 1957; Papavizas and Davey 1961; Duniway
1983a; James 2012a; Starkey and Enebak 2012).

In recent years, numerous soil-borne fungi belonging to
over a dozen of genera and oomycetes (Pythium and
Phytophthora), and some seed-borne fungi, have been report-
ed to cause damping-off on a large number of crops (Table 1).
Most of these pathogens are common in agricultural soils and
can be spread via non-anthropic and anthropic activities, in-
cluding water run-off through irrigation or rain (Zappia et al.
2014), soil contamination by improperly sanitized tools, intro-
duction of infected plants (mainly in case of seed-borne path-
ogens), improperly sanitized greenhouse, and the use of con-
taminated irrigation water (Papavizas and Davey 1961;
Duniway 1983b; Schmitthenner and Canaday 1983; Huang
and Kuhlman 1990; James 2012a; Starkey and Enebak
2012). Once established, damping-off pathogens are able to
survive for many years in the soil, even in the absence of host
plants, either as saprophytes or as living resting structures that
are capable of enduring adverse conditions (Menzies 1963).
Their wide host range also aids in the longevity of these fungi
and fungus-like organisms.

Despite a long history behind and a number of research
works conducted on damping-off, it still represents one of
the most difficult problems to be managed both in the nurser-
ies and fields. There is no country or geographic area without
damping-off problems, on a number of economically impor-
tant crops. Indeed, since only the beginning of the twenty-first
century, almost 50 new reports of damping-off diseases have
been noticed on over 30 crops and from over 20 countries
(Table 1). This clearly suggests that damping-off problem is
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multifaceted, and requires more research efforts to generate
further knowledge needed for a durable and sustainable man-
agement of damping-off.

Overall, the economic losses due to damping-off are
represented by a direct cost, due to damages of seed or
seedlings (Fig. 2), and an indirect cost, which consists
of an additional cost of replanting and the consequent
lower yields due to the later planting dates (Babadoost
and Islam 2003; Bacharis et al. 2010; Horst 2013).
Although there is no detailed and precise estimation
about the real economic impact of damping-off at the
global level in monetary terms, a previous study report-
ed that 40 million extra seedlings are planted each year
only in Georgia (the USA) to counterbalance losses due
to non-viable seeds and damping-off of seedlings
(Huang and Kuhlman 1990). Likewise, in 2016, in
Brittany (France), the grass or cereal fly Geomyza

tripunctata damaged thousands of hectares of maize
crops with significant economic losses in the region
(BSV 2016). An extensive literature research showed
that the incidence of damping-off may vary from 5 to
80% (Table 1).

In addition to a significant economic importance, there is a
considerable environmental impact due to the widespread use
of fungicides to manage this frequently occurring problem.
For example, the methyl bromide seed treatment and fumiga-
tion, a practice forbidden in the European Union (Mouttet
et al. 2014), still represents one of the major practices adopted
elsewhere, including in the USA, to manage damping-off dis-
eases (Weiland et al. 2013). However, following the Montreal
Protocol (UNEP 2006), this practice tends to decline and re-
strictions for soil fumigation have been increased (Weiland

et al. 2013). Nevertheless, other conventional fungicides play
an increasingly important role in mitigating seed and seedling
damage caused by damping-off pathogens. The frequent use
of these fungicides has led to the development of fungicide-
resistant isolates with additional challenges for farmers to
manage damping-off (Taylor et al. 2002; Moorman et al.
2002; Lamichhane et al. 2016).

In light of the high economic impact of damping-off and
negative environmental effects generated by conventional
fungicide-based control strategies, there is a need to develop
alternative and sustainable solutions to manage damping-off.
Integrated pest management (IPM) exemplifies a sustainable
approach to this aim as it combines preventive measures (e.g.,
enhancement of seed health, which represents the core of re-
silient agroecosystems) as well as best agronomic and cultural
practices first and pesticide-based tactics as the last option.
Therefore, the objectives of this work were to (i) highlight
the major features of damping-off diseases, especially those
caused by Fusarium spp., Rhizoctonia spp., Pythium spp., and
Phytophthora spp.; (ii) report and discuss currently used dis-
ease management strategies and knowledge gaps; and (iii)
suggest key challenges and future priorities for a sustainable
management of damping-off diseases.

2 Symptoms of damping-off

Damping-off symptoms can be observed from seeding until
the fourth to sixth week post-sowing (Horst 2013). The dis-
ease symptoms can be divided in two phases based on the time
of its appearance.

Fig. 1 Damping-off is either a
disease of germinating seeds (pre-
emergence—A) or young
seedlings (post-emergence—B).
The latter also comprises
cotyledon blight. While damping-
off is usually refereed to diseases
caused by soil-borne fungi or
oomycetes, a number of abiotic
stresses may contribute to
damping-off symptoms (C)
(adapted from Landis (2013)
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2.1 Pre-emergence symptoms

They occur when seeds decay prior to emergence. This can
occur (i) before seed germination, or when (ii) the germinating
seeds are killed by biotic stresses while shoot tissues are still
below ground (Fig. 3; Filer and Peterson 1975; Crous 2002;
Horst 2013). In the first case, seeds become soft, rotten, and
fail to germinate. In the second case, stems of germinating
seeds are affected with characteristic water-soaked lesions
formed at or below the soil line (Cram 2003; Landis 2013).
With the progression of the disease, these lesions may darken
to reddish-brown, brown, or black. Expanding lesions quickly
girdle young and tender stems. Seedlings may wilt and die
soon before emergence. In general, random pockets of poor
seedling emergence are an indication of pre-emergence
damping-off.

Abiotic stresses can be divided into two categories: chem-
ical and physical stress. The first notably involves limiting (i)
concentrations in carbon dioxide or ethylene (Negm and
Smith 1978), (ii) potential of hydrogen (Foy 1984), (iii) os-
motic potential (Romo and Haferkamp 1987), and (iv) phyto-
toxicity (Wang et al. 2001). The second includes (i) extreme
temperatures (high or low) (Khan 1977; Wen 2015), extreme
seedbed humidity (high or low) (Maraghni et al. 2010; Wen
2015) and (iii) mechanical stresses such as seedbed clods
(Dürr and Aubertot 2000), or crusting at the soil surface
(Aubertot et al. 2002). Other mechanical events, such as re-
moval of mulch or soil by wind and rain, may also contribute

to non-uniform seeding of containers or beds, poor seed de-
velopment, and seed rot and decay (Landis 2013).

a

b

Fig. 2 An overview of soybean
(a) and pea (b) fields affected by
damping-off diseases due to
Pythium spp. The presence of
empty space along the row
indicates seed or seedlings
affected by pre- and post-
emergence damping-off diseases
which killed plants. The
economic losses in such a
situation are severe owing to a
direct cost due to damages of seed
or seedlings and an indirect cost
related to an additional cost of
replanting and the consequent
lower yields due to the later
planting dates (Fig. 1A is photo
courtesy of Martin Chilvers while
Fig. 1B is photo courtesy of
Lindsey J. du Toit)

Fig. 3 Characteristic symptoms of pre-emergence damping-off of pea
(Pisum sativum L.) caused by Pythium spp. Despite the same sowing
date, only the first three seeds on the left have emerged. Note non-
emerged seeds with or without root development. Soft, rotten, and
decayed seeds prior to germinating or the germinating seeds killed by
biotic stresses while shoot tissues are still below ground are
characteristic symptoms of pre-emergence damping-off. The sixth seed
from the left had germinated but the stem of germinating seeds was
affected by the disease with characteristic water-soaked lesions below
the soil line. This led to wilting of the seedling soon after emergence
(Photo courtesy of Lindsey J. du Toit)
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Because biotic and abiotic stresses interact among them, it
is important to distinguish which of them are associated with
the disease symptoms.

