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In recent years, high-throughput sequencing technologies provide unprecedented
opportunity to depict cancer samples at multiple molecular levels. The integration and
analysis of these multi-omics datasets is a crucial and critical step to gain actionable
knowledge in a precision medicine framework. This paper explores recent data-driven
methodologies that have been developed and applied to respond major challenges of
stratified medicine in oncology, including patients’ phenotyping, biomarker discovery,
and drug repurposing. We systematically retrieved peer-reviewed journals published
from 2014 to 2019, select and thoroughly describe the tools presenting the most
promising innovations regarding the integration of heterogeneous data, the machine
learning methodologies that successfully tackled the complexity of multi-omics data, and
the frameworks to deliver actionable results for clinical practice. The review is organized
according to the applied methods: Deep learning, Network-based methods, Clustering,
Features Extraction, and Transformation, Factorization. We provide an overview of the
tools available in each methodological group and underline the relationship among the
different categories. Our analysis revealed how multi-omics datasets could be exploited
to drive precision oncology, but also current limitations in the development of multi-omics
data integration.
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INTRODUCTION

The integration and analysis of high-throughput molecular assays is a major focus for precision
medicine in enabling the understanding of patient and disease specific variations. Integrated
approaches allow for comprehensive views of genetic, biochemical, metabolic, proteomic, and
epigenetic processes underlying a disease that, otherwise, could not be fully investigated by
single-omics approaches. Computational multi-omics approaches are based on machine learning
techniques and typically aim at classifying patients into cancer subtypes (1–5), designed for
biomarker discovery and drug repurposing (6, 7).
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While complexities underling cancer still hampers our
understanding of how this disease arises and progresses (8),
multi-omics approaches have been suggested as promising tools
to dissect patient’s dysfunctions in multiple biological systems
that may be altered by cancer mechanisms (9).

Several efforts have been made to generate comprehensive
multi-omics profiles of cancer patients. The Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov/) provides detailed
clinical, genomics, transcriptomics, and proteomics data on
about 20,000 subjects and plans to generate additional data in
the next years for a variety of cancer types. Analysis of datasets
generated by multi-omics sequencing requires the development
of computational approaches spanning from data integration
(10), statistical methods, and artificial intelligence systems to gain
actionable knowledge from data.

Here we present a descriptive overview on recent multi-
omics approaches in oncology, which summarizes current state-
of-art in multi-omics data analysis, relevant topics in terms of
machine learning approaches, and aims of each survey, such as
disease subtyping, or patient similarity. We provide an overview
on each methodology group, while then focusing on publicly
available tools.

METHODS

Search Strategy
We retrieved publications by querying the Scopus database as:
(cancer OR tumor OR tumor OR oncolog∗)AND(multi-omic∗

OR multiomic∗ OR mixomic∗)AND(“machine learning” OR “data
fusion” OR “network analysis”).

Eligibility Criteria
Since other review covered previous years (10, 11) we included
peer-reviewed journal articles published from 2014 to 2020 (last
query 04-22-2020). If a study appears in multiple publications,
only the latest version was included. We selected relevant studies
by screening titles and abstracts, then analyzing full-texts. We
excluded papers accordingly to the following criteria:

• Review articles;
• Studies focused on non-human subjects;
• Studies intended to validate and/or apply previously

developed tools;
• Studies published in conference proceedings.
• Studies that integrate different measurement of the same type

of omics (such as, only proteomics measurement).

Categories and Analyses
For each article, we extracted the publication year and the
number of citations. We categorize the selected publications
according to:

• Data inputs (i.e., types of omics);
• Research Aims:

1. Stratified Medicine for subgroup discovery: studies aimed
at finding groups of patients that exhibit different
therapeutic/prognostic outcomes;

2. Biomarker discovery: studies that detect -omics
characteristics indicating a disease state;

3. Pathways analysis: studies aimed at discovering relation
among -omics terms, such as genes or proteins in normal
and cancer condition;

4. Drug repurposing/discovery: studies aimed at identifying
new drugs to or existing effective drugs originally developed
for other conditions;

• Methods and algorithms: Deep network, Networks-based
methods (Bayesian and Heuristic Networks), Clustering,
Features Extraction, Feature Transformation, Factorization.

