
Integrated Metadata Support for Web Service Runtimes

Florian Rosenberg, Philipp Leitner, Anton Michlmayr and Schahram Dustdar
Distributed Systems Group, Technical University Vienna

Argentinierstrasse 8/184-1, 1040 Vienna, Austria
lastname@infosys.tuwien.ac.at

Abstract

Service metadata is an important aspect when develop-
ing applications following the service-oriented architecture
paradigm. Such metadata includes a description of func-
tionalities offered by a service, pre- and postconditions and
data that is produced and consumed by a service, as well
as a categorization of functionalities in the domain. Pro-
viding expressive metadata for services as part of the run-
time infrastructure is necessary to leverage adaptability and
autonomic behavior such as dynamic (re-)binding, service
selection, invocation and composition. In this paper we
present a model and its implementation for adding a rea-
sonable amount of service metadata to foster their use in
service-oriented applications and describe how to map con-
crete Web services to this metadata model. Furthermore, we
explain our model based on an illustrative example from the
telecommunications domain.

1. Introduction

The service-oriented architecture (SOA) paradigm pro-
vides a means to develop more flexible software applica-
tions by leveraging principles such as loose coupling, dy-
namic binding and invocation as well as service compo-
sition [12]. The core entities of a SOA-based design are
services, which implement some functionality and expose
it in a platform-independent manner to service consumers.
Services are often published in a service registry to achieve
better decoupling between providers and consumers. Web
services, which build upon the main standards SOAP and
WSDL, are one widely adopted realization of SOA.

Applications adhering to this paradigm should be less
vulnerable to changes and provide better support for re-
using, adding, removing or exchanging services at run-
time. In practice, however, an implementation of the SOA
paradigm does often not live up to its expectations [9]. One
of the biggest challenges is the provisioning of flexible self-
adaptive service-oriented applications. Following Cheng

et al. [1], self-adaptive applications “assess their own be-
haviour and change it when the assessment indicates a need
to adapt due to evolving functional or non-functional re-
quirements”. Within the context of service-oriented appli-
cations this aspect is composed of a number of challenges,
such as dynamic (re-)binding to different services, auto-
nomic service selection (e.g., based on Quality of Service or
QoS for short), service versioning or flexible service com-
position, just to name a few. We aim at solving some of
these issues in the VRESCO project [5, 9]. Its main goal
is to develop a service runtime that is targeted to enterprise-
level SOA development. In this runtime, all company ser-
vices can be published, managed and invoked. This does
not only include services that are developed internally but
also services from business partners that are invoked as part
of the application logic.

In this paper, we tackle the problem that current SOA
runtimes lack an integrated mechanism allowing to express
metadata about services as part of their core runtime func-
tionality. This is necessary to achieve a high degree of
decoupling of service consumers and providers, with the
ultimate goal of binding to a given “feature” (functional-
ity), that is implemented by concrete services, rather than
to concrete service instances themselves. The service run-
time environment has to provide the necessary abstractions
and mechanisms for realizing this use case. Therefore, we
discuss an integrated metadata model for services, which
enables application developers to describe the functional-
ity that services offer, the input and output of a service op-
eration and the pre- and postconditions of a service (typi-
cally defined in the domain model). A metadata descrip-
tion specifies an abstract service in terms of features that
have to be mapped to concrete service instances (includ-
ing possible transformations if the interfaces do not match).
Additionally, the model provides a way to categorize ser-
vices according to common business functionality. Please
note that our metadata model is not intended to compete
with approaches used in the Semantic Web services com-
munity (SWS) [7], such as OWL-S for describing semantics
of services using ontologies. We aim at enterprise develop-

ment where metadata is an important business asset which
should not be accessible for everyone, as opposed to the
SWS community where domain ontologies should be public
to facilitate integration among different providers and con-
sumers. It is therefore important to provide a deep integra-
tion of the metadata model with the core services provided
by VRESCO.

