
Integrated Modeling and Control
Based on Reinforcement Learning

and Dynamic Programming

Richard S. Sutton
GTE Laboratories Incorporated

Waltham, MA 02254

Abstract

This is a summary of results with Dyna, a class of architectures for intel
ligent systems based on approximating dynamic programming methods.
Dyna architectures integrate trial-and-error (reinforcement) learning and
execution-time planning into a single process operating alternately on the
world and on a learned forward model of the world. We describe and
show results for two Dyna architectures, Dyna-AHC and Dyna-Q. Using a
navigation task, results are shown for a simple Dyna-AHC system which
simultaneously learns by trial and error, learns a world model, and plans
optimal routes using the evolving world model. We show that Dyna-Q
architectures (based on Watkins's Q-Iearning) are easy to adapt for use in
changing environments.

1 Introduction to Dyna

Dyna architectures (Sutton, 1990) use learning algorithms to approximate the con
ventional optimal control technique known as dynamic programming (DP) (Bell
man, 1957; Bertsekas, 1987). DP itself is not a learning method, but rather a
computational method for determining optimal behavior given a complete model of
the task to be solved. It is very similar to state-space search, but differs in that
it is more incremental and never considers actual action sequences explicitly, only
single actions at a time. This makes DP more amenable to incremental planning
at execution time, and also makes it more suitable for stochastic or incompletely
modeled environments, as it need not consider the extremely large number of se

quences possible in an uncertain environment. Learned world models are likely
to be stochastic and uncertain, making DP approaches particularly promising for

471

472 Sutton

learning systems. Dyna architectures are those that learn a world model online
while using approximations to DP to learn and plan optimal behavior.

The theory of Dyna is based on the theory of DP and on DP's relationship to
reinforcement learning (Watkins, 1989; Barto, Sutton & Watkins, 1989, 1990), to
temporal-difference learning (Sutton, 1988), and to AI methods for planning and
search (Korf, 1990). Werb08 (1987) has previously argued for the general idea of
building AI systems that approximate dynamic programming, and Whitehead &
Ballard (1989) and others (Sutton & Barto, 1981; Sutton & Pinette, 1985; Rumel
hart et aI., 1986; Lin, 1991; Riolo, 1991) have presented results for the specific
idea of augmenting a reinforcement learning system with a world model used for
planning.

2 Dyna-AHC: Dyna by Approximating Policy Iteration

The Dyna-AHC architecture is based on approximating a DP method known as
policy iteration (see Bertsekas, 1987). It consists of four components interacting as
shown in Figure 1. The policy is simply the function formed by the current set of
reactions; it receives as input a description of the current state of the world and
produces as output an action to be sent to the world. The world represents the
task to be solved; prototypically it is the robot's external environment. The world
receives actions from the policy and produces a next state output and a reward
output. The overall task is defined as maximizing the long-term average reward
per time step. The architecture also includes an explicit world model. The world
model is intended to mimic the one-step input-output behavior of the real world.
Finally, the Dyna-AHC architecture includes an evaluation function that rapidly
maps states to values, much as the policy rapidly maps states to actions. The
evaluation function, the policy, and the world model are each updated by separate
learning processes.

The policy is continually modified by an integrated planning/learning process. The
policy is, in a sense, a plan, but one that is completely conditioned by current input.
The planning process is incremental and can be interrupted and resumed at any
time. It consists of a series of shallow seaches, each typically of one ply, and yet
ultimately produces the same result as an arbitrarily deep conventional search. I
call this relaxation planning.

Relaxation planning is based on continually adjusting the evaluation function in
such a way that credit is propagated to the appropriate steps within action se
quences. Generally speaking, the evaluation e(x) of a state x should be equal to
the best of the states y that can be reached from it in one action, taking into
consideration the reward (or cost) r for that one transition:

e(x) "=" m~ E {r + e(y) I x, a},
aEActlon.

(1)

where E {. I .} denotes a conditional expected value and the equal sign is quoted to
indicate that this is a condition that we would like to hold, not one that necessarily
does hold. If we have a complete model of the world, then the right-hand side can
be computed by looking ahead one action. Thus we can generate any number of
training examples for the process that learns the evaluation function: for any x,

Integrated Modeling and Control Based on Reinforcement Learning 473

(r EVALUATION 1
FUNCTION J~---' Heuristic

" ~ Reward
(scalar)

r
POLICY

Reward
(scalar) " ~

State

Action

WORLD

OR ~

"WORLD MODEL) /sWITCH

Figure 1. Overview of Dyna-AHC

1. Decide if this will be a real experience
or a hypothetical one.

2. Pick a state z. If this is a real expe
rience, use the current state.

3. Choose an action: a +- Policy(z)

4. Do action a; obtain next state y and
reward r from world or world model.

5. If this is a real experience, update
world model from z, a, y and r.

6. Update evaluation function so that
e(z) is more like r + re(y); this is
temporal-difference learning.

7. Update policy-strengthen or weaken
the tendency to perform action a in
state z according to the error in the
evaluation function: r + re(y) - e(z) .