We highlight successful approaches for each criterion and
identify promising ones that are either nascent or unexplored as
potential opportunities.

RESULTS

We retrieved 270 papers. The Scopus query did not retrieve
24 relevant works that were added manually based on our
previous knowledge. After a screening of papers’ abstracts, 58
papers meeting our criteria were selected. Retrieved papers
were organized into a matrix table (Table 1) and analyzed with
respect to the aforementioned categories. As highlighted in
Figure 1A, categories are not mutually exclusive, thus we show
links between groups, which relate papers applying multiple
methods. Figure 1B depicts all considered publications by year
of publication and the Field-Weighted Citation Impact, a
metric that allows comparison of papers accounting for year
of publication and number citations. Studies are shown with
different colors and shapes according to method used and the
aim/output type.

In the following sections, we describe the methodological
categories that emerged from our literature review. For each
methodological category, particular emphasis is placed on studies
providing tools that can be exploited by other users, either with
their own data or to reproduce their results.

Network-Based Methods
Network-based approaches were exploited to detect, reconstruct
and study interactions among sub network modules (13, 19,
22, 25, 40); to assess functional correlation among multi-omics
entities (12, 14, 20, 55, 61, 62); to integrate and fuse networks to
create comprehensive view of a disease (16, 24, 32, 37, 41, 63, 65).
A few work leverage Bayesian methods (4, 34) or Markov models
(17, 67).

Some approaches integrate network analysis within
frameworks that apply multiple algorithms (35, 51, 58). In
(51) a multi-platform analysis exploited for profiling pancreatic
adenocarcinoma, includes clustering and Similarity Network
Fusion to integrate genomic, transcriptomic, and proteomic
data from the different platforms. In (58) authors develop a
framework for drug repurposing and multi-target therapies by
constructing a protein network for the disease under study and
fusing several data sources. In (27), a functional interaction
network predicts variations in expressions caused by genomic
alterations, and it is exploited to prioritize cancer genes. Few
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TABLE 1 | Selected papers and categories.

References References

in Figure 1

Year #Citation

22/04/2020

Scopus

field-weighted

citation impact

Method Omics Aim Tool release

Agarwal et al. (12) 1 2015 2 0.34 Network Genomics, transcriptomics Biomarker discovery

Amar and Shamir (13) 2 2014 16 0.70 Network Proteomics, genomics Pathways analysis ModMap tool

Ao et al. (14) 3 2016 17 1.11 Network Genomics, epigenomics Subgroup identification

Argelaguet et al. (15) 4 2019 57 14.40 Feature
transformation

Transcriptomics, genomics Subgroup identification R package MOFAtools

Wang et al. (16) 5 2014 410 12.89 Network Transcriptomics, epigenomics Subgroup identification R and MATLAB code http://
compbio.cs.toronto.edu/
SNF/

Beal et al. (17) 6 2018 2 1.25 Network Transcriptomics, genomics Subgroup identification https://github.com/sysbio-
curie/PROFILE

Benfeitas et al. (18) 7 2019 9 5.17 Clustering Transcriptomics, proteomics,
metabolomics

Subgroup identification

Bonnet et al. (19) 8 2015 29 2.50 Network Genomics, transcriptomics Biomarker discovery Lemon-Tree—command-
line tool in Java http://
lemon-tree.googlecode.
com

Cancemi et al. (20) 9 2018 4 0.82 Network Transcriptomics, proteomics Pathways analysis

Cavalli et al. (21) 10 2017 213 21.09 Clustering Epigenomics, genomics,
transcriptomics

Subgroup identification

Champion et al. (22) 11 2018 6 1 Network Genomics, epigenomics Biomarker discovery AMARETTO R package
https://bitbucket.org/
gevaertlab/
pancanceramaretto

Chaudhary et al. (23) 12 2018 82 14.79 Deep network Transcriptomics, epigenomics Subgroup identification