The remainder of this paper is structured as follows: Sec-
tion 2 describes an illustrative scenario where a metadata
model is important to achieve dynamic service selection
within an enterprise scenario. In Section 3 we depict our
metadata model that forms the core of the VRESCO run-
time. Section 4 presents a detailed mapping example from
the VRESCO metadata model to concrete service instances.
Section 5 describes the implementation of this model within
the VRESCO runtime. In Section 6 we discuss some of the
related work and finally Section 7 concludes this work and
highlights some future work.

2. Illustrative Example

In this case study we tackle the problem of building a
composite service for cell phone number portability. Such
a service is currently available to customers when they
change the cell phone operator (CPO) and want to keep their
old number, thus the telephone number has to be ported to
the new operator. We assume a simplified process such as
the one depicted in Figure 1.

The process itself runs internally within the CPO where
the customer recently signed a contract. After signing the
contract, the new CPO has to port the customer’s old num-
ber. Therefore, the CPO has to coordinate with the cus-
tomer’s old provider in order to support this feature.

The process starts by looking up the customer using
the internal Customer Service. After finding the cus-
tomer, the process has to check which CPO has served this
customer in the past. This is done using the internal CPO
Service. When the old provider is known the process
has to use this provider’s Number Porting Service
to check if the porting operation is currently possible, and,
if it is, initiate the porting process on the partner’s side.
If porting is currently not possible the process has to es-
calate (which is not shown in the example for reasons of
brevity). After successfully communicating the port to the
partner, the phone number is locally activated using the in-
ternal Phone Number Management Service, and,
finally, the customer is notified. This is done using different
messaging mechanisms, according to the preferences of the
customer.

In this process, a number of dynamic service bindings
exist: the external Number Porting Service that has
to be used is an outcome of the result of the Lookup CPO
activity and cannot be determined statically; the same is true

Mail Service

Partner CPO ServicesProcessInternal Services

Check
Portability

Status

Activate
Number

Notify
Customer

Lookup
Customer

Lookup
Partner

Port Number

E-Mail Service

SMS Service

Customer Service

CPO Service

Number Porting
Service

Phone Number
Management

Service

Internal External

Figure 1. Number Portability Process

for the notification service used to implement the last ac-
tivity in the process. The possible alternatives for each of
these activities are well-known, and their number is rela-
tively small: in this example it is not reasonable to assume
that the CPO wants to cooperate with unknown partners,
or that a previously unknown notification service (e.g., a
public service from the Internet) should be used. However,
the possible alternatives are not static, new CPOs may enter
the market while others leave, and new notification services
may be implemented while others are deactivated. The pro-
cess itself should not have to be adapted manually as a result
of such changes in the environment. Additionally, we can-
not assume that each of the services has the same interface,
or relies on the same implementation-level data types, i.e.,
the services selected and bound at runtime may vary signifi-
cantly in terms of both interfaces and implementation. This
complicates the problem of dynamic binding, since media-
tion between per se incompatible invocations and interfaces
may become necessary. Therefore, standard programmatic
approaches to handle variability such as the well-known
Strategy pattern [3] are not suitable even in this relatively
simple illustrative example.

3. VRESCo Metadata Model

In this section we describe the VRESCO metadata
model, an abstract, feature-driven model for defining what

functionality is offered by a service. Additionally, we de-
scribe the mapping from this model to concrete service in-
stances and discuss mechanisms to express the state of ser-
vices instances using the proposed metadata model.

3.1. Metadata Model

In Figure 2, we have depicted our basic metadata model
for modeling services, their features, pre- and postcondi-
tions. We use a slightly relaxed UML notation in the figure.
In this model we have to abstract from the technical service
implementation to achieve a common understanding what a
service does and what it expects and provides. In a typical
SOA environment, there may be multiple services that facil-
itate the same business goal, therefore, we also need a way
to group services according to their functionality. In the fol-
lowing, we use italic font to represent model elements and
typewriter to indicate instances of a model element.