8. Go to Step 1.

Figure 2. Inner Loop of Dyna-AHC.
These steps are repeatedly continually,
sometimes with real experiences, some
times with hypothetical ones.

the right-hand side of (1) is the desired output. If the learning process converges
such that (1) holds in all states, then the optimal policy is given by choosing the
action in each state z that achieves the maximum on the right-hand side. There is an
extensive theoretical basis from dynamic programming for algorithms of this type for
the special case in which the evaluation function is tabular, with enumerable states
and actions. For example, this theory guarantees convergence to a unique evaluation
function satisfying (1) and that the corresponding policy is optimal (Bertsekas,
1987).

The evaluation function and policy need not be tables, but can be more compact
function approximators such as connectionist networks, decision trees, k-d trees,
or symbolic rules. Although the existing theory does not apply to these machine
learning algorithms directly, it does provide a theoretical foundation for exploring
their use in this way.

The above discussion gives the general idea of relaxation planning, but not the ex
act form used in policy iteration and Dyna-AHC, in which the policy is adapted
simultaneously with the evaluation function. The evaluations in this case are not
supposed to reflect the value of states given optimal behavior, but rather their
value given current behavior (the current policy). As the current policy gradually
approaches optimality, the evaluation function also approaches the optimal evalua
tion function. In addition, Dyna-AHC is a Monte Carlo or stochastic approximation
variant of policy iteration, in which the world model is only sampled, not examined
directly. Since the real world can also be sampled, by actually taking actions and
observing the result, the world can be used in place of the world model in these
methods. In this case, the result is not relaxation planning, but a trial-and-error
learning process much like reinforcement learning (see Barto, Sutton & Watkins,

474 Sutton

800

700

600

soo

STEPS
PER

TRIAL 400

300

200

100

o Planning steps
(Trial and Error Learning Only)

/ 10 Planning Steps

100 Planning Steps

14~~============~====_
20 40 60 80 100

TRIALS

Figure 3. Learning Curves of Dyna
AIIC Systems on a Navigation Task

WITHOUT PLANNING (t = 0)

WITH PLANNING (t = 100)

Figure 4. Policies Found by Planning
and Non-Planning Dyna-AHC Systems
by the Middle of the Second Trial. The
black square is the current location of
the system. The arrows indicate action
probabilities (excess over smallest) for
each direction of movement.

1989, 1990). In Dyna-AHC, both of these are done at once. The same algorithm is
applied both to real experience (resulting in learning) and to hypothetical experi
ence generated by the world model (resulting in relaxation planning). The results
in both cases are accumulated in the policy and the evaluation function.

There is insufficient room here to fully justify the algorithm used in Dyna-AHC,
but it is quite simple and is given in outline form in Figure 2.

3 A Navigation Task

As an illustration of the Dyna-AHC architecture, consider the task of navigating
the maze shown in the upper right of Figure 3. The maze is a 6 by 9 grid of
possible locations or states, one of which is marked as the starting state, "S", and
one of which is marked as the goal state, "G". The shaded states act as barriers and
cannot be entered. All the other states are distinct and completely distinguishable.
From each there are four possible actions: UP, DOWN, RIGHT, and LEFT, which
change the state accordingly, except where such a movement would take the take
the system into a barrier or outside the maze, in which case the location is not
changed. Reward is zero for all transitions except for those into the goal state, for
which it is +1. Upon entering the goal state, the system is instantly transported
back to the start state to begin the next trial. None of this structure and dynamics
is known to the Dyna-AHC system a priori.

In this instance of the Dyna-AHC architecture, real and hypothetical experiences

Integrated Modeling and Control Based on Reinforcement Learning 475

were used alternately (Step 1). For each single experience with the real world, k

hypothetical experiences were generated with the model. Figure 3 shows learning
curves for k = 0, k = 10, and k = 100, each an average over 100 runs. The k = 0
case involves no planning; this is a pure trial-and-error learning system entirely
analogous to those used in reinforcement learning systems based on the adaptive
heuristic critic (AHC) (Sutton, 1984; Barto, Sutton & Anderson, 1983). Although
the length of path taken from start to goal falls dramatically for this case, it falls
much more rapidly for the cases including hypothetical experiences, showing the
benefit of relaxation planning using the learned world model. For k = 100, the
optimal path was generally found and followed by the fourth trip from start to goal;
this is very rapid learning.