Cho et al. (24) 13 2016 48 6.65 Network Genomics, proteomics Pathways analysis Mashup tool MATLAB code
http://cb.csail.mit.edu/cb/
mashup/

Costa et al. (25) 14 2018 4 0.58 Network Genomics, epigenomics Pathways analysis

Costello et al. (26) 15 2014 271 14.12 Feature
transformation

Genomics, transcriptomics,
epigenomics, proteomics

Subgroup identification
(drug response)

Dimitrakopoulos et al.
(27)

16 2018 29 6.67 Network Genomics, transcriptomics,
proteomics

Pathway analysis https://github.com/cbg-
ethz/netics

Drabovich et al. (28) 17 2019 1 0.53 Feature
extraction

Transcriptomics, proteomics,
secretomics, tissue specific

Subgroup identification

Francescatto et al. (29) 18 2018 6 1.59 Deep network Genomics, transcriptomics Subgroup identification

Gabasova et al. (30) 19 2017 6 0.86 Clustering Transcriptomics, proteomics,
epigenomics

Subgroup identification Clusternomics R package
https://github.com/evelinag/
clusternomics

Gao et al. (31) 20 2019 0 0 Factorization Transcriptomics, genomics Biomarker discovery

Griffin et al. (32) 21 2018 1 0.29 Network Transcriptomics, epigenomics Biomarker discovery
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TABLE 1 | Continued

References References

in Figure 1

Year #Citation

22/04/2020

Scopus

field-weighted

citation impact

Method Omics Aim Tool release

Hoadley et al. (33) 22 2014 668 32.88 Clustering Proteomics, transcriptomics,
genomics

Subgroup identification

Hua et al. (34) 23 2016 2 0.17 Network Genomics, epigenomics Biomarker discovery

Huang et al. (35) 24 2019 6 4.44 Network Genomics, transcriptomics,
epigenomics

Drug
repurposing/discovery

DrugComboExplorer tool
https://github.com/
Roosevelt-PKU/
drugcombinationprediction

Huang et al. (36) 25 2019 8 4.37 Deep network Transcriptomics Subgroup identification SALMON source code
https://github.com/
huangzhii/SALMON/

Kim et al. (37) 26 2017 3 0.16 Network Transcriptomics, proteomics Drug
repurposing/discovery

Kim et al. (38) 27 2018 2 0.40 Feature
extraction

Genomics, transcriptomics,
epigenomics

Subgroup identification

Kim et al. (39) 28 2019 0 0 Feature
extraction

Genomics, transcriptomics Pathways analysis

Koh et al. (40) 29 2019 2 1.48 Network Transcriptomics, proteomics Subgroup identification iOmicsPASS https://github.
com/cssblab/iOmicsPASS

Lee et al. (41) 30 2018 21 3.46 Network Genomics, transcriptomics Drug
repurposing/discovery

Liang et al. (42) 31 2015 86 5.96 Deep network Transcriptomics, epigenomics Subgroup identification

List et al. (3) 32 2014 20 2.51 Feature
extraction

Transcriptomics, epigenomics Subgroup identification

Luo et al. (43) 33 2019 0 0 Clustering Transcriptomics, genomics Subgroup identification

Ma and Zhang (44) 34 2018 4 0.71 Clustering Transcriptomics, epigenomics Similarity AFN is part of the
Bioconductor R package
https://bioconductor.org/
packages/release/bioc/
html/ANF.html

Mariette and
Villa-Vialaneix (45)

35 2018 8 1.90 Feature
transformation

Transcriptomics, genomics Subgroup identification R package mixKernel

Meng et al. (46) 36 2014 79 5.29 Feature
transformation

Transcriptomics, proteomics Subgroup identification R package omicade4

Mo et al. (47) 37 2017 18 7.03 Feature
transformation

Transcriptomics, genomics Subgroup identification R package iClusterPlus

Nguyen et al. (48) 38 2017 20 2.03 Clustering Transcriptomics, epigenomics,
genomics

Subgroup identification

O’Connell and Lock
(49)

39 2016 13 1.21 Feature
transformation

Transcriptomics, genomics Subgroup identification R Package r.jive

Pai et al. (50) 40 2019 6 5.23 Feature
extraction

Transcriptomics, metabolomics,
genomics

Similarity
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TABLE 1 | Continued