Category

Feature

Concept

Precondition

Postcondition

Predicate

Argument

Data Concept

State
Predicate

Flow
Predicate

isSubCategory

1..*

1

1
1

11 *0..1

1

1

*

0..1

derivedFrom

consistsOf

0..1

*

Figure 2. VRESCo Metadata Model

The main building blocks of the VRESCO metadata
model are Concepts. A Concept is the definition of an en-
tity in the domain model (an example of a domain model
is shown in Figure 3 below). We distinguish between three
different types of Concepts:

• Features represent activities in the do-
main that perform a concrete action, e.g.,
Check Portability Status, Port Number
or Notify Customer from the example process in
Figure 1.

• Data Concepts represent concrete entities in the do-
main (e.g., customers, addresses or bills) which are

defined using other Data Concepts (e.g., the con-
cept Customer might consist of Customer Id,
Customer Name, and Address) and/or atomic ele-
ments such as strings or numbers.

• Predicates represent domain-specific statements
(propositional functions in a mathematical sense)
that either return true or false. Each Pred-
icate can have a number of Arguments that
express their input. For example, a (state) pred-
icate for a Feature Port Number could be
Portability Status Ok(Phone Number),
expressing the portability status of a given phone
number.

Concepts have a well-defined meaning specific to a cer-
tain domain. For example, the Data Concept Customer in
one domain is clearly different to the concept Customer in
another. Concepts may be derived from other concepts; that
is specifically interesting for Data Concepts, e.g., it is pos-
sible to define the concept Premium Customer which is
a special variant of the more general concept Customer.

Each Feature in the metadata model is associated with
one Category expressing the purpose of a service (e.g.,
Phone Number Porting). Each category can have ad-
ditional subcategories to allow a more fine-grained differ-
entiation. The semantics of subcategories is multiple inher-
itance, meaning that each subcategory inherits all Features
from all of its parents. Each Feature has a Precondition
and a Postcondition expressing logical statements that have
to hold before and after the execution of a Feature. Both
types of conditions are composed of multiple Predicates,
each having a number of (optional) Arguments that refer to
a Concept in the domain model (indirectly through a Data
Concept). There are two different types of Predicates:

• Flow Predicate: this type of predicate can be used
in pre- and postconditions to indicate constraints
related to the data flow, such as data required by a
feature or produced by a feature. This is expressed
by using two special variants of flow predicates called
requires and produces. An example from our
process in Section 2 would be a Postcondition having
a predicate requires(Customer), expressing
that a concept Customer is needed as an input
for feature Check Portability Status.
In case of a Postcondition, the predicate
produces(Portability Status) can be
used to express that the aforementioned feature
produces the data concept Portability Status
as output.

• State Predicate: this type of predicate expresses some
global behavior that is valid either before (for a Pre-
condition) or after invoking a feature (for a Postcon-

dition). For example, a postcondition can be added
to the Notify Customer feature expressing the
global state change after a successful notification, e.g.,
notified(Customer).

These two types of predicates can be specified by the
developer to explicitly define flow and state behavior, how-
ever, they are not required or enforced by the implemen-
tation upon execution time. This kind of metadata only
provides knowledge which is required later, when perform-
ing (semi-)automated service composition, where such pre-
and postconditions are a required means to guide the com-
position process for stateful services. However, a detailed
description of our service composition approach is out of
scope of this paper.

3.2. Mapping to Service Level

In the following section we substantiate the VRESCO
metadata model as described in Section 3 by explaining the
mapping of concrete Web services to the domain model.

Service Model. The service model that is used for the
mapping basically follows the Web service based notation
as introduced by WSDL. Concrete services represent a col-
lection of service operations. Every operation may have a
number of input parameters, and may return one or more
output parameters. Additionally, operations may depend on
a certain state in order to function as expected, and may re-
sult in a state change on successful execution. These state
changes are modeled by using state predicates as part of pre-
and postconditions.

Mapping. The elements of the service model can now be
mapped to our metadata model: Services are grouped into
categories (Category), where every service may belong to
several categories at the same time. Services within the
same category provide at least one feature of this category.

