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ABSTRACT

We propose a new integrated method of exploiting model, batch

and domain parallelism for the training of deep neural networks

(DNNs) on large distributed-memory computers using minibatch

stochastic gradient descent (SGD). Our goal is to �nd an e�cient

parallelization strategy for a �xed batch size using P processes. Our

method is inspired by the communication-avoiding algorithms in

numerical linear algebra. We see P processes as logically divided

into a Pr ×Pc grid where the Pr dimension is implicitly responsible

for model/domain parallelism and the Pc dimension is implicitly

responsible for batch parallelism. In practice, the integrated matrix-

based parallel algorithm encapsulates these types of parallelism

automatically. We analyze the communication complexity and an-

alytically demonstrate that the lowest communication costs are

often achieved neither with pure model nor with pure data paral-

lelism. We also show how the domain parallel approach can help in

extending the theoretical scaling limit of the typical batch parallel

method.
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1 INTRODUCTION AND BACKGROUND

Neural Networks (NNs) have proved to be very e�ective in diverse

applications ranging from semantic segmentation [18, 28] and de-

tection [21, 27] to medical image segmentation [10, 19]. In most

cases the hardware limits have been reached for most of the ker-

nels, and the next milestone is in distributed computing. This is

becoming increasingly important with renewed attention to super

resolution machine learning [15], as well as signi�cant increase in

the training dataset in cases such as autonomous driving. E�ective

use of these datasets in a reasonable time is not possible without a

scalable parallel method.
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Given N empirical samples, the DNN training procedure seeks

to �nd the model parameters, w , such that the forward pass on

sample inputs would produce outputs that are similar to ground

truth outputs and that it generalizes well for unseen test samples.

The weights are initialized randomly and SGD algorithm updates

them iteratively as:wn+1
= wn − η∇fi , where i is an index chosen

randomly (with replacement) from [1,N ], η is the learning rate,

and f is the loss function. In practice, one can use a mini-batch

SGD by drawing a set of indices i ∈ Batch at each iteration, chosen

randomly from [1,N ] and update the parameters as follows:

wn+1
= wn − η

1

B

∑

i ∈Batch
∇fi , (1)

where B is the mini-batch size. This whole SGD-based training

requires a “forward pass” where the network’s output and the cor-

responding loss functional is computed given the current model

parameters, and a “backward pass” (commonly referred to as back-

propagation or simply backprop) where the gradient of the loss is

computed with respect to the model parameters,w .

The forward phase of DNN training is a sequential combination

of a�ne transformation Yi =WiXi , followed by nonlinear trans-

forms Xi+1 = f (Yi ) . Each column of Xi ∈ Rdi−1×B holds input

activations for one sample and similarly each column ofYi ∈ Rdi×B
holds output activations for one sample. Notice that Xi+1 and Yi
have the same shape. The matrixWi ∈ Rdi×di−1 holds the weights
of the neural network between the ith and (i − 1)th layer. The

number of neurons in the ith DNN layer is denoted by di .

Forward phase is followed by backpropagation that can also be

written in matrix form as ∆Xi
= WT

i ∆Yi . Here, ∆Xi
and ∆Yi are

the gradients of the loss function, with respect to input and output

activations, respectively. Finally, the gradient of the loss function

with respect to model weights is calculated using ∆Wi
= ∆YiX

T
i .

Consequently, DNN training requires 3 matrix multiplications, in-

cluding gradient computations.1 The derivations of the forward

pass and the backpropagation are shown in detail in the extended

version of this paper [8]).

A single pass over the whole data (also called an epoch) requires

N /B iterations. It takes many iterations until the training error is

su�ciently small. Consequently, DNN training is computationally

expensive. To accelerate training, one can change the training algo-

rithm with an aim to reduce the number of epochs, or make each

1Note that our approach does not require each individual convolution to be computed
using matrix multiplication, but we view it as this way for simplicity and connection
to high performance computing literature.
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Figure 1: Illustration of matrix multiplications for the pure model

parallel training using P = 2 (top: forward pass, middle/bottom:

weight gradient computation).

epoch run faster through distributed training. We are focusing on

the latter.