2.2 Post-emergence symptoms

Post-emergence damping-off symptoms occur when seedlings
decay, wilt, and die after emergence (Fig. 4; Boyce 1961;
Horst 2013). In most cases, all symptoms result in the collapse
and death of at least some seedlings in any given seedling
population. In the case of soil-borne pathogen, there could
be the death of seedlings in groups in roughly circular patches
and the seedlings may have stem lesions at ground level.
Seedling stems can become thin and tough (commonly known
as “wirestem”), which often leads to reduced seedling vigor.
These symptoms can be also accompanied by leaf spotting
and a complete root rot may occur. Overall, the symptoms
on the stem of the seedlings include water-soaked, sunken
lesion at or slightly below the ground level and sometime also
below ground line (i.e., on the roots), causing the plant to fall
over (Wright 1944; Filer and Peterson 1975). Surviving plants
are stunted, and affected areas often show uneven growth.

Abiotic stresses, such as superficial soil heat, can also lead
to post-emergence seedling symptoms such as whitish lesions,
which are often located only on one side of the stem in the
early growth stage of seedlings (Hartley 1918). Such symp-
toms can be distinguished from those caused by biotic stresses

because the damage owing to heat lesions is generally
scattered throughout nurseries/seedbeds, which mainly de-
pend on patterns of shade and heat buildup (Hartley 1921),
while that caused by biotic stresses often occurs in expanding
patches. Soil crusting is another important abiotic stress that
often hinders seedling emergence or leads to stunted seedling
growth (Fig. 5). Phytotoxicity caused by chemical fungicides
is another abiotic stress. The symptoms of phytotoxicity, how-
ever, may vary based on the type of chemical used including
marginal necrosis, chlorotic patches or spots, and malformed
flowers, buds, and young leaves (Dole andWilkins 2004). For
example, fungicides based with benzimidazole can cause re-
duced plant growth and visual damage in bedding plants
(Iersel and Bugbee 1996).

2.3 Occurrence of damping-off symptoms

Most damping-off diseases present a single sort of symptom
(pre- or post-emergence). However, both sorts of symptoms
are also reported to some extent (Table 1) although the under-
lying factors leading to the occurrence of each sort of symp-
tom are poorly discussed in the literature. The complexity of
damping-off symptoms result from interactions between
cropping practices and the production situation (Aubertot
and Robin 2013). This may explain the relevant lack of infor-
mation. This complexity involves synergism among damping-
off pathogens (Al-Hazmi and Al-Nadary 2015), variation of

Fig. 4 Characteristic symptoms of post-emergence damping-off of
soybean (a and b) and corn (c and d). The succulent tissue of sprouts
with aboveground shoots collapsed, leading to wilting of some seedling
populations. Soybean seedlings with stem lesions at ground level and the

death of seedlings in groups (a and b). The presence of an empty space
along the row between corn seedlings indicates the lack of emerged
seedlings due to damping-off disease (c and d). (Photo courtesy of
Martin Chilvers)
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symptoms according to environmental conduciveness
(Schwanck et al. 2015), direct effect of plant density
(Burdon and Chilvers 1975), and many other factors, which
are very specific for each damping-off symptom. For instance,
the disease cycle components of damping-off are seldom
discussed in a broader sense in the literature, by comparing
different diseases. Some factors related to the time/moment of
disease occurrence and timing of disease cycle components
could determine whether pre- or post-emergence symptoms
will occur. In this sense, it is possible that for both pre- and
post-emergence damping-off, the infection occurs during seed
germination but a longer or shorter incubation period may
implicate in pre- or post-emergence damping-off. In addition,
the effect of individual factors involved on the disease pro-
cesses from the disease cycle and the host cycle (e.g., seed
germination), for damping-off symptom development, is rare-
ly discussed in the literature. Taken together, several studies
virtually explore the effect of a given factor (e.g., temperature)
on damping-off diseases intensity (Ben-Yephet and Nelson
1999), without specifying whether the factor plays a specific
role on the pathogen (e.g., organism metabolism) or on the
host (e.g., slow germination process increases time exposure
underground). Further knowledge on disease cycle features
and processes would help better understand damping-off
symptom occurrence. Although it was out of the focus of this
work, it is worth to mention that from the extensive literature
review, we did not perceive any pattern on the sort of
damping-off symptom (pre- or post-) according to the region,
the pathogen genus, or crop species affected. Therefore, a
meta-analytical approach to test hypotheses associated with
damping-off diseases would be highly valuable to better ex-
plain the factors involved in damping-off symptoms

occurrence. To this aim, the list of damping-off diseases we
provide in Table 1 constitutes a potential starting point.

3 Integrated management of damping-off

An effective management of damping-off requires the deploy-
ment of a number of strategies, which can be classified into the
following four major groups: (i) seed treatment to enhance
germination and seedling vigor, (ii) deployment of resistant
or tolerant cultivars to damping-off diseases, (iii) adoption of
best cropping practices, and (iv) timely treatment interven-
tions of seedlings with effective products (conventional pesti-
cides as well as biopesticides and/or biocontrol agents). None
of these strategies is effective in managing damping-off dis-
ease when applied individually and thus it requires that all of
them are combined within the frame of IPM.

3.1 Seed treatment to enhance germination and seedling

vigor

While the use of completely healthy seeds is the most effective
means to prevent and/or contain damping-off diseases, seeds
might not be always free from pathogens and thus would
benefit from treatments. Even when there is no risk of con-
taminated seeds from seed-borne pathogens, seed treatments
can be an effective means to increase seedling emergence,
particularly when done on seeds of low vigor and when the
seed coat has been damaged (Mancini and Romanazzi 2014).

Chemical seed treatments still represent a major practice in
agriculture to manage damping-off diseases (Rhodes and
Myers 1989; Babadoost and Islam 2003; Howell 2007;

Fig. 5 Lack of sugar beet (Beta vulgaris L.) seedlings emergence due to
soil crusting followed by drought. The formation of soil crusts on the soil
surface represents a strong mechanical barrier which impedes seedlings
from being emerged. Overall, lack of seed germination and emergence in

such a field is characteristic of abiotic stresses including stunted growth of
seedlings without any necrosis of leaves or stems. (Photo courtesy of
Carolyne Dürr)
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Bradley 2007; Leisso et al. 2009; Dorrance et al. 2009;
Rothrock et al. 2012; Kandel et al. 2016). Several chemicals
including bleach, hydrogen peroxide, ethanol, and fungicides
can be applied to remove pathogen inoculum from seed coats
(Dumroese and James 2005; Mancini and Romanazzi 2014).
Generally, chemical treatments are effective but they can also
negatively affect seed germination and cause phytotoxicity
(Axelrood et al. 1995; du Toit 2004) besides negative impacts
to human health and the environment (Lamichhane et al.
2016). In addition to chemical treatments, physical seed treat-
ment can be applied including hot water, hot air, and electron
treatments (Mancini and Romanazzi 2014). Finally, a number
of biological seed treatment methods are being developed and
used in recent years with a satisfactory level of damping-off
disease suppression (Table 2).

