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Abstract

Background: Metabolite profiles can be used for identifying molecular signatures and mechanisms underlying

diseases since they reflect the outcome of complex upstream genomic, transcriptomic, proteomic and

environmental events. The scarcity of publicly accessible large scale metabolome datasets related to human disease

has been a major obstacle for assessing the potential of metabolites as biomarkers as well as understanding the

molecular events underlying disease-related metabolic changes. The availability of metabolite and gene expression

profiles for the NCI-60 cell lines offers the possibility of identifying significant metabolome and transcriptome

features and discovering unique molecular processes related to different cancer types.

Methods: We utilized a combination of analytical methods in the R statistical package to evaluate metabolic

features associated with cancer cell lines from different tissue origins, identify metabolite-gene correlations and

detect outliers cell lines based on metabolome and transcriptome data. Statistical analysis results are integrated

with metabolic pathway annotations as well as COSMIC and Tumorscape databases to explore associated

molecular mechanisms.

Results: Our analysis reveals that although the NCI-60 metabolome dataset is quite noisy comparing with

microarray-based transcriptome data, it does contain tissue origin specific signatures. We also identified biologically

meaningful gene-metabolite associations. Most remarkably, several abnormal gene-metabolite relationships

identified by our approach can be directly linked to known gene mutations and copy number variations in the

corresponding cell lines.

Conclusions: Our results suggest that integrative metabolome and transcriptome analysis is a powerful method for

understanding molecular machinery underlying various pathophysiological processes. We expect the availability of

large scale metabolome data in the coming years will significantly promote the discovery of novel biomarkers,

which will in turn improve the understanding of molecular mechanism underlying diseases.

Background

Metabolites are end products of cellular processes. Thus

the profile of metabolites provides a snapshot of the phy-

siological state of a cell complementary to its transcrip-

tome and proteome, which manifests the functional status

of events which occur more upstream. Since the size of

metabolome is about 1-2 orders of magnitude smaller

than transcriptome and proteome, the steady state con-

centration of a metabolite usually reflects the combined

effects of multiple upstream factors. Conceivably, this

property makes metabolites better biomarkers in some

situations. In addition, identifying interrelations between

metabolites and genes, proteins, or genome structures can

potentially facilitate the elucidation of molecular mechan-

isms involved in pathophysiological processes.

Previous work has revealed significant associations

between gene and metabolite expression profiles, which

added another layer of quantitative inferences to gene-

wise correlations [1-3]. Nam et. al demonstrated that the
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integrative study of transcriptomics and metabolomics

could effectively identify metabolic biomarkers for breast

cancer [4]. Nevertheless, the noisy nature of the metabo-

lome data, limited number of metabolites with known

structures in metabolome data, the lack of annotation of

metabolite-gene relationships despite databases like

EHMN and BiGG [5,6], the indirect nature of potential

gene-metabolite relationships, and the lack of large scale

metabolome study data in the public domain, still limit

our knowledge of metabolites and their regulation in nor-

mal and disease processes.

Conceivably, cancer samples provide excellent oppor-

tunities for identifying metabolic biomarkers and gene-

metabome relationships due to the dramatic function

alterations at the molecular level in cancer tissues. For

example, cancer tissues usually exhibit more than 10-

fold changes in the expression level of many genes in

numerous microarray studies. Recently, the collabora-

tive NCI60 project from the Developmental Therapeu-

tics Program (DTP) of the National Cancer Institute

(NCI) has made extensive measurements of various

‘omics’ data publicly available, including microarray,

metabolomics, proteomics, etc. While the number of

metabolome of metabolome-related studies and bio-

marker discoveries associated with cancer is increasing

rapidly in targeted studies, there is still no literature

on comprehensive analysis of metabolic features and

their regulatory mechanisms of different cancer types

across multiple ‘omics’ data.

In this study, we want to investigate whether different

cancer cell lines have distinct metabolic signatures and

whether available metabolome data for the NCI-60 cell

lines is suitable for cancer subtype classification. We

also hope the combined metabolome and transcriptome

analysis will reveal some distinct regulatory relationships

in some of the NCI-60 dataset which are not otherwise

possible by either metabolome or transcriptome study

alone. We expect the analysis approach used in this

work can be applied to other metabolome-transcriptome

datasets when they become available.