Two well-known techniques for distributed SGD based DNN

training are model parallelism and data parallelism. In simplest

terms, model parallelism is the partitioning of the weights of the

neural network to processes. Data parallelism corresponds to parti-

tioning of the input data to processes. The existing literature merely

considers data parallelism to be the assignment of groups of whole

data points, such as images, to individual processes. However, one

can instead assign fractions of data points to processes as well. For

example, training a convolutional neural network (CNN) on two

processes with domain parallelism can assign all the top halves

of the images to the �rst processor and all the bottom halves of

the images to the second processor [12]. Consequently, there are

two subtypes of data parallelism: batch parallelism, which is the

commonly studied option in literature, is the assignment of groups

of data points in whole to processes and domain parallelism is the

subdivision of individual data points to processes.

This paper presents a new method for integrated model, batch,

and domain parallelism. There are existing approaches that exploit

both model and batch parallelism but they often only provide ad-

hoc solutions to hard engineering constraints such as the model no

longer �tting into a single GPU or the mini batch sizes hitting a

convergence limit. Our method, by contrast, is amenable to precise

communication analysis and covers the whole spectrum between

pure data parallelism (which includes batch parallelism as a special

case) and pure model parallelism. It often �nds favorable perfor-

mance regimes that are better than pure batch parallelism and pure

model parallelism, even in the absence of tailored constraints.

Limitations. We �nd it useful and necessary to describe the lim-

itations in our analysis. For the communication complexity we

assume that all the compute nodes are connected and thus do not

consider the topology of the interconnect, and we also do not con-

sider network con�icts in our model [3]. However, the e�ects of this

can be approximated by adjusting the latency and bandwidth terms

accordingly, as a detailed analysis will become network speci�c.

While the presented simulated results are based on AlexNet, the

mathematical analysis we present for the integrated framework

is generally applicable to any neural network. For instance, cases

with Recurrent Neural Networks mainly consist of fully connected

layers and our analysis naturally extends to those cases. Moreover,

we empirically measure the computation time. A more detailed

analysis of the computation time would require a hardware speci�c

execution model which is outside the scope of this work. Finally, we

present simulation results based on the complexity analysis. Those

simulation results assume idealized network behavior (i.e. perfect

utilization of bandwidth, no additional software overheads, and per-

fect overlap of communication and computation when considered),

and hence provide an upper bound on achievable performance.

2 PARALLELISM IN DNN TRAINING

Deep Neural Networks are typically trained using �rst-order meth-

ods, i.e. those that rely on �rst order derivatives. SGD is the canoni-

cal example of �rst-order methods used in DNN training. Regardless

of the speci�c approach, all methods calculate activations using

forward propagation and calculate derivatives using backprop. Con-

sequently, our results generalize to other �rst-order methods even

though we will describe it using SGD for simplicity.

The SGD iterations have a sequential dependency. One possi-

bility to break this barrier for parallel training is the family of

asynchronous SGD methods [4, 7, 13, 20, 22, 31]. Here, this depen-

dency is broken and each process is allowed to use stale parameters

and update either its weights or that of a parameter server. However,

these approaches often do not converge to the same performance

as in the synchronous SGD cases. Here, we focus only on the latter

which obeys the sequential consistency of the original algorithm.

However, the framework that we present can be used to accelerate

asynchronous methods as well.

In terms of terminology, we use the word “process" to refer to

the program running on a compute node. It is often the case that

a compute node has many processing elements (or cores); thus

one can map multiple processes, each with its own local private

memory, to a compute node. The exact nature of process to compute

node mapping is immaterial to our analysis.

2.1 Layers of Deep Neural Networks

Deep Neural Networks are composed of many layers. Typically

each layer is either a convolutional layer, a fully connected layer,

activation layer, or a dropout layer. A convolutional layer is com-

posed of a number of �lters (also called kernels), applied in a sliding

window fashion with a stride length s over the whole input sample.

The application of each �lter in a convolutional layer results in

a distinct channel in the output layer. Hence, we will use X i
C
to

denote the number of channels in the ith layer. The number of input

channels in the �rst layer is equal to the number of channels in the

input data (usually three channels for RGB). A convolutional �lter

in the ith layer takes a tensor input ki
h
×kiw ×X i

C
and creates a single
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Figure 2: Illustration of matrix multiplications for the pure batch

parallel training using P = 3 (top: forward pass, middle/bottom:

weight gradient computation).

scalar value (Here ki
h
, kiw are the kernel convolution kernel’s size).

There are Y i
C
such di�erent �lters in the ith convolutional layer.

Consequently an input of dimensions X i
H
, X i

W
, X i

C
is transformed

into an output of dimensions Y i
W
, Y i

H
, Y i

C
where

Y iW =



X i
W
− kw
s


,Y iH =



X i
H
− kh
s


.