Figure 4 shows why a Dyna-AHC system that includes planning solves this problem
so much faster than one that does not. Shown are the policies found by the k == 0 and
k = 100 Dyna-AHC systems half-way through the second trial. Without planning
(k = 0), each trial adds only one additional step to the policy, and so only one step
(the last) has been learned so far. With planning, the first trial also learned only
one step, but here during the second trial an extensive policy has been developed
that by the trial's end will reach almost back to the start state.

4 Dyna-Q: Dyna by Q-learning

The Dyna-AHC architecture is in essence the reinforcement learning architecture
based on the adaptive heuristic critic (AHC) that my colleagues and I developed
(Sutton, 1984; Barto, Sutton & Anderson, 1983) plus the idea of using a learned
world model to generate hypothetical experience and to plan. Watkins (1989) sub
sequently developed the relationships between the reinforcement-learning architec
ture and dynamic programming (see also Barto, Sutton & Watkins, 1989, 1990)
and, moreover, proposed a slightly different kind of reinforcement learning called
Q-learning. The Dyna- Q architecture is the combination of this new kind of learn
ing with the Dyna idea of using a learned world model to generate hypothetical
experience and achieve planning.

Whereas the AHC reinforcement learning architecture maintains two fundamental
memory structures, the evaluation function and the policy, Q-Iearning maintains
only one. That one is a cross between an evaluation function and a policy. For each
pair of state x and action a, Q-Iearning maintains an estimate Qra of the value of
taking a in x. The value of a state can then be defined as the value of the state's

best state-action pair: e(x) deC maXa Qra. In general, the Q-value for a state x and
an action a should equal the expected value of the immediate reward r plus the
discounted value of the next state y:

Qra "=" E{r+-ye(y)lx,a}. (3)

To achieve this goal, the updating steps (Steps 6 and 7 of Figure 2) are implemented
by

Qra +- Qra + f3(r + -ye(y) - Qra). (4)

This is the only update rule in Q-Iearning. We note that it is very similar though
not identical to Holland's bucket brigade and to Sutton's (1988) temporal-difference
learning.

476 Sutton

The simplest way of determining the policy on real experiences is to deterministically
select the action that currently looks best-the action with the maximal Q-value.
However, as we show below, this approach alone suffers from inadequate exploration.
To deal with this problem, a new memory structure was added that keeps track of
the degree of uncertainty about each component of the model. For each state x and
action a, a record is kept of the number of time steps nXIl that have elapsed since a
was tried in z in a real experience. An exploration bonus of fVnxll is used to make
actions that have not been tried in a long time (and that therefore have uncertain
consequences) appear more attractive by replacing (4) with:

QXIl +- QXIl + f3(r + fVnxll + ')'e(y) - QXIl)' (5)

In addition, the system is permitted to hypothetically experience actions is has
never before tried, so that the exploration bonus for trying them can be propagated
back by relaxation planning. This was done by starting the system with a non
empty initial model and by selecting actions randomly on hypothetical experiences.
In the experiments with Dyna-Q systems reported below, actions that had never
been tried were assumed to produce zero reward and leave the state unchanged.

5 Changing-World Experiments

Two experiments were performed to test the ability of Dyna systems to adapt to
changes in their environments. Three Dyna systems were used: the Dyna-AHC
system presented earlier in the paper, a Dyna-Q system including the exploration
bonus (5), called the Dyna-Q+ system, and a Dyna-Q system without the explo
ration bonus (4), called the Dyna-Q- system. All systems used k = 10.

The blocking experiment used the two mazes shown in the upper portion of Figure
5. Initially a short path from start to goal was available (first maze). After 1000
time steps, by which time the short path was usually well learned, that path was
blocked and a longer path was opened (second maze). Performance under the new
condition was measured for 2000 time steps. Average results over 50 runs are shown
in Figure 5 for the three Dyna systems. The graph shows a cumulative record of
the number of rewards received by the system up to each moment in time. In the
first 1000 trials, all three Dyna systems found a short route to the goal, though the
Dyna-Q+ system did so significantly faster than the other two. After the short path
was blocked at 1000 steps, the graph for the Dyna-AHC system remains almost flat,
indicating that it was unable to obtain further rewards. The Dyna-Q systems, on
the other hand, clearly solved the blocking problem, reliably finding the alternate
path after about 800 time steps.