Because seed germination and emergence are often
influenced by site-specific soil and climate conditions,
an in-depth knowledge of a specific site in question is a
prerequisite for an effective decision-making process for
seed treatments. An experiment on pesticide-free
agroecosystems conducted in 2014 across eight experi-
mental sites in France, with non-treated seeds, showed
that the percentage of emergence rates markedly differs
for the same seeds across the sites (Fig. 3). In particu-
lar, while the rate of emergence of soft wheat was
100% in the Le Rheu and Grignon sites, it was lower
across other sites ranging from 43% in Auzeville to
75% in Lusignan (Fig. 6). This means that while seed
treatments may result essential across some sites, due to
unfavorable soil and climatic conditions, which are con-
ducive to disease development, it may not be the case
in other areas.

3.2 Deployment of host-plant resistance and/or tolerance

Overall, host-plant resistance as a management tactic is com-
posed of the following two strategies: (i) deployment of resis-
tant and/or tolerant plant varieties, which support lower path-
ogen populations or better tolerate injury caused by them; and
(ii) the integration of such varieties with other management
tactics within the frame of IPM. Unfortunately, for many plant
pathogens, including those causing damping-off diseases, no
plant cultivar with measurable resistance is available
(Babadoost and Islam 2003). Therefore, the only way to better
use the available crop varieties with tolerance to pathogens is
through their adequate integration with other disease manage-
ment measures. Nevertheless, insufficient focus has been paid
to date to the integration of plant resistance with other IPM
tactics, and to quantifying the benefits of plant resistance in
multi-tactic IPM programs (Stout and Davis 2009).

On the other hand, the breeding approach used to date to
develop resistant and/or tolerant crop varieties should be
revisited if we want to focus on sustainable crop protection
based on IPM. This is particularly true taking into account the
fact that most, if not all, crop varieties bred to date are based
on a market-driven approach focused on high-yielding and
most profitable crop varieties. This trend has boosted adoption
of short rotations or monoculture practices, on one hand, and
ignored the potential that minor crops may have for IPM, on
the other (Messéan et al. 2016). The limited range of available
minor crop varieties has been reported as one of the major
obstacles to crop diversification, thereby confining certain
beneficial practices such as multiple cropping or intercropping
(Enjalbert et al. 2016; Messéan et al. 2016). Therefore, breed-
ing for IPM should be based on a different approach than the

Table 2 Examples of literature reports highlighting the efficacy of non-chemical seed treatments to suppress damping-off diseases. The tested
formulations are most often reported to suppress both pre- and post-emergence damping-off although their effectiveness may vary in terms of disease
suppressiveness

Crop Pathogen Formulation/product Reference

Alfalfa Pythium spp. Mineral seed coating (Samac et al. 2014)

Canola Pythium spp. Rhizosphere bacteria (Bardin et al. 2003)
Corn Pythium and Fusarium spp Several biocontrol agents (Mao et al. 1997; Mao et al. 1998)

Cotton Pythium spp. Enterobacter cloacae and
Erwinia herbicola

(Nelson 1988)

Cotton Pythium spp., Rhizopus oryzae Trichoderma spp. (Howell 2007)
Cucumber Pythium ultimum Ethanol extracts of Serratia

marcescens and Trichoderma spp.
(Roberts et al. 2016)

Cucumber Pythium spp. Phosphonate (Abbasi and Lazarovits 2005; Abbasi and
Lazarovits 2006)

Sunflower Rhizoctonia solani Spermine (El-Metwally and Sakr 2010)
Lentil, pea,

sugar beet
Pythium spp. Rhizobium leguminosarum (Bardin et al. 2004b; Huang and Erickson 2007)

Pea Pythium spp. Rhizosphere bacteria (Bardin et al. 2003)

Safflower Pythium spp. Rhizosphere bacteria (Bardin et al. 2003)
Sesame Soil-borne pathogens Paenibacillus polymyxa (Ryu et al. 2006)

Sugar beet Pythium spp. Rhizosphere bacteria, crop straw powders (Bardin et al. 2003; Bardin et al. 2004a)
Tomato and hot pepper Pythium spp. Fluorescent Pseudomonads (Ramamoorthy et al. 2002)
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traditional one given the strategic role of breeding in the com-
petitiveness of crops and their adaptation to more diversified
cropping systems (Enjalbert et al. 2016).

3.3 Adoption of best cropping practices

Once the causal agent of damping-off has been identified,
all available cropping practices could be adapted to dis-
courage the development of the pathogen. Indeed, any
technique that allows to reduce the time between seed
germination and emergence helps reduce effects of biotic
stresses on seedlings. Overall, many pathogens involved
in damping-off are relatively weak pathogens, which re-
quire favorable environmental conditions for infection to
occur (Table 1). In addition to the susceptibility of host
and aggressiveness of pathogen populations, the severity
of damping-off is highly dependent on some critical fac-
tors including seedbed preparation, soil pH management,
seeding date and rate, growing density, nutrition,

irrigation, growing environment, crop sequence and
intercropping, cover crops, soil residue management, soil
solarization, and tillage (Table 3). Therefore, understand-
ing combined effects of abiotic and biotic stresses and
factors influencing them are a prerequisite towards effec-
tive IPM strategies of damping-off. Once these critical
factors have been identified, which might differ from
one region to another, best cropping practices should be
put in place and adopted.

One of the most important practices that allow to the
best management of damping-off and root diseases is fer-
tilization. Adequate availability of nutrients in the soil can
ensure higher vigor, with earlier emergence that limit the
period of time where pathogens can infect seeds and seed-
lings during the autotrophic stage. In particular, the ad-
vantages of fertilizer placement on seed germination and
seedling emergence have been previously demonstrated
(Cook et al. 2000). The placement of fertilizers, directly
under or slightly to one side of the seed, at the time of
planting or sowing results in an increased level of seed
germination and emergence (Fig. 7). This is because rel-
atively immobile nutrients, such as phosphorus, are not
readily available for plants especially for those species
having no or a few lateral roots. Therefore, field fertiliza-
tion, where damping-off diseases are important, requires
that the nutrients be made easily accessible to the roots to
increase growth rate. Although these nutrients do not al-
ways reduce seedling infection, they often enhance seed
germination and seedling vigor (Smiley et al. 1990;
Patterson et al. 1998). Indeed, higher seedling vigor al-
lows seedlings to rapidly escape from the soil surface
even in the presence of a high soil population density of
the pathogen(s).

3.4 Timely treatment interventions of seedlings

with effective products

The strategies described above are mainly of preventive nature
as they can be developed and adopted before the occurrence of
damping-off diseases. Once the infection occurs on seedlings
and there is a high risk of epidemic development, growers
have to attempt for an effective control of the disease.
Overall, there are two key measures available for damping-
off control as described below.