References References

in Figure 1

Year #Citation

22/04/2020

Scopus

field-weighted

citation impact

Method Omics Aim Tool release

Raphael et al. (51) 41 2017 269 26.77 Network Transcriptomics, genomics,
proteomics

Subgroup identification

Rappoport et al. (52) 42 2019 2 1.48 Clustering Transcriptomics, epigenomics Subgroup identification

Ray et al. (4) 43 2014 30 2.34 Bayesian
network

Genomics, epigenomics Biomarker discovery MATLAB code https://sites.
google.com/site/
jointgenomics/

Rohart et al. (53) 44 2017 285 38.04 Feature
transformation

Transcriptomics, genomics,
proteomics, epigenomics

Subgroup identification R package Mixomics

Sharifi-Noghabi et al.
(54)

45 2019 2 6.91 Deep network Genomics, transcriptomics Subgroup identification
(drug response)

https://github.com/
hosseinshn/MOLI

Sehgal et al. (55) 46 2015 6 0.36 Network Transcriptomics Pathways analysis

Song et al. (56) 47 2019 2 1.06 Feature
transformation

Transcriptomics, genomics,
proteomics

Biomarker discovery R package iProFun

Speicher and Pfeifer
(57)

48 2015 34 5.83 Clustering Genomics, transcriptomics Subgroup identification

Vitali et al. (58) 49 2016 16 1.51 Network Proteomics, transcriptomics Drug
repurposing/discovery

Woo et al. (59) 50 2017 30 2.97 Clustering Genomics, epigenomics Subgroup identification

Wu et al. (60) 51 2015 19 0.83 Clustering Genomics, transcriptomics Subgroup identification

Yang et al. (61) 52 2019 2 1.23 Network Epigenomics, transcriptomics Biomarker discovery

Yuan et al. (62) 53 2018 3 2.04 Network Genomics, transcriptomics,
epigenomics

Biomarker discovery

Wang et al. (63) 54 2018 6 1 Network Genomics, transcriptomics Biomarker discovery

Zhang et al. (64) 55 2018 9 1.58 Deep network Transcriptomics, genomics Subgroup identification

Zhou et al. (65) 56 2015 2 0.18 Network Genomics, epigenomics,
proteomics

Biomarker discovery

Zhu et al. (66) 57 2017 20 1.52 Feature
transformation

Transcriptomics, genomics Subgroup identification

Žitnik and Zupan (67) 58 2015 14 2.50 Network Transcriptomics, genomics Biomarker discovery
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FIGURE 1 | (A) Linkage between different methodological categories. References to papers (see Table 1). That could be categorized in different groups are reported
near the link. (B) Publications by year of publication and Field-Weighted Citation Impact. Different colors indicate exploited methods, shapes aims, and outputs.
Papers with red borders have source code or provide a tool. Papers in the “Subgroup identification” group and/or with free tool result to be the most cited across
years. The reference numbers are reported in Table 1.
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others interesting approaches (16, 19) have been discussed
in (10).

iOmicsPass
iOmicsPASS (40) implements a network-based method for
integrating multi-omics profiles over genome-scale biological
networks. The tool provides analysis components to transform
qualitativemulti-omics data into scores for biological interaction,
then it uses the resulting scores as input to select predictive sub-
networks; finally, it selects predictive edges for phenotypic groups
using a modified nearest shrunken centroid algorithm. Authors
validate iOmicsPASS on Breast Invasive Ductal Carcinoma data,
integrating mRNA expression, and protein abundance, with and
without the normalization of the mRNA data by the DNA Copy
Number Variation (CNV). When compared with the original
nearest shrunken centroid classification algorithm, iOmicsPASS
outperform the baseline method, indicating the importance
of selecting predictive signature forms densely connected sub
networks, thus limiting the search space of predictive features to
known interactions.