With proper padding, it simpli�es to Y i
W
=

⌈
X i
W
/s
⌉
and Y i

H
=

⌈
X i
H
/s
⌉
.

The number of distinct parameters between two convolutional

layers is equal to the number of nonzeros inW if they are repre-

sented compactly without redundancy. Hence,

|Wi | = (khkwX
i
C )Y

i
C ,

di−1 = X i
HX

i
W X i

C ,

di = Y
i
HY

i
W Y iC =

⌈
X i
W /s

⌉⌈
X i
H /s

⌉
Y iC .

(2)

The number of parameters between two fully-connected layers,

or between a convolutional layer and a fully-connected layer is sim-

ply |Wi | = didi−1. Dropout is sometimes applied to fully-connected

layers and has the e�ect of pruning a certain percentage of both

the input and output activations.

2.2 Communication Cost Analysis of Pure

Batch, Pure Model, and Pure

Domain-Parallel Approaches

Two possibilities for parallel computations in synchronous SGD is

model and data parallel. The latter can be subdivided into batch

parallelism and domain parallelism as explained in the previous

section.

Communication costs of pure model parallelism. In the

model parallel case, the computation of the loss in the forward pass

can be computed by distributing the model parametersW as shown

in Fig. 1.

Consider a convolutional layer without loss of generality: each

process performs a subset of the convolutions on the input activa-

tions and computes a subset of the output activations. For instance,

assume one of the layers consists of YC kh ×kw ×XC convolutions,

where kh , kw is the size of each convolution �lter and XC , YC
are the sizes of input and output channels. In the model parallel

case, the kernels are distributed so that each process gets YC/P

�lters and computes the corresponding YC/P channels of the out-

put activation. As computations of the other layers would require

access to all of the previous activations, one needs to perform an

all-gather operation per layer. Backpropagation also requires an

all-reduce communication during ∆X calculation. The appendix of

our expanded preprint include a detailed derivation of backprop-

agation [8]. This yields the following communication complexity

for the model parallel case:

Tcomm (model) =

L
∑

i=1

(

α ⌈log(P )⌉ + βB P − 1
P

di

)

+ 2

L
∑

i=2

(

α ⌈log(P )⌉ + βB P − 1
P

di−1
)

,

(3)

where P is the number of processes, L is the number of DNN layers,

α is the network latency, and β is the inverse bandwidth. The �rst

sum considers the cost for all-gather required after every layer, and

the second sum considers the all-reduce cost for backpropagating

activation gradients. Note that the second sum starts from i = 2 as

we do not need to backpropagate the gradient beyond the �rst layer.

This analysis assumes the use of Bruck’s algorithm for all-gather

and ring algorithm for all-reduce [25]. We note that the complexity

depends on the mini-batch size. The model parallel approach was

partially used in AlexNet [17], where the model was split into

two GPUs. The original GoogLeNet work also exploited a certain

amount ofmodel parallelism [24]. DistributedDNN training engines

that rely solely on model parallelism also exist [5], especially for

low-latency high-bandwidth systems.

The other possibility for distributing the SGD computation is

data parallelism. This can be performed either by distributing the

data over the batch size, or partition each individual image. We

refer to the latter as domain parallelism, which will be discussed

further below.

Communication costs of pure batch parallelism. For the

batch parallel case, the reduction for the gradient computation over

the mini-batch sum (1) can be computed independently by each

process. This approach is known as batch parallel method, where

each process computes a partial sum, followed by an all-reduce to

compute the mini-batch gradient. This communication cost is due

to the reduction that is needed to form ∆W = ∆YX
T product. The

communication complexity for the batch parallel approach using

ring algorithm for all-reduce [25] is:
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Figure 3: Illustration of domain parallel approach for P = 4. For NCHW format, it is best to distribute along the height to avoid non-contiguous

memory accesses. NCHW format corresponds to the data layout in the memory, where the data runs fastest in width, height, channel size, and

then across batch size.

Tcomm (batch) = 2

L
∑

i=0

(

α ⌈log(P )⌉ + β
P − 1
P
|Wi |

)

, (4)

where |Wi | is the total number of model parameters in the ith layer.

Here, the factor of 2 is merely due to the all-reduce algorithm [25].