3.4.1 Biological control

Because of their adverse effects on human health and the
environment, the use of conventional pesticides, including
fungicides, has come under increasing public scrutiny in
many countries especially in the European Union
(Bourguet and Guillemaud 2016; Lamichhane et al.
2016). In addition, increasing reports of pest resistance

Fig. 6 Percentage of seed emergence (non-treated seeds) observed across
different experimental sites managed under the “Res0Pest” network in
France in 2014. Res0Pest is a “pesticide-free” trial network launched in
2011 by the INRA/CIRAD IPM network to address objectives of the
French National Action Plan Ecophyto to develop and demonstrate the
feasibility of pesticide-free cropping systems (Deytieux et al. 2014). Eight
experimental sites, comprised of five arable cropping systems (in brown)
and three mixed crop/husbandry systems (in green) are ongoing across
the sites. DW durum wheat, SW soft wheat, MSW mixed of soft wheat
varieties, SB spring barley. Different percentages of emergence across the
experimental sites highlight how soil and climate and cropping practices
affect seed germination and the seedling emergence process through
biotic and abiotic stress. Low percentages of emerged seedlings are
highlighted in red
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development to pesticides have become an issue, thereby
increasing risks of pest management failure with potential
threats of economic losses for farmers (Onstad 2013;
Bourguet and Guillemaud 2016; Lamichhane et al.
2016). Chemical fungicides can also cause phytotoxicity
on crops and foliage plants, which is another drawback of
their use (Dias 2012).

The application of biocontrol agents/formulations is
an important substitute to conventional fungicides, with
lower negative impacts. Often, biocontrol is widely
practiced as an alternative disease management strategy
to conventional fungicides especially when the latter are
not effective or cause secondary problems such as seed
phytotoxicity from fungicides (Burns and Benson 2000).
Individual beneficial organisms used as biocontrol
agents can prevent damping-off pathogens through five
mechanisms (Table 4). There are dozens of biocontrol

products to control damping-off worldwide and most of
them are based on antagonist fungi, including
Trichoderma spp. and Gliocladium spp. or bacteria such
as Pseudomonas spp. and Bacillus spp. (Table 5).
However, not all of them are registered and marketed
as biocontrol agents nor they are used as plant growth
promoters, plant strengtheners (or biostimulants), or soil
conditioners (Paulitz and Bélanger 2001). Numerous
studies conducted on biocontrol research in the last
15 years clearly suggest the increasing concern of the
scientific community to generate knowledge on an alter-
native to chemical solutions (Table 5). Most of these
studies have also demonstrated a good effectiveness of
b iocon t ro l produc ts in managing the disease .
Accordingly, the biocontrol industry has become very
dynamic in recent years especially in terms of using
the available scientific knowledge to develop and

Table 3 Critical factors affecting damping-off and best cropping practices which help discourage its development

Critical factors Best cropping practices References

Seed quality Use of clean, healthy, and sterile seeds, treatments with
non-chemical products including beneficial microbes to
enhance seed health and resilience and to promote rapid
germination and emergence and control pre-emergence
damping-off, and chemical treatment to control
post-emergence damping-off

(Mao et al. 1998; Babadoost and Islam 2003; Jensen
et al. 2004; Abbasi and Lazarovits 2006; Howell
2007; Gwinn et al. 2010; Mastouri et al. 2010;
Samac et al. 2014; Roberts et al. 2016)

Seedbed preparation Utilize pest-free soil or growing medium through incorporation of
compost, plant residues, or microbial amendments into soil or
growing medium which suppress soil-borne pathogens,
perform soil solarization, bio-fumigation, adopt mixture of
particle sizes and good porosity to avoid soil crusting, improve
soil drainage by subsoiling, crowning the beds, installing
drainage tiles, and incorporating composted organic matter to
improve soil texture, water-holding capacity, nutrient
availability, and cation exchange capacity

(Kassaby 1985; Ben-Yephet and Nelson 1999; Dürr and
Aubertot 2000; Diab et al. 2003; Deadman et al.
2006; Njoroge et al. 2008; Pane et al. 2011; He et al.
2011; Landis 2013; Bahramisharif et al. 2013a;
Vitale et al. 2013)

Adjustment of soil pH Use relatively acidic soils with a low pH (4.5–6.0), increase soil
pH with organic amendments, with applications of aluminum
sulfate, sulfur, or acid peat

(Russell 1990; Davey 1996; Cram 2003)

Seeding date Perform sowing neither too early nor too late, avoid warm or wet
weather for sowing, well irrigate soils to the depth of the
growing roots without flooding the soil

(Hwang et al. 2000; Cram 2003)

Growing density Avoid over-sowing or excessive plant densities, use crop varieties
with asynchronous germination

(Burdon and Chilvers 1975; Neher et al. 1987; Landis
2013)

Nutrition Apply well-balanced fertilization especially microelements
(phosphorus, potassium, and calcium)

(Gladstone and Moorman 1989; James 1997;
El-Metwally and Sakr 2010; Landis 2013)

Growing environment Maintain moderate humidity, escape application of high water
volume to avoid waterlogging and adopt frequent and light
applications, maintain adequate light and optimal temperatures

(Beech 1949; Duniway 1983b; Wong et al. 1984;
Yitbarek et al. 1988; Hwang et al. 2000; Schmidt
et al. 2004; Kiyumi 2009; Landis 2013; Li et al.
2014)

Crop sequence and
intercropping

Avoid monoculture and adopt long rotation schemes to lower
down pathogen populations, introduce Brassica crops as their
root exudates contain soil-borne pathogen populations

(Hwang et al. 2008; Abdel-Monaim and Abo-Elyousr
2012)

Cover crops and soil residue
management

While cover crops are overall useful to produce organic matters
and protect the soil from erosion and leaching, their benefit can
vary with the type of species selected. Certain leguminous
cover crops even favor greater populations of damping-off
pathogens than graminaceous plants

(Hansen et al. 1990; Russell 1990; Davey 1996; Bailey
and Lazarovits 2003)

Tillage Perform tillage to incorporate plant residues into the soil to reduce
soil-borne pathogen populations although the effect of tillage
may differ from the type of pathogen to be managed

(Tachibana 1983; Workneh et al. 1998; Bailey and
Lazarovits 2003)
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commercialize formulations. However, most of these
formulations are based on individual biocontrol agents
and they specifically target a specific pathogen.

3.4.2 Chemical control

While alternative tactics to chemical control are the priority
for IPM to manage damping-off diseases, such measures
available on the market are not always effective in controlling
damping-off diseases and/or their effectiveness is variable.
Therefore, a judicious use of fungicides maybe needed to
combine with other IPM tactics especially when the disease
infection has already occurred (Harman 2000).

Chemical control of damping-off as foliar application,
however, is restricted to a few active ingredients due to the
high cost of fungicides and the small number of products
registered for some crops including those for ornamental use
(Garzón et al. 2011). Among the most frequently used fungi-
cides, there are etridiazole and metalaxyl, active against
Phytopthora and Pythium spp.; benomyl and thiophanate
methyl, active against Fusarium and Rhizoctonia spp.;
mancozeb and maneb, active against Fusarium and
Phythium spp.; and captan, active against common
damping-off pathogens. A rapid decrease in market availabil-
ity of many previously available fungicides further limits ac-
cess to chemical treatments inmany countries especially in the
European Union (Lamichhane et al. 2016). On the other hand,
resistance to commonly used fungicides developed by several
strains of pathogens has challenged the long-term sustainabil-
ity of chemical control (Taylor et al. 2002; Allain-Boulé et al.
2004; Moorman and Kim 2004; Reeleder et al. 2007; Weiland
et al. 2014). All these new scenarios clearly highlight that non-
chemical measures will be increasingly developed and used

for the management of damping-off, particularly for post-
emergence ones. This trend is clear also in the literature where
most recent research efforts are on the development of biocon-
trol solutions rather than focusing on the chemical ones
(Tables 2 and 5). This happens due to the general concerns
with regards to conventional pesticides, but also because pri-
vate and public sectors can design new solutions for the so-
called “biocontrol market.” However, even with biocontrol
solutions, diagnosis of the involved pathogens along with
the analysis of treatment opportunity is still required.