AMARETTO
Amaretto (22) is an algorithm developed multiple omics profiles
integration across different type of cancers. Authors illustrate
how the algorithm identifies cancer driver genes based on multi-
omics data fusion and detects subnetworks of modules across all
cancers. The algorithm identifies potential cancer driver genes
by investigating significant correlations between methylation,
CNV and gene expression (GE) data. When the driver genes
are identified it constructs a module network connecting them
with the co-expressed target genes they control. This constricts
a pan-cancer network that is able to identify novel pancancer
driver genes.

DrugComboExplorer
DrugComboExplorer (35) identifies candidate drug
combinations targeting cancer driver signaling networks
by processing DNA sequencing, CNV, DNA methylation,
and RNA-seq data from individual cancer patients using an
integrated pipeline of algorithms. The pipeline is based on two
components: the first one extracts dysregulated networks from
transcriptome and methylation profiles of specific patients using
bootstrapping-based simulated annealing and weighted co-
expression network analysis. The second component generates
a driver network signatures for each drug, evaluates synergistic
effects of drug combinations on different driver signaling
networks and ranks drug combinations according the synergistic
effects. In (35) authors apply DrugComboExplorer on diffuse
large B-cell-lymphoma and prostate cancer, demonstrating the
ability of the tool to discover synergistic drug combinations
and its higher prediction accuracy compared with existing
computational approaches.

Deep Network
DeepNetworks (DNs) are widely used to analyse omics-data (68).
In a multi-omics scenario, clustering on DNs features showed
different survival groups in neuroblastoma and liver cancer (23,

29, 64). In (42) authors integrated GE, methylation and miRNA
in a restricted Boltzmannmachine, where hidden layers represent
different survival groups in breast cancer patients. Subnetworks
are used in (54) to project different omics views in latent spaces
that are further concatenated and fed into a final network to
predict drug response.

SALMON
SALMON (Survival Analysis Learning with Multi-Omics Neural
Networks) is a Deep Learning framework that integrates
omics-data (mRNA and miRNA), clinical features and cancer
biomarkers (36). Instead of feeding a neural network with
mRNA and miRNA data, SALMON takes as input the
eigengene matrices derived from co-expression analysis. Thus,
it overcomes the high-dimensionality problem, reducing input
features of about 99%. Authors assume that mRNA and miRNA
data affect survival outcome independently, therefore the two
corresponding eigengene matrices are connected to two different
hidden layers whose output is linked to the final network with a
Cox proportional hazards regression network. Results on breast
cancer carcinoma patients showed improvements in survival
prediction ability compared to single-omics.

Clustering
Multi-omics clustering approaches are exploited to detect
regularities and patterns that reveal different cancer molecular
subtypes (21, 33, 43, 48, 57, 60) and prognostic groups in
hepatocellular carcinoma (59). In (18) consensus clustering is
performed on transcriptomics, metabolomics, and proteomics
data to stratify patients with hepatocellular carcinoma based on
their redox response. Clustering applications are often preceded
by feature selection and/or feature transformation of multi-
omics data, such as factorization, low rank approximation, and
neural network. An exhaustive review onmulti-omics integrative
clustering approaches can be found in (69).

Nemo
NEMO (NEighborhood based Multi-Omics clustering) is a
similarity-based tool that computes inter-patient similarity
matrices for each omics through a radial basis function kernel.
Spectral clustering is performed on the resulting average
similarity matrix (52). NEMO addresses the problem of partial
datasets, where not all the omics are measured for all the patients,
and the final average matrix is computed on the observed
omics values, without performing imputation. NEMO clustering
shows higher performance compared to the same approach
with imputed data, while on TCGA cancer datasets it detects
significant differences in survival for six out of 10 cancer types.

Clusternomics
The main assumption of multi-omics clustering approaches
relies on the existence of a consistent clustering structure across
heterogeneous datasets. Alternatively, in (30) authors introduced
the context-dependent clustering Clusternomics. Each omics is
seen as a context describing a particular aspect of the underlying
biological process. The global clustering structure is inferred
from the combination of Bayesian clustering assignments. Then,
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by separating cluster assignment on two levels, Clusternomics
allows the number of clusters to vary on local or global structure.
Its performances are evaluated on a simulated dataset, where
it showed higher Adjuster Rank Index compared to other
clustering techniques, but also on breast, lung and kidney
cancer from TCGA repository, where it identified clinically
meaningful clusters.