Note that for P ≫ 1 the bandwidth costs are independent of P

and unlike the model parallel case does not depend on the batch

size. Most of the current work on distributed training uses batch

parallel to scale training [9, 30]. The DistBelief paper [7] provides

easy-to-understand descriptions of model and batch parallelism.

For a convolutional layer, based on Equation 2, the ratio of com-

munication volume between pure model and batch parallelism

becomes

Tcomm−volume (batch)

Tcomm−volume (model)
=

2|Wi |
3Bdi

=

(2khkwX
i
C
)Y i
C

3BY i
H
Y i
W
Y i
C

=

2khkwX
i
C

3BY i
H
Y i
W

(5)

Consequently, whenever B > (2khkwX
i
C
/3Y i

H
Y i
W
), pure batch

parallelism is favorable to pure model parallelism. Surprisingly, it

is not a foregone conclusion that batch parallelism is always fa-

vorable to model parallelism for convolutional layers. For several

convolutional layers that are used in practice (such as those found

in AlexNet with 3x3 �lters on 13x13x384 activations), model paral-

lelism has lower communication volume than batch parallelism for

B ≤ 12.

If one were to switch from a data parallel distribution shown in

Figure 2 to a model parallel distribution shown in Figure 1, the only

added communication cost is the redistribution of X to processes

using an all-gather operation, with an associated cost of

Tcomm (redistribute batch to model) = α ⌈log(P )⌉ + βB P − 1
P

di .

(6)

It is important to note that this redistribution cost is asymptoti-

cally free because the subsequent model parallel step has commu-

nication cost that is three times of the cost of the redistribution.

Communication costs of pure domain parallelism. A third

possibility for parallelization is domain parallel [12], where one can

decompose the input activation map as shown in Fig. 3. Here each

process contains all of the model parameters (as in the pure batch

parallel case), but performs the convolutions only on a subset of

the input image, and writes a subset of the output activations. For

convolutions with �lter size larger than one, we have to perform

a halo exchange to communicate the boundary points. This can

be performed as a non-blocking, pair-wise exchange while the

convolution is being applied to the rest of the image. This means

that the convolutions that do not require this boundary data could

be computed while the communication is being performed. The

cost of the communication in this case will be:

Tcomm (domain) =

L
∑

i=0

(

α + βBX i
W X i

C ⌊k
i
h
/2⌋

)

+

L
∑

i=0

(

α + βBY iW Y iC ⌊k
i
w /2⌋

)

+2

L
∑

i=0

(

α ⌈log(P )⌉ + β P − 1
P
|Wi |

)

,

(7)

whereX i
W
, X i

H
, X i

C
,Y i
W
, Y i

H
, Y i

C
are the input/output activation’s

width, height, and channel size in the ith layer, and ki
h
, kiw is the

corresponding convolution size of that layer. Note that for a 1 × 1
convolution no communication is needed. For layers with large

input activation size and large number of convolution �lters, this

approach can reduce the computation time with good strong scaling

e�ciency. However, it is not e�ective for small image sizes and not

applicable to fully connected layers.

Model parallelism, as published in literature, corresponds to

performing a 1D distribution of the matrixWi , replicating Xi and

gathering Yi multivectors after multiplication. The kth processor

can perform its local matrix multiplication of the formWi (k, :)Xi
without any communication, but in order to fully assemble Yi , each

processor needs to gather other components from other processes.

Even if input/output multivectors were also distributed, the commu-

nication bounds stay the same, because while this communication

time would not be necessary for the output Yi , it would be needed

for gathering Xi before the local multiplication.

By contrast, in data parallelism, every process starts with the

same parameters, which get updated by the same gradient. In fact,

the forward pass of batch parallel training needs no communication.
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The communication in this case happens during backpropagation,

where a collective all-reduce operation is needed to compute the

total sum of the partial gradients. The parallel matrix multiplica-

tions in the batch parallel case are illustrated in Figure 2, where the

input activations Xi and the output activations Yi are distributed

1D columnwise to processes.

2.3 Integrated Model and Batch Parallelism

We �rst discuss the integrated model and batch parallelism and

then discuss the full integration with domain parallelism which

extends the scalability limit of the pure batch method. Batch par-

allelism has a favorable communication complexity, but there is

an inherent limit on increasing the batch size. Furthermore, small

batch size training is not e�cient in terms of hardware utiliza-

tion and ultimately training time. This is due to the fact that small

matrix-matrix operations (aka level-3 BLAS operations) cannot use

all the hardware resources, in terms of cores or vectorized units.