Results

Metabolomic signature of cancer cells from different

tissue origins

The first question we would like to address is whether

cancer cell lines exhibit tissue-origin specific metabolic

signatures. We used classification analysis similar to

those performed in microarray data [7] to classify 57

cell-lines into 9 cancer types related to their tissue ori-

gins. Our initial tests suggest that regardless of method

used, the classification error on metabolomics data is

always significantly higher than that from microarray

(~0.51 for metabolomics and ~0.34 for microarray).

Besides the fact that NCI-60 metabolome dataset has

much less data points but with higher noise levels when

compared to microarray data, we speculate that the low

number of some cancer types (e.g. only 2 prostate

cancer cell lines) and high heterogeneity of some cell

lines (breast, ovarian and CNS) may also undermine the

performance of the metabolome-based classification. In

fact, these 4 cell lines contribute most to the out of bag

classification error estimates.

After prostate, breast, ovarian and CNS cell lines are

removed from the whole sample, the metabolite classi-

fiers can reach comparable performance with microarray

classifiers (Figure 1). The significantly improved metabo-

lome-based classification results after removing cell lines

with high variability or heterogeneity strongly suggests

that there are indeed cancer subtype-specific (based on

tissue of origin) metabolic signatures.

Since the removal of cancer classes will also reduce

the complexity of the data thus naturally improve classi-

fication performance, we also removed the same number

of cancer classes at each stage randomly for 500 times

to estimate the effect of improvement of OOB errors

due to simplification of data structure resulted from

sample removal (orange dashed lines in Figure 1). It can

be seen that the reductions in OOB errors from random

removal are not as significant as those from progres-

sively removal of the prostate, breast, ovarian and CNS

cell line classes, suggesting that it is indeed the high het-

erogeneity and the low sample number of these cell line

classes that caused the high OOB error in the original

classification. Consequently, our results suggest that

although metabolite profiles are not as good as microar-

ray data for the classification of cancer cell lines, meta-

bolites nonetheless contain cell type specific signature

and the classification results can be improved if we have

more samples or have more data points in the metabo-

lome assays.

Correlation analysis

Although existing metabolome data do not outperform

microarray data in cell line subtype classification, metabo-

lome can still be useful for revealing some basic molecular

processes and their alterations in NCI-60 cell lines. We

hypothesize that different cell lines should share some

basic regulatory and metabolic processes (steady-state)

essential for cell growth and metabolism. It is likely that

although different cancer cell lines may have very different

levels of gene expression and metabolism, the steady-state

relationship between genes and metabolites in the same or

highly coupled pathways should be conserved across differ-

ent cell lines in the absence of dramatic genomic changes

such as gene mutation and copy number variation (CNV).

Identification of such gene-metabolite relationships at
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steady state will help us better understand the underlying

molecular mechanisms related to the metabolic change.

They will also help us infer potential metabolic changes

based on the expression data or vice versa. On the other

hand, if a few cell lines deviated significantly from the

gene-metabolite relationships exhibited by the most of the

cell lines, the related genes in such outlier cell lines are

likely to be silenced (no expression) or agitated (over

expression) due to genomic structural changes. Conse-

quently, we are interested in both high correlations which

reflect steady state trend over all samples, and outliers

which reflect signatures in specific cell lines.

The classic method of inspecting the relatedness of

two quantitative features is by computing the Pearson

Correlation Coefficient (PCC). While PCC have been

proven to work well in many gene expression studies,

the correlation is often inflated by outliers or clustering

effect, which made it not suitable to analyze data with

high noise level such as metabolic profiles. In contrast,

the robust correlations can provide a much better esti-

mate of the true association in the presence of multi-

dimensional outliers if the sample size is sufficiently

large. We chose the Pair-wise Quadrant Correlation

(PQC) for its good computational performance. How-

ever, for small sample size, PQC sometimes may inflate

the correlation estimate. Therefore our correlation ana-

lysis, we use a novel approach by combining results

from both PCC and PQC. Gene-metabolite pairs with

high PCC and high PQC tend to demonstrate true linear

correlation across all cancer types, which imply a gen-

eral functional association between gene and metabolite

profiles. On the other hand, gene-metabolite pairs with

high PCC and low PQC are possibly resulted from a few

extreme outliers, which can potentially be linked to cell-

line specific signatures.