Affinity Network Fusion
Affinity Network Fusion (AFN) (44) is both a clustering and
classification technique that applies graph clustering to a patient
affinity matrix incorporating information from multiple views.
For each omic, after feature selection and/or transformation,
AFN computes patient pair-wise distances. kNN Graph Kernel
applied to the distance metric creates a patient affinity matrix
for each view. The final affinity matrix is the weighted sum of
the computed affinity matrices. AFN approach showed improved
clustering performance in detecting cancer subtypes on several
TCGA datasets when compared to its application in single omics.

Feature Extraction
In multi-omics integration, variable selection to reduce the
dimensionality of the omics dataset has a dominant role [(70),
Figure 1A]. Recursive feature elimination was exploited to select
subsets of expressed genes and methylation data to classify
breast cancer disease subtypes with a Random Forest (3). Genes
prioritization allowed prognosis prediction in different cancer
types from epigenomics, transcriptomics, and genomics data
(38), and biomarker discovery in prostate cancer (28). In (39)
authors weight gene-gene interaction from transcriptomics and
genomics data with a random walked-based method to select
the most important interaction for survival prediction in breast
cancer and neuroblastoma patients.

netDX
netDx is an algorithm that performs feature selection on Patient
Similarity Networks (PSN) to classify patients in different
prognostic groups (50). A PSN is built for each omics such
that nodes represent patients and edges stand for the similarity
of two nodes in the given view. Then netDx identifies which
networks (i.e., which omics) strongly relate high- and low-
risk patients through the GeneMANIA algorithm (71), which
solves a regression problem to maximize the edges that connect
query patients. Finally, each network is weighted according to its
ability to relate patients of the same group and networks whose
score exceeds a defined threshold are selected and combined in
a single network by averaging their similarity scores. Authors
benchmarked netDx against several machine-learning methods
to predict survival outcomes on PanCancer TCGA multi-omics
datasets, showing comparable results. On a breast cancer dataset,
netDx selected features correspond to pathways known to be
dysregulated in this type of cancer.

Feature Transformation
Feature transformation (FT) refers to algorithms that replace
existing features with new features still function of the original
ones. As shown in Figure 1B, the majority of FT techniques aims

at identifying cancer subtypes, biomarkers, omics-signatures, and
key features from multi-omics data. Zhu et al. (66) proposed
a kernel machine-learning method for a pan-cancer prognostic
assessment by integrating multi-omics data. This work is
particularly interesting since it’s the only FT method we reviewed
that allows multi-omics profile integration individually and in
combination with clinical factors. A Kernel-based approach,
combined with non-linear regression and Bayesian inference,
resulted to be the best performing algorithm in a drug sensitivity
prediction challenge (26).

In the following, we will report selected FT approaches,
although few other tools for subgroup discovery, such as
iClusterBayes (47), Multi-Omics Factor Analysis (15), JIVE (49),
and MCIA (46), are available.

MixOmics
One of the most recent and biggest efforts in this field
resulted in an R package called mixOmics (53). MixOmics
allows for multivariate analysis of omics data including data
exploration, dimension reduction, and visualization. mixOmics
can be applied in numerous of studies with different aims such
as integration and biomarker identification from multi-omics
studies. The package includes two different types of multi-omics
integration. One aimed at integrating different type of omics
data of the same biological samples, while the second focus on
integrating independent data measured on the same predictors to
increase sample size and statistical power (53). Both frameworks
aim at extracting biologically relevant features, [i.e., molecular
signatures, by applying FT techniques (53)]. In (53) authors
presented the results on 150 samples of mRNA, miRNA and
proteomics breast cancer data and showed its ability to correctly
discriminate three types of breast cancers.

mixKernel
mixKernel (45) is a R package compatible with mixOmics,
which allows integration of multiple datasets by representing
each dataset through a kernel that provides pairwise information
between samples. The single kernels are then combined into
one meta-kernel in an unsupervised framework. These new
meta-kernels can be used for exploratory analyses, such as
clustering or more sophisticated analysis to get insights into
the data integrated. The authors showed better performances of
mixKernel applied to mRNA, miRNAs and methylation breast
cancer data if compared with one kernel approach.