This is empirically shown in Fig. 4, where we report one epoch

training time of AlexNet for di�erent batch sizes measured on a

single Intel Knights Landing (KNL) processor. The fastest training

time is achieved with a batch size of 256. With the batch parallel

approach one has no choice but to reduce per process batch size

for scaling before hitting the limit of 1 batch per process.

Best Workload

1 2 4 8 16 32 64 128 256 512 1024 2048

10
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10
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Batch Size→

O
n
e
E
p
o
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T
im

e
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ec
)→

Figure 4: One epoch training time of AlexNet computed on a single

KNL. Increasing batch size up to 256, reduces the time due to better

use of hardware resources and fewer SGD updates.

Our integrated batch and model parallel approach allows us to

reduce the communication overhead of the pure batch parallel case.

Here, we consider replicating a subset ofWi as opposed to all of it, a

concept that has been explored under the name of 1.5D algorithms

for matrix multiplication [16]. We think of our process grid logically

partitioned as P = Pr ×Pc . Each process holds (1/Pr )th piece ofWi ,

e�ectively replicatingWi matrix Pc times (as opposed to P times in

batch parallelism). Conversely, data matrices are replicated Pr times

and each process holds (1/Pc )th piece ofXi andYi . Communication

cost of this 1.5D algorithm, which is illustrated in Figure 5, is:

Tcomm =

L
∑

i=1

(

α ⌈log(Pr )⌉ + β
B

Pc

Pr − 1
Pr

di

)

+2

L
∑

i=2

(

α ⌈log(Pr )⌉ + β
B

Pc

Pr − 1
Pr

di−1

)

+2

L
∑

i=0

(

α ⌈log(Pc )⌉ + β
Pc − 1
Pc

|Wi |
Pr

)

.

(8)

Note that unlike in Eq. 4, the all-reduce communication volume is

now reduced by a factor of Pr . This provides a theoretically sound

integration of batch and model parallelism. It can be especially

valuable for networks with many fully connected layers. Further-

more, this algorithm automatically selects the best con�guration

to distribute the model and batch parallel work given a �xed batch

size on P processes. The closest approach to ours is the hybrid

model/batch parallel approach described by Das et al. [6], but that

paper does not describe the details of the partitioning of the data

and the model to the processes. In addition, the authors claim that

using any other dimension to extract parallelism would always be

sub-optimal, which we show not be true in general by using domain

parallelism.

Similar to the analysis of pure model and pure batch cases, the

cost of redistribution is asymptotically amortized in this integrated

batch and model parallel case as well. In particular, if one were to

switch process grids in between layers, say from a pure batch case

(1 × P grid) to a balanced case (
√
p × √p) grid, the communication

costs would asymptotically stay constant.

For the curious reader familiar with the theory of parallel ma-

trix multiplication, we would like to clarify why we consider our

approach a 1.5D algorithm, as opposed to a 2D algorithm such as

Cannon’s algorithm [2] or SUMMA [26]. 2D matrix multiplication

algorithms are optimal in terms of their memory usage; that is,

each processor only holds (1/p)th of the total memory needed to

store all three matrices (2 inputs and 1 output). In other words,

there is no replication. The class of .5D algorithms (of which 1.5D

algorithm is a member), by contrast, are not optimal in terms of

memory consumption. At least one matrix is replicated multiple

times, which often results in an asymptotic reduction in communi-

cation costs [1]. This is indeed the case for the algorithm described

in Figure 5.

2.4 Integrated Model, Batch and Domain

Parallelism

The pure batch parallel method has a theoretical strong scaling

limit of B. In the limit each process gets a batch size of one (i.e.

it reads a single data). It is possible to extend this limit with the

integrated model and batch parallel approach discussed above. But

this approach is sub-optimal for early layers of the network, as the

all-gather communication volume is very high there (Eq. 8). This

is due to the fact that this communication volume depends on the

size of the activation map (i.e. Yi ) which is prohibitively large in

the beginning layers.

However, as we show below the domain parallel approach has a

favorable communication complexity for early layers of a neural

network where the input activation size is large. For these layers it

is favorable to use domain parallelism instead of model parallelism,

as it leads to a smaller communication volume that can actually

be overlapped with part of the computation in both forward and

backward pass. Note that in model parallel one has to perform a

blocking all-gather operation which is detrimental for performance.

Moreover, the domain parallel approach does not require any com-

munication for 1 × 1 convolutions which are actually becoming

a dominant portion of the network in recent architectures [11].