4 Key challenges and future priorities

for damping-off management

In order to tackle the complex and multifaceted nature of
damping-off diseases and a range of factors that affect their
occurrence and development, we propose five research prior-
ities, which are essential towards a better understanding and
management of damping-off diseases.

4.1 Correct identification of damping-off pathogens

including non-secondary colonizers and anastomosis

groups

An accurate identification of the causal agent(s) associated
with damping-off is imperative for understanding the etiology
of damping-off outbreaks and thus represents a cornerstone
for the decision-making process to IPM. This involves
confirming the pest, learning how it spreads, and then identi-
fying critical points for its management, including develop-
ment of preventive measures based on adapted cropping prac-
tices. Most often, the specific pathogen causing damping-off

Fig. 7 Effect of fertilizer placement on germination and emergence of
oilseed rape. While the placement of micronutrients (zinc and
phosphorous) at the time of sowing allowed seeds to readily germinate
and emerge (the three lateral sides of the plot), the lack of nutrient
placement has resulted in markedly reduced seed germination and

emergence (the middle of the plot). The same field practices were
applied in the field, including the same date of sowing and cultivar. In
addition to oilseed rape, the cultivated field presents annual weed Poa

annua and Vulpia myuros (light green color). (Photo courtesy of Jean-
Pierre Sarthou)
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cannot be determined based on the visual inspections of symp-
toms. Therefore, their correct identification is essential. It is
generally performed using both culture-based and culture-
independent methods. However, both of these techniques
have their advantages and drawbacks and hence are comple-
mentary to each other. For example, culture-based techniques
allow for the characterization of important traits such as viru-
lence or fungicide resistance. Not only are they time consum-
ing, but they also underestimate the true diversity of species

present within a sample (Zinger et al. 2012; James 2012b; Bik
et al. 2016). Culture-independent methods, such as next gen-
eration sequencing, on the other hand, allow to identify the
overall species diversity present in a given sample but their
limit is that they do not allow to determine the virulence and
fungicide resistance of the microbes associated with the dis-
ease (Lamichhane and Venturi 2015).

Although many modern PCR techniques allow a rapid de-
tection and identification of one or more specific pathogens,

Table 4 Key mechanisms involved in biocontrol activities and list of selected references

Mechanism Description References

Antibiosis A biocontrol microorganism produces antibiotics which is toxic to one or
more pathogens

(Shang et al. 1999; Wright et al. 2001; Koumoutsi et al. 2004;
Kloepper et al. 2004; Islam et al. 2005; Leclere et al. 2005;
Pal and McSpadden 2006; Gerbore et al. 2014)

Parasitism A biocontrol organism parasitizes one or more pathogens. This is a typical
example of Trichoderma spp. which winds around the hyphae of
soil-borne fungi and oomycetes by puncturing their cell wall

(Benhamou and Chet 1997; Kiss 2003; Milgroom and Cortesi
2004; Pal and McSpadden 2006; Gerbore et al. 2014)

Competition for nutrients A biocontrol organism produces and releases many substances that have
suppressive effects towards pathogens. This help a biocontrol agent to
effectively colonize plant environments

(van Dijk and Nelson 2000; Kageyama and Nelson 2003; Pal
and McSpadden 2006; Liu et al. 2013; Gerbore et al. 2014)

Production of lytic enzymes or other
chemical signals

A biocontrol organism produces metabolites that can interfere with
pathogen growth and/or activities via degradation of essential
compounds needed for soil-borne pathogens to develop and start the
infection process

(Bull et al. 2002; Kilic-Ekici and Yuen 2003; Benhamou 2004;
Palumbo et al. 2005; de los Santos-Villalobos et al. 2013;
Gerbore et al. 2014)

Induced systemic resistance (ISR) A beneficial organism stimulates the plant’s immune system thereby
protecting plants from pathogens. ISR is a different mechanism from
systemic acquired resistance (SAR). The latter occurs following an
exposition of a plant to a low level of a specific pathogen which allows
plants to acquire resistance to that specific pathogen in the future

(Chen et al. 2000; Hammond-Kosack and Jones 2000;
Bargabus et al. 2002; Bargabus et al. 2004; Ongena et al.
2004; Kloepper et al. 2004; Meziane et al. 2005; Pal and
McSpadden 2006; Gerbore et al. 2014; Pieterse et al. 2014)

Table 5 List of selected studies reporting the use of microbial antagonists for biological control of major damping-off pathogens worldwide since
2001. These biological control agents were either applied to seedlings or to soil to achieve disease suppression

Pathogen(s) Host Biological control agent(s) References

Pythium spp. Tomato Different bacteria (Gravel et al. 2005)

Pythium aphanidermatum Cucumber Paenibacillus spp. with organic compounds;
Streptomyces griseoviridis, Trichoderma spp.,
Gliocladium catenulatum

(Punja and Yip 2003; Li et al. 2011)

Pythium aphanidermatum Tomato Trichoderma harzianumstrain (Jayaraj et al. 2006)

Pythium ultimum Cucumber Different bacterial and fungal isolates (Georgakopoulos et al. 2002; Carisse
et al. 2003)

Pythium ultimum and
Rhizoctonia solani

Bedding plants Gliocladium catenulatum (Mcquilken et al. 2001)

Rhizoctonia spp. Chinese mustard Endomycorrhizal Rhizoctonia (Jiang et al. 2015)

Rhizoctonia solani Cucumber Bacillus pumilus SQR-N43; Glomus mosseae and
plant growth-promoting fungi; Paenibacillus
illinoisensis

(Jung et al. 2003; Chandanie et al.
2009; Huang et al. 2012)

Rhizoctonia solani Pepper Fluorescent pseudomonads with resistance inducers (Rajkumar et al. 2008)

Rhizoctonia solani Radish Peony root bark with Trichoderma harzianum (Lee et al. 2008)

Rhizoctonia solani Tomato Streptomyces (Sabaratnam and Traquair 2002)

Rhizoctonia solani Different crops Trichoderma spp. (Lewis and Lumsden 2001)

Rhizoctonia solani and
Fusarium solani

Tomato Olive mill waste water and its indigenous bacteria (Yangui et al. 2008)

Rhizoctonia spp. Cotton Nonpathogenic Binucleate Rhizoctonia spp. (Jabaji-Hare and Neate 2005)

Several soil-borne pathogens Cucumber Several antagonist bacteria (Roberts et al. 2005)
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including those reported to cause damping-off diseases
(Weiland and Sundsbak 2000; Lievens et al. 2006; Ishiguro
et al. 2013), the timely identification of the overall species
diversity involved in the disease occurrence process still
remains a challenge. In addition, such techniques re-
quire DNA purification, the availability of more expen-
sive and sophisticated equipment, and more highly
trained technical personnel to perform the test
(Schroeder et al. 2012), which is a strong limit to their
wider adoption. Therefore, we still need to develop
techniques, which could simplify the detection, on one
hand, and be economically sustainable, on the other.