Service operations are mapped to features (Feature).
Currently we assume a 1:1 mapping between features and
operations; every feature is implemented in exactly one ser-
vice operation, and every operation implements exactly one
feature of a category. The input and output parameters of
the service operations map to data concepts (Data Concept).
Every parameter is represented by one or more concepts
in the domain model. This means that all data that a ser-
vice accepts as input or passes as output is well-defined us-
ing data concepts and annotated with the flow predicates
requires (for input) and produces (for output).

The concrete mapping of service parameters to concepts
is described using Mapping Rules. In general, rules for both
the mapping from the parameter to the concept and vice

versa have to be specified. If an operation requires a cer-
tain state prior to its execution then this requirement can
be modeled as a state predicate (State Predicate) in the do-
main model. The same is true for state changes as result of
the execution of an operation.

3.3. Modeling with State Predicates

There is still a fruitful debate in academia and industry
whether services should be designed in a stateful or stateless
way. The former implies that service operations have to be
invoked in a well-defined order to work correctly, because
they keep some internal state between two or more service
invocations. We refer to this message sequence as the pro-
tocol of a stateful service. In the latter case, every service
operation is fully transparent to any previous or later invo-
cation. Stateless services need to be given the full context
of any invocation as input, and do not inflict state changes
(often referred to as side effects) on usage. Stateful services
pose a clear problem for the purposes of this paper because
the requirements and outcomes of a service invocation are
in that case, unlike with stateless services, not sufficiently
described through the service contract.

In our approach State Predicates are used to capture the
state of stateful services. State Predicates are semantically
well-defined concepts in the domain model. Like all Pred-
icates in our model State Predicates can have arguments,
which are used to further describe a state. State Predicates
can be used in the precondition as well as in the postcondi-
tion of Features. If a State Predicate is used in the precon-
dition then the service consumer has to ensure the validity
of this state before using the Feature; if a State Predicate is
used in the postcondition then the provider of the Feature
ensures this state as a result of successful service execution.

Using these Predicates one can model the protocol of
stateful services. However, note that VRESCO does not en-
force the State Predicates – there is no way how VRESCO
can supervise whether a certain state is actually mandatory
for the success of a Feature, or whether an execution really
led to the expected state change. VRESCO relies on the
service publisher to define these Predicates correctly.

4. Mapping Example

After a detailed discussion of the metadata model it-
self, we now demonstrate a small mapping example taken
from the number porting process from Figure 1. We
use two activities that are mapped to concrete service
instances, namely, Check Portability Status and
Port Number. We use the UML class diagram notation
to visualize the service metadata model for our example.
Thus, we apply stereotypes for each UML model element to

<<Postcondition>>
produces

<<Postcondition>>
leads_to

<<Precondition>>
requires

<<Feature>> Check_Status

<<Category>>
Porting_Status

<<Feature>> Port_Number

<<Category>>
Number_Portingis_subcategory

<<Data>> phoneNr : string
<<Data>> status : PortingState

<<Data>>
Porting_Status

<<Postcondition>>
produces

<<Precondition>>
requires <<Data>> phoneNr : string

<<State>>
Is_Ported

<<Data>> name : Name
<<Data>> address: Address
<<Data>> phoneNr : string

<<Data>>
Porting_Info

Metadata Level
Service Level

<<Operation>> portNumber(...)

<<Service>>
PortingService

<<Operation>> isPortable(...)
<<Operation>> portPhoneNumber(...)

<<Service>>
NumberPortingService

CPO 2CPO 1

<<Operation>> checkStatus(...)