However, for fully connected layers the halo exchange region will
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Figure 5: 1.5D matrix multiply illustration for integrated parallel

DNN training (top: forward pass, middle/bottom: weight gradient

computation) using a 2 × 3 process grid indexed as Pi j .

consist of all of the input activations. To avoid that large commu-

nication cost we can actually integrate all the three parallelism

methods. The communication complexity for integrating all the

three methods would then become:

Tcomm =

∑

i ∈LM

(

α ⌈log(Pr )⌉ + β
B

Pc

Pr − 1
Pr

di

)

+

2
∑

i ∈LM

(

α ⌈log(Pr )⌉ + β
B

Pc

Pr − 1
Pr

di−1

)

+

2
∑

i ∈LM

(

α ⌈log(Pc )⌉ + β
Pc − 1
Pc

|Wi |
Pr

)

+

∑

i ∈LD

(

α + β
B

Pc
X i
W X i

C ⌊k
i
h
/2⌋

)

+

∑

i ∈LD

(

α + β
B

Pc
X i+1
W X i+1

C ⌊kiw /2⌋
)

+

2
∑

i ∈LD

(

α ⌈log(P )⌉ + β
P − 1
P
|Wi |

)

,

(9)

where LM and LD refer to the list of layers where the Pr groups

are used to partition either the model or the domain. Note that for

LM = L, LD = 0, we get the integrated model and batch parallel

complexity as expected.

The choice of whether to partition the model or the domain can

be made by computing the communication complexity. Generally,

it is better to use domain parallelism for the initial layers of the net-

work, since the activation size is large. However, the domain parallel

Fixed options Relevant parameters

Network AlexNet [17] 5 convolutional and

architecture parameters: 61M 3 fully connected layers

Training ImageNet training images: 1.2M

images LSVRC-2012 contest Number of categories: 1000

Computing

NERSC’s Cori2

Processor: Intel KNL

platform latency: α = 2µ s

inverse bw: 1/β = 6GB/s

Table 1: Fixed parameters used to simulate the cost of training neural

networks using integrated batch and model parallel approach. We

only change the mini-batch size and the number and con�gurations

of processes in the presented results.

approach loses its communication advantage for fully connected

layers (for which kh = XH , kw = XW ).

3 SIMULATED PERFORMANCE IN TRAINING

ALEXNET

Simulation setup.We analytically explore the spectrum of both

the integrated batch and model parallel approach, as well as the

full integration with domain parallelism by simulating Eq. 8 and

Eq. 9. To limit the number of variables, we �x a network (AlexNet),

a training set of images (ImageNet LSVRC-2012 contest), and a

computing platform (NERSC’s Cori supercomputer). These �xed

options, described in Table 1, are chosen just to develop a proof-of-

concept of our integrated batch and model parallel approach.

We considered two scenarios: (a) B ≥ P : here the relevant inte-

gration is between model and batch parallel approaches and domain

parallelism is not used as its communication overhead is higher

than batch parallel (Eq. 7) (b) B < P : This is the case where we

reach the maximum scaling limit of the batch parallel method, and

use domain parallelism to scale beyond this (Eq. 9). For the �rst

scenario, we considered two cases. At �rst, the same process grid

is used for all layers of the network, which means that if Pr > 1

then some amount of model parallelism will be used even in convo-

lutional layers. Then we considered the improved case where we

force Pr = 1, Pc = P for the convolutional layers and use varying

Pr × Pc grids for the fully connected layers.

We compute the communication time for a single iteration with

various choices of the mini-batch size B, the number of processes,

and the con�guration of process grid Pr × Pc . Using this data, we
then compute the communication time for a complete epoch by

multiplying the communication time form Eq. 4 by N /B. A typical

simulation of the Neural Network would require many epochs of

training (100 epochs in the case of AlexNet [17]).

Furthermore, we also consider the computational time by empir-

ically measuring the time needed for an SGD iteration for AlexNet

on a single KNL using Intel Ca�e as shown in Fig. 4. We use this

data for cases with the same computational workload to compute

the total run time.

Strong scaling with a �xed mini-batch size. At �rst, we

present the strong scaling results for integrated model and batch.