All four soil-borne pathogens dealt in this paper are char-
acterized by a complex of genetically distinct species, with a
wide host range or virulence preference for certain hosts. For
example, Rhizoctonia solani species Kühn (teleomorph:
Thanatephorus cucumeris; A. B. Frank; Donk) is a multinu-
cleate species that has been divided into 14 anastomosis
groups (AGs; AG1 to AG13 and AG B1; (Sneh et al. 1991;
Carling and Summer 1992; Carling et al. 2002). Binucleate
Rhizoctonia spp. (teleomorph: Ceratobasidium) are divided
into 19 AGs (AG A to AG S). Finally, R. oryzae and R. zeae

are multinucleate with the teleomorphs Waitea circinata var.
circinata and W. circinata var. zeae, respectively (Sneh et al.
1991). Given its variable nature within- and between-AG var-
iation in virulence and host range, a correct and timely iden-
tification of the specific genetic lines associated with
damping-off diseases is still a challenge, which calls for fur-
ther research efforts.

Fusarium spp. are characterized by a wide genetic diversity
and their taxonomy has been afflicted by changing species
concepts, with as few as 9 to over 1000 species being recog-
nized by different taxonomists during the past 100 years
(Summerell et al. 2003). Indeed, the complexity and the rec-
ognized difficulty of rapidly identifying cultures to species
have been reported as the major reason hindering effective
disease management (Summerell et al. 2003). The challenge
within the Fusarium species complex is also to determine the
specific role of secondary colonizers in occurrence and devel-
opment of damping-off diseases since they are characterized
by a high variability and complexity in terms of host range and
virulence.

Similar problems exist also for Pythium species with most
plant-pathogenic lines having a wide host range. For example,
Pythium ultimum is reported to attack over 719 host plants
(Farr and Rossman 2012). Other species such as Pythium

graminicola and Pythium arrhenomanes are restricted only
to Poaceae family (Schroeder et al. 2012). Traditional baiting
or other culture-based techniques are still widely used for the
identification of Pythium species although culture-
independent methods, such as cytochrome oxidase subunit 1
pyrosequencing, are also used (Coffua et al. 2016). The chal-
lenge is that methodological biases inherent to culture-

independent methods may often lead to inconsistencies in di-
versity estimates of Pythium species associated with damping-
off diseases. Nevertheless, culture-based techniques are the
only means to demonstrate, for example, the presence of po-
tential pathogens even in fields with no previous history of
damping-off diseases. Indeed, based on culture-based tech-
niques, several studies have isolated Pythium species from
symptomatic and asymptomatic plants and demonstrated their
pathogenicity on a large number of plant species
(Bahramisharif et al. 2013b; Coffua et al. 2016). Further,
culture-based methods and morphological observations may still
result essential in confirming the presence of novel or unexpected
species within a sampling location and thus have to be consid-
ered for identification purposes (Zitnick-Anderson and Nelson
2014).

The complexity in terms of taxonomy is even more accen-
tuated for the genus Phytophthora with many studies over
recent years recognizing different Phytophthora as a species
complex. Often, the taxonomic status of the related species is
also a matter of controversy or the presence of several distinct
lineages perhaps representing as yet undescribed species
(Safaiefarahani et al. 2015). Many new species of
Phytophthora are constantly proposed and the taxonomy of
this genus has been evolving very dynamically (Henricot et al.
2014). Consequently, development of rapid and reliable diag-
nostic methods is a challenging task for this genus too.

Because most damping-off pathogens are either soil-
or water-borne, instead of airborne, adoption of good
phytosanitary practices generally allows to manage
damping-off diseases. This is especially the case if a
proper detection of the causal agent(s) is timely made.
This helps understand also critical management points
that allow pathogens to enter into the field and/or nurs-
ery. The mode of transmission maybe different for each
pathogen although spread in infected soil or growing
medium is common to all species (Table 6). Because
most of these pathogens are common in agricultural
soils, they can be spread via contaminated soil, introduc-
tion of infected plants (mainly in case of seed-borne
pathogens), improperly sanitized equipment and green-
house, and the use of contaminated irrigation water
(Zappia et al. 2014). In particular, Pythium spp. and
Phytophthora spp. have motile zoospores, which are
most commonly spread by water leading to epidemic
developments (Hong and Moorman 2005; Zappia et al.
2014). Therefore, the potential presence of these patho-
gens in irrigation water should be timely determined
using appropriate bioassays such as in-situ baiting
(Ghimire et al. 2009) or PCR techniques (Martin et al.
2012; Schroeder et al. 2012). Appropriate treatments of
the water should be implemented if their presence is
confirmed in irrigation water. Detection and management
approaches of plant pathogens in irrigation water have
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been previously described (Hong and Moorman 2005;
Stewart-Wade 2011; Zappia et al. 2014).

4.2 Determination of potential interactions within and/or

between damping-off pathogens and other living

organisms

Plant disease occurrence and development are deter-
mined by numerous interactions between host, pathogen,
and prevailing environmental conditions, especially bio-
cenosis, under the influence of cropping practices. This
is especially the case of soilborne pathogens for which
there are many possibilities for potential interactions
with other microorganisms/agents occupying the same
ecological niche. A number of recent studies reported
significant interactions within and/or between several
damping-off pathogens and other pathogenic organisms
(Table 7). Such studies have emphasized that co-
inoculation of two or more pathogens consistently cause
more detrimental effects on root development than ei-
ther pathogen alone. These findings will guide future
research on damping-off diseases, including studies of
the genetic diversity within species, epidemiological
and ecological features of the disease, and host-
pathogen interactions, and ultimately help to develop
durable and sustainable damping-off management
practices.

Although our understanding about individual genetic
lines of microbes causing damping-off has increased
over the years, there is a severe knowledge gap about
how synergistic interactions between two or more genet-
ic lines belonging to the same or different fungal
genera/pathogenic agents can lead to the occurrence
and spread of damping-off diseases. Therefore, a focus
to understanding such interactions would be another

direction for future research, which is pivotal for the
development of effective disease management strategies
(Lamichhane and Venturi 2015).

4.3 A better knowledge of the role of abiotic factors that

predispose seeds and seedlings to damping-off diseases

Overall, while there is good knowledge in the literature
concerning the role of individual abiotic factors on damping-
off (especially soil moisture and temperature), little is known
about how interactions between abiotic and biotic factors lead
to the occurrence of such diseases. Few works performed on
abiotic stresses have highlighted that a number of abiotic fac-
tors predispose seed or seedlings to damping-off pathogens
and increase the severity of infection. This is mainly due to
certain soil and climate factors, which restrict normal seed and
root growth and development (Burke et al. 1972a, b). In par-
ticular, wet (e.g., due to poor drainage or overwatering) and
cool soils, cool to moderate air temperatures, are particularly
favorable for the development of key damping-off pathogens
(Table 3). Key predisposing factors, which trigger the devel-
opment of Fusarium , Rhizoctonia , Pythium , and
Phytophthora species are reported in Table 6.