<<Service>>
PortabilityCheckService

<<Data>> state : ported, onHold, notPorted

<<Data>>
PortingState

Figure 3. Mapping Example

Concept PortabilityCheckService Mapping Operator NumberPortingService Mapping Operator
Input Mapping

Porting Info.name.firstname PortingRequest.firstname (string) == firstname ==
Porting Info.name.lastname PortingRequest.lastname (string) == lastname ==
Porting Info.address.street PortingRequest.street concat – –
Porting Info.address.apt – –
Porting Info.address.zip PortingRequest.zipcode (int) stringToInt – –
Porting Info.address.country PortingRequest.country (string) == – –
Porting Info.phoneNr PortingRequest.number (string) == phoneNr ==

Output Mapping
Porting Status.phoneNr PortingRequest.number (string) == – ==
Porting Status.status PortingRequest.result (boolean) (Porting Status.status

== “ported”) ? true :
false

boolean (Porting Status.status
== “ported”) ? true :
false

Table 1. Check Status Feature Mapping

indicate the respective type (e.g., Category, Feature, Data,
etc.) according to our metadata model.

In Figure 3, we have depicted the metadata level on
top defining metadata for the aforementioned services in
the process. The lower level expresses the service level
showing concrete service instances with the mapping to the
metadata level. In our case we have two concrete service
providers, CPO 1 and CPO 2. In the metadata level, we
have depicted two categories (with thicker border). The first
category, Porting Status, defines one feature called
Check Status that checks the status of a phone num-
ber porting operation. This feature has one precondition
that consists of one predicate requires expressing that
a Porting Info data concept is required as an input,
and it produces a Porting Status concept as an output

which is expressed using the produces predicate in the
postcondition. For reasons of readability, the data concepts
Address and Name (both composite types) are not shown
in the figure. The second category, Number Porting,
is a subcategory of Porting Status and it defines one
feature called Port Number to port the phone number
from one provider to a another one. The subcategory re-
lationship expresses an inheritance relation, meaning that
every feature is inherited (similar to object-oriented pro-
gramming concepts). Again, this feature has one precon-
dition that contains one flow predicate expressing that the
concept Porting Status is taken as input. In addition,
the Number Porting feature has a postcondition (mod-
eled as state predicate), namely IsPorted(phoneNr),
expressing that a given phoneNr is now ported.

The mapping from both categories to concrete service
instances is indicated by the arrows from each feature to the
concrete service operation. As it can be seen on the left side
of the service level, CPO 1 provides two concrete services
where each feature implements one feature from the meta-
data level whereas CPO 2 only provides one concrete ser-
vice implementing both features. The VRESCO metadata
model does not enforce any particular category and feature
design, thus it is flexible enough to handle various map-
pings. Figure 3 does not show the mappings from the data
concepts to concrete data types used in the services. To
do so, we have illustrated both service interfaces with their
data types and their mappings below in Listing 1 (we use
Java with JAX-WS annotations for the code). Please note
that the data type PortingRequest is not specified in
the listing, it can be seen in detail in the mapping in Table 1.

� �
1 /∗∗ CPO 1 S e r v i c e s ∗ /
2 @WebService
3 p u b l i c c l a s s P o r t a b i l i t y C h e c k S e r v i c e {
4 @WebMethod
5 p u b l i c P o r t i n g S t a t u s
6 c h e c k S t a t u s (P o r t i n g R e q u e s t r) { . . . }
7 }
8

9 @WebService
10 p u b l i c c l a s s P o r t i n g S e r v i c e {
11 @WebMethod
12 p u b l i c boo l portNumber (P o r t i n g R e q u e s t r) { . . . }
13 }
14

15 /∗∗ CPO 2 S e r v i c e ∗ /
16 @WebService
17 p u b l i c c l a s s N u m b e r P o r t i n g S e r v i c e {
18 @WebMethod
19 p u b l i c boo l i s P o r t a b l e (S t r i n g phoneNr ,
20 S t r i n g f i r s t n a m e , S t r i n g l a s t n a m e) { . . . }
21

22 @WebMethod
23 p u b l i c vo id portPhoneNumber (S t r i n g phoneNr) { . . . }
24 }� �

Listing 1. Example Services

After having defined the basic metadata for the CPO-
related services, the mapping of features and concepts to
concrete services and data types needs to be defined. The
mapping process has to be done upon deployment time of a
Web service to the VRESCO runtime (details about that are
provided in Section 5). In Table 1, we have summarized the
mapping for the feature Check Status, separated in in-
put mapping (for data types used as an input to a service op-
eration) and output mapping (for data types that are returned
by a service operation). The goal is to define a mapping for
every concept to the input and output data structures that
are used within the service operation. The mapping itself is
fairly straightforward because most rules require a simple
1:1 mapping from the concept to the data type (using the
== operator). The table contains a “–” for every concept
element that does not need to be mapped to a concrete data

type of a service operation, e.g., the Address concept is
not needed for the NumberPortingService. For ev-
ery other mapping an operator is given that has to be ap-
plied during the execution of a service request at runtime.
For example, the street and the apt elements in the
Porting Info.Address concept have to be concate-
nated because the address property of PortingRequest
only has a street property that expects also the apartment
number. The mapping for the feature Port Number can
be done similarly but is not shown due to space restrictions.

5. Implementation

The metadata model presented in this paper was imple-
mented as part of the VRESCO (Vienna Runtime Environ-
ment for Service-Oriented Computing) project. VRESCO
has been introduced in [9] and aims at addressing some of
the current challenges in Service-oriented Computing re-
search [12] and practice. Among others, this includes topics
related to service discovery and metadata, dynamic bind-
ing and invocation, service versioning and QoS-aware ser-
vice composition. Besides this, another goal is to facilitate
engineering of service-oriented applications by reconciling
some of these topics and abstracting from protocol-related
issues. The basic architecture of VRESCO is shown in Fig-
ure 4.

VRESCo Runtime Environment

Registry
Database

Publishing
Interface

Metadata
Interface

Composition
Interface

Notification
Interface

ORM
Layer

Client
Program

SOAP

Composition
Engine

Notification
Engine

SOAP

SOAP

SOAPQoS
Monitor

Query
Interface

Query
Engine

Daios Client
Library

Publishing
Engine

Figure 4. VRESCo Overview

To be interoperable and platform-independent, the
VRESCO services are provided as Web services which can
be accessed either directly using the SOAP protocol, or via
the client library that provides an API for accessing these
services. Services and associated metadata are stored in the
registry database that is accessed using the object-relational
mapping (ORM) layer. The services are published and
found in the registry using the publishing and querying en-
gine. Metadata can be accessed using a Metadata Interface.
This interface allows clients to retrieve existing categories,
features and concepts. Furthermore, new metadata can be
inserted using this interface. The VRESCO runtime uses a
QoS monitor as described in [14], which continuously mon-
itors the QoS values of services, and keeps the QoS infor-

mation in the registry up to date. Furthermore, the compo-
sition engine aims at providing support for QoS-aware ser-
vice composition which is part of our ongoing work. The
event notification engine presented in [8] is responsible for
notifying subscribers (e.g., using email or Web service noti-
fications) when certain events of interest occur (e.g., new
services are published, services are invoked, QoS values
change, etc.). Invocations in VRESCO are issued using the
integrated DAIOS dynamic Web service invocation frame-
work [6].

When publishing services in VRESCO, clients need
to specify the concrete mapping of operations to features,
and of parameters to data concepts (as exemplified in Sec-
tion 3.2). Furthermore, the rules that are used to trans-
form service parameters to data concepts and vice versa
have to specified. The concrete mapping engine that inter-
prets rules and performs transformations at invocation-time
(along with the language that we use to describe transfor-
mation rules) is currently work in progress.

Besides the specification of metadata upon service de-
ployment, an important aspect is the retrieval of metadata
information about a service. In addition to the Metadata
Interface (described above), the Query Interface provides
the ability to query services and their metadata (e.g., fea-
tures, categories as well as QoS properties) using an ex-
pressive query language which uses the Metadata Inter-
face in the backend. A static view of the metadata for a
service is currently not available, but can be added eas-
ily by serializing the metadata stored in our relational data
model and adding it to a service description (e.g., using WS-
MetadataExchange).