We initially apply the integrated method in a way that the same

process grid is used for all layers of the network, which means that
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Figure 6: Strong scaling analysis of integrated model and batch parallel approach using the simulated results. The orange bar shows the total

communication time, with the cross hatched portion representing the time spent in batch parallel communication (i.e. the ring all-reduce during

backprop). Here we use the same process grid for all layers, which means some amount of model parallelism is used for both convolutional and FC

layers when Pr > 1. The speedup for the total time compared to pure batch parallel is shown in bold text on top of the best bar chart. We also

report the corresponding speedup for communication time in parenthesis. In strong scaling, we keep the global batch size �xed, and increase the

number of processes to reduce the training time.

Figure 7: Strong scaling analysis of integrated model and batch parallel approach using the simulated results. Model parallelism is used in FC

layers only. Notice the signi�cant improvement in best time compared to Fig. 6 which uses model parallelism in both convolutional and FC layers.
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if Pr > 1 then some amount of model parallelism will be used even

in convolutional layers. The results are shown Fig. 6 where the

training was performed using P = 8 to P = 512 processes with a

�xed mini-batch size of B = 2, 048. In each sub�gure in Fig. 6, only

the con�gurations of the process grid vary. We can see that even

in the naive format, better performance can be attained with an

integrated batch and model parallelism, especially for larger values

of P . For example, on P = 512 processes, the best performance is

observed with 16 × 32 process grid which results in 2.1× speed up

in the overall runtime and 5.0× speedup in communication ( Fig-

ure 6-d). The improved performance is primarily driven by reduced

communication needed by the integrated model and batch parallel

approach (notice the reduction of the communication volume of

the parameters by Pr factor in Eq. 8). However, the bene�t of the

integrated approach is not realized on a relatively small number

processors, such as with 8 processes in Figure 6(a). The �rst rea-

son is that here the main bottleneck is computation. Moreover, the

communication time for model parallel does not scale down since

per process batch size is very large (note the B/Pc term in Eq.8).

Next, we considered the improved case where we force Pr =

1, Pc = P for the convolutional layers and use varying Pr ×Pc grids
for the fully connected layers. For the con�gurations considered,

this results in using pure batch parallelism in convolutional layers

and both model and batch parallelism in FC layers as shown in

Figure 7. Making the convolutional layer pure batch parallel can re-

duce the communication signi�cantly, as evident by comparing Fig.

7 and Fig. 6. For instance, the case with B = 2048, P = 512 results

in 2.5× speedup in overall runtime and 9.7× speedup in commu-

nication time (Figure 7-d). We also show how the results would

change if we consider a perfect overlap between communication

and computation as shown in Fig. 8. This overlapping can only be

performed with the backpropagation phase, where the all-reduce

communication can happen while the transpose convolution of

next layers are being performed (which accounts for two-thirds of

the communication). Even in this setting there is 2.0× speedup. We

believe that this speed up is actually going to increase, given the

new domain speci�c architectures optimized for accelerating the

computation part of neural network training/inference.

Figure 8: Here we show results for perfect overlapping of communi-

cation with backpropagation part of the computations.

Scaling with a variable mini-batch size. We now consider

weak scaling by varying the mini-batch size and the process grid

simultaneously. Two extreme cases are shown in Fig. 9 (a compre-

hensive weak scaling result is presented in the extended version

of this paper [8]). Here we use model/batch parallel based on the

complexity analysis of Eq. 8 (similar to the strong scaling shown

in Fig. 7). In each sub�gure, only the con�gurations of the process

grid vary for a �xed P and B. Since we are simulating the ideal

communication time, communication is expected to scale perfectly

as can be seen in Fig. 9. We do observe a small decrease in the com-

munication speedup (10.3× vs 9.4× in the left and right sub�gures

in Fig. 9) due to the Pc−1
Pc

term in all-reduce during backpropagation.

Similar to the strong scaling results, we observe that the integrated

approach can reduce the communication signi�cantly as we change

the mini-batch size.

Scaling beyond batch size. The pure batch parallel method

has a scaling limit to the maximum batch size that one can use.

However, one cannot increase batch size inde�nitely as it is known

to be detrimental to the performance of the Neural Network [14].