Soil characteristics including soil aggregate size and tex-
ture markedly affect seedling emergence. Aggregate size in-
fluences the way the soil water content changes with time and
the seed-soil contact, the path of the seedling to the soil sur-
face, and the rate of soil surface degradation by rainfall.
Greater soil aggregates size also represents mechanical obsta-
cles for seedlings (Dürr and Aubertot 2000). Soil compaction
is another factor causing stress in plants, especially where
mechanized crop production is practiced, resulting in reduced
root development (Allmaras et al. 1988; Harveson et al. 2005).
Excessive soil compaction decreases porosity, degrades soil

Table 6 Mode of transmission of major causal agents of damping-off and soild and climate conditions favorable to their development. Any IPM
approach should consist in the adoption of cropping practices, including cultivar choice and chemical control which could discourage factors favoring
damping-off

Pathogen Mode of transmission Optimal pedo-climatic conditions for damping-off References

Pythium spp. Irrigation water, soil High soil moisture, pH >5.8, the effect of temperature
is variable based on the type of damping-off. While
pre-emergence damping-off may occur at low
temperatures (12 °C), the post-emergence one
is favored by relatively high temperature (18 to 30 °C)

(Roth and Riker 1943; Leach 1947;
Wright 1957)

Phytophthora

spp.
Irrigation water, infected soil Water-saturated soils and higher soil pH levels

(<8), variable effects of temperature and nitrogen
(Lambert 1936; Duniway 1983b;

Schmitthenner and Canaday 1983)

Fusarium spp. Contaminated seeds
(in soil or growing media,
and on used containers),
airborne spores

Higher soil pH and with increased N levels, variable
effects of temperature often depending on the pathogen
of the isolates

(Tint 1945; Huang and Kuhlman 1990;
James 2012a)

Rhizoctonia

spp.
Seeds, airborne spores,

infected soil
High soil temperatures and increasing dryness

(reduced moisture). No particular effect of pH ,
low C/N ratio

(Jackson 1940; Roth and Riker 1943;
Papavizas and Davey 1961; Starkey
and Enebak 2012)
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structure, and can impede water movement and root growth
thereby predisposing seeds or seedlings to biotic stresses.

Higher salinity levels have been reported to trigger
damping-off diseases. A recent study found an evidence about
a synergistic interaction between salinity stress of seed or
seedlings and salinity-tolerant Pythium species (Al-Sadi
et al. 2010). Other studies showed an enhanced level of dis-
ease development on a number of crops due to higher salinity
levels (Rasmussen and Stanghellini 1988; Sanogo 2004;
Triky-Dotan et al. 2005). Likewise, heat developed just above
the ground line can lead to seedling stresses or damages
(Helgerson 1989).

4.4 Development of disease-suppressive seedbed soils

with or without conservation agriculture

Suppressive soils provide an environment in which plant dis-
ease development is reduced, even in the presence of a path-
ogen and a susceptible host (Hadar and Papadopoulou 2012).
Although several studies have reported the potentiality of
disease-suppressive soils, their practical application is still
limited. The reason behind is the lack of reliable prediction
and quality control tools for assessing the level and specificity
of the suppression effect. This is especially true taking into
account the very complex soil environment with a high level
of dynamic complexity and interactions occurring among mi-
crobes, plants, and the environment (Lemanceau et al. 2015).
More specifically to damping-off, the development of a spe-
cific means that suppresses the development of a given
damping-off pathogen may not provide a satisfactory suppres-
sion of another pathogen thereby questioning the durability of
this approach. Indeed, a suppressive soil to one pathogen may

not necessarily be suppressive to another due to specificity in
the soil-plant-microbe interactions (Whipps 2001). Therefore,
the creation of disease-suppressive seedbed environments that
discourage the development of most damping-off pathogens is
a challenging task for research. A previous study (Bonanomi
et al. 2007) reported variable suppressive effects of organic
amendments although in most cases such materials provided
an effective disease suppressiveness. Another concern is that
the suppressive effects of certain amendments, such as com-
posts, are relatively lower and more variable when they are
applied in the field compared to container media (Noble and
Coventry 2005).

The difficulties in evaluating the level and specificity of the
suppression effect can, however, be addressed, at least to some
extent, using modernmethods of analyzing microbial commu-
nity structures, including metagenomics. The latter allow
identification of both culturable and non-culturable microor-
ganisms and thus provide important insights to help define the
key organisms or groups of organisms that allow to exercise
natural suppression of damping-off pathogens. However, to
guide research inmicrobial ecology in complex environments,
such as soil, there is a lack of ecological theory, which hinders
hypothesis-driven research and interpretation of metadata, es-
pecially while dealing with compost and compost-amended
environments (Prosser et al. 2007; Hadar and Papadopoulou
2012). In particular, our knowledge is still poor concerning
why there are numerous cases of compost-mediated disease
suppression but no or rare cases of suppressive soils at local
levels (i.e., under field conditions). To respond to this ques-
tion, a recent study identified common traits that have been
regarded as potential indicators of suppression (Hadar and
Papadopoulou 2012). A better understanding of these

Table 7 Selection of synergistic
interactions within and/or
between damping-off pathogens
and other pathogenic organisms
reported since 2000

Host Interactions between References

Cassava Fusarium spp. (Bandyopadhyay et al. 2006)

Cereals Fusarium spp. (Del Ponte et al. 2014)

Chile pepper Rhizoctonia solani andMeloidogyne incognita (Al-Hammouri et al. 2013)
Clover Root-infecting fungi and parasitic nematodes (You et al. 2000)

Coffee Meloidogyne arabicida and Fusarium oxysporum (Bertrand et al. 2000)
Ginger Pythium spp. (Le et al. 2014)

Green beans Meloidogyne incognita and Rhizoctonia solani (Al-Hazmi and Al-Nadary 2015)
Lentil Fusarium oxysporum f.sp. lentis andMeloidogyne

javanica

(De et al. 2001)

Maize Pythium and Fusarium spp. (Harvey et al. 2008; Lamprecht et al.
2011)

Parsnip and
parsley

Pythium spp. (Petkowski et al. 2013)

Soybean Fusarium spp. (Barros et al. 2014)
Soybean Rhizoctonia spp. and other microbes and nematode

communities
(Liu et al. 2016)

Soybean Phytophthora sojae and Heterodera glycines (Kaitany et al. 2000)

Potato Rhizoctonia solani and plant parasitic nematodes (Back et al. 2000; Karlsson 2006; Björsell
2015)

Tomato Rhizoctonia solani andMeloidogyne incognita (Kumar and Haseeb 2009; Vidya Sagar
et al. 2012)
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indicators may surely help develop disease-suppressive soils
thereby contributing to damping-off management.

Because suppressive soil to one pathogen may not always
be suppressive to another, there is a need for individual eval-
uation of compost products for specific pathosystems and the
development of standardized compost production and storage
protocols. At the same time, there needs a better focus towards
a development of suppressive soils under field conditions by
optimizing already existing compost-based amendments or
combining every single tool and/or strategy that allows to
enhance a disease-suppressive soil environment. This includes
manipulation of the physiochemical and microbiological en-
vironment via best management practices and biological con-
trol using organisms such as Trichoderma spp. (Tables 2, 3,
and 4).

Overall, there is a paucity of information in the literature
concerning how conservation agriculture may affect damping-
off diseases although prediction can be made from traditional
epidemiological knowledge. Because the major damping-off
pathogens discussed in this paper have a broad host range, the
retention of crop residues on soil surface maybe a nutrient
(food) source for the pathogens after harvest as well the pres-
ence of cover crops may act as a potential reservoir of these
pathogens (intermediate hosts; (Bockus and Shroyer 1998;
Cook 2001). For example, in areas with infected crop resi-
dues, infected seeds contribute to a rather small part of the
inoculum as seeds and seedlings can be infected during their
development. In addition, no-till fields maintain more surface
residues than conventional-till fields, at least early in the sea-
son (Lindstrom andOnstad 1984; Govaerts et al. 2007), which
means more moisture (Belvins et al. 1971; Power et al. 1986),
a condition that favors development of damping-off pathogens
(Schmitthenner and Van Doran 1985). Further, while the pres-
ence of crop residues may act as a physical barrier and prevent
pathogens from being spread through soil movement by wind,
water, or agricultural equipment, such effects may not be ap-
plied to damping-off pathogens given their soil-borne nature.