Loose coupling is an ultimate goal within VRESCO,
therefore, concrete services should not be invoked directly.
The potential of having expressive metadata allows clients
to query category(s) and feature(s) that the service needs
to implement. Such queries return a DAIOS proxy that de-
couples clients from the services providers to be invoked by
abstracting from service implementation issues such as en-
coding styles, operations or endpoints. This proxy is then
bound to a particular service instance that implements a
given feature. Re-binding of the proxy to another service
that implements the same feature is then easily achieved by
applying mediation between these two services. This ap-
proach is completely transparent to the client. Additionally,
querying can also include the current state (expressed us-
ing state predicates). The state is used by VRESCO to de-
termine if a given concrete service implementation is func-
tional in a given situation (by checking the current state as
specified by the client against the preconditions specified
by the service implementations). Finally, clients may query
for services that expect a certain input and produce a certain
output (in terms of both flow and state predicates).

6. Related Work

There are several specifications which aim at inte-
grating semantics into Web services (e.g., OWL-S [15],
SAWSDL [16], etc.). OWL-S represents an ontology for
services which consists of three main parts: the service pro-
file is responsible for advertising and discovering services;
the process model gives a detailed description of the ser-
vice’s operation; and the grounding defines how to interop-
erate with these service using messages. SAWSDL is an
extension to WSDL that aims at integrating the semantics
of services directly into service description using semantic
annotations. This is done by adding an extension attribute to
WSDL (modelReference) that defines the relation between a
WSDL component and a concept in some semantic model,
and lifting and lowering mappings that define how to trans-
form concrete types into concepts and vice versa. Most of
these specifications follow the idea of Semantic Web, as-
suming a Web of publicly available Web services with se-
mantic information based on a global ontology. The ser-
vice descriptions then point to this shared ontology. In con-
trast to this, the metadata model of our approach has to be
queried using the querying and metadata interface, whereas
the WSDL documents do not contain any semantic informa-
tion. This has the advantage that metadata is not accessible
for all service consumers which we believe to be an impor-
tant aspect in enterprise scenarios.

Curbera and Mukhi [2] discuss the use of metadata in
SOA environments. The authors introduce three usage mod-
els for metadata: multiprotocol services, dynamic discovery
and negotiation, and cooperative specialization. The main
focus of their work is on flexible configuration and opti-
mization of the middleware environment (e.g., communica-
tion protocol and QoS attributes). Mukhi et. al. [10] further
propose an architecture for this approach. Metadata are rep-
resented as XML documents that conform to the WS-Policy
specification. The architecture is based on several message
interceptors (e.g., metadata exchange, offloading negotia-
tion, dependency negotiation, etc.) which are used to dy-
namically expose and negotiate service behavior between a
service consumer and a service provider. Our work is com-
plementary to theirs, since our metadata approach aims at
adaptability and autonomic behavior, such as dynamic (re-)
binding, selection, invocation, and composition of services.

In [13], Parastatidis and Webber propose SSDL (SOAP
Service Description Language) as a language to describe
Web services based on the SOAP protocol following
message-orientation as the architectural paradigm. SSDL
features a number of different frameworks to specify
service-based systems (e.g., the Message Exchange Pattern
Framework). In contrast to SSDL, our work focuses on as-
sociating metadata to services by abstracting from its con-
crete implementation technology. Our approach can be seen

complementary to SSDL, as it extends the SSDL concepts
with additional semantics for service messages and interac-
tion protocols.

7. Conclusions

In this paper, we have introduced a metadata model
for enterprise SOA runtime environments. Our model al-
lows the mapping of low-level Web service entities, such
as Web services, WSDL operations and Web service pa-
rameters, to entities in the enterprise’s domain model. Us-
ing this metadata, applications can implement functional-
ity that allows for dynamic exchange of services, or semi-
automated composition. Our model uses features to express
domain activities, and data concepts to represent domain
objects. Data flow is modeled using flow predicates, while
state predicates are used to represent stateful Web services.
Based on an illustrative example from the telecommunica-
tions domain we have shown how concrete Web services are
mapped onto our metadata model. Finally, the implemen-
tation of our model within the VRESCO project has been
sketched.