The shortcut experiment began with only a long path available (first maze of Figure
6). After 3000 times steps all three Dyna systems had learned the long path, and
then a shortcut was opened without interferring with the long path (second maze of
Figure 6). The lower part of Figure 6 shows the results. The increase in the slope
of the curve for the Dyna-Q+ system, while the others remain constant, indicates
that it alone was able to find the shortcut. The Dyna-Q+ system also learned
the original long route faster than the Dyna-Q- system, which in turn learned it
faster than the Dyna-AHC system. However, the ability of the Dyna-Q+ system
to find shortcuts does not come totally for free . Continually re-exploring the world

Integrated Modeling and Control Based on Reinforcement Learning 477

150

Dyna-Q+
Dyna-Q-

Dyna-PI

o=-______ ~ ______ ~ ____ ~
o 1000 a:lOO

Time Steps

Figure 5. Performance on the Blocking
Task (Slope is the Rate of Reward)

••

o 3000

Time Steps

Figure 6. Performance on the Shortcut
Task (Slope is the Rate of Reward)

means occasionally making suboptimal actions. If one looks closely at Figure 6,
one can see that the Dyna-Q+ system actually acheives a slightly lower rate of
reinforcement during the first 3000 steps. In a static environment, Dyna-Q+ will
eventually perform worse than Dyna-Q-, whereas, in a changing environment, it
will be far superior, as here. One possibility is to use a meta-level learning process
to adjust the exploration parameter f to match the degree of variability of the
environment.

6 Limitations and Conclusions

The results presented here are clearly limited in many ways. The state and action
spaces are small and denumerable, permitting tables to be used for all learning pro
cesses and making it feasible for the entire state space to be explicitly explored. In
addition, these results have assumed knowledge of the world state, have used a triv
ial form of search control (random exploration), and have used terminal goal states.
These are significant limitations of the results, but not of the Dyna architecture.
There is nothing about the Dyna architecture which prevents it from being applied
more generally in each of these ways (e.g., see Lin, 1991; Riolo, 1991; Whitehead &
Ballard, in press).

Despite limitations, these results are significant. They show that the use of a for
ward model can dramatically speed trial-and-error (reinforcement) learning pro
cesses even on simple problems. Moreover, they show how planning can be done
with the incomplete, changing, and of times incorrect world models that are con
tructed through learning. Finally, they show how the functionality of planning can
be obtained in a completely incremental manner, and how a planning process can be
freely intermixed with reaction and learning processes. Further results are needed
for a thorough comparison of Dyna-AHC and Dyna-Q architectures, but the results
presented here suggest that it is easier to adapt Dyna-Q architectures to changing

environments.

478 Sutton

Acknowledgements

The author gratefully acknowledges the contributions by Andrew Barto, Chris
Watkins, Steve Whitehead, Paul Werbos, Luis Almeida, and Leslie Kaelbling.

References

Barto, A. G., Sutton R. S., & Anderson, C. W. (1983) IEEE '.Irans. SMC-13, 834-
846.

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H. (1989) In: Learning and
Computational Neuroscience, M. Gabriel and J.W. Moore (Eds.), MIT Press, 1991.

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. II. (1990) NIPS 2, 686-693.

Bellman, R. E. (1957) Dynamic Programming, Princeton University Press.

Bertsekas, D. P. (1987) Dynamic Programming: Deterministic and Stochastic Mod
els, Prentice-Hall.

Korf, R. E. (1990) Artificial Intelligence 42, 189-211.

Lin, Long-Ji. (1991) In: Proceedings of the International Conference on the Simu
lation of Adaptive Behavior, MIT Press.

Riolo, R. (1991) In: Proceedings of the International Conference on the Simulation
of Adaptive Behavior, MIT Press.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986) In:
Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Volume II, by J. L. McClelland, D. E. Rumelhart, and the PDP research group,
7-57. MIT Press.

Sutton, R. S. (1984) Temporal Credit Assignment in Reinforcement Learning. PhD
thesis, COINS Dept., Univ, of Mass.

Sutton, R.S. (1988) Machine Learning 3, 9-44.

Sutton, R.S. (1990) In: Proceedings of the Seventh International Conference on
Machine Learning, 216-224, Morgan Kaufmann.

Sutton, R.S., Barto, A.G. (1981) Cognition and Brain Theory 4, 217-246.

Sutton, R.S., Pinette, B. (1985) In: Proceedings of the Seventh Annual Coni. of the
Cognitive Science Society, 54-64, Lawrence Erlbaum.

Watkins, C. J. C. H. (1989) Learning with Delayed Rewards. PhD thesis, Cambridge
University Psychology Department.

Werbos, P. J. (1987) IEEE 'frans. SMC-17, 7-20.

Whitehead, S. D., Ballard, D.II. (1989) In: Proceedings of the Sixth International
Workshop on Machine Learning, 354-357, Morgan Kaufmann.

Whitehead, S. D., Ballard, D.H. (in press) Machine Learning.