iProFun
iProFun (56) is a method aimed at elucidating proteogenomic
functional consequences of CNV and methylation alterations.
The authors integrated mRNA expression levels, global protein
abundances, and phosphoprotein abundances of a certain cancer.
The output consists in a list of genes whose CNVs and/or
DNA methylations significantly influencing some or all of the
data integrated. iProFun obtains summary statistics of data
integrated based on a gene-level multiple linear regression. These
statistics are then used to extract genes having a cascading
effect of all cis-molecular traits of interests and genes whose
functional regulations are unique at global protein levels. iProFun
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applied to ovarian cancer TCGA dataset showed its ability in
extracting interesting genes that could be considered targets for
future therapies.

Factorization
Traditional data mining methods are often inadequate to treat
heterogeneous, sparse and noisy data such as multi-omics.
Heavy pre-processing operations could modify, therefore loose,
the inner structure of data coming from different sources.
To discover latent characteristics hidden in huge amount of
information, factorization techniques have been applied to
highlight complex interactions among omics-data, hard to detect
using standard approaches.

Gao et al. (31) developed an integrated Graph Regularized
Non-negative Matrix Factorization model focused network
construction by integrating gene expression data, CNV data, and
methylation data. The authors used the factorization technique to
decompose and fuse the multi-omics data. Then, by combining
the results with network and mining analyses they showed
how their method was able to find potential new cancer-related
genes on two different TCGA datasets. Another method, based
on factor analysis, aims at identifying latent factors in the
multi-omics-data integrated in the model that can be used for
subsequent analysis such as subgroup identification (15). Give its
aim in extracting hidden features, we described this method in
detail in the feature transformation section.

DISCUSSION

Along with technological advances in high-throughput
sequencing, which characterize multiple “omes” from biological
samples, holistic systems for data integration and knowledge
discovery with machine-learning algorithms are still under
development. Precision oncology would greatly benefit from
actionable knowledge gained from multi-omics assays. In this
paper we provided an overview of recent works on this topic and
highlight current achievements and limitations.

We reviewed relevant tools to perform analysis based on
different combination of omics, and observed their growing
numbers in recent years, indicating strong commitments to
develop such tools. Several issues emerged, too. The majority
of the proposed techniques were applied to TCGA dataset, and
data integration was mainly focused on transcriptomics and
genomics. Efforts should be devoted to make new data sources
available to the research community (72), such as the UKBioBank
(73) and DriverDBv3 (74), and to integrate other “omes,”
such as metabolome, or patient-generated, and environmental
data. Research in this field would greatly benefit from the
development of databases specifically developed for containing

and facilitating the analysis of multi-omics and clinical data,
such as LinkedOmics (75). Another important improvement
to increase usability and reproducibility would be to aim at
developing methods that can be applied and generalized for all
omics data type.

The complexity of multi-omics data analysis requires
collaborative efforts among the clinical and machine-learning
communities and the joint application of methodologies derived
from heterogenous backgrounds. We noted that some promising
methods, such as matrix-factorization have not been extensively
exploited, while clustering and network-based approaches are the
most extensively used, probably due to their flexibility and the
possibility to be integrated in comprehensive frameworks that
include feature extraction and transformation to deal with the
curse of dimensionality. Deep learning methods, that are flexible
and achieved outstanding results in other fields, are increasingly
used, even though many works share the same “pipeline” (i.e.,
the exploitation of autoencoder hidden layers for clustering).
Interestingly, the number open source tools have increased in the
very last years (Figure 1B).

We are aware of some limitations of our review. An important
aspect that has not been covered by this review is the quantitative
comparison among tools (76), which could highlight possible
overfitting (77) and issues that may prevent the actual translation
of multi-omics approaches from bench to bedside. Although,
by indicating works that provide a usable tool (Table 1),
our review could be a starting point for a comprehensive
quantitative comparison.
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