We think that the metadata model proposed in this pa-
per could also be adopted by existing SOA based program-
ming models such as the Service Component Architecture
(SCA) [11] or Java Business Integration (JBI) [4]. These
approaches provide models and runtimes to develop service
based systems but both do not sufficiently address service
metadata to achieve a higher degree of flexibility and adap-
tivity.

As part of our future work, we plan to develop a graph-
ical user interface that eases metadata specification and the
mapping procedure. Additionally, we will evaluate the
model thoroughly regarding publishing and querying per-
formance, and verify its applicability in real-life SOA sce-
narios. Our future plans also include the application of the
metadata model described in this paper in areas such as
semi-automated service composition and service invocation
mediation.

Acknowledgements

The research leading to these results has received
funding from the European Community’s Seventh Frame-
work Programme [FP7/2007-2013] under grant agreement
215483 (S-Cube). Additionally, we would like to thank An-
dreas Huber and Thomas Laner for a first implementation
of this metadata model within VRESCO.

References

[1] B. H. Cheng, R. de Lemos, H. Giese, P. Inver-
ardi, and J. Magee. Software Engineering for

Self-Adaptive Systems: A Research Road Map.
In Dagstuhl Seminar Proceedings, 2008. http:
//drops.dagstuhl.de/opus/volltexte/
2008/1500/pdf/08031.SWM.Paper.1500.pdf
(Last accessed: July 28, 2008).

[2] F. Curbera and N. Mukhi. Metadata-driven middleware for
web services. In 4th International Conference on Web Infor-
mation Systems Engineering (WISE’03), Rome, Italy, pages
278–286, 2003.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[4] Java Business Integration (JBI). http://jcp.
org/aboutJava/communityprocess/final/
jsr208/index.html (Last accesssed: July 28, 2008).

[5] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar.
End-to-End Versioning Support for Web Services. In Pro-
ceedings of the International Conference on Services Com-
puting (SCC 2008). IEEE Computer Society, July 2008.

[6] P. Leitner, F. Rosenberg, and S. Dustdar. DAIOS – Efficient
Dynamic Web Service Invocation. IEEE Internet Comput-
ing. To appear.

[7] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web
services. IEEE Intelligent Systems, 16(2), 2001.

[8] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar.
Advanced Event Processing and Notifications in Service
Runtime Environments. In Proceedings of the 2nd Inter-
national Conference on Distributed Event-Based Systems
(DEBS’08). ACM, 2008.

[9] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and
S. Dustdar. Towards Recovering the Broken SOA Triangle –
A Software Engineering Perspective. In Proceedings of the
2nd International Workshop on Service Oriented Software
Engineering (IW-SOSWE’07), Dubrovnik, Croatia, 2007.

[10] N. Mukhi, R. B. Konuru, and F. Curbera. Cooperative mid-
dleware specialization for service oriented architectures. In
Proceedings of the 13th International Conference on World
Wide Web - Alternate Track Papers & Posters (WWW’04),
New York, NY, USA, pages 206–215, 2004.

[11] Open SOA. Service Component Architecture (SCA).
http://www.osoa.org (Last accesssed: July 28,
2008).

[12] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-Oriented Computing: State of the Art and Research
Challenges. IEEE Computer, 40(11):38–45, 2007.

[13] S. Parastatidis and J. Webber. SSDL – The SOAP Service
Description Language. http://www.ssdl.org (Last
accessed: July 28, 2008).

[14] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping Per-
formance and Dependability Attributes of Web Services. In
Proceedings of the IEEE International Conference on Web
Services (ICWS’06), Chicago, USA, Sept. 2006.

[15] World Wide Web Consortium (W3C). OWL-S: Semantic
Markup for Web Services, 2004. http://www.w3.org/
Submission/OWL-S/ (Last accesssed: July 28, 2008).

[16] World Wide Web Consortium (W3C). Semantic Annotations
for WSDL and XML Schema, 2007. http://www.w3.
org/TR/sawsdl/ (Last accesssed: July 28, 2008).