The little information available in the literature shows
that conservation agriculture may have variable effects
on damping-off pathogens. For instance, a reduction of
tillage has been reported to have both negative (Dick
and Van Doran 1985; Schmitthenner and Van Doran
1985; Adandonon et al. 2004) and positive (Tachibana
1983; Rovira 1986; Cook and Haglund 1991; Paulitz
et al. 2002; Govaerts et al. 2007) effects on damping-
off pathogens development. A previous study (Workneh
et al. 1998) demonstrated the recovery of Phytophthora

sojae in greater frequency near the soil surface in no-till
fields than in conventional-till fields. This suggests that
the potential development of damping-off diseases may
be greater in no-till fields than in conventional-till ones.
However, Schillinger et al. (2010) demonstrated that
when no-till regime was included in a conservation ag-
riculture approach (i.e., together with a more complex
rotation and a permanent soil coverage), the incidence
of Gaeumannomyces graminis var. tritici was decreased
in comparison to continuous annual winter wheat, inde-
pendently of the soil management. As for R. solani, no
grain yield loss was observed in any kind of treatment
applied although it was more pronounced in the no-till
treatments. Very similar results were obtained by other
authors while dealing with several cereal pathogens
(Matusinsky et al. 2009; Paulitz et al. 2009).

However, it is worth to highlight that most of these studies
were based on short-term experiments and we do not know how
direct seeding affects damping-off disease over longer periods of
time. Moreover, most of the results come from researches on
partially-applied conservation agriculture systems, whereas it is
well known that full benefits of conservation agriculture are de-
livered when its three principles are applied for several years
(Farooq and Siddique 2015). Hence, more research efforts, based
on long-term experiments, are needed to better elucidate the ef-
fects of conservation agriculture on these pathogens, which may
differ case by case.

Fig. 8 Generic conceptual model
that represents the impact of
cropping practices and weather on
biotic and abiotic stresses
affecting seed germination and
seedling emergence
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4.5 Modeling to help design integrated management

strategies of damping-off diseases

Despite several benefits they provide, simulation studies were
rarely performed to understand seed germination and seedling
emergence. However, a model called SIMPLE (SIMulation of
Plant Emergence) was previously developed and used to pre-
dict the effects of the main physical factors within the seedbed,
including soil temperature and water potential, as well as me-
chanical obstacles to germination and emergence (Dürr et al.
2001). A few subsequent studies attempted to evaluate the ef-
fects of sowing conditions using the samemodel, including sow-
ing date, sowing depth and seedbed preparation, or of seed lot
characteristics (Dorsainvil et al. 2005; Moreau-Valancogne et al.
2008; Constantin et al. 2015). This SIMPLE model was also
used to analyze the extent of the effects of plant genetic diversity
on seed emergence rates under a wide range of environmental
conditions (Brunel-Muguet et al. 2011; Dürr et al. 2016).

Little efforts towards the modeling of damping-off diseases
have been undertaken so far. Early epidemiological modeling
approaches were conducted in order to mathematically de-
scribe soil-borne diseases as a function of inoculum density
(Baker 1971; Grogan et al. 1980). These approaches always
relied on data sets obtained by experiments where one or more
rarely several factors would vary. For instance, Burdon and
Chilvers (1975) analyzed and modeled the impact of clumped
planting patterns on epidemics of damping-off disease
(Pythium irregulare) in cress seedling as a function of number
of clumps per unit area. Furthermore, similar modeling ap-
proaches permitted to model soil suppressiveness to
R. solani (Wijetunga and Baker 1979). Often, these ap-
proaches linked observed data to simple theoretical epidemi-
ological models that were fitted to describe disease epidemics.
Gilligan (1983) proposed a typology of the early modeling
approaches in the field of soil-borne epidemiology: models
for primary infection (rhizosphere models; surface density
models; probability models); models for secondary infections
(for three types of pathogens: unspecialized pathogens such as
damping-off and non-ectotrophic root rotting fungi; special-
ized ectotrophic pathogens; specialized systemic pathogens);
models for disease progress (growth curve analysis: non-
linear models such as the ones proposed by van der Plank
(1963); epidemiological models embedding host growth; mul-
tivariate methods; and computer simulations). Otten et al.
(2003) proposed a simple compartmental model S-I
(susceptible-infected) to model transmission rates for soil-borne
epidemics as a function of primary inoculum density (R. solani)
and the number of contacts of plants. It was later extended to take
into account soil suppressiveness (Otten et al. 2004).More recent
works allowed to model the impact of crop sequence on attacks
of Fusarium oxysporum f.sp. cepae (Leoni et al. 2013), or the
impact of climate change on six soil-borne fungal plant patho-
gens using a generic model associated to data on the impact of

temperature obtained in controlled chambers and a soil humidity
model (Manici et al. 2014).

Because there is a lack of tools to help design integrated
management strategies of damping-off diseases, frameworks
derived from the conceptual model, as presented in Fig. 8,
would be very useful. Such models should integrate the im-
pact of cropping practices and weather on the physical and
chemical components of seedbed along with their impact on
damping-off disease primary inocula frommultiple pathogens
and antagonistic microorganisms. As reported in Fig. 8, inter-
actions between cropping practices and production situations
are numerous and such models should integrate mechanisms
as parsimoniously as possible. For instance, the
abovementioned SIMPLE model could be used as a basis to
develop such models since it already integrates the major abi-
otic stresses (thermal, hydric, and mechanical stress).

Future research, combining experimental and modeling ap-
proaches, should focus on a better understanding of the role of
abiotic stresses in damping-off diseases. In addition, diagno-
ses of commercial fields with various levels of damping-off
symptoms could also help analyze the effects of interactions
between cropping practices and production situations on the
biotic and abiotic drivers of damping-off. The developed
models would thus significantly improve our understanding
of the critical interactions between biotic and abiotic factors
that affect damping-off diseases and would help design inte-
grated management strategies of dumping-off diseases.

5 Conclusions and perspectives

The great economic importance of damping-off diseases and
increasing concerns in finding sustainable solutions to this
problem imply that opportunities exist to develop IPM strate-
gies. Achieving this outcome will require a greater under-
standing of the ecology, genetics, and pathogenicity of the
microbes associated with the disease. Research should focus
on critical niches of complexity, such as seed, seedbed, asso-
ciated microbes, and their interfaces, for which innovative and
robust experimental and modeling approaches are needed. In
particular, development and validation of new simulation
models or improvement of those already existing ones may
result useful.

Legislative pressure, fueled by public concern over the use
of conventional pesticides in agriculture, requires that alterna-
tive to conventional pesticides be developed and applied for a
durable and sustainable disease management. Nevertheless,
management of damping-off appears to be less straightfor-
ward than one might expect. Given that several pathogenic
organisms interact and cause damping-off, it is fundamental
to have prior knowledge of the interaction concerned, as even
a very low population density of soil-borne pathogens can
lead to severe epidemic development. Consequently, the
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prevention or containment of one pathogen may not resolve
the problem of the interaction. Therefore, there is a remarkable
need for a better understanding of the interactions between
plants, the environment and natural resident microbial
agents/communities, under the influence of cropping prac-
tices. The information reported in this paper underlines the
necessity of understanding such a complex relationship,
which is essential for an effective decision-making process
on damping-off disease management.
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