Metabolite-gene correlations

Since metabolite-gene relationships can help us to

understand the direct or indirect cause of metabolite

changes, we computed PCC and PQC for 11872 gene

expression profiles and 253 metabolite measurements

over 57 cell-lines.

To investigate the biological significances of the

correlation analysis, we mapped all the known gene-

compound associations from EHMN to our NCI60

analysis. There are a total of 721 EHMN annotated

direct metabolite-gene associations, involving 352 genes

and 81 known metabolites, that overlap with our NCI-

60 metabolite-gene relationships.

Figure 2 shows a mapping of our current metabolite-

compound knowledgebase to the robust correlations.

We chose the top 9 pathways in EHMN mapping

ordered by number of genes

Some of the EHMN gene-compound relationships do

show high association across all cell-lines. For example,

gene AKR1B1 which reduces L-Arabitol to L-Arabinose

Figure 1 Classification error. Estimated Out-of-Bag (OOB) Error with regard to progressive cancer class removal. At each step, cancer classes

contribute most to classification error were removed and OOB errors were recalculated. B: Breast Cancer. P: Prostate Cancer. O: Ovarian Cancer.

C: CNS. The left plot shows OOB errors on entire dataset and the right plot shows OOB errors on subset of classifiers selected by varSelRF. The

improvement of variable selection is more remarkable for microarray because of the much larger classifier pool to select from (11961 v.s. 342).

Metabolite classifiers can achieve average OOB error of 0.28 when B,P,O,C are removed, reduced from 0.51 from the full set. The OOB error for

u133a reduced from 0.34 to 0.18. The average OOB errors from the random cancer class removal are plotted in the orange dashed line.
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with EHMN reaction ID R01758 and R01759, is asso-

ciated with L-Arabitol with PQC of 0.69 and PCC of

0.36, which implies strong association between metabo-

lite level and gene activity. However, it is surprising that

most of the direct enzyme-metabolite relationships can-

not be mapped to high correlations (Figure 2A and 2B).

There are several possible explanations to the low

match-ups of significant correlations to EHMN data.

A simple explanation is most of the annotatable gene-

metabolite relationships in the NCI-60 dataset may not

be the speed limiting factor in the related pathways. It is

also possible that the high level of abnormal regulation

in the cancer cell lines may have masked global

mechanisms such that it is difficult to identify high gene

to metabolite correlations across all cell lines.

Interestingly, the grouping of genes in the same path-

way in Figure 2 enables us to detect many metabolites

exhibit high correlations with other genes in the same

pathway. For example, although phosphoenolpyruvate

does not overlap with any of the EHMN annotated direct

reaction genes in Figure 2B, it has high correlation with

GPI and ALDOA, two of the genes in the glycolysis mod-

ule that are known to be highly regulated by hypoxia-

inducible factor 1alpha and such regulation is related to

the aggressive phenotype of hepatocellular carcinoma.

Consequently, ALDOA, GPI and other genes highly cor-

related with phosphoenolpyruvate in our multi-cancer

cell line analysis may suggest that these genes has more

significant regulatory or speed limiting roles in glycolysis

than genes such as ENO1, ENO2 that are directly related

Figure 2 Heatmap of gene-metabolite relationship organized according to KEGG pathway. Mapping of EHMN gene-metabolite

association data to robust correlation matrix heat map. A. Rows are genes grouped by pathway names, columns are metabolites also grouped

by corresponding pathway names. Green circles mark the position of a specific reaction that couples a metabolite and a gene from EHMN.

Orange Light cells indicate positive PQC, with black to be 0 and orange to be 1. It can be seen that even though there are patterns of gene-

metabolite clustering, very few high correlations can be mapped to known reactions. B. Gene-metabolite correlation in the Glycolysis pathway. C:

The gene-gene correlation with in Glycolysis pathway.