Recent works have tried to increase this limit by changing the hyper-

parameters of SGD [9, 29], but these methods also hit a limit and

have been only shown to work for certain applications in ImageNet

classi�cation. So a natural question is how do we scale beyond this

theoretical limit with pure batch parallelism? One could use the

integrated approach and scale the model part for all layers, but as

shown above this results in sub-optimal communication time. A

better approach is to use an integrated batch, domain, and model

parallel where for the initial layers we use domain parallel instead

of the model. Note that the domain parallel approach requires

a much smaller communication as compared to model parallel,

and actually requires no communication for 1 × 1 convolutions

(Eq. 7). To illustrate this, we show the scaling results for B = 512

up to P = 4096 in Fig. 10. In Fig. 10(a), convolutional layers use

pure batch parallelism with per-process batch size set to one. By

contrast, in Fig. 10(c-d), each image is partitioned into 2,4, and 8

parts where each process works with one part of the image. Using

this integrated batch, domain, and model parallel approach, we

can continue scaling beyond the theoretical limit with pure batch

parallelism (beyond 512 processes in Fig. 10).

4 DISCUSSION

One disadvantage of batch parallelism over model and domain

parallelism is that it tends to change the convergence characteristics

of DNN training algorithms as larger minibatches beyond a certain

point can hurt accuracy. Our integrated framework also provides

guidance on how to choose the right parallelization parameters if

the user decides to limit the maximum allowable batch parallelism

in light of accuracy concerns related to large batch sizes.

Due to DNN training being computational intensive, memory

considerations have been secondary to performance. Solutions that

exploit pure data parallelism often replicate the wholemodel in each

node. By contrast, the 1.5D matrix-multiplication algorithms used

by our integrated parallel approach cut down the model replication

cost by a factor of pr , at the cost of an increase in data replication

by a factor of pc . Like our communication costs, our memory costs
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Figure 9: We present weak scaling results for the communication and computation complexity when training AlexNet. Model parallelism is used

in FC layers only. We follow the notations used in Figure 6.

Figure 10: Illustration of how domain parallel can extend strong scaling limit of pure batch parallelism.

are simply a linear combination of the memory costs of these two

extremes of pure data and pure model parallelism.

We also considered the alternative of using 2D matrix multi-

plication algorithms instead of the 1.5D algorithm. The popular

stationary-C variant of the 2D SUMMA algorithm [26] is symmet-

rical in nature; in the sense that it communicates equal proportions

of both input matrices for an operation C = AB. When matrices

A and B are of comparable sizes, this is a good �t. Often in deep

learning, one of the matrices is bigger than the other. For such

situations, there are other less-common variants of SUMMA that

keep another matrix stationary [23]. These algorithms are more

complicated that our 1.5D algorithm, and communicate more data

either asymptotically or by higher constants.

Consider stationary-A SUMMA, which is the best �t for the for-

ward propagationY =WX among all 2D algorithm variants. This al-

gorithm has 4 communication steps compared to a single step in our

algorithm. For simplicity assume that di = di−1. Also assume that

pr and pc are large enough such that (pr − 1)/pr ≈ (pc − 1)/pc ≈ 1.

When |Wi | > Bdi , it communicates 2B di/pr + B di/pc words, com-

pared to our 1.5D algorithm’s B di/pc words. In that sense, its com-

munication costs approach 1.5D when pr ≫ pc but never surpass

it. When |Wi | < Bdi , all possible 2D algorithms become asymp-

totically slower because they have to communicate two matrices

and no matter which two they choose, the costs become higher

than solely communicating the single smaller matrix. By contrast,

our 1.5D algorithm communicates only that single matrix. Hence,

there is no regime where 2D becomes strictly favorable in terms of
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communication volume. The main advantage of 2D algorithms over

1.5D algorithm is that their memory consumption is optimal in the

sense that they do not perform any asymptotic data replication.

Memory consumption optimality might be a legitimate concern

depending on the platform and the DNN model size.

5 CONCLUSION

We presented an integrated parallel algorithm that exploits model,

batch, and domain parallelism in training deep neural networks

(DNNs). We discussed the associated communication complexity

by analyzing both forward and backwards pass, and showed that

theoretically the integrated parallel approach can achieve better run

time. Furthermore, the integrated parallel approach increases the

scalability limit of the pure batch parallel method that is commonly

used, by decomposing both along the weight matrix as well as

the domain. This approach allows optimal selection of per process

batch size and model size which results in better throughput as

compared to pure batch/model parallel algorithms.

Our analysis toolset is primarily comprised of parallel matrix

algorithms. In particular, the analysis of our integrated model and

batch parallel approach relies on a communication-avoiding 1.5D

matrix multiplication algorithm. This explicit connection between

parallel matrix algorithms and DNN training has the potential to

enable the discovery of new classes of parallel algorithms and lower

bounds for training DNNs.
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