Su et al. BMC Bioinformatics 2011, 12(Suppl 1):S36

http://www.biomedcentral.com/1471-2105/12/S1/S36

Page 4 of 7



to reactions involving phosphoenolpyruvate in these

cancer cell lines. Naturally, not all genes in the same

pathway strongly correlate with each other since genes in

the same pathway are not all (Figure 2C).

Further investigation will be worthwhile for high cor-

relation between metabolites and other genes (i.e. those

not directly involved in the specific metabolic reaction)

in the same pathway, as such un-annotated relationships

are likely help us to identify speed limiting enzymes in a

pathway, key regulatory genes of related pathways or

novel metabolic mechanisms.

Outlier analysis

In our previous analysis we require high PQC in addi-

tion to high PCC to identify molecule pairs with true

high correlation. We have also identified many cases

where cell lines have one or a few gene-metabolite pairs

with much higher expression values than the rest of the

other samples, which directly produce inflated PCC and

very low PQC. To systematically investigate these cases,

we used R package mvoulier to detect multidimensional

outliers, and recomputed the PCC and PQC scores after

outlier removal. Our empirical rule shows that when

PCC > 0.6 and PQC < 0.3(Preferably close to 0), and the

number of multidimensional outliers is smaller than 3,

the high PCC is most likely to be an artifact from very

few extreme outliers.

To explore the biological significance of these outliers,

we compared the outlier cases detected by the criteria

mentioned above to the Sanger Cosmic database [8].

Sanger Cosmic contains 177 mutation entries of 28

genes in our 57 NCI60 cell-lines. We ordered all the

metabolite-gene correlations of the 28 genes by PCC,

and amazingly the top two outliers detected by our

approach, NOTCH1~X-2005 in MOLT-4 cell line and

KRAS~in X-2690 in OVCAR-5 cell line, are the cell

lines with known gene mutation on the exact same

genes in Sanger Cosmic database (Figure 3).

The common feature of these two gene-metabolite

pairs is high PCC and low PQC before outlier removal

and low PCC and low PQC after the outlier removal.

From plots in Figure 3 we can verify that the inflated

PCC were indeed a product of single cell line outlier.

Besides, the sample sizes of these two cases are suffi-

ciently large (22 for NOTCH1~X-2005 and 26 for

KRAS~X-2690, respectively) so that the outlier is not

likely to be a random fluctuation from small sample

size.

Since our unbiased analysis did not take advantage of

any cell line or gene mutation information, the fact that

our top two outliers overlaps with documented gene

mutation in the Sanger Cosmic dataset suggests that the

mutations are likely to be a cause of such outliers, and

the associated metabolites may be good candidate bio-

markers for such events.

In addition to point mutations, we also compared the

outlier analysis with Copy Number Variation (CNV)

data from Broad institute. Only 34 out of 57 samples

from NCI60 have CNV data, and also found some gene-

metabolite outlier pairs that are consistent with CNV

outliers. For example, gene BRIP1, with CNV of 14.22

in cell line MCF7, has PCC of 0.90 and PQC of 0.008

and one outlier. The corresponding compound, X-3363,

may be associated specifically to this copy number

variation.

The fact that some top ranked gene-metabolite outlier

associations matches with known corresponding geno-

mic structural changes in the specific gene strongly sug-

gests the effectiveness of our approach in identifying

distinct molecular processes specific to metabolome and

transcriptome variations.

Methods

NCI-60 data pre-processing: raw molecular datasets

were downloaded from DTP web portal (http://dtp.nci.

nih.gov/index.html March 2007 release). There are 57

cell-lines in 9 cancer classes have both microarray and

metabolomics data. We used our in-house Entrez-based

Custom CDF version 12 to derive gene-level expression

data from the NCI-60 Affymetrix Genechip CEL files

(http://brainarray.mbni.med.umich.edu) [9]. The meta-

bolite data averaged over triplicate experiments were

manually compared with a reference dataset to exclude

imputed values (Beecher, unpublished data) as the

imputed data could significantly bias the inferences

drawn from correlation analysis. All metabolite names

were manually compared with KEGG and assigned a

KEGG compound ID whenever possible. The pre-pro-

cessing step produced 11961 and 6089 gene expression

profiles from Affymetrix HG-U133A and HG-U133B

chips respectively, and quantitative data for 124 known

and 218 unknown metabolites.

All statistical analyses were performed in R (http://

www.r-project.org/). Classification and variable selection

were performed by R randomForest (http://cran.r-

project.org/web/packages/randomForest/index.html) and

varSelRF package [10]. The robust correlations were

computed with robust package (http://cran.r-project.org/

web/packages/robust/index.html), using the parameter

pair-wise Quadrant Correlation (pairwiseQC). Multidi-

mensional outliers were identified by package mvoutlier

[11]. We performed the computation on our LINUX

cluster of ~100 cores. The results were loaded into an

Oracle database for integrative analysis.

The annotated gene to metabolite relationship data

kindly offered by Edinburgh Human Metabolic Network
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project is used for identifying biological relevant known

gene-metabolite relationships revealed by our analysis

[5]. We also compiled a local version of KEGG [12] and

DAVID 2008 [13] for similar purposes. In order to

associate known mutations and CNVs in NCI-60 cell

lines to abnormal gene-metabolite relationships, we have

built a local copy of COSMIC [8] dataset from Sanger

and Tumorscape [14] from Broad institute for cell-line

specific point-mutation and copy number variations

(CNV), respectively.

Discussion

Our analysis results on the NCI-60 metabolome and

transcriptome data suggest that 1) although the small

sample size, the high noise level and intra-cancer class

heterogeneity in the current NCI-60 metabolome dataset

makes it unsuitable for global cancer subtype classifica-

tion, there are indeed metabolic signatures associated

with cancer subtypes. 2) There are biologically meaning-

ful high correlation gene-metabolite pairs across NCI-60

cell lines, identifiable by robust correlation estimates.

3) Most strikingly, there are several examples of abnor-

mal gene-metabolite coupling that can be directly linked

to known gene mutations or copy number variations.

Conceivably, high correlations as well as outliers can

be utilized to aid the progressive prediction of unknown

metabolites based on annotations in existing pathway

databases and literature. For example, the high correla-

tion of an unknown compound with a known gene and

in particular, multiple known genes in a pathway can

dramatically reduce the search space for the unknown

compound, since the most likely candidates will be

structurally related molecules or known metabolites

from related pathways. We plan to compare the Mass

Spectrometer (MS) features of these unknown com-

pounds from the predicted candidate pool and conduct

wet-lab experiments for validation. Since we have dis-

covered that many unknown metabolites are strongly

associated with each other but not with any known

compounds. Correct determination of even a small frac-

tion of them would facilitate the identification of the

rest, which also will in turn improve our understanding

of the molecular processes and pathways involving these

molecules.

In summary, the strong biological relevance of our

results also suggest that the analysis strategy we devel-

oped based on the combination of PCC and PQC corre-

lation values for identifying real correlation and true

Figure 3 Outlier analysis. Outlier analysis shows extreme gene-metabolite pairs could be resulted from cell specific mutations. Top scatter

plots: NOTCH1 ~ X-2005, with outlier in cell line MOLT_4 and KRAS ~ X-2690, with outlier in OVCAR5. It can be seen that the high PCC were

both artefacts of extreme outliers. Middle table: PCC and PQC of the corresponding pairs, before and after outlier removal. R_QC: PQC.

R_QC_RM: PQC after outlier removal. P_Pearson: PCC. R_P_RM: PCC after outlier removal. Bottom table: annotated mutation records from Sanger

Cosmic database, directly matched to these two outlier pairs.
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outliers is a powerful approach for integrative analysis of

noisy ‘omics’ datasets. The presentation of gene-metabo-

lite relationship analysis results in a heatmap grouped

by genes in the same pathway together with overlay of

known gene-metabolite relationship provides a powerful

visual exploration approach for identifying both direct

and indirect gene-metabolite relationships. The analysis

methods we described here will be useful for other inte-

grated analysis of metabolome and transcriptome

and the wet lab validation of novel gene-metabolite

relationships.
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